1
|
Mitsuwan W, Boripun R, Saengsawang P, Intongead S, Boonplu S, Chanpakdee R, Morita Y, Boonmar S, Rojanakun N, Suksriroj N, Ruekaewma C, Tenitsara T. Multidrug Resistance, Biofilm-Forming Ability, and Molecular Characterization of Vibrio Species Isolated from Foods in Thailand. Antibiotics (Basel) 2025; 14:235. [PMID: 40149046 PMCID: PMC11939528 DOI: 10.3390/antibiotics14030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Vibrio species are common foodborne pathogens that cause gastrointestinal tract inflammation. Multidrug resistance (MDR) in Vibrio spp. is a global health concern, especially in aquaculture systems and food chain systems. This study aimed to detect Vibrio contamination in food collected from 14 markets in Nakhon Si Thammarat, Thailand, and determine their antibiotic susceptibility. METHODS One hundred and thirty-six food samples were investigated for Vibrio contamination. All isolates were tested for antibiogram and biofilm-forming ability. Moreover, the ceftazidime or cefotaxime resistance isolates were additionally investigated for extended-spectrum β-lactamase (ESBL) producers. The isolates were additionally examined for the presence of antibiotic resistance genes. The ESBL-suspected isolates with moderate-to-high biofilm-forming ability were further analyzed for their whole genome. RESULTS The prevalence of Vibrio contamination in food samples was 42.65%, with V. parahaemolyticus demonstrating the highest prevalence. Most isolates were resistant to β-lactam antibiotics, followed by aminoglycosides. The overall MDR of isolated Vibrio was 18.29%, with an average multiple antibiotic resistance (MAR) index of 16.41%. Most isolates were found to have β-lactam resistance-related genes (blaTEM) for 41.46%, followed by aminoglycoside resistance genes (aac(6')-Ib) for 18.29%. Most Vibrio showed moderate to strong biofilm-forming ability, particularly in MDR isolates (92.86%). Two ESBL-suspected isolates, one V. parahaemolyticus isolate and one V. navarrensis, were sequenced. Interestingly, V. parahaemolyticus was an ESBL producer that harbored the blaCTX-M-55 gene located in the mobile genetic element region. While V. navarrensis was not ESBL producer, this isolate carried the blaAmpC gene in the region of horizontal gene transfer event. Remarkably, the Inoviridae sp. DNA integration event was present in two Vibrio genomes. CONCLUSIONS These findings impact the understanding of antibiotic-resistant Vibrio spp. in food samples, which could be applied for implementing control measures in aquaculture farming and food safety plans.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phirabhat Saengsawang
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sutsiree Intongead
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Sumaree Boonplu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Rawiwan Chanpakdee
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Yukio Morita
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Japan;
| | - Sumalee Boonmar
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Napapat Rojanakun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Natnicha Suksriroj
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Chollathip Ruekaewma
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| | - Titima Tenitsara
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (W.M.); (R.B.); (S.I.); (S.B.); (R.C.); (S.B.); (N.R.); (N.S.); (C.R.); (T.T.)
| |
Collapse
|
2
|
Sabtcheva S, Stoikov I, Georgieva S, Donchev D, Hodzhev Y, Dobreva E, Christova I, Ivanov IN. Genomic Characterization of 16S rRNA Methyltransferase-Producing Enterobacterales Reveals the Emergence of Klebsiella pneumoniae ST6260 Harboring rmtF, rmtB, blaNDM-5, blaOXA-232 and blaSFO-1 Genes in a Cancer Hospital in Bulgaria. Antibiotics (Basel) 2024; 13:950. [PMID: 39452216 PMCID: PMC11504970 DOI: 10.3390/antibiotics13100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Acquired 16S rRNA methyltransferases (16S-RMTases) confer high-level resistance to aminoglycosides and are often associated with β-lactam and quinolone resistance determinants. Methods: Using PCR, whole-genome sequencing and conjugation experiments, we conducted a retrospective genomic surveillance study of 16S-RMTase-producing Enterobacterales, collected between 2006 and 2023, to explore transmission dynamics of methyltransferase and associated antibiotic resistance genes. Results: Among the 10,731 consecutive isolates, 150 (1.4%) from 13 species carried armA (92.7%), rmtB (4.7%), and rmtF + rmtB (2.7%) methyltransferase genes. The coexistence of extended-spectrum β-lactamase (blaCTX-M-3/15, blaSHV-12, blaSFO-1), carbapenemase (blaNDM-1/5, blaVIM-1/4/86, blaOXA-48), acquired AmpC (blaCMY-2/4/99, blaDHA-1, blaAAC-1), and plasmid-mediated quinolone resistance (qnrB, qnrS, aac(6')-Ib-cr) genes within these isolates was also detected. Methyltransferase genes were carried by different plasmids (IncL/M, IncA/C, IncR, IncFIB, and IncFII), suggesting diverse origins and sources of acquisition. armA was co-transferred with blaCTX-M-3/15, blaNDM-1, blaVIM-4/86, blaOXA-48, blaCMY-4, aac(6')-Ib-cr, qnrB, and qnrS, while rmtF1 was co-transferred with blaSFO-1, highlighting the multidrug-resistant nature of these plasmids. Long-read sequencing of ST6260 K. pneumoniae isolates revealed a novel resistance association, with rmtB1 and blaNDM-5 on the chromosome, blaOXA-232 on a conjugative ColKP3 plasmid, and rmtF1 with blaSFO-1 on self-transmissible IncFIB and IncFII plasmids. Conclusions: The genetic plasticity of plasmids carrying methyltransferase genes suggests their potential to acquire additional resistance genes, turning 16S-RMTase-producing Enterobacterales into a persistent public health threat.
Collapse
Affiliation(s)
- Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Ivan Stoikov
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Sylvia Georgieva
- Laboratory for Clinical Microbiology, National Oncology Center, 1797 Sofia, Bulgaria; (I.S.); (S.G.)
| | - Deyan Donchev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Elina Dobreva
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Iva Christova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| | - Ivan N. Ivanov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, 1504 Sofia, Bulgaria; (D.D.); (Y.H.); (E.D.); (I.C.); (I.N.I.)
| |
Collapse
|
3
|
Krawczyk SJ, Leśniczak-Staszak M, Gowin E, Szaflarski W. Mechanistic Insights into Clinically Relevant Ribosome-Targeting Antibiotics. Biomolecules 2024; 14:1263. [PMID: 39456196 PMCID: PMC11505993 DOI: 10.3390/biom14101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Antibiotics targeting the bacterial ribosome are essential to combating bacterial infections. These antibiotics bind to various sites on the ribosome, inhibiting different stages of protein synthesis. This review provides a comprehensive overview of the mechanisms of action of clinically relevant antibiotics that target the bacterial ribosome, including macrolides, lincosamides, oxazolidinones, aminoglycosides, tetracyclines, and chloramphenicol. The structural and functional details of antibiotic interactions with ribosomal RNA, including specific binding sites, interactions with rRNA nucleotides, and their effects on translation processes, are discussed. Focus is placed on the diversity of these mechanisms and their clinical implications in treating bacterial infections, particularly in the context of emerging resistance. Understanding these mechanisms is crucial for developing novel therapeutic agents capable of overcoming bacterial resistance.
Collapse
Affiliation(s)
- Szymon J. Krawczyk
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| | - Ewelina Gowin
- Department of Health Promotion, Poznan University of Medical Sciences, 60-781 Poznań, Poland;
- Department of Immunology, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (S.J.K.); (M.L.-S.)
| |
Collapse
|
4
|
Yuan M, Nie L, Huang Z, Xu S, Qiu X, Han L, Kang Y, Li F, Yao J, Li Q, Li H, Li D, Zhu X, Li Z. Capture of armA by a novel ISCR element, ISCR28. Int J Antimicrob Agents 2024; 64:107250. [PMID: 38908532 DOI: 10.1016/j.ijantimicag.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
ISCR28 is a fully functional and active member of the IS91-like family of insertion sequences. ISCR28 is 1,708-bp long and contains a 1,293-bp long putative open reading frame that codes a transposase. Sixty ISCR28-containing sequences from GenBank generated 27 non-repeat genetic contexts, all of which represented naturally occurring biological events that had occurred in a wide range of gram-negative organisms. Insertion of ISCR28 into target DNA preferred the presence of a 5'-GXXT-3' sequence at its terIS (replication terminator) end. Loss of the first 4 bp of its oriIS (origin of replication) likely caused ISCR28 to be trapped in ISApl1-based transposons or similar structures. Loss of terIS and fusion with a mobile element upstream likely promoted co-transfer of ISCR28 and the downstream resistance genes. ArmA and its downstream intact ISCR28 can be excised from recombinant pKD46 plasmids forming circular intermediates, further elucidating its activity as a transposase.
Collapse
Affiliation(s)
- Min Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lu Nie
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenzhou Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaotong Qiu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lichao Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yutong Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qixin Li
- Department of Laboratory Medicine, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Li
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China.
| | - Zhenjun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
5
|
Revillo Imbernon J, Weibel JM, Ennifar E, Prévost G, Kellenberger E. Structural analysis of neomycin B and kanamycin A binding Aminoglycosides Modifying Enzymes (AME) and bacterial ribosomal RNA. Mol Inform 2024; 43:e202300339. [PMID: 38853661 DOI: 10.1002/minf.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 06/11/2024]
Abstract
Aminoglycosides are crucial antibiotics facing challenges from bacterial resistance. This study addresses the importance of aminoglycoside modifying enzymes in the context of escalating resistance. Drawing upon over two decades of structural data in the Protein Data Bank, we focused on two key antibiotics, neomycin B and kanamycin A, to explore how the aminoglycoside structure is exploited by this family of enzymes. A systematic comparison across diverse enzymes and the RNA A-site target identified common characteristics in the recognition mode, while assessing the adaptability of neomycin B and kanamycin A in various environments.
