1
|
Adeoye AO, Lobb KA. Malaria parasite cysteine and aspartic proteases as key drug targets for antimalarial therapy. J Mol Model 2025; 31:78. [PMID: 39920505 DOI: 10.1007/s00894-025-06303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
CONTEXT Cysteine and aspartic proteases are enzyme families that play crucial roles in the life cycle of Plasmodium, the parasite responsible for malaria. These proteases are involved in vital biological processes, such as hemoglobin degradation within the host's red blood cells, protein turnover, and regulation of parasite development. Inhibiting these proteases with small molecule drugs can block the parasite's growth and survival. Chemically, these enzymes have specific active sites where inhibitors can bind, preventing the breakdown of key proteins, making them attractive targets for the design of novel antimalarial compounds. Understanding the structure and catalytic mechanisms of these proteases is critical for developing selective and potent inhibitors. The degradation of hemoglobin occurs in the parasite's digestive vacuole, and disruption of this process by targeting these proteases can inhibit parasite development, leading to the death of the parasite. Hence, these proteases are critical for maintaining the parasite's metabolic functions, and inhibiting them can disrupt the parasite's life cycle. Malaria remains a major global health problem, particularly in tropical and subtropical regions, where resistance to existing antimalarial drugs, such as chloroquine and artemisinin-based therapies, is an escalating issue. The emergence of drug-resistant Plasmodium strains highlights the urgent need for new therapeutic strategies. Targeting cysteine and aspartic proteases offers a novel approach to antimalarial drug development, as these enzymes are crucial for parasite survival and have not been widely exploited in current therapies. By inhibiting these proteases, researchers aim to develop new antimalarial treatments that could overcome resistance mechanisms and provide more effective options for malaria control and eradication. METHODS The application of computational methods such as molecular docking, dynamics simulations, and quantum mechanical calculations, combined with powerful molecular modeling tools, provides a comprehensive framework for discovering and optimizing inhibitors targeting Plasmodium cysteine and aspartic proteases. These methods facilitate the rational design of novel antimalarial drugs, offering a pathway to overcome drug resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Akinwunmi O Adeoye
- Biomembrane and Toxicology Unit, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria.
- Department of Chemistry, Rhodes University, Grahamstown, South Africa.
| | - Kevin A Lobb
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
2
|
Tankoua-Tchounda R, Nack J, Nchetnkou CM, Tchankwe DLK, Lontsi-Demano M, Essangui E, Djimefo AKT, Lehman LG. Malaria and HIV/AIDS Coinfection in Patients Under Highly Active Antiretroviral Therapy at the Regional Hospital of Bafoussam (West Cameroon). J Parasitol Res 2024; 2024:5520975. [PMID: 39502089 PMCID: PMC11535282 DOI: 10.1155/2024/5520975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Malaria and HIV/AIDS are the two most common infections responsible for morbidity and mortality in sub-Saharan Africa. The studies were carried out worldwide. However, no study has targeted HIV-positive patients at the Bafoussam Regional Hospital (West Cameroon), one approved treatment center, where patients are adhering well to their HIV treatment. The objective of this study was to identify the Plasmodium species and to determine the prevalence of the malaria parasite in relationship with associated factors in HIV+ patients followed at the Bafoussam Regional Hospital. Methods: A prospective study included 585 patients who responded to the questionnaires from May to December 2021. Parents or legal guardians of children under 15 responded on their behalf on knowledge, attitudes, and practices towards malaria. Venous blood samples collected in EDTA tubes were subjected to malaria diagnosis by rapid tests (Standard Diagnostics Boline), and the results were confirmed by microscopy. The blood count was undertaken on hematology analyzer (Mindray Company, Shenzhen, China). Results: Plasmodium vivax (4.3%) and mostly Plasmodium falciparum (95.7%) were identified. In this study population, 46 (7.9%) of the patients carried one or the other Plasmodium species, and 532 (90.9%) had undetectable HIV viral loads. The prevalence of malaria was significantly higher among those using traditional pharmacopoeia (9 (16.7%)) compared to patients taking generic treatments (37 (7.0%)) (p < 0.01; OR: 2.69). Factors associated with malaria prevalence, such as sociodemographic characteristics, viral load, type of protocol, duration of antiretroviral treatment, monthly income, subdivision, and knowledge attitudes and practices towards malaria, showed no significant differences (p > 0.05). Conclusion: This study showed that HIV+ patients were carriers of Plasmodium falciparum and Plasmodium vivax with an appreciable overall prevalence. The only factor influencing the prevalence of malaria was using traditional medicine.
Collapse
Affiliation(s)
- Romeo Tankoua-Tchounda
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| | - Jacques Nack
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| | - Christian Mbohou Nchetnkou
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| | | | - Michel Lontsi-Demano
- Department of Animal Biology, Faculty of Sciences, University of Dschang, PO Box 067, Dschang, Cameroon
| | - Estelle Essangui
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| | - Alex Kevin Tako Djimefo
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| | - Leopold Gustave Lehman
- Department of Biology of Animal Organisms, Faculty of Sciences, University of Douala PO 24157, Douala, Cameroon
| |
Collapse
|
3
|
Mishra V, Deshmukh A, Rathore I, Chakraborty S, Patankar S, Gustchina A, Wlodawer A, Yada RY, Bhaumik P. Inhibition of Plasmodium falciparum plasmepsins by drugs targeting HIV-1 protease: A way forward for antimalarial drug discovery. Curr Res Struct Biol 2024; 7:100128. [PMID: 38304146 PMCID: PMC10830516 DOI: 10.1016/j.crstbi.2024.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Plasmodium species are causative agents of malaria, a disease that is a serious global health concern. FDA-approved HIV-1 protease inhibitors (HIV-1 PIs) have been reported to be effective in reducing the infection by Plasmodium parasites in the population co-infected with both HIV-1 and malaria. However, the mechanism of HIV-1 PIs in mitigating Plasmodium pathogenesis during malaria/HIV-1 co-infection is not fully understood. In this study we demonstrate that HIV-1 drugs ritonavir (RTV) and lopinavir (LPV) exhibit the highest inhibition activity against plasmepsin II (PMII) and plasmepsin X (PMX) of P. falciparum. Crystal structures of the complexes of PMII with both drugs have been determined. The inhibitors interact with PMII via multiple hydrogen bonding and hydrophobic interactions. The P4 moiety of RTV forms additional interactions compared to LPV and exhibits conformational flexibility in a large S4 pocket of PMII. Our study is also the first to report inhibition of P. falciparum PMX by RTV and the mode of binding of the drug to the PMX active site. Analysis of the crystal structures implies that PMs can accommodate bulkier groups of these inhibitors in their S4 binding pockets. Structurally similar active sites of different vacuolar and non-vacuolar PMs suggest the potential of HIV-1 PIs in targeting these enzymes with differential affinities. Our structural investigations and biochemical data emphasize PMs as crucial targets for repurposing HIV-1 PIs as antimalarial drugs.
