1
|
Fernandes RS, Freire MCLC, Bueno RV, Godoy AS, Gil LHVG, Oliva G. Reporter Replicons for Antiviral Drug Discovery against Positive Single-Stranded RNA Viruses. Viruses 2020; 12:v12060598. [PMID: 32486283 PMCID: PMC7354593 DOI: 10.3390/v12060598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022] Open
Abstract
Single-stranded positive RNA ((+) ssRNA) viruses include several important human pathogens. Some members are responsible for large outbreaks, such as Zika virus, West Nile virus, SARS-CoV, and SARS-CoV-2, while others are endemic, causing an enormous global health burden. Since vaccines or specific treatments are not available for most viral infections, the discovery of direct-acting antivirals (DAA) is an urgent need. Still, the low-throughput nature of and biosafety concerns related to traditional antiviral assays hinders the discovery of new inhibitors. With the advances of reverse genetics, reporter replicon systems have become an alternative tool for the screening of DAAs. Herein, we review decades of the use of (+) ssRNA viruses replicon systems for the discovery of antiviral agents. We summarize different strategies used to develop those systems, as well as highlight some of the most promising inhibitors identified by the method. Despite the genetic alterations introduced, reporter replicons have been shown to be reliable systems for screening and identification of viral replication inhibitors and, therefore, an important tool for the discovery of new DAAs.
Collapse
Affiliation(s)
- Rafaela S. Fernandes
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Marjorie C. L. C. Freire
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Renata V. Bueno
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | - Andre S. Godoy
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
| | | | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil; (R.S.F.); (M.C.L.C.F.); (R.V.B.); (A.S.G.)
- Correspondence:
| |
Collapse
|
2
|
Jiang X, Tan J, Wang Y, Chen J, Li J, Jiang Z, Quan Y, Jin J, Li Y, Cen S, Li Y, Peng Z, Li Z. 2-((4-Arylpiperazin-1-yl)methyl)benzonitrile Derivatives as Orally Available Inhibitors of Hepatitis C Virus with a Novel Mechanism of Action. J Med Chem 2020; 63:5972-5989. [PMID: 32378892 DOI: 10.1021/acs.jmedchem.0c00232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the direct-acting antivirals revolutionized the hepatitis C virus (HCV) infection treatment in the last decade, more efforts are needed to reach the elimination of HCV in the absence of a vaccine. 4-(Piperazin-1-yl)-2-((p-tolylamino)methyl)-benzonitrile (1) is a modest HCV inhibitor identified from an in-house screening using a HCV-infected Huh7.5 cell culture. Starting from it, the chemical optimization afforded a new 2-((4-arylpiperazin-1-yl)methyl)benzonitrile scaffold with significantly increased antiviral activity against HCV. A highly effective HCV inhibitor, 35 (L0909, EC50 = 0.022 μM, SI > 600), was identified by the structure-activity relationship study. The biological study revealed that L0909 could block HCV replication by acting on the HCV entry stage. The high sensitivity to clinical resistant HCV mutants and synergistic effect with clinical drugs were observed for this compound. The further pharmaceutical studies demonstrated that L0909 is long-lasting, is orally available, and has low toxicity in vivo. These results show L0909 as a promising HCV entry inhibitor for single or combinational therapeutic potential.
Collapse
Affiliation(s)
- Xinbei Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiali Tan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yixuan Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinhua Chen
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianrui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhi Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanni Quan
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Jin
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanping Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zonggen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.,Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuorong Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Sofia MJ. The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. ACTA ACUST UNITED AC 2019. [PMCID: PMC7122418 DOI: 10.1007/7355_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Highly Efficient, Combinatorial and Catalyst-Free Approach for the Synthesis of 2-Benzylidenehydrazono-3-phenyl-4-thiazolidinone-5-acetates in Ethanol. ChemistrySelect 2019. [DOI: 10.1002/slct.201802366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Discovery of Beclabuvir: A Potent Allosteric Inhibitor of the Hepatitis C Virus Polymerase. HCV: THE JOURNEY FROM DISCOVERY TO A CURE 2018; 31. [PMCID: PMC7123187 DOI: 10.1007/7355_2018_38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discovery of beclabuvir occurred through an iterative series of structure-activity relationship studies directed at the optimization of a novel class of indolobenzazepines. Within this research, a strategic decision to abandon a highly potent but physiochemically problematic series in favor of one of lower molecular weight and potency was key in the realization of the program’s objectives. Subsequent cycles of analog design incorporating progressive conformational constraints successfully addressed off-target liabilities and identified compounds with improved physiochemical profiles. Ultimately, a class of alkyl-bridged piperazine carboxamides was found to be of particular interest, and from this series, beclabuvir was identified as having superior antiviral, safety, and pharmacokinetic properties. The clinical evaluation of beclabuvir in combination with both the NS5A replication complex inhibitor daclatasvir and the NS3 protease inhibitor asunaprevir in a single, fixed-dose formulation (Ximency) resulted in the approval by the Japanese Pharmaceutical and Food Safety Bureau for its use in the treatment of patients infected with genotype 1 HCV.
Collapse
|
6
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
7
|
Bejjam MB, Kumar GS, Swetha A, Meshram HM. DABCO-catalyzed consecutive one pot four-component protocol for the synthesis of a novel class of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-ones. RSC Adv 2016. [DOI: 10.1039/c5ra24127h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A DABCO catalyzed, novel and efficient one-pot, four component protocol has been developed for the synthesis of (Z)-5-(3-hydroxy-2-oxoindolin-3-yl)-2-iminothiazolidin-4-one scaffolds under metal-free conditions.
Collapse
Affiliation(s)
- Madhu Babu Bejjam
- Medicinal Chemistry and Pharmacology Division
- Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - G. Santhosh Kumar
- Medicinal Chemistry and Pharmacology Division
- Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - A. Swetha
- Medicinal Chemistry and Pharmacology Division
- Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - H. M. Meshram
- Medicinal Chemistry and Pharmacology Division
- Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| |
Collapse
|
8
|
Potency and resistance analysis of hepatitis C virus NS5B polymerase inhibitor BMS-791325 on all major genotypes. Antimicrob Agents Chemother 2014; 58:7416-23. [PMID: 25267677 DOI: 10.1128/aac.03851-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BMS-791325 is a hepatitis C virus (HCV) inhibitor binding to the thumb domain of the NS5B RNA-dependent RNA polymerase. BMS-791325 is well characterized in genotype 1 (GT1) and exhibits good inhibitory activity (50% effective concentration [EC50], <10 nM) against hybrid replicons containing patient NS5B sequences from GT3a, -4a, and -5a while potency against GT2 is significantly reduced (J. A. Lemm et al., Antimicrob. Agents Chemother. 58:3485-3495, 2014, doi:http://dx.doi.org/10.1128/AAC.02495-13). BMS-791325 potency against GT6a hybrid replicons is more variable, with two of three hybrid clones having EC50s similar to that for GT1 while a third patient clone was ∼ 10 times less susceptible to BMS-791325. To characterize the resistance profile of BMS-791325 beyond GT1, curing studies were performed across GT1a and -3a to -6a and demonstrated that GT1a has the highest resistance barrier versus BMS-791325 while GT6a has the lowest. Selection of GT3 to -6 NS5B chimeric replicon cells at different concentrations of BMS-791325 revealed substitutions in the thumb domain of NS5B at residues 494 and 495 that conferred different levels of resistance to BMS-791325 but remained susceptible to NS5A or NS3 protease inhibitors. In addition, we demonstrate that the reduced potency of BMS-791325 against one GT6a patient is due to an A494 polymorphism present in ∼ 21% of sequences in the European HCV database. The results from this report suggest that BMS-791325 is a candidate for combination treatment of HCV GT3 to -6 chronic infections, and the resistance profiles identified will provide useful information for future clinical development.