Collapse
Affiliation(s)
- Julia Revillo Imbernon
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400, Illkirch-Graffenstaden, France
| | - Jean-Marc Weibel
- Laboratoire de Synthèse, Réactivité Organiques et Catalyse, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, 67070, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 2 Allée Konrad Roengen, 67084, Strasbourg, France
| | - Gilles Prévost
- Virulence bactérienne précoce: fonctions cellulaires et contrôle de l'infection aiguë et subaiguë, UR 7290 Université de Strasbourg, FMTS, ITI InnoVec, 3 rue Koeberlé, 67085, Strasbourg, France
| | - Esther Kellenberger
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400, Illkirch-Graffenstaden, France
| |
Collapse
|
6
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Gondal AJ, Choudhry N, Niaz A, Yasmin N. Molecular Analysis of Carbapenem and Aminoglycoside Resistance Genes in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Strains: A Challenge for Tertiary Care Hospitals. Antibiotics (Basel) 2024; 13:191. [PMID: 38391577 PMCID: PMC10886086 DOI: 10.3390/antibiotics13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) strains have become a global threat due to their remarkable capability to survive and disseminate successfully by the acquisition of resistance genes. As a result, the treatment strategies have been severely compromised. Due to the insufficient available data regarding P. aeruginosa resistance from Pakistan, we aimed to investigate the resistance mechanisms of 249 P. aeruginosa strains by antimicrobial susceptibility testing, polymerase chain reaction for the detection of carbapenemases, aminoglycoside resistance genes, extended-spectrum beta-lactamases (ESBLs), sequence typing and plasmid typing. Furthermore, we tested silver nanoparticles (AgNPs) to evaluate their in vitro sensitivity against antimicrobial-resistant P. aeruginosa strains. We observed higher resistance against antimicrobials in the general surgery ward, general medicine ward and wound samples. Phenotypic carbapenemase-producer strains comprised 80.7% (201/249) with 89.0% (179/201) demonstrating genes encoding carbapenemases: blaNDM-1 (32.96%), blaOXA48 (37.43%), blaIMP (7.26%), blaVIM (5.03%), blaKPC-2 (1.12%), blaNDM-1/blaOXA48 (13.97%), blaOXA-48/blaVIM (1.68%) and blaVIM/blaIMP (0.56%). Aminoglycoside-modifying enzyme genes and 16S rRNA methylase variants were detected in 43.8% (109/249) strains: aac(6')-lb (12.8%), aac(3)-lla (12.0%), rmtB (21.1%), rmtC (11.0%), armA (12.8%), rmtD (4.6%), rmtF (6.4%), rmtB/aac(3)-lla (8.2%), rmtB/aac(6')-lla (7.3%) and rmtB/armA (3.6%). In total, 43.0% (77/179) of the strains coharbored carbapenemases and aminoglycoside resistance genes with 83.1% resistant to at least 1 agent in 3 or more classes and 16.9% resistant to every class of antimicrobials tested. Thirteen sequence types (STs) were identified: ST235, ST277, ST234, ST170, ST381, ST175, ST1455, ST1963, ST313, ST207, ST664, ST357 and ST348. Plasmid replicon types IncFI, IncFII, IncA/C, IncL/M, IncN, IncX, IncR and IncFIIK and MOB types F11, F12, H121, P131 and P3 were detected. Meropenem/AgNPs and Amikacin/AgNPs showed enhanced antibacterial activity. We reported the coexistence of carbapenemases and aminoglycoside resistance genes among carbapenem-resistant P. aeruginosa with diverse clonal lineages from Pakistan. Furthermore, we highlighted AgNP's potential role in handling future antimicrobial resistance concerns.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Ammara Niaz
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
8
|
Markovska R, Stankova P, Stoeva T, Keuleyan E, Mihova K, Boyanova L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria-A Pilot Study in Bulgaria. Antibiotics (Basel) 2024; 13:81. [PMID: 38247640 PMCID: PMC10812743 DOI: 10.3390/antibiotics13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
To solve the problem with pan-drug resistant and extensively drug-resistant Gram-negative microbes, newly approved drugs such as ceftazidime/avibactam, cefiderocol, plazomicin, meropenem/vaborbactam, and eravacycline have been introduced in practice. The aim of the present study was to collect carbapenemase-producing clinical Enterobacterales isolates, to characterize their carbapenemase genes and clonal relatedness, and to detect their susceptibility to commonly used antimicrobials and the above-mentioned newly approved antibiotics. Sixty-four carbapenemase producers were collected in a period of one year from four Bulgarian hospitals, mainly including Klebsiella pneumoniae (89% of the isolates) and also single Proteus mirabilis, Providencia stuartii and Citrobacter freundii isolates. The main genotype was blaNDM-1 (in 61%), followed by blaKPC-2 (23%), blaVIM-1 (7.8%) and blaOXA-48 (7.8%). Many isolates showed the presence of ESBL (blaCTX-M-15/-3 in 76.6%) and AmpC (blaCMY-4 in 37.5% or blaCMY-99 in 7.8% of isolates). The most common MLST type was K. pneumoniae ST11 (57.8%), followed by ST340 (12.5%), ST258 (6.3%) and ST101 (6.3%). The isolates were highly resistant to standard-group antibiotics, except they were susceptible to tigecycline (83.1%), colistin (79.7%), fosfomycin (32.8%), and aminoglycosides (20.3-35.9%). Among the newly approved compounds, plazomicin (90.6%) and eravacycline (76.3%) showed the best activity. Susceptibility to ceftazidime/avibactam and meropenem/vaborbactam was 34.4% and 27.6%, respectively. For cefiderocol, a large discrepancy was observed between the percentages of susceptible isolates according to EUCAST susceptibility breakpoints (37.5%) and those of CLSI (71.8%), detected by the disk diffusion method. This study is the first report to show patterns of susceptibility to five newly approved antibiotics among molecularly characterized isolates in Bulgaria. The data may contribute to both the improvement of treatment of individual patients and the choice of infection control strategy and antibiotic policy.
Collapse
Affiliation(s)
- Rumyana Markovska
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Petya Stankova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| | - Temenuga Stoeva
- Department of Microbiology and Virology, University Multiprofile Hospital for Active Treatment (UMHAT) ”Saint Marina”, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Emma Keuleyan
- Department of Clinical Microbiology, Medical Institute-Ministry of the Interior, 1606 Sofia, Bulgaria;
| | - Kalina Mihova
- Molecular Medicine Center, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Lyudmila Boyanova
- Department of Medical Microbiology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (P.S.); (L.B.)
| |
Collapse
|
9
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
10
|
Luo X, Yu L, Feng J, Zhang J, Zheng C, Hu D, Dai P, Xu M, Li P, Lin R, Mu K. Emergence of Extensively Drug-Resistant ST170 Citrobacter portucalensis with Plasmids pK218-KPC, pK218-NDM, and pK218-SHV from a Tertiary Hospital, China. Microbiol Spectr 2022; 10:e0251022. [PMID: 36154205 PMCID: PMC9603283 DOI: 10.1128/spectrum.02510-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 01/04/2023] Open
Abstract
The objective of this study is to characterize the molecular mechanism of a clinical carbapenem-resistant Citrobacter portucalensis strain K218, which coproduces KPC and NDM carbapenemases. K218 was isolated from a patient's blood sample in a Chinese tertiary hospital. Carbapenemases were detected by the immunocolloidal gold technique. The MIC values were determined by VITEK2. Whole-genome sequencing was performed on K218 and sequence data were analyzed using phylogenetics and extensive genomic comparison. This study reveals that K218 contains a single 5.08 Mb chromosome (51.8% GC content) and four plasmids, pK218-KPC (106 Kb), pK218-NDM (111 Kb), pK218-SHV (191 Kb), and pK218-NR (5 Kb). Twenty-nine types of antibiotic resistance genes were carried on K218, including blaKPC-2 harbored on pK218-KPC and blaNDM-1 harbored on pK218-NDM. Detailed comparison of related plasmids of pK218-KPC, pK218-NDM, and pK218-SHV showed that they shared similar conserved backbone regions, respectively. Comprehensive annotation revealed large accessory modules were recombined on the genome of K218. Further analysis speculated that mobile genetic elements bearing abundant resistance genes facilitated the formation of these accessory modules. In conclusion, this study provides an in-depth understanding of the genomic characterization of K218, an extensively drug-resistant C. portucalensis strain coproducing NDM and KPC carbapenemase. To the best of our knowledge, this is the first report of C. portucalensis strain coharboring blaKPC-2 and blaNDM-1 from the clinical setting. IMPORTANCE This is the first report of extensively drug-resistant C. portucalensis harboring both blaKPC-2 and blaNDM-1. This study will not only extend the understanding of the structural dissection of plasmids and chromosomes carried in C. portucalensis, but also expand knowledge of the genetic environment of the blaKPC-2 and blaNDM-1 genes. blaKPC-2 and blaNDM-1 genes have been suggested to facilitate the propagation and persistence of their host bacteria under different antimicrobial selection pressures. Large accessory regions carrying blaKPC-2 and blaNDM-1 genes have become hot spots for transposition and integration, and their structural variation and evolution should receive attention. The multidrug-resistant plasmids pK218-KPC, pK218-NDM, and pK218-SHV with several multidrug resistance regions and the chromosome cK218 with two novel transposons Tn7410 and Tn7411 contribute to the formation of extensively drug-resistant C. portucalensis.
Collapse
Affiliation(s)
- Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Cheng Zheng
- Department of Critical Care Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Mengqiao Xu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Piaopiao Li
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Ronghai Lin
- Department of Critical Care Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Kai Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Sun H, Schnürer A, Müller B, Mößnang B, Lebuhn M, Makarewicz O. Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154556. [PMID: 35306061 DOI: 10.1016/j.scitotenv.2022.154556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden.
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Mößnang
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
12
|
Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. Antibiotics (Basel) 2022; 11:antibiotics11070906. [PMID: 35884160 PMCID: PMC9311965 DOI: 10.3390/antibiotics11070906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/27/2023] Open
Abstract
With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides.
Collapse
|
13
|
Blanco-Picazo P, Gómez-Gómez C, Aguiló-Castillo S, Fernández-Orth D, Cerdà-Cuéllar M, Muniesa M, Rodríguez-Rubio L. Chicken liver is a potential reservoir of bacteriophages and phage-derived particles containing antibiotic resistance genes. Microb Biotechnol 2022; 15:2464-2475. [PMID: 35485188 PMCID: PMC9437878 DOI: 10.1111/1751-7915.14056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry meat production is one of the most important agri‐food industries in the world. The selective pressure exerted by widespread prophylactic or therapeutic use of antibiotics in intensive chicken farming favours the development of drug resistance in bacterial populations. Chicken liver, closely connected with the intestinal tract, has been directly involved in food‐borne infections and found to be contaminated with pathogenic bacteria, including Campylobacter and Salmonella. In this study, 74 chicken livers, divided into sterile and non‐sterile groups, were analysed, not only for microbial indicators but also for the presence of phages and phage particles containing antibiotic resistance genes (ARGs). Both bacteria and phages were detected in liver tissues, including those dissected under sterile conditions. The phages were able to infect Escherichia coli and showed a Siphovirus morphology. The chicken livers contained from 103 to 106 phage particles per g, which carried a range of ARGs (blaTEM, blaCTx‐M‐1, sul1, qnrA, armA and tetW) detected by qPCR. The presence of phages in chicken liver, mostly infecting E. coli, was confirmed by metagenomic analysis, although this technique was not sufficiently sensitive to identify ARGs. In addition, ARG‐carrying phages were detected in chicken faeces by qPCR in a previous study of the group. Comparison of the viromes of faeces and liver showed a strong coincidence of species, which suggests that the phages found in the liver originate in faeces. These findings suggests that phages, like bacteria, can translocate from the gut to the liver, which may therefore constitute a potential reservoir of antibiotic resistance genes.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Clara Gómez-Gómez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Sergi Aguiló-Castillo
- Spanish National Bioinformatics Institute (INB)/ELIXIR-ES, Barcelona Supercomputing Center, Barcelona, Spain
| | - Dietmar Fernández-Orth
- Department of Bioinformatics and Molecular Biology, Cerba Internacional Pl. Ramon Llull, 7-10, Sabadell, Barcelona, 08203, Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Maite Muniesa
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| | - Lorena Rodríguez-Rubio
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Planta 0, Barcelona, 08028, Spain
| |
Collapse
|
14
|
Biofilm and Gene Expression Characteristics of the Carbapenem-Resistant Enterobacterales, Escherichia coli IMP, and Klebsiella pneumoniae NDM-1 Associated with Common Bacterial Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084788. [PMID: 35457654 PMCID: PMC9024719 DOI: 10.3390/ijerph19084788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 01/16/2023]
Abstract
In light of the limited therapeutic options with Carbapenem-Resistant Enterobacterales (CRE) infections, understanding the bacterial risk factors, such as biofilm formation and related gene expression of CRE, is vital. This study investigates the biofilm formation and biofilm-related gene expression of two enteric Enterobacterales with major CR determinants Escherichia coli IMP and Klebsiella pneumoniae NDM-1, which were seen in high prevalence in most common bacterial infections over the past few years. To our knowledge, this is the first study that demonstrated the relationship between biofilm formation and the related gene expression, to understand the potential molecular mechanisms during the biofilm formation in CRE. Biofilms were quantified by tissue culture plate assay at the stages of the biofilm development: initial attachment (6 h), microcolony formation (12 h), maturation (24 h), and dispersion (48 h). In a dispersion, event bacteria detach without any mechanical means and colonise another area. To investigate the influence of different growth conditions on biofilm formation, biofilms were quantified under different growth conditions. In parallel, quantitative real-time PCR (qPCR) assessed the biofilm-related gene expression of a cluster of genes, including biofilm maturation, quorum sensing, stress survival, and antibiotic resistance. Structural changes during biofilm development were assessed via confocal laser scanning microscopy (CLSM). We observed that the biofilm formation of CRE is correlated with the biofilm development stages, with maximum biofilm observed at 24 h at the maturation stage. Our data also showed that biofilm growth, under the condition tested, is the major factor influencing the variability of biofilm gene expression quantification assays. qPCR analyses have demonstrated that the expression of biofilm-related genes is highly correlated with phenotypic biofilm development, and these findings can be further expanded to understand the variation in regulation of such genes in these significant CRE pathogens. Our study demonstrated that both CRE strains, E. coli IMP and K. pneumoniae NDM-1, are high biofilm formers, and genes involved in biofilm development are upregulated during biofilm growth. The characteristic of the increased biofilm formation with the upregulation of antibiotic-resistant and biofilm-related genes indicates the successful pathogenic role of biofilms of these selected CRE and is attributed to their multi-drug resistance ability and successful dissemination of CRE in common bacterial infections.