Collapse
Affiliation(s)
- Vandana Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Anuradha Deshmukh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Satadru Chakraborty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Alla Gustchina
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, 21702, USA
| | - Rickey Y. Yada
- Faculty of Land and Food Systems, University of British Columbia, 248-2357 Main Mall, Vancouver, BC V6T 1Z4, Vancouver, Canada
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Kifude CM, Roberds A, Oyieko J, Ocholla S, Otieno S, Waitumbi JN, Hutter J, Smith H, Copeland NK, Luckhart S, Stewart VA. Initiation of anti-retroviral/Trimethoprim-Sulfamethoxazole therapy in a longitudinal cohort of HIV-1 positive individuals in Western Kenya rapidly decreases asymptomatic malarial parasitemia. Front Cell Infect Microbiol 2022; 12:1025944. [PMID: 36506016 PMCID: PMC9729353 DOI: 10.3389/fcimb.2022.1025944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022] Open
Abstract
Interactions between malaria and HIV-1 have important public health implications. Our previous cross-sectional studies showed significant associations between HIV-1 positivity and malarial parasitemia with an increased risk of gametocytemia. In this follow-up longitudinal study, we evaluated these associations to determine the magnitude of asymptomatic parasitemia over time, and to examine the effects of initiating Antiretroviral Therapy (ART) together with the broad-spectrum antibiotic Trimethoprim Sulfamethoxazole (TS) on asymptomatic parasitemia. 300 adult volunteers in a malaria holoendemic region in Western Kenya were enrolled and followed for six months. The study groups were composed of 102 HIV-1 negatives, 106 newly diagnosed HIV-1 positives and 92 HIV-1 positives who were already stable on ART/TS. Blood samples were collected monthly and asymptomatic malarial parasitemia determined using sensitive 18S qPCR. Results showed significantly higher malaria prevalence in the HIV-1 negative group (61.4%) (p=0.0001) compared to HIV-1 positives newly diagnosed (36.5%) and those stable on treatment (31.45%). Further, treatment with ART/TS had an impact on incidence of asymptomatic parasitemia. In volunteers who were malaria PCR-negative at enrollment, the median time to detectable asymptomatic infection was shorter for HIV-1 negatives (149 days) compared to the HIV-1 positives on treatment (171 days) (p=0.00136). Initiation of HIV treatment among the newly diagnosed led to a reduction in malarial parasitemia (expressed as 18S copy numbers/μl) by over 85.8% within one week of treatment and a further reduction by 96% after 2 weeks. We observed that while the impact of ART/TS on parasitemia was long term, treatment with antimalarial Artemether/Lumefantrine (AL) among the malaria RDT positives had a transient effect with individuals getting re-infected after short periods. As was expected, HIV-1 negative individuals had normal CD4+ levels throughout the study. However, CD4+ levels among HIV-1 positives who started treatment were low at enrollment but increased significantly within the first month of treatment. From our association analysis, the decline in parasitemia among the HIV-1 positives on treatment was attributed to TS treatment and not increased CD4+ levels per se. Overall, this study highlights important interactions between HIV-1 and malaria that may inform future use of TS among HIV-infected patients in malaria endemic regions.
Collapse
Affiliation(s)
- Carolyne M. Kifude
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Ashleigh Roberds
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Janet Oyieko
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Stephen Ocholla
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Solomon Otieno
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - John N. Waitumbi
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Jack Hutter
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Hunter Smith
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Nathanial K. Copeland
- Kombewa Clinical Research Center, Kenya Medical Research Institute-United States Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - V. Ann Stewart
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
HIV infection increases the risk of acquiring Plasmodium vivax malaria: a 4-year cohort study in the Brazilian Amazon HIV and risk of vivax malaria. Sci Rep 2022; 12:9076. [PMID: 35641592 PMCID: PMC9156757 DOI: 10.1038/s41598-022-13256-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Globally, malaria and human immunodeficiency virus (HIV) are both independently associated with a massive burden of disease and death. While their co-infection has been well studied for Plasmodium falciparum, scarce data exist regarding the association of P. vivax and HIV. In this cohort study, we assessed the effect of HIV on the risk of vivax malaria infection and recurrence during a 4-year follow-up period in an endemic area of the Brazilian Amazon. For the purpose of this study, we obtained clinical information from January 2012 to December 2016 from two databases. HIV screening data were acquired from the clinical information system at the tropical hospital Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD). The National Malaria Surveillance database (SIVEP malaria) was utilized to identify malaria infections during a 4-year follow-up period after diagnosis of HIV. Both datasets were combined via data linkage. Between 2012 and 2016, a total of 42,121 people were screened for HIV, with 1569 testing positive (3.7%). Out of all the patients diagnosed with HIV, 198 had at least one episode of P. vivax malaria in the follow-up. In the HIV-negative group, 711 participants had at least one P. vivax malaria episode. When comparing both groups, HIV patients had a 6.48 [(5.37–7.83); P < 0.0001] (adjusted relative risk) greater chance of acquiring P. vivax malaria. Moreover, being of the male gender [ARR = 1.41 (1.17–1.71); P < 0.0001], Amerindian ethnicity [ARR = 2.77 (1.46–5.28); P < 0.0001], and a resident in a municipality of the Metropolitan region of Manaus [ARR = 1.48 (1.02–2.15); P = 0.038] were independent risk factors associated with an increased risk of clinical malaria. Education ≥ 8 years [ARR = 0.41 (0.26–0.64); P < 0.0001] and living in the urban area [ARR = 0.44 (0.24–0.80); P = 0.007] were associated to a lower risk of P. vivax malaria. A total of 28 (14.1%) and 180 (25.3%) recurrences (at least a second clinical malaria episode) were reported in the HIV-positive and HIV-negative groups, respectively. After adjusting for sex and education, HIV-positive status was associated with a tendency towards protection from P. vivax malaria recurrences [ARR = 0.55 (0.27–1.10); P = 0.090]. HIV status was not associated with hospitalizations due to P. vivax malaria. CD4 + counts and viral load were not associated with recurrences of P. vivax malaria. No significant differences were found in the distribution of parasitemia between HIV-negative and HIV-positive P. vivax malaria patients. Our results suggest that HIV-positive status is a risk factor for vivax malaria infection, which represents an additional challenge that should be addressed during elimination efforts.