Collapse
|
9
|
Belema M, Meanwell NA. Discovery of daclatasvir, a pan-genotypic hepatitis C virus NS5A replication complex inhibitor with potent clinical effect. J Med Chem 2014; 57:5057-71. [PMID: 24749835 DOI: 10.1021/jm500335h] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery and development of the first-in-class hepatitis C virus (HCV) NS5A replication complex inhibitor daclatasvir (6) provides a compelling example of the power of phenotypic screening to identify leads engaging novel targets in mechanistically unique ways. HCV NS5A replication complex inhibitors are pan-genotypic in spectrum, and this mechanistic class provides the most potent HCV inhibitors in vitro that have been described to date. Clinical trials with 6 demonstrated a potent effect on reducing plasma viral load and, in combination with mechanistically orthogonal HCV inhibitors, established the ability to cure even the most difficult infections without the need for immune stimulation. In this Drug Annotation, we describe the discovery of the original high-throughput screening lead 7 and the chemical conundrum and challenges resolved in optimizing to 6 as a clinical candidate and finally we summarize the results of select clinical studies.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | |
Collapse
|
10
|
Preclinical characterization of BMS-791325, an allosteric inhibitor of hepatitis C Virus NS5B polymerase. Antimicrob Agents Chemother 2014; 58:3485-95. [PMID: 24733465 DOI: 10.1128/aac.02495-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BMS-791325 is an allosteric inhibitor that binds to thumb site 1 of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. BMS-791325 inhibits recombinant NS5B proteins from HCV genotypes 1, 3, 4, and 5 at 50% inhibitory concentrations (IC50) below 28 nM. In cell culture, BMS-791325 inhibited replication of HCV subgenomic replicons representing genotypes 1a and 1b at 50% effective concentrations (EC50s) of 3 nM and 6 nM, respectively, with similar (3 to 18 nM) values for genotypes 3a, 4a, and 5a. Potency against genotype 6a showed more variability (9 to 125 nM), and activity was weaker against genotype 2 (EC50, 87 to 925 nM). Specificity was demonstrated by the absence of activity (EC50s of >4 μM) against a panel of mammalian viruses, and cytotoxic concentrations (50%) were >3,000-fold above the HCV EC50. Resistance substitutions selected by BMS-791325 in genotype 1 replicons mostly mapped to a single site, NS5B amino acid 495 (P495A/S/L/T). Additive or synergistic activity was observed in combination studies using BMS-791325 with alfa interferon plus ribavirin, inhibitors of NS3 protease or NS5A, and other classes of NS5B inhibitor (palm site 2-binding or nucleoside analogs). Plasma and liver exposures in vivo in several animal species indicated that BMS-791325 has a hepatotropic disposition (liver-to-plasma ratios ranging from 1.6- to 60-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥ 10-fold above the inhibitor EC50s observed with HCV genotype 1 replicons. These findings support the evaluation of BMS-791325 in combination regimens for the treatment of HCV. Phase 3 studies are ongoing.
Collapse
|
11
|
Belema M, Nguyen VN, Bachand C, Deon DH, Goodrich JT, James CA, Lavoie R, Lopez OD, Martel A, Romine JL, Ruediger EH, Snyder LB, St Laurent DR, Yang F, Zhu J, Wong HS, Langley DR, Adams SP, Cantor GH, Chimalakonda A, Fura A, Johnson BM, Knipe JO, Parker DD, Santone KS, Fridell RA, Lemm JA, O'Boyle DR, Colonno RJ, Gao M, Meanwell NA, Hamann LG. Hepatitis C virus NS5A replication complex inhibitors: the discovery of daclatasvir. J Med Chem 2014; 57:2013-32. [PMID: 24521299 DOI: 10.1021/jm401836p] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.
Collapse
Affiliation(s)
- Makonen Belema
- Departments of Discovery Chemistry, ‡Discovery Chemistry Synthesis, §Computer-Assisted Drug Design, and ¶Pharmaceutical Candidate Optimization, #Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Belema M, Lopez OD, Bender JA, Romine JL, St Laurent DR, Langley DR, Lemm JA, O'Boyle DR, Sun JH, Wang C, Fridell RA, Meanwell NA. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J Med Chem 2014; 57:1643-72. [PMID: 24621191 DOI: 10.1021/jm401793m] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, ‡Department of Virology Discovery, and §Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gentles RG, Ding M, Bender JA, Bergstrom CP, Grant-Young K, Hewawasam P, Hudyma T, Martin S, Nickel A, Regueiro-Ren A, Tu Y, Yang Z, Yeung KS, Zheng X, Chao S, Sun JH, Beno BR, Camac DM, Chang CH, Gao M, Morin PE, Sheriff S, Tredup J, Wan J, Witmer MR, Xie D, Hanumegowda U, Knipe J, Mosure K, Santone KS, Parker DD, Zhuo X, Lemm J, Liu M, Pelosi L, Rigat K, Voss S, Wang Y, Wang YK, Colonno RJ, Gao M, Roberts SB, Gao Q, Ng A, Meanwell NA, Kadow JF. Discovery and preclinical characterization of the cyclopropylindolobenzazepine BMS-791325, a potent allosteric inhibitor of the hepatitis C virus NS5B polymerase. J Med Chem 2014; 57:1855-79. [PMID: 24397558 DOI: 10.1021/jm4016894] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.
Collapse
Affiliation(s)
- Robert G Gentles
- Discovery Chemistry, ‡Molecular Discovery Technologies, Molecular Structure & Design, §Molecular Discovery Technologies, Protein Science, ∥Pharmaceutical Candidate Optimization, ⊥Discovery Virology, Disease Sciences and Biologics, #Leads Discovery and Optimization, ▽Materials Science, Drug Product Science and Technology, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Paulsen D, Urban A, Knorr A, Hirth-Dietrich C, Siegling A, Volk HD, Mercer AA, Limmer A, Schumak B, Knolle P, Ruebsamen-Schaeff H, Weber O. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models. PLoS One 2013; 8:e74605. [PMID: 24066148 PMCID: PMC3774719 DOI: 10.1371/journal.pone.0074605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 08/05/2013] [Indexed: 01/27/2023] Open
Abstract
Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.