Collapse
|
15
|
Guan J, Bao C, Wang P, Jing Y, Wang L, Li X, Mu X, Li B, Zhou D, Guo X, Yin Z. Genetic Characterization of Four Groups of Chromosome-Borne Accessory Genetic Elements Carrying Drug Resistance Genes in Providencia. Infect Drug Resist 2022; 15:2253-2270. [PMID: 35510160 PMCID: PMC9058013 DOI: 10.2147/idr.s354934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to gain a deeper genomics and bioinformatics understanding of diversification of accessory genetic elements (AGEs) in Providencia. Methods Herein, the complete genome sequences of five Providencia isolates from China were determined, and seven AGEs were identified from the chromosomes. Detailed genetic dissection and sequence comparison were applied to these seven AGEs, together with additional 10 chromosomal ones from GenBank (nine of them came from Providencia). Results These 17 AGEs were divided into four groups: Tn6512 and its six derivatives, Tn6872 and its two derivatives, Tn6875 and its one derivative, and Tn7 and its four derivatives. These AGEs display high-level diversification in modular structures that had complex mosaic natures, and particularly different multidrug resistance (MDR) regions were presented in these AGEs. At least 52 drug resistance genes, involved in resistance to 15 different categories of antimicrobials and heavy metal, were found in 15 of these 17 AGEs. Conclusion Integration of these AGEs into the Providencia chromosomes would contribute to the accumulation and distribution of drug resistance genes and enhance the ability of Providencia isolates to survive under drug selection pressure.
Collapse
Affiliation(s)
- Jiayao Guan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China
| | - Chunmei Bao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Lingling Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Boan Li
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xuejun Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China
- Xuejun Guo, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China, Tel +86-431-86985931, Email
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
- Correspondence: Zhe Yin, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China, Tel +86-10-66948557, Email
| |
Collapse
|
16
|
Luo X, Zhang J, Yuan M, Mou S, Xu M, Hu D, Ma Q, Sun L, Li P, Song Z, Yu L, Mu K. Epidemiology of Klebsiella michiganensis Carrying Multidrug-Resistant IncHI5 Plasmids in the Southeast Coastal Area of China. Infect Drug Resist 2022; 15:1831-1843. [PMID: 35444429 PMCID: PMC9013925 DOI: 10.2147/idr.s358839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022] Open
Abstract
Purpose This study aimed to explore the genomic characterization of multidrug-resistant IncHI5-carrying Klebsiella michiganensis strains and detailed genomic dissection of the IncHI5 plasmids. Materials and Methods Through whole-genome sequencing, the IncHI5 plasmid pK92-qnrS was obtained from a single clinical K. michiganensis isolate K92. All complete genomes of K. michiganensis strains from the Genome database of NCBI were collected and used to construct a maximum likelihood (ML) phylogenetic tree. The epidemiology and geographic distribution of all the K. michiganensis strains were conducted. An extensive comparison of the seven IncHI5 plasmids of K. michiganensis (one from this study, six from GenBank) was applied. Results This study revealed that all K. michiganensis strains carrying IncHI5 plasmids from different clonal groups were located in the southeast coastal area of China. The backbone regions of IncHI5 plasmids were composed of replicon (repHI5B and repFIB), partition (parABC), and conjugal transfer (tra1/tra2). The main accessory resistant regions of IncHI5 could be divided into two categories, Tn1696-related region and Tn6535-related region. These seven IncHI5 plasmids carried multiple drug-resistance genes which were all mediated by the mobile genetic elements (MGEs). Conclusion Data presented here help to provide an overall in-depth understanding of epidemiology and geographic distribution of IncHI5-carrying K. michiganensis and the structure and evolutionary history of IncHI5 plasmids.
Collapse
Affiliation(s)
- Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Min Yuan
- State Key Laboratory for Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People’s Republic of China
| | - Sihua Mou
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Mengqiao Xu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Qinfei Ma
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Lingfen Sun
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Piaopiao Li
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Zhiwei Song
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China
- Lianhua Yu, Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, 318000, People’s Republic of China, Email
| | - Kai Mu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People’s Republic of China
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, People’s Republic of China
- Correspondence: Kai Mu, Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, People’s Republic of China, Tel +86-010-66874794, Email
| |
Collapse
|
17
|
Co-Occurrence of Rare ArmA-, RmtB-, and KPC-2-Encoding Multidrug-Resistant Plasmids and Hypervirulence iuc Operon in ST11-KL47 Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0237121. [PMID: 35323034 PMCID: PMC9045180 DOI: 10.1128/spectrum.02371-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The rapid emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) and the comparatively limited development of new antibiotics pose a major threat to public health. Aminoglycosides are important options that can lower the mortality rate effectively in combination therapy with β-lactam agents. However, in this study, we observed two multidrug-resistant (MDR) K. pneumoniae named 1632 and 1864 that exhibited high-level resistance to both carbapenems and aminoglycosides. Through whole-genome sequencing (WGS), the unusual co-occurrence of rmtB, armA, and blaKPC-2 genes, associating with two key resistance plasmids, was observed in two isolates. Notably, we also found that the armA resistance gene and virulence factor iuc operon co-occurred on the same plasmid in K. pneumoniae 1864. Detailed comparative genetic analysis showed that all these plasmids were recognized as mobilizable plasmids, as they all carry the essential oriT site. Results of conjugation assay indicated that armA-positive plasmids in two isolates could self-transfer to Escherichia coli J53 effectively, especially, the p1864-1 plasmid, which could cotransfer hypervirulent and multidrug-resistant phenotypes to other isolates. Moreover, multiple insertion sequences (ISs) and transposons (Tns) were also found surrounding the vital resistant genes, which could even form a large antibiotic resistance island (ARI) and could stimulate mobilization of resistant determinants. Overall, we report the uncommon coexistence of armA plasmid, rmtB-blaKPC-2 plasmid, and even iuc virulence operon-encoding plasmid in K. pneumoniae isolates, which greatly increased the spread of these high-risk phenotypes and which are of great concern. IMPORTANCE Carbapenemase-producing Klebsiella pneumoniae have become a great challenge for antimicrobial chemotherapy, while aminoglycosides can lower the mortality rate effectively in combination therapy with them. Unfortunately, we isolated two K. pneumoniae from blood sample of patients that not only exhibited high-level resistance to carbapenems and aminoglycosides but also showed the unusual co-occurrence of the rmtB, armA, and blaKPC-2 genes. These elements were all located on mobile plasmids and flanked by polymorphic mobile genetic elements (MGEs). What’s worse most, we also identified a conjugative virulent MDR plasmid, coharboring multiple resistant determinants, and iuc operon, which was confirmed could transfer such high-risk phenotype to other isolates. The emergence of such conjugative virulence plasmids may promote the rapid dissemination of virulence-encoding elements among Gram-negative pathogens. This uncommon coexistence of rmtB, armA, blaKPC-2, and iuc virulence operon-encoding plasmids in K. pneumoniae, presents a huge threat to clinical treatment. Future studies are necessary to evaluate the prevalence of such isolates.
Collapse
|
18
|
Xu Y, Jing Y, Hu L, Cheng Q, Gao H, Zhang Z, Yang H, Zhao Y, Zhou D, Yin Z, Dai E. IncFIB-4.1 and IncFIB-4.2 Single-Replicon Plasmids: Small Backbones with Large Accessory Regions. Infect Drug Resist 2022; 15:1191-1203. [PMID: 35345473 PMCID: PMC8957301 DOI: 10.2147/idr.s332949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To establish a typing scheme for IncFIB replicon and to dissect genomic features of IncFIB-4.1/4.2 single-replicon plasmids. Methods A total of 146 representative fully sequenced IncFIB-replicon-containing plasmids were selected to construct a phylogenetic tree of repBIncFIB sequences. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids from China were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank to dissect their genomic diversity. Results In this study, a repB sequence-based scheme was proposed for grouping IncFIB replicon into seven primary types and further into 70 subtypes. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank. These 11 plasmids had small backbones and shared only three key backbone markers repB together with its iterons, parABC, and stbD. Each plasmid contained one large accessory region (LAR) inserted into the backbone, and these 11 LARs had significantly distinct profiles of mobile genetic elements (MGEs) and resistance/metabolism gene loci. Antibiotic resistance regions (ARRs; the antibiotic resistance gene-containing genetic elements) were found in seven of these 11 LARs. Besides resistance genes, ARRs carried unit or composite transposons, integrons, and putative resistance units. IncFIB-4.1/4.2 single-replicon plasmids were important vectors of drug resistance genes. This was the first report of three novel MGEs: In1776, Tn6755, and Tn6857. Conclusion Data presented here provided a deeper insight into diversity and evolution of IncFIB replicon and IncFIB-4.1/4.2 single-replicon plasmids.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Qiaoxiang Cheng
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
- Correspondence: Erhei Dai; Zhe Yin, Tel +86-311-85814612; +86-10-66948557, Email ;
| |
Collapse
|
19
|
Alarfaj RE, Alkhulaifi MM, Al-Fahad AJ, Aljihani S, Yassin AEB, Alghoribi MF, Halwani MA. Antibacterial Efficacy of Liposomal Formulations Containing Tobramycin and N-Acetylcysteine against Tobramycin-Resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Pharmaceutics 2022; 14:130. [PMID: 35057026 PMCID: PMC8778299 DOI: 10.3390/pharmaceutics14010130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
The antibacterial activity and biofilm reduction capability of liposome formulations encapsulating tobramycin (TL), and Tobramycin-N-acetylcysteine (TNL) were tested against tobramycin-resistant strains of E. coli, K. pneumoniae and A. baumannii in the presence of several resistant genes. All antibacterial activity were assessed against tobramycin-resistant bacterial clinical isolate strains, which were fully characterized by whole-genome sequencing (WGS). All isolates acquired one or more of AMEs genes, efflux pump genes, OMP genes, and biofilm formation genes. TL formulation inhibited the growth of EC_089 and KP_002 isolates from 64 mg/L and 1024 mg/L to 8 mg/L. TNL formulation reduced the MIC of the same isolates to 16 mg/L. TNL formulation was the only effective formulation against all A. baumannii strains compared with TL and conventional tobramycin (in the plektonic environment). Biofilm reduction was significantly observed when TL and TNL formulations were used against E. coli and K. pneumoniae strains. TNL formulation reduced biofilm formation at a low concentration of 16 mg/L compared with TL and conventional tobramycin. In conclusion, TL and TNL formulations particularly need to be tested on animal models, where they may pave the way to considering drug delivery for the treatment of serious infectious diseases.
Collapse
Affiliation(s)
- Reem E. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.E.A.); (M.M.A.)