Collapse
|
6
|
Schwake C, Hyon M, Chishti AH. Signal peptide peptidase: A potential therapeutic target for parasitic and viral infections. Expert Opin Ther Targets 2022; 26:261-273. [PMID: 35235480 DOI: 10.1080/14728222.2022.2047932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Signal peptide peptidase (SPP) is a GxGD-type intramembrane-cleaving aspartyl protease responsible for clearing accumulating signal peptides in the endoplasmic reticulum. SPP is conserved among all kingdoms and is essential for maintaining cell homeostasis. Inhibition of SPP with selective inhibitors and the structurally similar HIV protease inhibitors results in signal peptide accumulation and subsequent cell death. Identification of SPP homologues in major human parasitic infections has opened a new therapeutic opportunity. Moreover, the essentiality of mammalian SPP-mediated viral protein processing during infection is emerging. AREAS COVERED This review introduces the discovery and biological function of human SPP enzymes and identify parasitic homologues as pharmacological targets of both SPP and HIV protease inhibitors. Later, the role of mammalian SPP during viral infection and how disruption of host SPP can be employed as a novel antiviral therapy are examined and discussed. EXPERT OPINION Parasitic and viral infections cause severe health and economic burden, exacerbated by the lack of new therapeutics in the pipeline. SPP has been shown to be essential for malaria parasite growth and encouraging evidence in other parasites demonstrates broad essentiality of these proteases as therapeutic targets. As drug resistant parasite and viruses emerge, SPP inhibition will provide a new generation of compounds to counter the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Hyon
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Shaffer D, Kumwenda J, Chen H, Akelo V, Angira F, Kosgei J, Tonui R, Ssali F, McKhann A, Hogg E, Stewart VA, Murphy SC, Coombs R, Schooley R, A5297 Team. Brief Report: No Differences Between Lopinavir/Ritonavir and Nonnucleoside Reverse Transcriptase Inhibitor-Based Antiretroviral Therapy on Clearance of Plasmodium falciparum Subclinical Parasitemia in Adults Living With HIV Starting Treatment (A5297). J Acquir Immune Defic Syndr 2022; 89:178-182. [PMID: 34693933 PMCID: PMC9425486 DOI: 10.1097/qai.0000000000002839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND HIV protease inhibitors anti-Plasmodium falciparum activity in adults remains uncertain. METHODS Adults with HIV CD4+ counts >200 cells/mm3 starting antiretroviral therapy (ART) with P. falciparum subclinical parasitemia (Pf SCP) were randomized 1:1 to (step 1) protease inhibitor lopinavir/ritonavir (LPV/r)-based (arm A) or nonnucleoside reverse transcriptase inhibitor (nNRTI)-based ART (arm B) for 15 days. In step 2, participants received nNRTI-based ART and trimethoprim/sulfamethoxazole prophylaxis for 15 days. P. falciparum SCP clearance was measured by polymerase chain reaction. The Fisher exact test [95% exact confidence interval (CI)] was used to compare proportions of P. falciparum SCP clearance (<10 parasites/μL on 3 occasions within 24 hours) between LPV/r and nNRTI arms at day 15. The Kaplan-Meier method and log-rank test were used to compare time-to-clearance. RESULTS Fifty-two adults from Kenya, Malawi, and Uganda with a median age = 31 (Q1, Q3: 24-39) years, 33% women, with baseline median CD4+ counts of 324 (259-404) cells/mm3, median HIV-1 RNA viremia of 5.18 log10 copies/mL (4.60-5.71), and median estimated P. falciparum density of 454 parasites/μL (83-2219) enrolled in the study. Forty-nine (94%) participants completed the study. At day 15, there was no statistically significant difference in the proportions of P. falciparum SCP clearance between the LPV/r (23.1% clearance; 6 of the 26) and nNRTI (26.9% clearance; 7 of the 26) arms [between-arm difference 3.9% (95% CI, -21.1% to 28.4%; P = 1.00)]. No significant difference in time-to-clearance was observed between the arms (P = 0.80). CONCLUSIONS In a small randomized study of adults starting ART with P. falciparum SCP, no statistically significant differences were seen between LPV/r- and nNRTI-based ART in P. falciparum SCP clearance after 15 days of treatment.