Collapse
Affiliation(s)
| | | | | | | | | | - Hans-Dieter Volk
- Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité – Medical University Berlin, Berlin, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andreas Limmer
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University of Bonn, Bonn, Germany
| | - Percy Knolle
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | - Olaf Weber
- Bayer HealthCare AG, Leverkusen, Germany
| |
Collapse
|
15
|
Friborg J, Lin B, Chen C, McPhee F. Isolation and characterization of interferon lambda-resistant hepatitis C virus replicon cell lines. Virology 2013; 444:384-93. [PMID: 23891156 DOI: 10.1016/j.virol.2013.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/30/2013] [Accepted: 07/03/2013] [Indexed: 01/20/2023]
Abstract
Pegylated interferon lambda-1a (Lambda) is currently in clinical development for the treatment of chronic hepatitis C virus (HCV) infection. To gain insight into the potential mechanisms of non-responsiveness that may occur in patients treated with Lambda, HCV subgenomic replicon cell-lines with impaired susceptibility to the unpegylated recombinant (r) form of interferon (IFN) lambda-1 (rIFNλ) were isolated and characterized. The selected replicon cell populations showed a defect in the activation of the IFN-dependent JAK-STAT signaling pathway. Reduced phosphorylation of STAT proteins and lower expression levels of the cellular janus kinases Jak1 and Tyk2 were observed in these cell populations, which may account for the impaired JAK-STAT signaling and reduced antiviral responses to rIFNλ. Overall, this in vitro study provides molecular insights into the possible mechanism of viral evasion to rIFNλ in the HCV replicon cell system.
Collapse
Affiliation(s)
- Jacques Friborg
- Discovery Virology, Bristol-Myers Squibb Research and Development, Wallingford, CT 06492, USA.
| | | | | | | |
Collapse
|
16
|
O'Boyle Ii DR, Sun JH, Nower PT, Lemm JA, Fridell RA, Wang C, Romine JL, Belema M, Nguyen VN, Laurent DRS, Serrano-Wu M, Snyder LB, Meanwell NA, Langley DR, Gao M. Characterizations of HCV NS5A replication complex inhibitors. Virology 2013; 444:343-54. [PMID: 23896639 DOI: 10.1016/j.virol.2013.06.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/02/2013] [Accepted: 06/28/2013] [Indexed: 01/28/2023]
Abstract
The hepatitis C virus NS5A protein is an established and clinically validated target for antiviral intervention by small molecules. Characterizations are presented of compounds identified as potent inhibitors of HCV replication to provide insight into structural elements that interact with the NS5A protein. UV-activated cross linking and affinity isolation was performed with one series to probe the physical interaction between the inhibitors and the NS5A protein expressed in HCV replicon cells. Resistance mapping with the second series was used to determine the functional impact of specific inhibitor subdomains on the interaction with NS5A. The data provide evidence for a direct high-affinity interaction between these inhibitors and the NS5A protein, with the interaction dependent on inhibitor stereochemistry. The functional data supports a model of inhibition that implicates inhibitor binding by covalently combining distinct pharmacophores across an NS5A dimer interface to achieve maximal inhibition of HCV replication.
Collapse
Affiliation(s)
- Donald R O'Boyle Ii
- Bristol-Myers Squibb Research and Development, Department of Virology Discovery, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Belema M, Meanwell NA, Bender JA, Lopez OD, Hewawasam P, Langley DR. Discovery and Clinical Validation of HCV Inhibitors Targeting the NS5A Protein. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HCV non‐structural protein 5A (NS5A) is a multifunctional protein that plays a diverse set of roles in the replication cycle of the virus. Although a significant level of effort has been invested over the past decade at characterizing this protein, our understanding and appreciation of its full structure and function remain far from complete. Despite these drawbacks, however, great strides have been made towards discovering potent HCV NS5A inhibitors that have exhibited promising efficacy in early clinical trials, and these inhibitors have the potential to become an integral component of effective combination therapies that are expected to emerge in the near future. Highlights of the biochemical characterization of the HCV NS5A protein, aspects of the seminal drug discovery effort that culminated in the identification of daclatasvir with which clinical proof‐of‐concept was obtained for NS5A as a target and the follow‐up efforts that identified additional inhibitors, along with findings from mode‐of‐action studies, are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - David R. Langley
- Department of Computer‐Assisted Drug Design Bristol‐Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| |
Collapse
|
18
|
O'Boyle DR, Nower PT, Sun JH, Fridell R, Wang C, Valera L, Gao M. A 96-well based analysis of replicon elimination with the HCV NS5A replication complex inhibitor daclatasvir. J Virol Methods 2013; 193:68-76. [PMID: 23684844 DOI: 10.1016/j.jviromet.2013.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/02/2013] [Accepted: 04/29/2013] [Indexed: 01/15/2023]
Abstract
A 96-well based replicon elimination and colony formation assay is presented for comparing the resistance barrier of the hepatitis C virus (HCV) NS5A replication complex inhibitor daclatasvir (DCV, BMS-790052) on three HCV genotypes (gts) in a proof of concept experimental protocol. The 96-well assay format provides both individual colony as well as population characterization and is readily applicable to other HCV direct-acting antiviral agents (DAAs). The assay provides an assessment of HCV replication levels over a 5log10 range by measuring a luciferase reporter resident in the HCV replicons. Individual colony status can be measured with a separate and compatible resazurin assay to assess relative host cell fitness following inhibitor treatments. The methods employed are non-toxic and leave intact isolatable colonies that can be used for phenotyping and genotyping. The utility of the assay is demonstrated by the identification and isolation of resistant variants as well as in the ranking of the relative resistance barrier for the replication complex inhibitor DCV for gts 1a, 1b and 2a. The format provides a quantitative ranking based upon luciferase activity and has the ability to monitor DAA resistance development over time for large numbers of compounds.
Collapse
Affiliation(s)
- Donald R O'Boyle
- Discovery Virology, Bristol-Myers Squibb Research and Development, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
St. Laurent DR, Serrano-Wu MH, Belema M, Ding M, Fang H, Gao M, Goodrich JT, Krause RG, Lemm JA, Liu M, Lopez OD, Nguyen VN, Nower PT, O’Boyle DR, Pearce BC, Romine JL, Valera L, Sun JH, Wang YK, Yang F, Yang X, Meanwell NA, Snyder LB. HCV NS5A Replication Complex Inhibitors. Part 4.1 Optimization for Genotype 1a Replicon Inhibitory Activity. J Med Chem 2013; 57:1976-94. [DOI: 10.1021/jm301796k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Denis R. St. Laurent
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Michael H. Serrano-Wu
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Makonen Belema
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Min Ding
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Hua Fang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Min Gao
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jason T. Goodrich
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Rudolph G. Krause
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Julie A. Lemm
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Mengping Liu
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Omar D. Lopez
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Van N. Nguyen
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Peter T. Nower
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Donald R. O’Boyle
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Bradley C. Pearce
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey L. Romine
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Lourdes Valera
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Jin-Hua Sun
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Ying-Kai Wang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Fukang Yang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Xuejie Yang
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Lawrence B. Snyder
- Departments of †Medicinal Chemistry, ‡Virology, and §Computer-Aided Drug Design, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
20
|
Intragenic complementation of hepatitis C virus NS5A RNA replication-defective alleles. J Virol 2012; 87:2320-9. [PMID: 23236071 DOI: 10.1128/jvi.02861-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatitis C virus NS5A has three structural domains, is required for RNA replication and virion assembly, and exists in hypo- and hyperphosphorylated forms. Accumulated data suggest that phosphorylation is involved in modulating NS5A functions. We performed a mutational analysis of highly conserved serine residues in the linker region between domains I and II of genotype 2a JFH1 NS5A. As with genotype 1b Con1 NS5A, we found that specific serine residues were important for efficient hyperphosphorylation of JFH1 NS5A. However, in contrast with Con1 replicons, we observed a positive correlation between hyperphosphorylation and JFH1 replicon replication. We previously demonstrated trans-complementation of a hyperphosphorylation-deficient, replication-defective JFH1 replicon. Our results suggested that the defective NS5A encoded by this replicon, while lacking one NS5A function, was capable of performing a separate replication function. In this report, we examined an additional set of replication-defective NS5A mutations in trans-complementation assays. While some behaved similarly to the S232I replicon, others displayed a unique trans-complementation phenotype, suggesting that NS5A trans-complementation can occur by two distinct modes. Moreover, we were able, for the first time, to demonstrate intragenic complementation of replication-defective NS5A alleles. Our results identified three complementation groups: group A, comprising mutations within NS5A domain I; group B, comprising mutations affecting serine residues important for hyperphosphorylation and a subset of the domain I mutations; and group C, comprising a single mutation within the C-terminal region of domain II. We postulate that these complementation groups define three distinct and genetically separable functions of NS5A in RNA replication.