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (R.E.A.); (M.M.A.)
| | - Ahmed J. Al-Fahad
- National Center for Biotechnology, Life Science & Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia;
| | - Shokran Aljihani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Alaa Eldeen B. Yassin
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia
| | - Majed A. Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| |
Collapse
|
20
|
Gut microbiome in the emergence of antibiotic-resistant bacterial pathogens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:1-31. [DOI: 10.1016/bs.pmbts.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
El-Badawy MF, Abou-Elazm FI, Omar MS, El-Naggar ME, Maghrabi IA. The First Saudi Study Investigating the Plasmid-borne Aminoglycoside and Sulfonamide Resistance among Acinetobacter baumannii Clinical Isolates Genotyped by RAPD-PCR: the Declaration of a Novel Allelic Variant Called aac(6')-SL and Three Novel Mutations in the sul1 Gene in the Acinetobacter Plasmid (s). Infect Drug Resist 2021; 14:4739-4756. [PMID: 34795490 PMCID: PMC8594745 DOI: 10.2147/idr.s324707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) is one of the most important nosocomial pathogens responsible for a wide range of infections. Aim This study aimed to investigate the existence of the plasmidic genes encoding for aminoglycoside modifying enzymes (AMEs), 16S rRNA methyltransferases (RMT), and the altered dihydropetroate synthase (DHPS) encoded by the sul1 gene among A. baumannii clinical isolates collected from Taif, Kingdom of Saudi Arabia (KSA). The mutations in aac(6ʹ)-Ib and sul1 genes were also investigated. Methods Forty A. baumannii clinical isolates were investigated for their susceptibility to ten antibiotics. The plasmid DNA was extracted and screened for nine genes encoding for aminoglycoside resistance in addition to the sul1 gene. The clonal relatedness was determined by random amplified polymorphic DNA (RAPD)-PCR. Mutation in aac(6ʹ)-Ib and the sul1 genes were detected by capillary electrophoresis sequencing (CES). Results All isolates were A. baumannii in which 42.5% of them exhibited a high level of aminoglycoside resistance (HLAR). The most prevalent AMEs and RMT encoding genes were aph(3ʹ)-VI, the two aac(6ʹ) gene variants [aac(6ʹ)-Ib and aac(6ʹ)-SL], ant(3ʹʹ)-I, and armA in which 90%, 87.5%, 85%, and 45% of isolates tested positive, respectively. The other investigated aminoglycoside resistant encoding genes, namely aac(3)-II, aac(6ʹ)-II, and rmtB, were not detected. Only 15% of isolates harbored the sul1 gene. RAPD-PCR classified the 40 isolates into three clusters in which cluster II was the main cluster. DNA sequencing revealed that 34.29% (12/35) of isolates tested positive for aac(6ʹ)-Ib were found to harbor a common missense mutation in position 102 indicating a novel allelic variant named aac(6ʹ)-SL. Also, DNA sequencing revealed three missense mutations in the sul1 gene. Conclusion This is the first Saudi study to investigate the plasmid borne aminoglycoside and sulfonamide resistance genes among A. baumannii clinical isolates. A novel allelic variant for aac(6ʹ)-Ib was detected in addition to novel mutations in the sul1 gene.
Collapse
Affiliation(s)
- Mohamed F El-Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Fatma I Abou-Elazm
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Mohamed S Omar
- Department of Chemistry, Faculty of Science, Benha University, Benha, 13508, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, 32897, Egypt
| | - Ibrahim A Maghrabi
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia
| |
Collapse
|
22
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
23
|
Arca-Suárez J, Rodiño-Janeiro BK, Pérez A, Guijarro-Sánchez P, Vázquez-Ucha JC, Cruz F, Gómez-Garrido J, Alioto TS, Álvarez-Tejado M, Gut M, Gut I, Oviaño M, Beceiro A, Bou G. Emergence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacterales in Spain studied by whole-genome sequencing. Int J Antimicrob Agents 2021; 59:106456. [PMID: 34688835 DOI: 10.1016/j.ijantimicag.2021.106456] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022]
Abstract
The emergence of 16S rRNA methyltransferases (RMTs) in Gram-negative pathogens bearing other clinically relevant resistance mechanisms, such as carbapenemase-producing Enterobacterales (CPE), is becoming an alarming concern. We investigated the prevalence, antimicrobial susceptibility, resistance mechanisms, molecular epidemiology and genetic support of RMTs in CPE isolates from Spain. This study included a collection of 468 CPE isolates recovered during 2018 from 32 participating Spanish hospitals. MICs were determined using the broth microdilution method, the agar dilution method (fosfomycin) or MIC gradient strips (plazomicin). All isolates were subjected to hybrid whole-genome sequencing (WGS). Sequence types (STs), core genome phylogenetic relatedness, horizontally acquired resistance mechanisms, plasmid analysis and the genetic environment of RMTs were determined in silico from WGS data in all RMT-positive isolates. Among the 468 CPE isolates evaluated, 24 isolates (5.1%) recovered from nine different hospitals spanning five Spanish regions showed resistance to all aminoglycosides and were positive for an RMT (21 RmtF, 2 ArmA and 1 RmtC). All RMT-producers showed high-level resistance to all aminoglycosides, including plazomicin, and in most cases exhibited an extensively drug-resistant susceptibility profile. The RMT-positive isolates showed low genetic diversity and were global clones of Klebsiella pneumoniae (ST147, ST101, ST395) and Enterobacter cloacae (ST93) bearing blaOXA-48, blaNDM-1 or blaVIM-1 carbapenemase genes. RMTs were harboured in five different multidrug resistance plasmids and linked to efficient mobile genetic elements. Our findings highlight that RMTs are emerging among clinical CPE isolates from Spain and their spread should be monitored to preserve the future clinical utility of aminoglycosides and plazomicin.
Collapse
Affiliation(s)
- Jorge Arca-Suárez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Bruno K Rodiño-Janeiro
- Prof. Martin Polz Laboratory, University of Vienna, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, Vienna, Austria
| | - Astrid Pérez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universistat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marina Oviaño
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain.
| | -
- Servicio de Microbiología and Instituto de Investigación Biomédica A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
24
|
Gu Y, Lü Z, Cao C, Sheng H, Li W, Cui S, Li R, Lü X, Yang B. Cunning plasmid fusion mediates antibiotic resistance genes represented by ESBLs encoding genes transfer in foodborne Salmonella. Int J Food Microbiol 2021; 355:109336. [PMID: 34352499 DOI: 10.1016/j.ijfoodmicro.2021.109336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Foodborne disease caused by antibiotic resistant Salmonella is quite difficult to deal with. In order to further explore the antibiotic resistance associated with gene transfer among foodborne Salmonella, several wild-type Salmonella strains were used as donors and recipients, respectively, to investigate how extended spectrum β-lactamases (ESBLs) encoding genes co-transfer with transposable elements to transmit antibiotic resistance. Antibiotic susceptibility was determined by agar dilution method, the transposase encoding gene was detected via PCR combined with DNA sequencing, S1 nuclease and pulsed field gel electrophoresis (S1-PFGE), and southern-blot. Illumina HiSeq 4000 platform and Nanopore MinION long-read sequencing technology were used to determine the antibiotic resistance encoding genes (ARGs) and their surrounding gene environment. The results indicated that the conjugation frequency was from ×10-4 to ×10-5 per recipient cell. A 185,608-bp-long DNA fragment and two short backbone protein encoding regions in pG19 in the donor fused with part genes in pS3 in the recipient during conjugation, the size of this fusion plasmid is as same as that of pG19. Cefoxitin resistance of the transconjugant was mediated by a tnpA21-related blaDHA-1 transfer. Resistance of Salmonella to ceftriaxone, cefoperazone and ceftiofur was mediated by a tnpU1548 related blaTEM-1B and blaCTX-M-3 transfer. The study indicated that transposase synergy and plasmid selective fusion act as important roles for foodborne Salmonella gathering ARGs. The consistent size of the plasmid before and after fusion suggested the invisibility and complexity of bacterial conjugation without DNA sequencing, the fact reminded us that the rampant transmission of antibiotic-resistance encoding genes would pose tremendous threat to food safety.
Collapse
Affiliation(s)
- Yaxin Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
25
|
Caméléna F, Morel F, Merimèche M, Decousser JW, Jacquier H, Clermont O, Darty M, Mainardis M, Cambau E, Tenaillon O, Denamur E, Berçot B. Genomic characterization of 16S rRNA methyltransferase-producing Escherichia coli isolates from the Parisian area, France. J Antimicrob Chemother 2021; 75:1726-1735. [PMID: 32300786 DOI: 10.1093/jac/dkaa105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/15/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The resistance to all aminoglycosides (AGs) conferred by 16S rRNA methyltransferase enzymes (16S-RMTases) is a major public health concern. OBJECTIVES To characterize the resistance genotype, its genetic environment and plasmid support, and the phylogenetic relatedness of 16S-RMTase-producing Escherichia coli from France. METHODS We screened 137 E. coli isolates resistant to all clinically relevant AGs from nine Parisian hospitals for 16S-RMTases. WGS was performed on clinical isolates with high-level AG resistance (MIC ≥256 mg/L) and their transformants. RESULTS Thirty of the 137 AG-resistant E. coli produced 16S-RMTases: 11 ArmA, 18 RmtB and 1 RmtC. The 16S-RMTase producers were also resistant to third-generation cephalosporins (90% due to a blaCTX-M gene), co-trimoxazole, fluoroquinolones and carbapenems (blaNDM and blaVIM genes) in 97%, 83%, 70% and 10% of cases, respectively. Phylogenomic diversity was high in ArmA producers, with 10 different STs, but a similar genetic environment, with the Tn1548 transposon carried by a plasmid closely related to pCTX-M-3 in 6/11 isolates. Conversely, RmtB producers belonged to 12 STs, the most frequent being ST405 and ST complex (STc) 10 (four and four isolates, respectively). The rmtB gene was carried by IncF plasmids in 10 isolates and was found in different genetic environments. The rmtC gene was carried by the pNDM-US plasmid. CONCLUSIONS ArmA and RmtB are the predominant 16S-RMTases in France, but their spread follows two different patterns: (i) dissemination of a conserved genetic support carrying armA in E. coli with high levels of genomic diversity; and (ii) various genetic environments surrounding rmtB in clonally related E. coli.
Collapse
Affiliation(s)
- François Caméléna
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | - Florence Morel
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | - Manel Merimèche
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | - Jean-Winoc Decousser
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie et d'Hygiène Hospitalière, Hôpital Henri Mondor, Créteil, France
| | - Hervé Jacquier
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | | | - Mélanie Darty
- AP-HP, Service de Bactériologie et d'Hygiène Hospitalière, Hôpital Henri Mondor, Créteil, France
| | - Mary Mainardis
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France
| | - Emmanuelle Cambau
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Service de Bactériologie-Virologie, Hôpital Lariboisière, Paris, France
| | | | - Erick Denamur
- Université de Paris, INSERM, IAME, Paris, France.,AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Béatrice Berçot
- AP-HP, Service de Microbiologie, Hôpital Saint-Louis, Paris, France.,Université de Paris, INSERM, IAME, Paris, France
| | | |
Collapse
|
26
|
Taylor E, Bal AM, Balakrishnan I, Brown NM, Burns P, Clark M, Diggle M, Donaldson H, Eltringham I, Folb J, Gadsby N, Macleod M, Ratnaraja NVDV, Williams C, Wootton M, Sriskandan S, Woodford N, Hopkins KL. A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. J Antimicrob Chemother 2021; 76:2428-2436. [PMID: 34142130 DOI: 10.1093/jac/dkab186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To determine the prevalence of 16S rRNA methyltransferase- (16S RMTase-) producing Gram-negative bacteria in patients in the UK and to identify potential risk factors for their acquisition. METHODS A 6 month prospective surveillance study was conducted from 1 May to 31 October 2016, wherein 14 hospital laboratories submitted Acinetobacter baumannii, Enterobacterales and Pseudomonas aeruginosa isolates that displayed high-level amikacin resistance according to their testing methods, e.g. no zone of inhibition with amikacin discs. Isolates were linked to patient travel history, medical care abroad, and previous antibiotic exposure using a surveillance questionnaire. In the reference laboratory, isolates confirmed to grow on Mueller-Hinton agar supplemented with 256 mg/L amikacin were screened by PCR for 16S RMTase genes armA, rmtA-rmtH and npmA, and carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like and blaVIM). STs and total antibiotic resistance gene complement were determined via WGS. Prevalence was determined using denominators for each bacterial species provided by participating hospital laboratories. RESULTS Eighty-four isolates (44.7%), among 188 submitted isolates, exhibited high-level amikacin resistance (MIC >256 mg/L), and 79 (94.0%) of these harboured 16S RMTase genes. armA (54.4%, 43/79) was the most common, followed by rmtB (17.7%, 14/79), rmtF (13.9%, 11/79), rmtC (12.7%, 10/79) and armA + rmtF (1.3%, 1/79). The overall period prevalence of 16S RMTase-producing Gram-negative bacteria was 0.1% (79/71 063). Potential risk factors identified through multivariate statistical analysis included being male and polymyxin use. CONCLUSIONS The UK prevalence of 16S RMTase-producing Gram-negative bacteria is low, but continued surveillance is needed to monitor their spread and inform intervention strategies.