Collapse
Affiliation(s)
- Douglas Shaffer
- U.S. Centers for Disease Control and Prevention, Kigali, Rwanda (at time of research)
| | | | - Huichao Chen
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Victor Akelo
- Kenya Medical Research Institute, Center for Global Health (KEMRI/CGHR)/Emory-CDC CTU, Kisumu, Kenya
| | - Francis Angira
- Kenya Medical Research Institute, Center for Global Health (KEMRI/CGHR)/Emory-CDC CTU, Kisumu, Kenya
| | - Josphat Kosgei
- Kenya Medical Research Institute/United States Army Medical Research Directorate-Africa/Kenya, Kericho, Kenya
| | - Ronald Tonui
- Moi University School of Medicine, Eldoret, Kenya
| | | | - Ashley McKhann
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evelyn Hogg
- Social & Scientific Systems, Inc., A DLH Holdings Company, Silver Spring, MD, USA
| | - V. Ann Stewart
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington; Department of Microbiology, University of Washington; Center for Emerging and Re-emerging Infectious Diseases, University of Washington; Seattle, WA, USA
| | - Robert Coombs
- Department of Laboratory Medicine and Pathology; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert Schooley
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
8
|
Endo T, Takemae H, Sharma I, Furuya T. Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development. Front Cell Infect Microbiol 2021; 11:797509. [PMID: 35004357 PMCID: PMC8740689 DOI: 10.3389/fcimb.2021.797509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
Collapse
Affiliation(s)
- Takuro Endo
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Indu Sharma
- Department of Biological Sciences, Hampton University, Hampton, VA, United States
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Velozo CT, Cabral LM, Pinto EC, de Sousa VP. Lopinavir/Ritonavir: A Review of Analytical Methodologies for the Drug Substances, Pharmaceutical Formulations and Biological Matrices. Crit Rev Anal Chem 2021; 52:1846-1862. [PMID: 34024199 DOI: 10.1080/10408347.2021.1920364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Lopinavir/ritonavir is a potent coformulation of protease inhibitors used against HIV infection. Lopinavir is the main responsible for viral load suppression, whereas ritonavir is a pharmacokinetic enhancer. Both of them have recently gained relevance as candidate drugs against severe coronavirus disease (COVID-19). However, significant beneficial effects were not observed in randomized clinical trials. This review summarizes the main physical-chemical, pharmacodynamic, and pharmacokinetic properties of ritonavir and lopinavir, along with the analytical methodologies applied for biological matrices, pharmaceutical formulations, and stability studies. The work also aimed to provide a comprehensive impurity profile for the combined formulation. Several analytical methods in four different pharmacopeias and 37 articles in literature were evaluated and summarized. Chromatographic methods for these drugs frequently use C8 or C18 stationary phases with acetonitrile and phosphate buffer (with ultraviolet detection) or acetate buffer (with tandem mass spectrometry detection) as the mobile phase. Official compendia methods show disadvantages as extended total run time and complex mobile phases. HPLC tandem-mass spectrometry provided high sensitivity in methodologies applied for human plasma and serum samples, supporting the therapeutic drug monitoring in HIV patients. Ritonavir and lopinavir major degradation products arise in alkaline and acidic environments, respectively. Other non-chromatographic methods were also summarized. Establishing the impurity profile for the combined formulation is challenging due to a large number of impurities reported. Easier and faster analytical methods for impurity assessment are still needed.
Collapse
Affiliation(s)
- Carolina Trajano Velozo
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Costa Pinto
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira de Sousa
- Department of Drugs and Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Barber J, Sikakana P, Sadler C, Baud D, Valentin JP, Roberts R. A target safety assessment of the potential toxicological risks of targeting plasmepsin IX/X for the treatment of malaria. Toxicol Res (Camb) 2021; 10:203-213. [PMID: 33884171 DOI: 10.1093/toxres/tfaa106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
The aspartic proteases plasmepsin IX/X are important antimalarial drug targets due to their specificity to the malaria parasite and their vital role as mediators of disease progression. Focusing on parasite-specific targets where no human homologue exists reduces the possibility of on-target drug toxicity. However, there is a risk of toxicity driven by inadequate selectivity for plasmepsins IX/X in Plasmodium over related mammalian aspartic proteases. Of these, CatD/E may be of most toxicological relevance as CatD is a ubiquitous lysosomal enzyme present in most cell types and CatE is found in the gut and in erythrocytes, the clinically significant site of malarial infection. Based on mammalian aspartic protease physiology and adverse drug reactions (ADRs) to FDA-approved human immunodeficiency virus (HIV) aspartic protease inhibitors, we predicted several potential toxicities including β-cell and congenital abnormalities, hypotension, hypopigmentation, hyperlipidaemia, increased infection risk and respiratory, renal, gastrointestinal, dermatological, and other epithelial tissue toxicities. These ADRs to the HIV treatments are likely to be a result of host aspartic protease inhibition due a lack of specificity for the HIV protease; plasmepsins are much more closely related to human CatD than to HIV proteinase. Plasmepsin IX/X inhibition presents an opportunity to specifically target Plasmodium as an effective antimalarial treatment, providing adequate selectivity can be obtained. Potential plasmepsin IX/X inhibitors should be assayed for inhibitory activity against the main human aspartic proteases and particularly CatD/E. An investigative rodent study conducted early in drug discovery would serve as an initial risk assessment of the potential hazards identified.