Collapse
|
21
|
Hernandez D, Falk P, Yu F, Zhai G, Quan Y, Faria T, Cao K, Scola P, McPhee F. Establishment of a robust hepatitis C virus replicon cell line over-expressing P-glycoprotein that facilitates analysis of P-gp drug transporter effects on inhibitor antiviral activity. Biochem Pharmacol 2012; 85:21-8. [PMID: 23063413 DOI: 10.1016/j.bcp.2012.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/15/2022]
Abstract
P-glycoprotein (P-gp) is an active efflux pump affecting the pharmacokinetic (PK) profiles of drugs that are P-gp substrates. The Caco-2 bi-directional assay is widely used to identify drug-P-gp interactions in vitro. For molecules exhibiting non-classical drug properties however, ambiguous results limit its use in lead optimization. The goal of this study was to develop a robust cell-based assay system to directly measure the role of P-gp-driven efflux in reducing the potency of hepatitis C virus (HCV) replication inhibitors. Vinblastine (Vin) was employed to select for a Vin-resistant HCV replicon (313-11) from the parental cell line (377-2). The 313-11 cell line was >50-fold resistant to Vin and over-expressed P-gp, as determined by Western immunoblots. Increased expression of P-gp was mediated by up-regulation of the MDR1 transcript. The reduced potency of different classes of HCV replication inhibitors in the 313-11 P-gp cell line was restored in the presence of known P-gp inhibitors. Addition of the P-gp inhibitor, tariquidar, increased the uptake of a radiolabeled HCV replication inhibitor by 14-fold in the 313-11 replicon cell line. Finally, a positive correlation was demonstrated between potency in the 313-11 replicon and the bi-directional Caco-2 efflux ratio for a panel of HCV protease inhibitors. In conclusion, a robust P-gp HCV replicon cell-based assay has been developed to measure the effect of the P-gp efflux pump on the potency of different classes of HCV replication inhibitors. This system establishes a direct correlation between antiviral activity and the effect of P-gp efflux in a single cell line.
Collapse
Affiliation(s)
- Dennis Hernandez
- Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Small molecule inhibitors of the hepatitis C virus-encoded NS5A protein. Virus Res 2012; 170:1-14. [PMID: 23009750 DOI: 10.1016/j.virusres.2012.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) is a modern-day pandemic; 2-3% of the world's population are thought to be infected with the virus and are subsequently at risk of developing end-stage liver diseases. The traditional standard of care (SOC) for HCV-infected patients has been limited to a regimen of pegylated-interferon alpha (pegIFN) and ribavirin; displaying low cure rates in a majority of patients and severe side effects. However, in 2011 the first direct-acting antivirals (DAA) were licensed to treat HCV-infected patients in combination with SOC, which served to elevate treatment response rates. The HCV drug development pipeline is currently populated with many additional and improved DAAs; primarily molecules that target the virus-encoded protease or polymerase enzymes. These molecules are being evaluated both in combination with the traditional SOC and together with other DAAs as all-oral pegIFN-free regimens with the ultimate goal of developing multiple DAA-containing HCV therapies that do not rely on an pegIFN backbone. A recent addition to the arsenal of HCV inhibitors in development is represented by an entirely new DAA class; molecules that target the HCV-encoded non-enzymatic NS5A protein. NS5A is essential for HCV propagation and, although its actual functions are largely unknown, it is likely a key regulator of viral genome replication and virion assembly. The protein is exquisitely sensitive to small molecule-mediated inhibition; NS5A-targeting molecules are probably the most potent antiviral molecules ever discovered and exhibit a number of other attractive drug-like properties, including activity against many HCV genotypes/subtypes and once-daily dosing potential. Although their mechanism of action is unclear, NS5A-targeting molecules are already proving their utility in clinical evaluation; particularly as components of pegIFN-sparring DAA combination regimens. This review will aim to amalgamate our current understanding and knowledge of NS5A-targeting molecules; their discovery, properties, applications, and insight into their future impact as components of all-oral pegIFN-free DAA combination therapies to combat HCV infection.
Collapse
|
23
|
Wichroski MJ, Fang J, Eggers BJ, Rose RE, Mazzucco CE, Pokornowski KA, Baldick CJ, Anthony MN, Dowling CJ, Barber LE, Leet JE, Beno BR, Gerritz SW, Agler ML, Cockett MI, Tenney DJ. High-throughput screening and rapid inhibitor triage using an infectious chimeric Hepatitis C virus. PLoS One 2012; 7:e42609. [PMID: 22880053 PMCID: PMC3412796 DOI: 10.1371/journal.pone.0042609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022] Open
Abstract
The recent development of a Hepatitis C virus (HCV) infectious virus cell culture model system has facilitated the development of whole-virus screening assays which can be used to interrogate the entire virus life cycle. Here, we describe the development of an HCV growth assay capable of identifying inhibitors against all stages of the virus life cycle with assay throughput suitable for rapid screening of large-scale chemical libraries. Novel features include, 1) the use of an efficiently-spreading, full-length, intergenotypic chimeric reporter virus with genotype 1 structural proteins, 2) a homogenous assay format compatible with miniaturization and automated liquid-handling, and 3) flexible assay end-points using either chemiluminescence (high-throughput screening) or Cellomics ArrayScan™ technology (high-content screening). The assay was validated using known HCV antivirals and through a large-scale, high-throughput screening campaign that identified novel and selective entry, replication and late-stage inhibitors. Selection and characterization of resistant viruses provided information regarding inhibitor target and mechanism. Leveraging results from this robust whole-virus assay represents a critical first step towards identifying inhibitors of novel targets to broaden the spectrum of antivirals for the treatment of HCV.
Collapse
Affiliation(s)
- Michael J. Wichroski
- Bristol-Myers Squibb Research and Development, Wallingford, Connecticut, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Preclinical Profile and Characterization of the Hepatitis C Virus NS3 Protease Inhibitor Asunaprevir (BMS-650032). Antimicrob Agents Chemother 2012; 56:5387-96. [PMID: 22869577 DOI: 10.1128/aac.01186-12] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with K(i) values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC(50)s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC(50), 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC(50), >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC(50)s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients.