Collapse
Affiliation(s)
- Emma Taylor
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Abhijit M Bal
- Microbiology, University Hospital Crosshouse, NHS Ayrshire and Arran, Kilmarnock, KA2 0BE, UK
| | | | - Nicholas M Brown
- Clinical Microbiology and Public Health Laboratory Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QW, UK
| | - Phillipa Burns
- Manchester Medical Microbiology Partnership, Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| | - Marilyn Clark
- Department of Medical Microbiology, Ninewells Hospital, Dundee, DD2 1SY, UK
| | - Mathew Diggle
- Nottingham University Hospitals National Health Service Trust, Hucknall Rd, Nottingham, NG5 1PB, UK
| | - Hugo Donaldson
- Imperial College Healthcare NHS Trust, Charing Cross Hospital, Fulham Palace Road, London, W6 8RF, UK
| | - Ian Eltringham
- Microbiology Department, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Jonathan Folb
- Liverpool University Hospitals NHS Foundation Trust, Prescot St, Liverpool, L7 8XP, UK
| | - Naomi Gadsby
- Medical Microbiology, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Cres, Edinburgh, EH16 4SA, UK
| | - Mairi Macleod
- Clinical Microbiology, Glasgow Royal Infirmary Hospital, Level 4 New Lister Building, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Natasha V D V Ratnaraja
- Department of Microbiology, Sandwell and West Birmingham NHS Trust, Dudley Road, Birmingham, B18 7QH, UK
| | - Cheryl Williams
- Microbiology Laboratory, First Floor, Pathology Laboratory, Royal Oldham Hospital, Rochdale Road, Oldham, OL1 2JH, UK
| | - Mandy Wootton
- Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Shiranee Sriskandan
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,MRC Centre for Molecular Bacteriology & Infection, Imperial College London, London, SW7 2DD, UK
| | - Neil Woodford
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Katie L Hopkins
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.,Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, NW9 5EQ, UK
| |
Collapse
|
27
|
Luo X, Yin Z, Zeng L, Hu L, Jiang X, Jing Y, Chen F, Wang D, Song Y, Yang H, Zhou D. Chromosomal Integration of Huge and Complex bla NDM-Carrying Genetic Elements in Enterobacteriaceae. Front Cell Infect Microbiol 2021; 11:690799. [PMID: 34211858 PMCID: PMC8239412 DOI: 10.3389/fcimb.2021.690799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a detailed genetic dissection of the huge and complex blaNDM-carrying genetic elements and their related mobile genetic elements was performed in Enterobacteriaceae. An extensive comparison was applied to 12 chromosomal genetic elements, including six sequenced in this study and the other six from GenBank. These 12 genetic elements were divided into five groups: a novel IME Tn6588; two related IMEs Tn6523 (SGI1) and Tn6589; four related ICEs Tn6512 (R391), Tn6575 (ICEPvuChnBC22), Tn6576, and Tn6577; Tn7 and its derivatives Tn6726 and 40.7-kb Tn7-related element; and two related IMEs Tn6591 (GIsul2) and Tn6590. At least 51 resistance genes, involved in resistance to 18 different categories of antibiotics and heavy metals, were found in these 12 genetic elements. Notably, Tn6576 carried another ICE Tn6582. In particular, the six blaNDM-carrying genetic elements Tn6588, Tn6589, Tn6575, Tn6576, Tn6726, and 40.7-kb Tn7-related element contained large accessory multidrug resistance (MDR) regions, each of which had a very complex mosaic structure that comprised intact or residual mobile genetic elements including insertion sequences, unit or composite transposons, integrons, and putative resistance units. Core blaNDM genetic environments manifested as four different Tn125 derivatives and, notably, two or more copies of relevant Tn125 derivatives were found in each of Tn6576, Tn6588, Tn6589, and 40.7-kb Tn7-related element. The huge and complex blaNDM-carrying genetic elements were assembled from complex transposition and homolog recombination. Firstly identified were eight novel mobile elements, including three ICEs Tn6576, Tn6577, and Tn6582, two IMEs, Tn6588 and Tn6589, two composite transposons Tn6580a and Tn6580b, and one integron In1718.
Collapse
Affiliation(s)
- Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lijun Zeng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,The Fifth Medical Center, Chinese Peoples Liberation Army General Hospital, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated With Taizhou University, Taizhou, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
28
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
29
|
Blanco-Picazo P, Roscales G, Toribio-Avedillo D, Gómez-Gómez C, Avila C, Ballesté E, Muniesa M, Rodríguez-Rubio L. Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. Microorganisms 2020; 8:microorganisms8091293. [PMID: 32847015 PMCID: PMC7565065 DOI: 10.3390/microorganisms8091293] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023] Open
Abstract
Anthropogenic activities are a key factor in the development of antibiotic resistance in bacteria, a growing problem worldwide. Nevertheless, antibiotics and resistances were being generated by bacterial communities long before their discovery by humankind, and might occur in areas without human influence. Bacteriophages are known to play a relevant role in the dissemination of antibiotic resistance genes (ARGs) in aquatic environments. In this study, five ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, sul1 and tetW) were monitored in phage particles isolated from seawater of two different locations: (i) the Mediterranean coast, subjected to high anthropogenic pressure, and (ii) the Antarctic coast, where the anthropogenic impact is low. Although found in lower quantities, ARG-containing phage particles were more prevalent among the Antarctic than the Mediterranean seawater samples and Antarctic bacterial communities were confirmed as their source. In the Mediterranean area, ARG-containing phages from anthropogenic fecal pollution might allow ARG transmission through the food chain. ARGs were detected in phage particles isolated from fish (Mediterranean, Atlantic, farmed, and frozen), the most abundant being β-lactamases. Some of these particles were infectious in cultures of the fecal bacteria Escherichia coli. By serving as ARG reservoirs in marine environments, including those with low human activity, such as the Antarctic, phages could contribute to ARG transmission between bacterial communities.
Collapse
Affiliation(s)
- Pedro Blanco-Picazo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
| | - Gabriel Roscales
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
| | - Daniel Toribio-Avedillo
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
| | - Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Faculty of Biology, and Biodiversity Research Institute (IrBIO), University of Barcelona, Diagonal 643, 08028 Barcelona, Spain;
| | - Elisenda Ballesté
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
- Correspondence: (M.M.); (L.R.-R.)
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain; (P.B.-P.); (G.R.); (D.T.-A.); (C.G.-G.); (E.B.)
- Correspondence: (M.M.); (L.R.-R.)
| |
Collapse
|
30
|
Yu C, Wei X, Wang Z, Liu L, Liu Z, Liu J, Wu L, Guo H, Jin Z. Occurrence of two NDM-1-producing Raoultella ornithinolytica and Enterobacter cloacae in a single patient in China: probable a novel antimicrobial resistance plasmid transfer in vivo by conjugation. J Glob Antimicrob Resist 2020; 22:835-841. [PMID: 32652247 DOI: 10.1016/j.jgar.2020.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES To identify the general features of acquisition of drug-resistance genes in two multi-drug resistant Enterobacteriaceae strains isolated from a single patient in China. METHODS The whole-plasmid was sequenced by Illumina Hiseq 4000 and Pacbio RSII procedures. The plasmid conjugation transfer experiment were performed by the mating-out assay. Drug-resistance genes were amplified by PCR assay. RESULTS We identified two New Delhi metallo-β-lactamase type 1(NDM-1)-producing isolates, named Raoultella ornithinolytica B1645-1 and Enterobacter cloacae B1645-2, which shared the same sulfonamide-resistant dihydropteroate synthase sul2 gene and aminoglycoside O-phosphotransferase aph(3'')-Ib gene. A novel antimicrobial resistance plasmid pCYNDM01 was first discovered from the multi-drug resistant R. ornithinolytica B1645-1. Interestingly, plasmid pCYNDM01 carried a Gifsy-2 prophage gene. The blaNDM-1 gene was located on a novel complex class 1 integron with a structure of sul1-qacEΔ1-ΔISAba125-blaNDM-1-blaMBL-trpC-ISCR1-catb8-aacA4-IS1-IS6100-dfrA14-intI1. The carrying the blaNDM-1 gene plasmid pCYNDM01 was transferred to the E. cloacae B1645-2 recipient strain. This 149.44 kb plasmid pCYNDM01 belonged to the IncFII type. CONCLUSIONS A novel antimicrobial resistance plasmid pCYNDM01 was first recovered from a multi-drug resistance R. ornithinolytica B1645-1 isolated from China. The novel complex sul1-type class 1 integron might play an essential role in the mobilization of the blaNDM-1 gene among different enterobacterial species. The occurrence of plasmid pCYNDM01 transfer from R. ornithinolytica to E. cloacae in vitro by conjugation showed that plasmid pCYNDM01 was a self-conjugative plasmid and might cause dissemination of drug-resistance genes within different enterobacterial species from a single patient in vivo by conjugation. The novel variant F-like T4SS of plasmid pCYNDM01 might be as a tool of R. ornithinolytica B1645-1 for resistance genes transfer. The emergence of the two NDM-1-producing Enterobacteriaceae strains should be attracted China attentions and required to prevent its future prevalence.
Collapse
Affiliation(s)
- Chunfang Yu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan 442000, China; Department of Clinical Laboratory, Affiliated dongfeng Hospital, Hubei University of Medicine, Hubei, Shiyan 442000, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei, Shiyan 442000, China
| | - Xiuli Wei
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Zuhua Wang
- Department of Blood Transfusion, Taihe Hospital, Hubei, Shiyan 442008, China
| | - Long Liu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Zhixin Liu
- Department of Microbiology, School of Basic Medical Sciences, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Ji Liu
- First College of Clinical Medicine, Institute of Medicine and Nursing, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Lingling Wu
- School of Basic Medical Science, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Huailan Guo
- School of Public Health and Management, Hubei University of Medicine, Hubei, Shiyan 442000, China; Center for Environment and Health in Water Source Area of South-to-North Water Diversion, Hubei University of Medicine, Hubei, Shiyan 442000, China
| | - Zhixiong Jin
- Department of Clinical Laboratory, Affiliated dongfeng Hospital, Hubei University of Medicine, Hubei, Shiyan 442000, China.
| |
Collapse
|
31
|
Bilinskaya A, Linder KE, Kuti JL. Plazomicin: an intravenous aminoglycoside antibacterial for the treatment of complicated urinary tract infections. Expert Rev Anti Infect Ther 2020; 18:705-720. [PMID: 32319833 DOI: 10.1080/14787210.2020.1759419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Antimicrobial resistance continues to be a major public health concern due to the emergence and spread of multi-drug resistant (MDR) organisms, including extended spectrum ß-lactamase (ESBL) and carbapenemase producing Enterobacterales. Plazomicin is a novel aminoglycoside that demonstrates activity against MDR gram-negatives, including those producing ESBLs and most carbapenemases, and retains activity against aminoglycoside modifying enzymes as a result of structural modifications. The information discussed is meant to assist in identifying plazomicin's place in therapy and to expand the clinician's armamentarium. AREAS COVERED Herein, we review the pharmacology, microbiology, clinical efficacy, and safety of plazomicin. To gather relevant information, a literature search was performed using PubMed, Ovid, and Google Scholar electronic databases. Search terms used include plazomicin, ACHN-490, extended spectrum ß-lactamase, ESBL, CRE, aminoglycoside modifying enzymes, and AME. Additional information was obtained from FDA review documents and research abstracts presented at international conferences. EXPERT OPINION Plazomicin is a promising carbapenem or β-lactam/β-lactamase inhibitor-sparing alternative for the treatment of complicated urinary tract infections caused by MDR Enterobacterales. Although robust data for bloodstream infections and bacterial pneumonias are lacking, plazomicin may be considered in individual clinical scenarios if combination therapy is warranted provided supportive microbiological data and therapeutic drug monitoring are available.