Collapse
Affiliation(s)
- Jane Barber
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| | | | | | - Delphine Baud
- Medicines for Malaria Venture, 20 Route de Pré-Bois, Geneva 1215, Switzerland
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Building R9, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Ruth Roberts
- ApconiX, Alderley Park, Alderley Edge, SK10 4TG, UK
| |
Collapse
|
11
|
Drug Repurposing Approaches to Combating Viral Infections. J Clin Med 2020; 9:jcm9113777. [PMID: 33238464 PMCID: PMC7700377 DOI: 10.3390/jcm9113777] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Development of novel antiviral molecules from the beginning costs an average of $350 million to $2 billion per drug, and the journey from the laboratory to the clinic takes about 10–15 years. Utilization of drug repurposing approaches has generated substantial interest in order to overcome these drawbacks. A drastic reduction in the failure rate, which otherwise is ~92%, is achieved with the drug repurposing approach. The recent exploration of the drug repurposing approach to combat the COVID-19 pandemic has further validated the fact that it is more beneficial to reinvestigate the in-practice drugs for a new application instead of designing novel drugs. The first successful example of drug repurposing is zidovudine (AZT), which was developed as an anti-cancer agent in the 1960s and was later approved by the US FDA as an anti-HIV therapeutic drug in the late 1980s after fast track clinical trials. Since that time, the drug repurposing approach has been successfully utilized to develop effective therapeutic strategies against a plethora of diseases. Hence, an extensive application of the drug repurposing approach will not only help to fight the current pandemics more efficiently but also predict and prepare for newly emerging viral infections. In this review, we discuss in detail the drug repurposing approach and its advancements related to viral infections such as Human Immunodeficiency Virus (HIV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
Collapse
|
12
|
Repurposing Drugs to Fight Hepatic Malaria Parasites. Molecules 2020; 25:molecules25153409. [PMID: 32731386 PMCID: PMC7435416 DOI: 10.3390/molecules25153409] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria remains one of the most prevalent infectious diseases worldwide, primarily affecting some of the most vulnerable populations around the globe. Despite achievements in the treatment of this devastating disease, there is still an urgent need for the discovery of new drugs that tackle infection by Plasmodium parasites. However, de novo drug development is a costly and time-consuming process. An alternative strategy is to evaluate the anti-plasmodial activity of compounds that are already approved for other purposes, an approach known as drug repurposing. Here, we will review efforts to assess the anti-plasmodial activity of existing drugs, with an emphasis on the obligatory and clinically silent liver stage of infection. We will also review the current knowledge on the classes of compounds that might be therapeutically relevant against Plasmodium in the context of other communicable diseases that are prevalent in regions where malaria is endemic. Repositioning existing compounds may constitute a faster solution to the current gap of prophylactic and therapeutic drugs that act on Plasmodium parasites, overall contributing to the global effort of malaria eradication.
Collapse
|
13
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|
14
|
Sweeney-Jones AM, Gagaring K, Antonova-Koch J, Zhou H, Mojib N, Soapi K, Skolnick J, McNamara CW, Kubanek J. Antimalarial Peptide and Polyketide Natural Products from the Fijian Marine Cyanobacterium Moorea producens. Mar Drugs 2020; 18:E167. [PMID: 32197482 PMCID: PMC7142784 DOI: 10.3390/md18030167] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
A new cyclic peptide, kakeromamide B (1), and previously described cytotoxic cyanobacterial natural products ulongamide A (2), lyngbyabellin A (3), 18E-lyngbyaloside C (4), and lyngbyaloside (5) were identified from an antimalarial extract of the Fijian marine cyanobacterium Moorea producens. Compounds 1 and 1 exhibited moderate activity against Plasmodium falciparum blood-stages with EC50 values of 0.89 and 0.99 µM, respectively, whereas 3 was more potent with an EC50 value of 0.15 nM, respectively. Compounds 1, 4, and 5 displayed moderate liver-stage antimalarial activity against P. berghei liver schizonts with EC50 values of 1.1, 0.71, and 0.45 µM, respectively. The threading-based computational method FINDSITEcomb2.0 predicted the binding of 1 and 2 to potentially druggable proteins of Plasmodiumfalciparum, prompting formulation of hypotheses about possible mechanisms of action. Kakeromamide B (1) was predicted to bind to several Plasmodium actin-like proteins and a sortilin protein suggesting possible interference with parasite invasion of host cells. When 1 was tested in a mammalian actin polymerization assay, it stimulated actin polymerization in a dose-dependent manner, suggesting that 1 does, in fact, interact with actin.
Collapse
Affiliation(s)
| | - Kerstin Gagaring
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jenya Antonova-Koch
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongyi Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nazia Mojib
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katy Soapi
- Institute of Applied Sciences, University of the South Pacific, Suva, Fiji
| | - Jeffrey Skolnick
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julia Kubanek
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Azevedo R, Mendes AM, Prudêncio M. The Impact of Antiretroviral Therapy on Malaria Parasite Transmission. Front Microbiol 2020; 10:3048. [PMID: 32038528 PMCID: PMC6993566 DOI: 10.3389/fmicb.2019.03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Coendemicity between the human immunodeficiency virus (HIV) and Plasmodium parasites, the causative agents of acquired immunodeficiency syndrome (AIDS) and malaria, respectively, occurs in several regions around the world. Although the impact of the interaction between these two organisms is not well understood, it is thought that the outcome of either disease may be negatively influenced by coinfection. Therefore, it is important to understand how current first-line antiretroviral therapies (ART) might impact Plasmodium infection in these regions. Here, we describe the effect of 18 antiretroviral compounds and of first-line ART on the blood and sporogonic stages of Plasmodium berghei in vitro and in vivo. We show that the combination zidovudine + lamivudine + lopinavir/ritonavir (LPV/r), employed as first-line HIV treatment in the field, has a strong inhibitory activity on the sporogonic stages of P. berghei and that several non-nucleoside reverse transcriptase inhibitors (NNRTI) have a moderate effect on this stage of the parasite’s life cycle. Our results expose the effect of current first-line ART on Plasmodium infection and identify potential alternative therapies for HIV/AIDS that might impact malaria transmission.
Collapse
Affiliation(s)
- Raquel Azevedo
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - António M Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Prudêncio
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Synthesis and Application of 1,2-Aminoalcohols with Neoisopulegol-Based Octahydrobenzofuran Core. Molecules 2019; 25:molecules25010021. [PMID: 31861609 PMCID: PMC6982906 DOI: 10.3390/molecules25010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
A library of 1,2-aminoalcohol derivatives with a neoisopulegol-based octahydrobenzofuran core was developed and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The allylic chlorination of (+)-neoisopulegol, derived from natural (–)-isopulegol followed by cyclization, gave the key methyleneoctahydrobenzofuran intermediate. The stereoselective epoxidation of the key intermediate and subsequent oxirane ring opening with primary amines afforded the required 1,2-aminoalcohols. The ring closure of the secondary amine analogues with formaldehyde provided spiro-oxazolidine ring systems. The dihydroxylation of the methylenetetrahydrofuran moiety with OsO4/NMO (4-methylmorpholine N-oxide) resulted in the formation of a neoisopulegol-based diol in a highly stereoselective reaction. The antimicrobial activity of both the aminoalcohol derivatives and the diol was also explored.