Collapse
|
25
|
Hussain S, Barretto N, Uprichard SL. New hepatitis C virus drug discovery strategies and model systems. Expert Opin Drug Discov 2012; 7:849-59. [PMID: 22861052 DOI: 10.1517/17460441.2012.711312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a major cause of liver disease worldwide and the leading indication for liver transplantation in the United States. Current treatment options are expensive, not effective in all patients and are associated with serious side effects. Although preclinical, anti-HCV drug screening is still hampered by the lack of readily infectable small animal models, the development of cell culture HCV experimental model systems has driven a promising new wave of HCV antiviral drug discovery. AREAS COVERED This review contains a concise overview of current HCV treatment options and limitations with a subsequent in-depth focus on the available experimental models and novel strategies that have, and continue to enable, important advances in HCV drug development. EXPERT OPINION With a large cohort of chronically HCV-infected patients progressively developing liver disease that puts them at risk for hepatocellular carcinoma and hepatic decompensation, there is an urgent need to develop effective therapeutics that are well tolerated and effective in all patients and against all HCV genotypes. Significant advances in HCV experimental model development have expedited drug discovery; however, additional progress is needed. Importantly, the current trends and momentum in the field suggests that we will continue to overcome critical experimental challenges to reach this end goal.
Collapse
Affiliation(s)
- Snawar Hussain
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
26
|
Effect on hepatitis C virus replication of combinations of direct-acting antivirals, including NS5A inhibitor daclatasvir. Antimicrob Agents Chemother 2012; 56:5230-9. [PMID: 22850513 DOI: 10.1128/aac.01209-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Three hepatitis C virus (HCV) inhibitors, asunaprevir (ASV; BMS-650032), daclatasvir (DCV; BMS-790052), and BMS-791325, each targeting a different nonstructural protein of the virus (NS3, NS5A, and NS5B, respectively), have independently demonstrated encouraging preclinical profiles and are currently undergoing clinical evaluation. Since drug-resistant variants have rapidly developed in response to monotherapy with almost all direct-acting antiviral agents (DAAs) for HCV, the need for combination therapies to effectively eradicate the virus from infected patients is clear. These studies demonstrated the additive-synergistic effects on replicon inhibition and clearance of combining NS3 protease or NS5B RNA polymerase inhibitors with the first-in-class, NS5A replication complex inhibitor daclatasvir (DCV) and reveal new resistance pathways for combinations of two small-molecule inhibitors that differ from those that develop during monotherapy. The results suggest that under a specific selective pressure, a balance must be reached in the fitness costs of substitutions in one target gene when substitutions are also present in another target gene. Further synergies and additional novel resistance substitutions were observed during triple-combination treatment relative to dual-drug therapy, indicating that, in combination, HCV inhibitors can exert cross-target influences on resistance development. Enhanced synergies in replicon inhibition and a reduced frequency of resistance together lend strong support to the utility of combinations of DAAs for the treatment of HCV, and the identification of altered resistance profiles during combination treatment provides useful information for monitoring resistance in the clinic.
Collapse
|
27
|
Ding M, He F, Hudyma TW, Zheng X, Poss MA, Kadow JF, Beno BR, Rigat KL, Wang YK, Fridell RA, Lemm JA, Qiu D, Liu M, Voss S, Pelosi LA, Roberts SB, Gao M, Knipe J, Gentles RG. Synthesis and SAR studies of novel heteroaryl fused tetracyclic indole-diamide compounds: Potent allosteric inhibitors of the hepatitis C virus NS5B polymerase. Bioorg Med Chem Lett 2012; 22:2866-71. [DOI: 10.1016/j.bmcl.2012.02.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/21/2012] [Indexed: 11/15/2022]
|
28
|
Schultz B, Yang H, Delaney WE. Biochemical evaluation of HCV NS3 protease inhibitors. ACTA ACUST UNITED AC 2012; Chapter 13:Unit13B.7. [PMID: 21898332 DOI: 10.1002/0471141755.ph13b07s54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes assays for characterizing the potency and mechanism of action of NS3 protease inhibitors. Determination of IC(50) values is described using in vitro expressed and purified NS3 protease. This assay can also be used for the rapid exploration of structure-activity relationships. Another protocol describes using the full-length NS3/4A complexes expressed in HCV replicon cell lines for a rapid alternative method for assessing protease activity without requiring conventional protein expression and purification. A method is then provided for determination of inhibitor K(i), which more accurately assesses the potency of inhibitors compared to the IC(50) assay, particularly for potent inhibitors that reach the sensitivity limit for the basic IC(50) assay. The final protocol describes how to determine the reversibility of inhibitor binding to the enzyme, an important parameter that can affect the pharmacodynamic properties of a compound.
Collapse
|
29
|
Hepatitis C virus RNA elimination and development of resistance in replicon cells treated with BMS-790052. Antimicrob Agents Chemother 2012; 56:1350-8. [PMID: 22214777 DOI: 10.1128/aac.05977-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BMS-790052, a first-in-class hepatitis C virus (HCV) replication complex inhibitor, targeting nonstructural protein 5A (NS5A), displays picomolar to nanomolar potency against genotypes 1 to 5. This exceptional potency translated into robust anti-HCV activity in clinical studies with HCV genotype 1-infected subjects. To date, all BMS-790052-associated resistance mutations have mapped to the N-terminal region of NS5A. To further characterize the antiviral activity of BMS-790052, HCV replicon elimination and colony formation assays were performed. Replicon was cleared from genotype 1a and 1b replicon cells in a time- and dose-dependent manner. Elimination of the genotype 1a replicon required longer treatment durations and higher concentrations of BMS-790052 than those for the genotype1b replicon. Single amino acid substitutions that conferred relatively low levels of resistance were observed at early time points and at low doses. Higher doses and longer treatment durations yielded mutations that conferred greater levels of resistance, including linked amino acid substitutions. Replicon cells that survived inhibitor treatment remained fully sensitivity to pegylated alpha interferon (pegIFN-α) and other HCV inhibitors. Moreover, genotype 1a replicon elimination was markedly enhanced when pegIFN-α and BMS-790052 were combined. Resistant variants observed in this study were very similar to those observed in a multiple ascending dose (MAD) monotherapy trial of BMS-790052, validating replicon elimination studies as a model to predict clinical resistance. Insights gained from the in vitro anti-HCV activity and resistance profiles of BMS-790052 will be used to help guide the clinical development of this novel HCV inhibitor.
Collapse
|
30
|
Development of a reporter bovine viral diarrhea virus and initial evaluation of its application for high throughput antiviral drug screening. J Virol Methods 2011; 180:54-61. [PMID: 22227616 DOI: 10.1016/j.jviromet.2011.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/15/2011] [Accepted: 12/22/2011] [Indexed: 11/21/2022]
Abstract
Bovine viral diarrhea virus (BVDV) causes lethal mucosal disease of cattle and leads to severe economic loss of cattle production and reproduction worldwide. Over the past decades, vaccination was not very successful in providing prevention of BVDV infection. This reality demands that anti-BVDV drugs should be used as an alternative treatment strategy. In this study, a BAC cDNA of noncytopathic BVDV strain SD-1 is constructed to contain an enhanced green fluorescence protein (eGFP) gene between viral NS3 and NS4A coding sequences. The recombinant reporter virus is generated subsequently by transfection of MDBK cells with the transcripts produced in vitro. The rescued reporter virus is stable in MDBK cells and the eGFP protein is expressed and processed properly. Of most importance, the reporter virus shows a growth property similar to the SD-1 parent and the fluorescent signal intensity increases in parallel to the reporter virus RNA and protein replication. In addition, two known anti-BVDV drug G418 (viral assembly/release inhibitor) and ribavirin (viral RNA replication inhibitor) are identified as hits in a high-throughput format, suggesting that this system is capable of identifying BVDV inhibitors that target different steps in viral life cycle. The cell-based system developed provides a useful and versatile tool which should facilitate the identification of BVDV inhibitors on a large scale.