Collapse
Affiliation(s)
| | - Kristin E Linder
- Department of Pharmacy Services, Harford Hospital , Hartford, CT, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Harford Hospital , Hartford, CT, USA
| |
Collapse
|
32
|
Liao J, Orsi RH, Carroll LM, Wiedmann M. Comparative genomics reveals different population structures associated with host and geographic origin in antimicrobial-resistant Salmonella enterica. Environ Microbiol 2020; 22:2811-2828. [PMID: 32337816 DOI: 10.1111/1462-2920.15014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023]
Abstract
Genetic variation in a pathogen, including the causative agent of salmonellosis, Salmonella enterica, can occur as a result of eco-evolutionary forces triggered by dissimilarities of ecological niches. Here, we applied comparative genomics to study 90 antimicrobial resistant (AMR) S. enterica isolates from bovine and human hosts in New York and Washington states to understand host- and geographic-associated population structure. Results revealed distinct presence/absence profiles of functional genes and pseudogenes (e.g., virulence genes) associated with bovine and human isolates. Notably, bovine isolates contained significantly more transposase genes but fewer transposase pseudogenes than human isolates, suggesting the occurrence of large-scale transposition in genomes of bovine and human isolates at different times. The high correlation between transposase genes and AMR genes, as well as plasmid replicons, highlights the potential role of horizontally transferred transposons in promoting adaptation to antibiotics. By contrast, a number of potentially geographic-associated single-nucleotide polymorphisms (SNPs), rather than geographic-associated genes, were identified. Interestingly, 38% of these SNPs were in genes annotated as cell surface protein-encoding genes, including some essential for antibiotic resistance and host colonization. Overall, different evolutionary forces and limited recent inter-population transmission appear to shape AMR S. enterica population structure in different hosts and geographic origins.
Collapse
Affiliation(s)
- Jingqiu Liao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.,Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Renato Hohl Orsi
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Laura M Carroll
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
33
|
L Aishwarya KV, Geetha PV, Shanthi M, Uma S. Co occurrence of two 16S rRNA methyltrasferases along with NDM and OXA 48 like carbapenamases on a single plasmid in Klebsiella pneumoniae. J Lab Physicians 2020; 11:305-311. [PMID: 31929695 PMCID: PMC6943864 DOI: 10.4103/jlp.jlp_59_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract: BACKGROUND: The carbapenemase-encoding genes, blaNDM- and blaOXA-48-like, confer resistance to all the known beta-lactams and are encountered along with other beta-lactamase-encoding genes and/or 16S ribosomal RNA (rRNA)-methylating genes. The co-occurrence of blaNDM and blaOXA-48-like on a single plasmid is a rare occurrence. AIM AND OBJECTIVE: The purpose of the study was to characterize the plasmids in Klebsiella pneumoniae isolates producing 16S rRNA methyltransferase along with blaNDM, blaOXA-48-like, and other resistance encoding genes. MATERIALS AND METHODS: One-hundred and seventeen K. pneumoniae clinical isolates which were resistant to aminoglycosides were collected. Polymerase chain reaction-based screening for 16S rRNA methyltransferase genes armA, rmtB, and rmtC; carbapenamase genes blaNDM, blaOXA-48-like, blaIMP, blaVIM, and blaKPC; and other resistance genes such as blaTEM, blaSHV, blaCTX-M, and qnr (A, B, and S) determinants acc (6’) Ib-cr was performed. Conjugation experiment was carried out for seven isolates that anchored blaNDM and blaOXA-48-like along with any one of the 16S rRNA methyltransferases. The plasmid-based replicon typing for different plasmid-incompatible (Inc) group was performed on the conjugatively transferable plasmids. RESULTS: Among the 16S rRNA methyltransferases, armA was more predominant. blaNDM and blaOXA-48-like were present in 56 (47.86%) and 22 (18.80%) isolates, respectively. Out of seven isolates which were conjugatively transferable, only four had blaNDM and blaOXA-48-like on the same plasmid and they belonged to Inc N and A/C replicon. Three isolates co-harbored 16S rRNA methyltransferases armA, rmtB, and rmtC, and out of the them, one isolate harbored two 16S rRNA methyltransferases armA and rmtB, on the single-plasmid replicon A/C. CONCLUSION: This is the first report revealing the coexistence of blaNDM and blaOXA-48-like co-harboring two 16S rRNA methylases on a single conjugative plasmid replicon belonging to incompatibility group A/C.
Collapse
Affiliation(s)
- K V L Aishwarya
- Department of Microbiology, Sri Ramachandra Institute for Higher Education and Research, Chennai, Tamil Nadu, India
| | - P V Geetha
- Department of Microbiology, Sri Ramachandra Institute for Higher Education and Research, Chennai, Tamil Nadu, India
| | - M Shanthi
- Department of Microbiology, Sri Ramachandra Institute for Higher Education and Research, Chennai, Tamil Nadu, India
| | - S Uma
- Department of Microbiology, Sri Ramachandra Institute for Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
34
|
Cheng Q, Jiang X, Xu Y, Hu L, Luo W, Yin Z, Gao H, Yang W, Yang H, Zhao Y, Zhao X, Zhou D, Dai E. Type 1, 2, and 1/2-Hybrid IncC Plasmids From China. Front Microbiol 2019; 10:2508. [PMID: 31803147 PMCID: PMC6872532 DOI: 10.3389/fmicb.2019.02508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
A collection of 11 IncC plasmids from China were fully sequenced herein and compared with reference plasmids pR148 and pR55. These 13 plasmids could be assigned into three different subgroups: type 1, type 2, and type 1/2 hybrid. Type 1/2-hybrid plasmids most likely emerged from homologous recombination between type 1 and type 2 plasmids. Different IncC plasmids had evolved to acquire quite different profiles of accessory modules and thus different collections of resistance genes. The accessory resistance modules included not only the bla CMY-carrying region, the ARI-A island, and the ARI-B island, but also various additional kinds of resistance islands such as the bla CTX-M-carrying regions and the MDR regions. Insertion of accessory modules was sometimes accompanied by deletion, inversion, and translocation of surrounding backbone regions. pR148 and pR55 were confirmed to have the most complete backbones for type 1 and type 2, respectively. This was the first report of a bla IMP- 8-carrying IncC plasmid, and that of three novel mobile elements: a Tn1696-derived unit transposon Tn6395, a class 2 integron In2-76, and an insertion sequence ISEcl10.
Collapse
Affiliation(s)
- Qiaoxiang Cheng
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanan Xu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenbo Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaodong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
35
|
Verma A, Nayek A, Kumar A, Singh R, Salotra P. Elucidation of role of an acetyltransferase like protein in paromomycin resistance in Leishmania donovani using in silico and in vitro approaches. J Biomol Struct Dyn 2019; 38:4449-4460. [PMID: 31625467 DOI: 10.1080/07391102.2019.1682674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Paromomycin, an aminoglycoside antibiotic, is an effective treatment for VL (visceral leishmaniasis) in India. The modification of aminoglycoside antibiotics by enzymes such as aminoglycoside acetyltransferases is the predominant mechanism of resistance to antibiotics in bacterial system. In the present study, we identified and characterized LdATLP (an acetyltransferase-like protein) and elucidated its role in paromomycin resistance in Leishmania donovani. Gene encoding LdATLP was consistently up-regulated (>2fold) in three distinct paromomycin resistant in comparison with sensitive parasites, although the gene sequence was identical in the two. In silico analysis revealed that LdATLP consisted of conserved GNAT (GCN5-related N-Acetyltransferase) domain which is characteristic of aminoglycoside N-acetyltransferases. Evolutionary relationship among LdATLP of Leishmania and aminoglycoside acetyltransferases of bacteria was established by phylogenetic analysis. The 3D structure of LdATLP, predicted by ab-initio modeling, constituted 6 α-helices and 6 β-sheets. A few residues, such as R175, R177, E196, R197, V198, V200, K202, R205, C206, D208, G210, R211, R215, A234, S237, S238, K239, D240, F241 and Y242 of GNAT domain were predicted to be present at active site. Molecular docking of LdATLP with paromomycin or indolicidin (broad spectrum inhibitor of aminoglycoside modifying enzymes), followed by molecular dynamics simulation of docked complex suggested that both paromomycin and indolicidin bind to LdATLP with comparable free energy of binding. In vitro studies revealed that in the presence of indolicidin, paromomycin resistant parasites exhibited reversion of phenotype into sensitive parasites with marked increase in paromomycin susceptibility, suggesting the role of LdATLP in paromomycin resistance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.,Faculty of Health and Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Arnab Nayek
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Amit Kumar
- ICMR Computational Genomics Center, Division of ISRM, ICMR, New Delhi, India
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
36
|
Infectious phage particles packaging antibiotic resistance genes found in meat products and chicken feces. Sci Rep 2019; 9:13281. [PMID: 31527758 PMCID: PMC6746790 DOI: 10.1038/s41598-019-49898-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/29/2019] [Indexed: 11/08/2022] Open
Abstract
Bacteriophages can package part of their host's genetic material, including antibiotic resistance genes (ARGs), contributing to a rapid dissemination of resistances among bacteria. Phage particles containing ARGs were evaluated in meat, pork, beef and chicken minced meat, and ham and mortadella, purchased in local retailer. Ten ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaOXA-48, blaVIM, qnrA, qnrS, mecA, armA and sul1) were analyzed by qPCR in the phage DNA fraction. The genes were quantified, before and after propagation experiments in Escherichia coli, to evaluate the ability of ARG-carrying phage particles to infect and propagate in a bacterial host. According to microbiological parameters, all samples were acceptable for consumption. ARGs were detected in most of the samples after particle propagation indicating that at least part of the isolated phage particles were infectious, being sul1the most abundant ARG in all the matrices followed by β-lactamase genes. ARGs were also found in the phage DNA fraction of thirty-seven archive chicken cecal samples, confirming chicken fecal microbiota as an important ARG reservoir and the plausible origin of the particles found in meat. Phages are vehicles for gene transmission in meat that should not be underestimated as a risk factor in the global crisis of antibiotic resistance.
Collapse
|
37
|
Antibiotic resistance and inhibition mechanism of novel aminoglycoside phosphotransferase APH(5) from B. subtilis subsp. subtilis strain RK. Braz J Microbiol 2019; 50:887-898. [PMID: 31401782 DOI: 10.1007/s42770-019-00132-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/02/2019] [Indexed: 01/05/2023] Open
Abstract
Bacterial resistance towards aminoglycoside antibiotics mainly occurs because of aminoglycoside phosphotransferases (APHs). It is thus necessary to provide a rationale for focusing inhibitor development against APHs. The nucleotide triphosphate (NTP) binding site of eukaryotic protein kinases (ePKs) is structurally conserved with APHs. However, ePK inhibitors cannot be used against APHs due to cross reactivity. Thus, understanding bacterial resistance at the atomic level could be useful to design new inhibitors against such resistant pathogens. Hence, we carried out in vitro studies of APH from newly deposited multidrug-resistant organism Bacillus subtilis subsp. subtilis strain RK. Enzymatic modification studies of different aminoglycoside antibiotics along with purification and characterization revealed a novel class of APH, i.e., APH(5), with molecular weight 27 kDa approximately. Biochemical analysis of virtually screened inhibitor ZINC71575479 by coupled spectrophotometric assay showed complete enzymatic inhibition of purified APH(5). In silico toxicity study comparison of ZINC71575479 with known inhibitor of APH, i.e., tyrphostin AG1478, predicted its acceptable values for 96 h fathead minnow LC50, 48 h Tetrahymena pyriformis IGC50, oral rat LD50, and developmental toxicity using different QSAR methodologies. Thus, the present study gives novel insight into the aminoglycoside resistance and inhibition mechanism of APH(5) by applying experimental and computational techniques synergistically.