Collapse
|
17
|
Ortiz AM, Flynn JK, DiNapoli SR, Sortino O, Vujkovic-Cvijin I, Belkaid Y, Sereti I, Brenchley JM. Antiretroviral Therapy Administration in Healthy Rhesus Macaques Is Associated with Transient Shifts in Intestinal Bacterial Diversity and Modest Immunological Perturbations. J Virol 2019; 93:e00472-19. [PMID: 31270225 PMCID: PMC6714794 DOI: 10.1128/jvi.00472-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal (GI) immune system competency is dependent upon interactions with commensal microbiota, which can be influenced by wide-ranging pharmacologic interventions. In simian immunodeficiency virus (SIV)-infected Asian macaque models of human immunodeficiency virus (HIV) infection, we previously noted that initiation of antiretroviral therapy (ART) is associated with a specific imbalance (dysbiosis) of the composition of the intestinal bacteriome. To determine if ART itself might contribute to dysbiosis or immune dysfunction, we treated healthy rhesus macaques with protease, integrase, or reverse transcriptase inhibitors for 1 to 2 or for 5 to 6 weeks and evaluated intestinal immune function and the composition of the fecal bacterial microbiome. We observed that individual antiretrovirals (ARVs) modestly altered intestinal T-cell proinflammatory responses without disturbing total or activated T-cell frequencies. Moreover, we observed transient disruptions in bacterial diversity coupled with perturbations in the relative frequencies of bacterial communities. Shifts in specific bacterial frequencies were not persistent posttreatment, however, with individual taxa showing only isolated associations with T-cell proinflammatory responses. Our findings suggest that intestinal bacterial instability and modest immunological alterations can result from ART itself. These data could lead to therapeutic interventions which stabilize the microbiome in individuals prescribed ART.IMPORTANCE Dysbiosis of the fecal microbiome is a common feature observed in ARV-treated people living with HIV. The degree to which HIV infection itself causes this dysbiosis remains unclear. Here, we demonstrate that medications used to treat HIV infection can influence the composition of the GI tract immune responses and its microbiome in the nonhuman primate SIV model.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Jacob K Flynn
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sarah R DiNapoli
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Ornella Sortino
- HIV Pathogenesis Section, Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Ivan Vujkovic-Cvijin
- Metaorganism Immunity Section, Laboratory of Immune Systems Biology, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune Systems Biology, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Schwake C, Baldwin MR, Bachovchin W, Hegde S, Schiemer J, Okure C, Levin AE, Vannier E, Hanada T, Chishti AH. HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes. Biochem Biophys Res Commun 2019; 517:125-131. [PMID: 31311649 PMCID: PMC6707064 DOI: 10.1016/j.bbrc.2019.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
Abstract
Malaria and babesiosis are bloodborne protozoan infections for which the emergence of drug-resistant strains poses a threat. Our previous phage display cDNA screens established the essentiality of Plasmodium falciparum signal peptide peptidase (SPP) in asexual development at the blood stage of malaria infection. Given the structural similarities between SPP inhibitors and HIV protease inhibitors, we screened ten HIV protease inhibitors and selected Lopinavir and Atazanavir for their ability to inhibit PfSPP activity. Using a transcription-based assay, we observed that Lopinavir inhibits both parasite-and host-derived SPP activities whereas Atazanavir inhibited only parasite derived SPP activity. Consistent with their inhibitory effect on Plasmodium growth, both Lopinavir and Atazanavir strongly inhibited intraerythrocytic Babesia microti growth ex vivo. Moreover, Lopinavir prevented the steep rise in Babesia microti parasitemia typically observed in rag1-deficient mice. Our data provide first evidence that inhibition of parasite-derived SPPs by HIV protease inhibitors offers a promising therapeutic avenue for the treatment of severe babesiosis and infections caused by other Apicomplexa parasites.
Collapse
Affiliation(s)
- Christopher Schwake
- Graduate Program in Cellular, Molecular, and Developmental Biology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Michael R Baldwin
- Graduate Program in Cellular and, Molecular Physiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William Bachovchin
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Department of Developmental, Molecular and Chemical Biology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Shreeya Hegde
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - James Schiemer
- Graduate Program in Cellular and, Molecular Physiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carolyn Okure
- Graduate Program in Pharmacology and Experimental Therapeutics, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | | - Edouard Vannier
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, 02111, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular and Chemical Biology, USA
| | - Athar H Chishti
- Graduate Program in Cellular, Molecular, and Developmental Biology, USA; Graduate Program in Cellular and, Molecular Physiology, USA; Graduate Program in Pharmacology and Experimental Therapeutics, USA; Department of Developmental, Molecular and Chemical Biology, USA; Graduate Program in Molecular Microbiology, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
19
|
Wang JL, Elsheikha HM, Li TT, He JJ, Bai MJ, Liang QL, Zhu XQ, Cong W. Efficacy of antiretroviral compounds against Toxoplasma gondii in vitro. Int J Antimicrob Agents 2019; 54:814-819. [PMID: 31479744 DOI: 10.1016/j.ijantimicag.2019.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect nearly all warm-blooded animals, including humans. Although infection with this parasite is generally benign, severe illness may occur in infected individuals if their immunity becomes less competent, such as in human immunodeficiency virus (HIV)-infected patients. In this study, the inhibitory activity of 44 commonly used antiretroviral compounds was determined against T. gondii in vitro. Of the 44 tested antiretroviral compounds, 14 showed potency against T. gondii at IC50 concentrations (concentration inhibiting T. gondii tachyzoite growth by 50%) ranging from 1.18 ± 2.21 µM (nelfinavir) to 18.89 ± 1.87 µM (trovirdine). Of the 14 potent antiretroviral compounds, 7 are HIV-1 protease inhibitors. This study also investigated whether co-administration of these 14 antiretroviral compounds interferes with the anti-T. gondii activity of existing anti-T. gondii drugs, namely sulfadiazine and pyrimethamine. The results showed no significant interaction between any of the 14 tested antiretroviral compounds and pyrimethamine or sulfadiazine. These results warrant investigation of whether administration of the lead antiretroviral drugs with highly potent anti-T. gondii activity to HIV patients may help to limit the occurrence of toxoplasmic encephalitis.