Collapse
|
31
|
In vitro activity of BMS-790052 on hepatitis C virus genotype 4 NS5A. Antimicrob Agents Chemother 2011; 56:1588-90. [PMID: 22203595 DOI: 10.1128/aac.06169-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antiviral profile of BMS-790052, a potent hepatitis C virus (HCV) replication complex inhibitor targeting nonstructural protein NS5A, is well characterized for HCV genotype-1. Here, we report that BMS-790052 inhibits hybrid replicons containing HCV genotype-4 NS5A genes with 50% effective concentrations (EC(50)s) ranging from 7 to 13 pM. NS5A residue 30 was an important site for BMS-790052-selected resistance in the hybrid replicons. Our results support the potential of BMS-790052 as a valuable component of combination therapy for HCV genotype-4 chronic infection.
Collapse
|
32
|
Abstract
We report a novel inhibitor that selectively suppresses dengue virus (DENV) by targeting viral NS4B protein. The inhibitor was identified by screening a 1.8-million-compound library using a luciferase replicon of DENV serotype 2 (DENV-2). The compound specifically inhibits all four serotypes of DENV (50% effective concentration [EC(50)], 1 to 4 μM; and 50% cytotoxic concentration [CC(50)], >40 μM), but it does not inhibit closely related flaviviruses (West Nile virus and yellow fever virus) or nonflaviviruses (Western equine encephalomyelitis virus, Chikungunya virus, and vesicular stomatitis virus). A mode-of-action study suggested that the compound inhibits viral RNA synthesis. Replicons resistant to the inhibitor were selected in cell culture. Sequencing of the resistant replicons revealed two mutations (P104L and A119T) in the viral NS4B protein. Genetic analysis, using DENV-2 replicon and recombinant viruses, demonstrated that each of the two NS4B mutations alone confers partial resistance and double mutations confer additive resistance to the inhibitor in mammalian cells. In addition, we found that a replication defect caused by a lethal NS4B mutation could be partially rescued through trans complementation. The ability to complement NS4B in trans affected drug sensitivity when a single cell was coinfected with drug-sensitive and drug-resistant viruses. Mechanistically, NS4B was previously shown to interact with the viral NS3 helicase domain; one of the two NS4B mutations recovered in our resistance analysis-P104L-abolished the NS3-NS4B interaction (I. Umareddy, A. Chao, A. Sampath, F. Gu, and S. G. Vasudevan, J. Gen. Virol. 87:2605-2614, 2006). Collectively, the results suggest that the identified inhibitor targets the DENV NS4B protein, leading to a defect in viral RNA synthesis.
Collapse
|
33
|
Lemm JA, Leet JE, O'Boyle DR, Romine JL, Huang XS, Schroeder DR, Alberts J, Cantone JL, Sun JH, Nower PT, Martin SW, Serrano-Wu MH, Meanwell NA, Snyder LB, Gao M. Discovery of potent hepatitis C virus NS5A inhibitors with dimeric structures. Antimicrob Agents Chemother 2011; 55:3795-802. [PMID: 21576451 PMCID: PMC3147613 DOI: 10.1128/aac.00146-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/06/2011] [Indexed: 12/14/2022] Open
Abstract
The exceptional in vitro potency of the hepatitis C virus (HCV) NS5A inhibitor BMS-790052 has translated into an in vivo effect in proof-of-concept clinical trials. Although the 50% effective concentration (EC(50)) of the initial lead, the thiazolidinone BMS-824, was ~10 nM in the replicon assay, it underwent transformation to other inhibitory species after incubation in cell culture medium. The biological profile of BMS-824, including the EC(50), the drug concentration required to reduce cell growth by 50% (CC(50)), and the resistance profile, however, remained unchanged, triggering an investigation to identify the biologically active species. High-performance liquid chromatography (HPLC) biogram fractionation of a sample of BMS-824 incubated in medium revealed that the most active fractions could readily be separated from the parental compound and retained the biological profile of BMS-824. From mass spectral and nuclear magnetic resonance data, the active species was determined to be a dimer of BMS-824 derived from an intermolecular radical-mediated reaction of the parent compound. Based upon an analysis of the structural elements of the dimer deemed necessary for anti-HCV activity, the stilbene derivative BMS-346 was synthesized. This compound exhibited excellent anti-HCV activity and showed a resistance profile similar to that of BMS-824, with changes in compound sensitivity mapped to the N terminus of NS5A. The N terminus of NS5A has been crystallized as a dimer, complementing the symmetry of BMS-346 and allowing a potential mode of inhibition of NS5A to be discussed. Identification of the stable, active pharmacophore associated with these NS5A inhibitors provided the foundation for the design of more potent inhibitors with broad genotype inhibition. This culminated in the identification of BMS-790052, a compound that preserves the symmetry discovered with BMS-346.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jeffrey Alberts
- Discovery Biotransformation, Bristol-Myers Squibb Research, 5 Research Parkway, Wallingford, Connecticut 06492
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Robinson M, Tian Y, Pagratis N, Delaney WE. Screening of Hepatitis C Virus Inhibitors Using Genotype 1a HCV Replicon Cell Lines. ACTA ACUST UNITED AC 2011; Chapter 17:Unit17.7. [DOI: 10.1002/9780471729259.mc1707s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Yang Tian
- Gilead Sciences Foster City California
| | | | | |
Collapse
|
35
|
Anti-infectives: Can cellular screening deliver? Curr Opin Chem Biol 2011; 15:529-33. [DOI: 10.1016/j.cbpa.2011.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/18/2011] [Accepted: 06/07/2011] [Indexed: 12/29/2022]
|
36
|
Abstract
The development and approval of direct-acting antiviral agents looks set to transform the treatment of chronic hepatitis C infection. Among the agents in development are novel compounds that inhibit the function of the NS5A protein: a pleiotropic protein with a complex and essential role in viral replication. Preclinical studies have demonstrated the potency of these agents across a broad range of viral genotypes, and in early phase trials, they rapidly suppressed viral replication when administered as monotherapy or in combination with pegylated interferon-α and ribavirin. The discovery and development of NS5A replication complex inhibitors is summarized in this review.