Collapse
|
38
|
Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages. Antimicrob Agents Chemother 2019; 63:AAC.00334-19. [PMID: 31138576 DOI: 10.1128/aac.00334-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/22/2019] [Indexed: 01/01/2023] Open
Abstract
The spread of antimicrobial resistance genes (ARGs) among Gram-negative pathogens, including Acinetobacter baumannii, is primarily mediated by transferable plasmids; however, ARGs are frequently integrated into its chromosome. How ARG gets horizontally incorporated into the chromosome of A. baumannii, and whether it functions as a cause for further spread of ARG, remains unknown. Here, we demonstrated intercellular prophage-mediated transfer of chromosomal ARGs without direct cell-cell interaction in A. baumannii We prepared ARG-harboring extracellular DNA (eDNA) components from the culture supernatant of a multidrug-resistant (MDR) A. baumannii NU-60 strain and exposed an antimicrobial-susceptible (AS) A. baumannii ATCC 17978 strain to the eDNA components. The antimicrobial-resistant (AR) A. baumannii ATCC 17978 derivatives appeared to acquire various ARGs, originating from dispersed loci of the MDR A. baumannii chromosome, along with their surrounding regions, by homologous recombination, with the ARGs including armA (aminoglycoside resistance), bla TEM-1 (β-lactam resistance), tet(B) (tetracycline resistance), and gyrA-81L (nalidixic acid resistance) genes. Notably, the eDNAs conferring antimicrobial resistance were enveloped in specific capsid proteins consisting of phage particles, thereby protecting the eDNAs from detergent and DNase treatments. The phages containing ARGs were likely released into the extracellular space from MDR A. baumannii, thereby transducing ARGs into AS A. baumannii, resulting in the acquisition of AR properties by the recipient. We concluded that the generalized transduction, in which phages were capable of carrying random pieces of A. baumannii genomic DNAs, enabled efficacious intercellular transfer of chromosomal ARGs between A. baumannii strains without direct cell-cell interaction.
Collapse
|
39
|
Mancini S, Marchesi M, Imkamp F, Wagner K, Keller PM, Quiblier C, Bodendoerfer E, Courvalin P, Böttger EC. Population-based inference of aminoglycoside resistance mechanisms in Escherichia coli. EBioMedicine 2019; 46:184-192. [PMID: 31307955 PMCID: PMC6710905 DOI: 10.1016/j.ebiom.2019.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background Interpretative reading of antimicrobial susceptibility test (AST) results allows inferring biochemical resistance mechanisms from resistance phenotypes. For aminoglycosides, however, correlations between resistance pathways inferred on the basis of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints and expert rules versus genotypes are generally poor. This study aimed at developing and validating a decision tree based on resistance phenotypes determined by disc diffusion and based on epidemiological cut-offs (ECOFFs) to infer the corresponding resistance mechanisms in Escherichia coli. Methods Phenotypic antibiotic susceptibility of thirty wild-type and 458 aminoglycoside-resistant E. coli clinical isolates was determined by disc diffusion and the genomes were sequenced. Based on well-defined cut-offs, we developed a phenotype-based algorithm (Aminoglycoside Resistance Mechanism Inference Algorithm - ARMIA) to infer the biochemical mechanisms responsible for the corresponding aminoglycoside resistance phenotypes. The mechanisms inferred from susceptibility to kanamycin, tobramycin and gentamicin were analysed using ARMIA- or EUCAST-based AST interpretation and validated by whole genome sequencing (WGS) of the host bacteria. Findings ARMIA-based inference of resistance mechanisms and WGS data were congruent in 441/458 isolates (96·3%). In contrast, there was a poor correlation between resistance mechanisms inferred using EUCAST CBPs/expert rules and WGS data (418/488, 85·6%). Based on the assumption that resistance mechanisms can result in therapeutic failure, EUCAST produced 63 (12·9%) very major errors (vME), compared to only 2 (0·4%) vME with ARMIA. When used for detection and identification of resistance mechanisms, ARMIA resolved >95% vMEs generated by EUCAST-based AST interpretation. Interpretation This study demonstrates that ECOFF-based analysis of AST data of only four aminoglycosides provides accurate information on the resistance mechanisms in E. coli. Since aminoglycoside resistance mechanisms, despite having in certain cases a minimal effect on the minimal inhibitory concentration, may compromise the bactericidal activity of aminoglycosides, prompt detection of resistance mechanisms is crucial for therapy. Using ARMIA as an interpretative rule set for editing AST results allows for better predictions of in vivo activity of this drug class.
Collapse
Affiliation(s)
- Stefano Mancini
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland.
| | - Martina Marchesi
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Frank Imkamp
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Karoline Wagner
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Peter M Keller
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Chantal Quiblier
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Elias Bodendoerfer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | | | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Yeganeh Sefidan F, Mohammadzadeh-Asl Y, Ghotaslou R. High-Level Resistance to Aminoglycosides due to 16S rRNA Methylation in Enterobacteriaceae Isolates. Microb Drug Resist 2019; 25:1261-1265. [PMID: 31211656 DOI: 10.1089/mdr.2018.0171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: High-level aminoglycoside resistance due to methylase genes has been reported in several countries. The purpose of this study was to investigate the diversity of the genes encoding 16S rRNA methylase and their association with resistance phenotype in Enterobacteriacae isolates. Materials and Methods: Based on sampling size formula, from February to August 2014, a total of 307 clinical Enterobacteriaceae isolates were collected from five hospitals in northwest Iran. The disk diffusion method for amikacin, gentamicin, tobramycin, kanamycin, and streptomycin, as well as the minimum inhibitory concentration (MIC) for aminoglycosides (except streptomycin), was used. Six 16S rRNA methylase genes (armA, npmA, and rmtA-D) were screened by PCR and sequencing assays. Results: In this study, 220 (71.7%) of 307 isolates were aminoglycoside resistant and 40 isolates (18.2%, 40/220) were positive for methylase genes. The frequency of armA, rmtC, npmA, rmtB, and rmtA genes was 9.5%, 4.5%, 3.6%, 2.3%, and 1%, respectively. The rmtD gene was not detected in the tested bacteria. Sixty percent of positive methylase gene isolates displayed high-level resistance (MIC ≥512 μg/mL to amikacin and kanamycin; and MIC ≥128 μg/mL to gentamicin and tobramycin). Conclusions: The prevalence of resistance to aminoglycoside in Iran is high. Furthermore, there is a statistically significant association between amikacin and kanamycin resistance with the presence of rmtC and rmtB genes.
Collapse
Affiliation(s)
- Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yalda Mohammadzadeh-Asl
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Liang Q, Jiang X, Hu L, Yin Z, Gao B, Zhao Y, Yang W, Yang H, Tong Y, Li W, Jiang L, Zhou D. Sequencing and Genomic Diversity Analysis of IncHI5 Plasmids. Front Microbiol 2019; 9:3318. [PMID: 30692976 PMCID: PMC6339943 DOI: 10.3389/fmicb.2018.03318] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/20/2018] [Indexed: 12/05/2022] Open
Abstract
IncHI plasmids could be divided into five different subgroups IncHI1–5. In this study, the complete nucleotide sequences of seven blaIMP- or blaVIM-carrying IncHI5 plasmids from Klebsiella pneumoniae, K. quasipneumoniae, and K. variicola were determined and compared in detail with all the other four available sequenced IncHI5 plasmids. These plasmids carried conserved IncHI5 backbones composed of repHI5B and a repFIB-like gene (replication), parABC (partition), and tra1 (conjugal transfer). Integration of a number of accessory modules, through horizontal gene transfer, at various sites of IncHI5 backbones resulted in various deletions of surrounding backbone regions and thus considerable diversification of IncHI5 backbones. Among the accessory modules were three kinds of resistance accessory modules, namely Tn10 and two antibiotic resistance islands designated ARI-A and ARI-B. These two islands, inserted at two different fixed sites (one island was at one site and the other was at a different site) of IncHI5 backbones, were derived from the prototype Tn3-family transposons Tn1696 and Tn6535, respectively, and could be further discriminated as various intact transposons and transposon-like structures. The ARI-A or ARI-B islands from different IncHI5 plasmids carried distinct profiles of antimicrobial resistance markers and associated mobile elements, and complex events of transposition and homologous recombination accounted for assembly of these islands. The carbapenemase genes blaIMP-4, blaIMP-38 and blaVIM-1 were identified within various class 1 integrons from ARI-A or ARI-B of the seven plasmids sequenced in this study. Data presented here would provide a deeper insight into diversification and evolution history of IncHI5 plasmids.
Collapse
Affiliation(s)
- Quanhui Liang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weixuan Li
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, China
| | - Lingxiao Jiang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
42
|
Shaeer KM, Zmarlicka MT, Chahine EB, Piccicacco N, Cho JC. Plazomicin: A Next-Generation Aminoglycoside. Pharmacotherapy 2019; 39:77-93. [PMID: 30511766 DOI: 10.1002/phar.2203] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Plazomicin is a novel aminoglycoside antibiotic that binds to the bacterial 30S ribosomal subunit, thus inhibiting protein synthesis in a concentration-dependent manner. Plazomicin displays a broad spectrum of activity against aerobic gram-negative bacteria including extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and organisms with aminoglycoside-modifying enzymes. In a large phase III clinical trial, plazomicin was shown to be noninferior to meropenem in the treatment of complicated urinary tract infections (cUTIs) with respect to the coprimary efficacy end points of the microbiologically modified intent-to-treat composite cure rate at day 5 (plazomicin 88% [168/191 subjects] vs meropenem 91.4% [180/197]) and at the test-of-cure visit (plazomicin 81.7% [156/191] vs meropenem 70.1% [138/197]). In a small phase III clinical trial, plazomicin was shown to be effective in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. It was associated with a lower all-cause mortality or significant disease-related complication rate (23.5% [4/17]) compared with colistin (50% [10/20]). The most common adverse reactions associated with plazomicin are decreased renal function, diarrhea, hypertension, headache, nausea, vomiting, and hypotension. As with other aminoglycosides, plazomicin may cause neuromuscular blockade, ototoxicity, and fetal harm in pregnant women. Due to limited efficacy and safety data, plazomicin is indicated for the treatment of cUTIs in adults with limited or no alternative treatment options, using a dosage regimen of 15 mg/kg intravenously every 24 hours for 4-7 days. Dosage reductions and therapeutic drug monitoring are warranted in patients with moderate or severe renal impairment. Plazomicin is not recommended in patients with severe renal impairment including those receiving renal replacement therapy. With the approval of plazomicin, clinicians now have an additional option for the treatment of adults with cUTIs, particularly those caused by multidrug-resistant gram-negative rods.