Collapse
Affiliation(s)
- Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ting-Ting Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China
| | - Meng-Jie Bai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China
| | - Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, P.R. China; College of Marine Science, Shandong University at Weihai, Weihai, Shandong Province 264209, P.R. China.
| |
Collapse
|
20
|
Mbah HA, Jegede FE, Abdulrahman SA, Oyeyi TI. Evaluation of standard diagnostic rapid test kits for malaria diagnosis among HIV patients in Kano, Nigeria. Afr J Lab Med 2018; 7:698. [PMID: 30568892 PMCID: PMC6295795 DOI: 10.4102/ajlm.v7i1.698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/13/2018] [Indexed: 12/03/2022] Open
Abstract
Background Malaria diagnosis among HIV-positive patients is uncommon in Nigeria despite the high burden of both diseases. Objectives We evaluated the performance of a malaria rapid diagnostic test (MRDT) against blood smear microscopy (BSM) among HIV-positive patients in relation to anti-retroviral treatment (ART) status, CD4+ count, fever, cotrimoxazole prophylaxis and malaria density count. Method A cross-sectional study involving 1521 consenting randomly selected HIV-positive adults attending two ART clinics in Kano, Nigeria, between June 2015 and May 2016. Venous blood samples were collected for testing with MRDT, BSM, and CD4+ T cells count by cytometry. Biodata and other clinical details were extracted from patient folders into an Excel file, cleaned, validated, and exported for analysis into SPSS version 23.0. Sensitivity, specificity, predictive values of MRDT were compared with BSM with a 95% confidence interval. Results Malaria parasites were detected in 25.4% of enrollees by BSM and 16.4% by MRDT. Overall sensitivity of MRDT was 58% and specificity was 97%. Cotrimoxazole prophylaxis and fever status did not affect MRDT sensitivity and specificity. Unexpectedly, the sensitivity was highest at parasite density count of less than 500 cells/µL. At CD4+ T cells count over 500 cells/µL the sensitivity was higher (62.4%) compared to 56% at less than 500 cells/µL. In the non-ART group sensitivity was higher (65%) compared to those on ART (56%) but the specificity was similar. All differences were significant for all variables (p < 0.05). Conclusion Although the MRDT specificity was good, the sensitivity was poor, requiring further evaluation for use in malaria diagnosis among HIV-malaria co-infected persons in these settings.
Collapse
Affiliation(s)
- Henry A Mbah
- LabTrail Global LLC, Smyrna, Delaware, United States
| | - Feyisayo E Jegede
- Biological Science Department, Bayero University Kano, Gwarzo Road Kano, Nigeria.,Family Health International-360, Garki,Federal Capital Territory, Abuja, Nigeria
| | | | - Tinuade I Oyeyi
- Biological Science Department, Bayero University Kano, Gwarzo Road Kano, Nigeria
| |
Collapse
|
21
|
Meissner KA, Kronenberger T, Maltarollo VG, Trossini GHG, Wrenger C. Targeting the Plasmodium falciparum plasmepsin V by ligand-based virtual screening. Chem Biol Drug Des 2018; 93:300-312. [PMID: 30320974 DOI: 10.1111/cbdd.13416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 12/16/2022]
Abstract
Malaria is a devastating disease depending only on chemotherapy as treatment. However, medication is losing efficacy, and therefore, there is an urgent need for the discovery of novel pharmaceutics. Recently, plasmepsin V, an aspartic protease anchored in the endoplasmaic reticulum, was demonstrated as responsible for the trafficking of parasite-derived proteins to the erythrocytic surface and further validated as a drug target. In this sense, ligand-based virtual screening has been applied to design inhibitors that target plasmepsin V of P. falciparum (PMV). After screening 5.5 million compounds, four novel plasmepsin inhibitors have been identified which were subsequently analyzed for the potency at the cellular level. Since PMV is membrane-anchored, the verification in vivo by using transgenic PMV overexpressing P. falciparum cells has been performed in order to evaluate drug efficacy. Two lead compounds, revealing IC50 values were 44.2 and 19.1 μm, have been identified targeting plasmepsin V in vivo and do not significantly affect the cell viability of human cells up to 300 μm. We herein report the use of the consensus of individual virtual screening as a new technique to design new ligands, and we propose two new lead compounds as novel protease inhibitors to target malaria.