Collapse
Affiliation(s)
- Robert G Gish
- Division of Gastroenterology, University of California at San Diego, San Diego, CA 92103-8413, USA.
| | | |
Collapse
|
37
|
Distinct functions of NS5A in hepatitis C virus RNA replication uncovered by studies with the NS5A inhibitor BMS-790052. J Virol 2011; 85:7312-20. [PMID: 21593143 DOI: 10.1128/jvi.00253-11] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BMS-790052, targeting nonstructural protein 5A (NS5A), is the most potent hepatitis C virus (HCV) inhibitor described to date. It is highly effective against genotype 1 replicons and also displays robust genotype 1 anti-HCV activity in the clinic (M. Gao et al., Nature 465:96-100, 2010). BMS-790052 inhibits genotype 2a JFH1 replicon cells and cell culture infectious virus with 50% effective concentrations (EC(50)s) of 46.8 and 16.1 pM, respectively. Resistance selection studies with the JFH1 replicon and virus systems identified drug-induced mutations within the N-terminal region of NS5A. F28S, L31M, C92R, and Y93H were the major resistance mutations identified; the impact of these mutations on inhibitor sensitivity between the replicon and virus was very similar. The C92R and Y93H mutations negatively impacted fitness of the JFH1 virus. Second-site replacements at NS5A residue 30 (K30E/Q) restored efficient replication of the C92R viral variant, thus demonstrating a genetic interaction between NS5A residues 30 and 92. By using a trans-complementation assay with JFH1 replicons encoding inhibitor-sensitive and inhibitor-resistant NS5A proteins, we provide genetic evidence that NS5A performs the following two distinct functions in HCV RNA replication: a cis-acting function that likely occurs as part of the HCV replication complex and a trans-acting function that may occur outside the replication complex. The cis-acting function is likely performed by basally phosphorylated NS5A, while the trans-acting function likely requires hyperphosphorylation. Our data indicate that BMS-790052 blocks the cis-acting function of NS5A. Since BMS-790052 also impairs JFH1 NS5A hyperphosphorylation, it likely also blocks the trans-acting function.
Collapse
|
38
|
Martin SW, Glunz P, Beno BR, Bergstrom C, Romine JL, Scott Priestley E, Newman M, Gao M, Roberts S, Rigat K, Fridell R, Qiu D, Knobloh G, Wang YK. The Synthesis and evaluation of a novel class of (E)-3-(1-cyclohexyl-1H-pyrazol-3-yl)-2-methylacrylic acid Hepatitis C virus polymerase NS5B inhibitors. Bioorg Med Chem Lett 2011; 21:2869-72. [DOI: 10.1016/j.bmcl.2011.03.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 12/20/2022]
|
39
|
Peduto A, Massa A, Di Mola A, de Caprariis P, La Colla P, Loddo R, Altamura S, Maga G, Filosa R. 2,3-Dihydro-1,2-Diphenyl-substituted 4H-Pyridinone Derivatives as New Anti Flaviviridae Inhibitors. Chem Biol Drug Des 2011; 77:441-9. [DOI: 10.1111/j.1747-0285.2011.01102.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Romine JL, St. Laurent DR, Leet JE, Martin S, Serrano-Wu MH, Yang F, Gao M, O’Boyle D, Lemm JA, Sun JH, Nower PT, Huang X(S, Deshpande MS, Meanwell NA, Snyder LB. Inhibitors of HCV NS5A: From Iminothiazolidinones to Symmetrical Stilbenes. ACS Med Chem Lett 2011; 2:224-9. [PMID: 24900306 PMCID: PMC4017990 DOI: 10.1021/ml1002647] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/20/2010] [Indexed: 12/20/2022] Open
Abstract
The iminothiazolidinone BMS-858 (2) was identified as a specific inhibitor of HCV replication in a genotype 1b replicon assay via a high-throughput screening campaign. A more potent analogue, BMS-824 (18), was used in resistance mapping studies, which revealed that inhibitory activity was related to disrupting the function of the HCV nonstructural protein 5A. Despite the development of coherent and interpretable SAR, it was subsequently discovered that in DMSO 18 underwent an oxidation and structural rearrangement to afford the thiohydantoin 47, a compound with reduced HCV inhibitory activity. However, HPLC bioassay fractionation studies performed after incubation of 18 in assay media led to the identification of fractions containing a dimeric species 48 that exhibited potent antiviral activity. Excision of the key elements hypothesized to be responsible for antiviral activity based on SAR observations reduced 48 to a simplified, symmetrical, pharmacophore realized most effectively with the stilbene 55, a compound that demonstrated potent inhibition of HCV in a genotype 1b replicon with an EC50 = 86 pM.
Collapse
Affiliation(s)
- Jeffrey L. Romine
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Denis R. St. Laurent
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - John E. Leet
- Synthesis & Analysis Technology
Team, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Scott
W. Martin
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Michael H. Serrano-Wu
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Fukang Yang
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Min Gao
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Donald
R O’Boyle
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Julie A. Lemm
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jin-Hua Sun
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Peter T. Nower
- Department of Virology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Xiaohua (Stella) Huang
- Discovery Analytical Sciences, Bristol-Myers Squibb Research and Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Milind S. Deshpande
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Nicholas A. Meanwell
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| | - Lawrence B. Snyder
- Department of Discovery
Chemistry, Bristol-Myers Squibb Research
and Development, 5 Research Parkway, Wallingford, Connecticut
06492, United States
| |
Collapse
|
41
|
Ding M, He F, Poss MA, Rigat KL, Wang YK, Roberts SB, Qiu D, Fridell RA, Gao M, Gentles RG. The synthesis of novel heteroaryl-fused 7,8,9,10-tetrahydro-6H-azepino[1,2-a]indoles, 4-oxo-2,3-dihydro-1H-[1,4]diazepino[1,7-a]indoles and 1,2,4,5-tetrahydro-[1,4]oxazepino[4,5-a]indoles. Effective inhibitors of HCV NS5B polymerase. Org Biomol Chem 2011; 9:6654-62. [DOI: 10.1039/c1ob05525a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
|
43
|
Yu X, Uprichard SL. Cell-based hepatitis C virus infection fluorescence resonance energy transfer (FRET) assay for antiviral compound screening. CURRENT PROTOCOLS IN MICROBIOLOGY 2010; Chapter 17:Unit 17.5.. [PMID: 20812217 PMCID: PMC2964379 DOI: 10.1002/9780471729259.mc1705s18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Hepatitis C virus (HCV) affects an estimated 3% of the population and is a leading cause of chronic liver disease worldwide. Since HCV therapeutic and preventative options are limited, the development of new HCV antivirals has become a global health care concern. This has spurred the development of cell-based infectious HCV high-throughput screening assays to test the ability of compounds to inhibit HCV infection. This unit describes methods that may be used to assess the in vitro efficacy of HCV antivirals using a cell-based high-throughput fluorescence resonance energy transfer (FRET) HCV infection screening assay, which allows for the identification of inhibitors that target HCV at any step in the viral life cycle. Basic protocols are provided for compound screening during HCV infection and analysis of compound efficacy using an HCV FRET assay. Support protocols are provided for propagation of infectious HCV and measurement of viral infectivity.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
44
|
New oral HCV drug shows promise. Nat Rev Microbiol 2010; 8:464. [DOI: 10.1038/nrmicro2396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. Antimicrob Agents Chemother 2010; 54:3641-50. [PMID: 20585111 DOI: 10.1128/aac.00556-10] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BMS-790052 is the most potent hepatitis C virus (HCV) inhibitor reported to date, with 50% effective concentrations (EC(50)s) of < or = 50 pM against genotype 1 replicons. This exceptional potency translated to rapid viral load declines in a phase I clinical study. By targeting NS5A, BMS-790052 is distinct from most HCV inhibitors in clinical evaluation. As an initial step toward correlating in vitro and in vivo resistances, multiple cell lines and selective pressures were used to identify BMS-790052-resistant variants in genotype 1 replicons. Similarities and differences were observed between genotypes 1a and 1b. For genotype 1b, L31F/V, P32L, and Y93H/N were identified as primary resistance mutations. L23F, R30Q, and P58S acted as secondary resistance substitutions, enhancing the resistance of primary mutations but themselves not conferring resistance. For genotype 1a, more sites of resistance were identified, and substitutions at these sites (M28T, Q30E/H/R, L31M/V, P32L, and Y93C/H/N) conferred higher levels of resistance. For both subtypes, combining two resistance mutations markedly decreased inhibitor susceptibility. Selection studies with a 1b/1a hybrid replicon highlighted the importance of the NS5A N-terminal region in determining genotype-specific inhibitor responses. As single mutations, Q30E and Y93N in genotype 1a conferred the highest levels of resistance. For genotype 1b, BMS-790052 retained subnanomolar potency against all variants with single amino acid substitutions, suggesting that multiple mutations will likely be required for significant in vivo resistance in this genetic background. Importantly, BMS-790052-resistant variants remained fully sensitive to alpha interferon and small-molecule inhibitors of HCV protease and polymerase.