Collapse
Affiliation(s)
- Kristy M Shaeer
- Department of Pharmacotherapeutics and Clinical Research, University of South Florida College of Pharmacy, Tampa, Florida.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida
| | | | - Elias B Chahine
- Department of Pharmacy Practice, Palm Beach Atlantic University Lloyd L. Gregory School of Pharmacy, West Palm Beach, Florida
| | - Nicholas Piccicacco
- Department of Pharmacy, Tampa General Hospital, Tampa, Florida.,The University of Texas at Tyler Ben and Maytee Fisch College of Pharmacy, Tyler, Texas
| | - Jonathan C Cho
- The University of Texas at Tyler Ben and Maytee Fisch College of Pharmacy, Tyler, Texas
| |
Collapse
|
43
|
Castanheira M, Davis AP, Serio AW, Krause KM, Mendes RE. In vitro activity of Plazomicin against Enterobacteriaceae isolates carrying genes encoding aminoglycoside-modifying enzymes most common in US Census divisions. Diagn Microbiol Infect Dis 2018; 94:73-77. [PMID: 30661726 DOI: 10.1016/j.diagmicrobio.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 10/27/2022]
Abstract
Aminoglycoside-nonsusceptible isolates of Escherichia coli, Klebsiella, Proteus, and Enterobacter species (480/3675) from US hospitals collected during 2014-2015 were screened for 16S rRNA methyltransferase and aminoglycoside-modifying enzyme (AME) genes. Only 5 isolates had high aminoglycoside MICs and carried 16S rRNA methyltransferases. AME genes were observed among 89.7% (426/475) of isolates and the most common genes were aac(3)-IIa (n = 270) and aac(6')-Ib (n = 269). Among other genes, ant(2″)-Ia, aac(3)-Iva, and aph(3')-VIa were observed among 36, 23, and 3 isolates, respectively. Forty-nine (10.3%) isolates yielded negative results for the investigated AME genes. Plazomicin (MIC50/90, 0.5/1 μg/ml) inhibited 99.3% of the AME-carrying isolates at its susceptible breakpoint while amikacin, gentamicin, and tobramycin inhibited 90.1%, 20.9%, and 18.3%, respectively. Plazomicin was approved by the US Food and Drug Administration in June 2018 for the treatment of complicated urinary tract infections when limited treatment options are available. This agent displayed activity against isolates carrying AMEs that were resistance to other aminoglycosides and comparator agents.
Collapse
|
44
|
Jamal S, Al Atrouni A, Rafei R, Dabboussi F, Hamze M, Osman M. Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon. J Glob Antimicrob Resist 2018; 15:154-163. [PMID: 29859266 DOI: 10.1016/j.jgar.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/24/2018] [Accepted: 05/22/2018] [Indexed: 10/16/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.
Collapse
Affiliation(s)
- Sabah Jamal
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon.
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
45
|
Moghimbeigi A, Moghimbeygi M, Dousti M, Kiani F, Sayehmiri F, Sadeghifard N, Nazari A. Prevalence of vancomycin resistance among isolates of enterococci in Iran: a systematic review and meta-analysis. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2018; 9:177-188. [PMID: 30532606 PMCID: PMC6241717 DOI: 10.2147/ahmt.s180489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction Enterococcus is responsible for 10% of hospital-acquired infections. The purpose of this review was to evaluate the prevalence of vancomycin-resistant Enterococcus (VRE) isolates in Iran using a meta-analysis method. Materials and methods Iranian databases, including Magiran and IranDoc, and international databases, including PubMed and MedLib, were examined carefully, and a total of 20 articles published between 2000 and 2011 were extracted. The data were subjected to meta-analysis and random-effects models. In addition, heterogeneous studies were assessed using the I 2 index. Finally, the data were analyzed using R and STATA software. Results The results showed that the strain of Enterococcus faecalis had been more common than Enterococcus faecium in clinical infection (69% vs 28%). However, resistance to vancomycin was higher among strains of E. faecium compared with strains of E. faecalis (33% vs 3%). The complete resistance, intermediate resistance, and sensitivity to vancomycin among Enterococcus isolates were 14% (95% CI: 11, 18), 14% (95% CI: 5, 23), and 74% (95% CI: 65, 83), respectively. The resistance patterns, depending on the sample type, did not show a significant difference. In addition, the resistance of isolated strains to vancomycin in outpatients was significantly higher than that in inpatients (16% vs 1%). Moreover, 80%-86% of resistant strains were genotype van A and 14%-20% of resistant strains were genotype van B. Conclusion The findings of the present review show that there is a high frequency of resistant Enterococcus in Iran. Therefore, consideration of the prevalence and frequency of subjected resistant strains can be helpful for decision makers to implement proper health policies in this direction.
Collapse
Affiliation(s)
- Abbas Moghimbeigi
- Modeling of Noncomunicable Disease Research Center, Department of Biostatistics, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Biostatistics, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meisam Moghimbeygi
- Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Dousti
- Department of Parasitology and mycology, Faculty of Medicine, Shiraz University of Medical Sciences, Fars, Iran
| | - Faezeh Kiani
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Sayehmiri
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Microbiology Research Center, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Nazari
- School of Medicine, Ilam University of Medical Sciences, Ilam, Iran,
| |
Collapse
|
46
|
Wei Z, Feng K, Li S, Zhang Y, Chen H, Yin H, Xu M, Deng Y. Exploring abundance, diversity and variation of a widespread antibiotic resistance gene in wastewater treatment plants. ENVIRONMENT INTERNATIONAL 2018; 117:186-195. [PMID: 29753149 DOI: 10.1016/j.envint.2018.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
An updated sul1 gene sequence database was constructed and new degenerate primers were designed to better investigate the abundance, diversity, and variation of a ubiquitous antibiotic resistance gene, sul1, with PCR-based methods in activated sludge from wastewater treatment plants (WWTPs). The newly designed degenerate primers showed high specificity and higher coverage in both in-silico evaluations and activated sludge samples compared to previous sul1 primers. Using the new primers, the abundance and diversity of sul1 gene, together with 16S rRNA gene, in activated sludge from five WWTPs in summer and winter were determined by quantitative PCR and MiSeq sequencing. The sul1 gene was found to be prevalent and displayed a comparable abundance (0.081 copies per bacterial cell in average) to the total bacteria across all samples. However, compared to the significant seasonal and geographical divergences in the quantity and diversity of bacterial communities in WWTPs, there were no significant seasonal or geographical variations of representative clusters of sul1 gene in most cases. Additionally, the representative sul1 clusters showed fairly close phylogeny and there was no obvious correlation between sul1 gene and the dominant bacterial genera, as well as the int1 gene, suggesting that bacterial hosts of sul1 gene is not stable, the sul1 gene may be carried by mobile genetic elements, sometimes integrated with class 1 integrons and sometimes not. Thus mobile genetic elements likely play a greater role than specific microbial taxa in determining the composition of sul1 gene in WWTPs.
Collapse
Affiliation(s)
- Ziyan Wei
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Li
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrui Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0026-2017. [PMID: 30003866 PMCID: PMC11633601 DOI: 10.1128/microbiolspec.arba-0026-2017] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
Affiliation(s)
- Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Jean-Yves Madec
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Agnese Lupo
- Université de Lyon - Agence Nationale de Sécurité Sanitaire (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Kieffer
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
- French INSERM European Unit, University of Fribourg (LEA-IAME), Fribourg, Switzerland
- National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Larrañaga O, Brown-Jaque M, Quirós P, Gómez-Gómez C, Blanch AR, Rodríguez-Rubio L, Muniesa M. Phage particles harboring antibiotic resistance genes in fresh-cut vegetables and agricultural soil. ENVIRONMENT INTERNATIONAL 2018; 115:133-141. [PMID: 29567433 DOI: 10.1016/j.envint.2018.03.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 05/04/2023]
Abstract
Bacteriophages are ubiquitously distributed prokaryotic viruses that are more abundant than bacteria. As a consequence of their life cycle, phages can kidnap part of their host's genetic material, including antibiotic resistance genes (ARGs), which released phage particles transfer in a process called transduction. The spread of ARGs among pathogenic bacteria currently constitutes a serious global health problem. In this study, fresh vegetables (lettuce, spinach and cucumber), and cropland soil were screened by qPCR for ten ARGs (blaTEM, blaCTX-M-1 group, blaCTX-M-9 group, blaOXA-48, blaVIM, mecA, sul1, qnrA, qnrS and armA) in their viral DNA fraction. The presence of ARGs in the phage DNA was analyzed before and after propagation experiments in an Escherichia coli host strain to evaluate the ability of the phage particles to infect a host. ARGs were found in the phage DNA fraction of all matrices, although with heterogeneous values. ARG prevalence was significantly higher in lettuce and soil, and the most common overall were β-lactamases. After propagation experiments, an increase in ARG densities in phage particles was observed in samples of all four matrices, confirming that part of the isolated phage particles were infectious. This study reveals the abundance of free, replicative ARG-containing phage particles in vegetable matrices and cropland soil. The particles are proposed as vehicles for resistance transfer in these environments, where they can persist for a long time, with the possibility of generating new resistant bacterial strains. Ingestion of these mobile genetic elements may also favor the emergence of new resistances, a risk not previously considered.
Collapse
Affiliation(s)
- Olatz Larrañaga
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Maryury Brown-Jaque
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
49
|
Spread of Plasmid-Encoded NDM-1 and GES-5 Carbapenemases among Extensively Drug-Resistant and Pandrug-Resistant Clinical Enterobacteriaceae in Durban, South Africa. Antimicrob Agents Chemother 2018; 62:AAC.02178-17. [PMID: 29507063 DOI: 10.1128/aac.02178-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/23/2018] [Indexed: 01/09/2023] Open
Abstract
Whole-genome sequence analyses revealed the presence of blaNDM-1 (n = 31), blaGES-5 (n = 8), blaOXA-232 (n = 1), or blaNDM-5 (n = 1) in extensively drug-resistant and pandrug-resistant Enterobacteriaceae organisms isolated from in-patients in 10 private hospitals (2012 to 2013) in Durban, South Africa. Two novel NDM-1-encoding plasmids from Klebsiella pneumoniae were circularized by PacBio sequencing. In p19-10_01 [IncFIB(K); 223.434 bp], blaNDM-1 was part of a Tn1548-like structure (16.276 bp) delineated by IS26 The multireplicon plasmid p18-43_01 [IncR_1/IncFIB(pB171)/IncFII(Yp); 212.326 bp] shared an 80-kb region with p19-10_01, not including the blaNDM-1-containing region. The two plasmids were used as references for tracing NDM-1-encoding plasmids in the other genome assemblies. The p19-10_01 sequence was detected in K. pneumoniae (n = 7) only, whereas p18-43_01 was tracked to K. pneumoniae (n = 4), Klebsiella michiganensis (n = 1), Serratia marcescens (n = 11), Enterobacter spp. (n = 7), and Citrobacter freundii (n = 1), revealing horizontal spread of this blaNDM-1-bearing plasmid structure. Global phylogeny showed clustering of the K. pneumoniae (18/20) isolates together with closely related carbapenemase-negative ST101 isolates from other geographical origins. The South African isolates were divided into three phylogenetic subbranches, where each group had distinct resistance and replicon profiles, carrying either p19-10_01, p18-10_01, or pCHE-A1 (8,201 bp). The latter plasmid carried blaGES-5 and aacA4 within an integron mobilization unit. Our findings imply independent plasmid acquisition followed by local dissemination. Additionally, we detected blaOXA-232 carried by pPKPN4 in K. pneumoniae (ST14) and blaNDM-5 contained by a pNDM-MGR194-like genetic structure in Escherichia coli (ST167), adding even more complexity to the multilayer molecular mechanisms behind nosocomial spread of carbapenem-resistant Enterobacteriaceae in Durban, South Africa.
Collapse
|
50
|
Nosocomial Outbreak of Extensively Drug-Resistant Acinetobacter baumannii Isolates Containing blaOXA-237 Carried on a Plasmid. Antimicrob Agents Chemother 2017; 61:AAC.00797-17. [PMID: 28893775 DOI: 10.1128/aac.00797-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Carbapenem antibiotics are among the mainstays for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States, where carbapenem-resistant A. baumannii remains relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from five health care facilities in the state of Oregon. All isolates were defined as extensively drug resistant. Multilocus sequence typing revealed that the isolates belonged to sequence type 2 (international clone 2 [IC2]) and were >95% similar as determined by repetitive-sequence-based PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole-genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried on a 15,198-bp plasmid designated pORAB01-3 and was present in all 16 isolates. The plasmid also contained genes encoding a TonB-dependent receptor, septicolysin, a type IV secretory pathway (VirD4 component, TraG/TraD family) ATPase, an integrase, a RepB family plasmid DNA replication initiator protein, an alpha/beta hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak in the northwestern United States associated with this carbapenemase. Particularly worrisome is that blaOXA-237 was carried on a plasmid and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination.
Collapse
|