Collapse
|
46
|
|
47
|
Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 2010; 465:96-100. [PMID: 20410884 PMCID: PMC7094952 DOI: 10.1038/nature08960] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/26/2010] [Indexed: 12/16/2022]
Abstract
The development of direct-acting antiviral agents to treat chronic hepatitis C virus (HCV) infection, much needed clinically, has focused largely on inhibitors of two viral enzymes, the protease NS3 and NS5B, an RNA-dependent RNA polymerase essential for HCV replication. BMS-790052, identified using chemical genetics as a powerful specific HCV inhibitor, is a small-molecule inhibitor of a third viral molecule that has no known enzyme activity, the non-structural protein 5A (NS5A). A research team from Bristol-Myers Squibb this week reports on the discovery and virological profile of BMS-790052 and discloses clinical trial observations with this compound in normal healthy volunteers and HCV-infected subjects. These results establish proof-of-concept for HCV NS5A inhibition as a clinically relevant mechanism. In vitro data point to synergistic interactions with known HCV inhibitors, suggesting that cocktails of antiviral agents may be a viable therapeutic approach. Almost 200 million people worldwide are chronically infected with hepatitis C virus. Current treatments are poorly tolerated and not wholly effective, so new drugs are needed. Here, a potent new inhibitor of hepatitis C virus is described. This inhibitor targets the viral protein NS5A, and shows potential as part of a therapeutic regimen based on a combination of viral inhibitors. The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people1. Current therapy relies upon a combination of pegylated interferon-α and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus2,3. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B4. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC50) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log10 reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.
Collapse
|
48
|
Ramirez CN, Antczak C, Djaballah H. Cell viability assessment: toward content-rich platforms. Expert Opin Drug Discov 2010; 5:223-33. [PMID: 22823019 DOI: 10.1517/17460441003596685] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Monitoring cell viability in vitro is critical in many areas of biomedical research, and the ultimate goal in drug discovery is the ability to predict the in vivo toxicology of drug candidates based on their toxicity profile in vitro. Over the last decade, the contribution of high-throughput screening toward this goal has been tremendous, providing the ability to screen compounds in parallel against multiple cell types. However, the toxic effects of drug candidates uncovered during clinical trials are by far the main reason for their failure. Over the same period, our understanding of programmed cell death has evolved dramatically with the identification of critical control points in the cell death pathways. As a result, cell viability should no longer be characterized solely on the basis of discrete end point measurements such as membrane permeability. AREAS COVERED IN THIS REVIEW This review summarizes the traditional viability assays currently commercially available, focusing on methods amenable to high density format. Assays categorized into the following classes are discussed: dye exclusion assays, DNA condensation-based assays and assays monitoring a metabolic function. WHAT THE READER WILL GAIN We describe current approaches for assessing cell viability and, using case studies, emphasize their limitations. As an alternative, we propose the use of live, multiplexed readouts to accurately record cell death induction. TAKE HOME MESSAGE Current low-content methods based on single parameter readouts are prone to error due to the heterogeneity of cell populations and the multi-faceted nature of cell death. High-content approaches based on continuous, multiplexed readouts are becoming increasingly important for monitoring multiple markers of cell death induction simultaneously on a cell by cell basis. The use of such content-rich platforms is a necessity to predict the toxicology of drug candidates accurately.
Collapse
Affiliation(s)
- Christina Nicole Ramirez
- HTS Core Facility, Molecular Pharmacology & Chemistry Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, NY 10065, USA
| | | | | |
Collapse
|
49
|
Abstract
Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was approximately 5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 31 (L31V) and glutamine to leucine at residue 54 (Q54L) in NS5A conferred resistance to this chemotype, as did a single substitution of tyrosine to histidine at amino acid 93 (Y93H) in NS5A. To further explore the region(s) of NS5A involved in inhibitor sensitivity, genotype-specific NS5A inhibitors were used to evaluate a series of genotype 1a/1b hybrid replicons. Our results showed that, consistent with resistance mapping, the inhibitor sensitivity domain also mapped to the N terminus of NS5A, but it could be distinguished from the key resistance sites. In addition, we demonstrated that NS5A inhibitors, as well as an active-site inhibitor that specifically binds NS3 protease, could block the hyperphosphorylation of NS5A, which is believed to play an essential role in the viral life cycle. Clinical proof of concept has recently been achieved with derivatives of these NS5A inhibitors, indicating that small molecules targeting a nontraditional viral protein like NS5A, without any known enzymatic activity, can also have profound antiviral effects on HCV-infected subjects.
Collapse
|
50
|
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening. Antimicrob Agents Chemother 2009; 53:4311-9. [PMID: 19620334 DOI: 10.1128/aac.00495-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major obstacle in the treatment of chronic hepatitis C virus (HCV) infection has been the lack of effective, well-tolerated therapeutics. Notably, the recent development of the HCV cell culture infection system now allows not only for the study of the entire viral life cycle, but also for the screening of inhibitors against all aspects of HCV infection. However, in order to screen libraries of potential antiviral compounds, it is necessary to develop a highly reproducible, accurate assay for HCV infection adaptable for high-throughput screening (HTS) automation. Using an internally quenched 5-FAM/QXL 520 fluorescence resonance energy transfer (FRET) substrate containing the HCV NS3 peptide cleavage sequence, we report the development of a simple, mix-and-measure, homogenous, cell-based HCV infection assay amendable for HTS. This assay makes use of synchronized, nondividing human hepatoma-derived Huh7 cells, which support more-reproducible long-term HCV infection and can be readily scaled down to a 96-well-plate format. We demonstrate that this stable cell culture method eliminates common problems associated with standard cell-based HTS, such as cell culture variability, poor reproducibility, and low signal intensity. Importantly, this HCV FRET assay not only can identify inhibitors that act throughout the viral life cycle as effectively as more-standard HCV assays, such as real-time quantitative PCR and Western blot analysis, but also exhibits a high degree of accuracy with limited signal variation (i.e., Z' > or = 0.6), providing the basis for a robust HTS campaign for screening compound libraries and identifying novel HCV antivirals.
Collapse
|