Collapse
Affiliation(s)
- Kamila Anna Meissner
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Thales Kronenberger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany
| | - Vinícius Gonçalves Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Onchieku NM, Mogire R, Ndung'u L, Mwitari P, Kimani F, Matoke-Muhia D, Kiboi D, Magoma G. Deciphering the targets of retroviral protease inhibitors in Plasmodium berghei. PLoS One 2018; 13:e0201556. [PMID: 30067811 PMCID: PMC6070271 DOI: 10.1371/journal.pone.0201556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/17/2018] [Indexed: 11/19/2022] Open
Abstract
Retroviral protease inhibitors (RPIs) such as lopinavir (LP) and saquinavir (SQ) are active against Plasmodium parasites. However, the exact molecular target(s) for these RPIs in the Plasmodium parasites remains poorly understood. We hypothesised that LP and SQ suppress parasite growth through inhibition of aspartyl proteases. Using reverse genetics approach, we embarked on separately generating knockout (KO) parasite lines lacking Plasmepsin 4 (PM4), PM7, PM8, or DNA damage-inducible protein 1 (Ddi1) in the rodent malaria parasite Plasmodium berghei ANKA. We then tested the suppressive profiles of the LP/Ritonavir (LP/RT) and SQ/RT as well as antimalarials; Amodiaquine (AQ) and Piperaquine (PQ) against the KO parasites in the standard 4-day suppressive test. The Ddi1 gene proved refractory to deletion suggesting that the gene is essential for the growth of the asexual blood stage parasites. Our results revealed that deletion of PM4 significantly reduces normal parasite growth rate phenotype (P = 0.003). Unlike PM4_KO parasites which were less susceptible to LP and SQ (P = 0.036, P = 0.030), the suppressive profiles for PM7_KO and PM8_KO parasites were comparable to those for the WT parasites. This finding suggests a potential role of PM4 in the LP and SQ action. On further analysis, modelling and molecular docking studies revealed that both LP and SQ displayed high binding affinities (-6.3 kcal/mol to -10.3 kcal/mol) towards the Plasmodium aspartyl proteases. We concluded that PM4 plays a vital role in assuring asexual stage parasite fitness and might be mediating LP and SQ action. The essential nature of the Ddi1 gene warrants further studies to evaluate its role in the parasite asexual blood stage growth as well as a possible target for the RPIs.
Collapse
Affiliation(s)
- Noah Machuki Onchieku
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Reagan Mogire
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, Kenya
| | - Loise Ndung'u
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
| | - Peter Mwitari
- Centre for Traditional Medicine and Drug Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Francis Kimani
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Daniel Kiboi
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust, Collaborative Research Program, Kilifi, Kenya
- West Africa Centre for Cell Biology and Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gabriel Magoma
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| |
Collapse
|
23
|
Mukherjee B, Tessaro F, Vahokoski J, Kursula I, Marq JB, Scapozza L, Soldati-Favre D. Modeling and resistant alleles explain the selectivity of antimalarial compound 49c towards apicomplexan aspartyl proteases. EMBO J 2018. [PMID: 29519896 DOI: 10.15252/embj.201798047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Toxoplasma gondii aspartyl protease 3 (TgASP3) phylogenetically clusters with Plasmodium falciparum Plasmepsins IX and X (PfPMIX, PfPMX). These proteases are essential for parasite survival, acting as key maturases for secreted proteins implicated in invasion and egress. A potent antimalarial peptidomimetic inhibitor (49c) originally developed against Plasmepsin II selectively targets TgASP3, PfPMIX, and PfPMX To unravel the molecular basis for the selectivity of 49c, we constructed homology models of PfPMIX, PfPMX, and TgASP3 that were first validated by identifying the determinants of microneme and rhoptry substrate recognition. The flap and flap-like structures of several reported Plasmepsins are highly flexible and critically modulate the access to the binding cavity. Molecular docking of 49c to TgASP3, PfPMIX, and PfPMX models predicted that the conserved phenylalanine residues in the flap, F344, F291, and F305, respectively, account for the sensitivity toward 49c. Concordantly, phenylalanine mutations in the flap of the three proteases increase twofold to 15-fold the IC50 values of 49c. Compellingly the selection of mutagenized T. gondii resistant strains to 49c reproducibly converted F344 to a cysteine residue.
Collapse
Affiliation(s)
- Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| | - Francesca Tessaro
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Lausanne University of Geneva CMU, Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Lausanne University of Geneva CMU, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva CMU, Geneva 4, Switzerland
| |
Collapse
|
24
|
Goulielmaki E, Kaforou S, Venugopal K, Loukeris TG, Siden-Kiamos I, Koussis K. Distinct effects of HIV protease inhibitors and ERAD inhibitors on zygote to ookinete transition of the malaria parasite. Mol Biochem Parasitol 2018; 220:10-14. [DOI: 10.1016/j.molbiopara.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 02/02/2023]
|
25
|
Evans EE, Siedner MJ. Tropical Parasitic Infections in Individuals Infected with HIV. CURRENT TROPICAL MEDICINE REPORTS 2017; 4:268-280. [PMID: 33842194 PMCID: PMC8034600 DOI: 10.1007/s40475-017-0130-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Neglected tropical diseases share both geographic and socio-behavioral epidemiological risk factors with HIV infection. In this literature review, we describe interactions between parasitic diseases and HIV infection, with a focus on the impact of parasitic infections on HIV infection risk and disease progression, and the impact of HIV infection on clinical characteristics of tropical parasitic infections. We limit our review to tropical parasitic infections of the greatest public health burden, and exclude discussion of classic HIV-associated opportunistic infections that have been well reviewed elsewhere. RECENT FINDINGS Tropical parasitic infections, HIV-infection, and treatment with antiretroviral therapy alter host immunity, which can impact susceptibility, transmissibility, diagnosis, and severity of both HIV and parasitic infections. These relationships have a broad range of consequences, from putatively increasing susceptibility to HIV acquisition, as in the case of schistosomiasis, to decreasing risk of protozoal infections through pharmacokinetic interactions between antiretroviral therapy and antiparasitic agents, as in the case of malaria. However, despite this intimate interplay in pathophysiology and a broad overlap in epidemiology, there is a general paucity of data on the interactions between HIV and tropical parasitic infections, particularly in the era of widespread antiretroviral therapy availability. SUMMARY Additional data are needed to motivate clinical recommendations for detection and management of parasitic infections in HIV-infected individuals, and to consider the implications of and potential opportunity granted by HIV treatment programs on parasitic disease control.
Collapse
Affiliation(s)
| | - Mark J Siedner
- Massachusetts General Hospital
- Harvard Medical School
- Mbarara University of Science and Technology
| |
Collapse
|
26
|
Mogire RM, Akala HM, Macharia RW, Juma DW, Cheruiyot AC, Andagalu B, Brown ML, El-Shemy HA, Nyanjom SG. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One 2017; 12:e0186364. [PMID: 29088219 PMCID: PMC5663372 DOI: 10.1371/journal.pone.0186364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 10/01/2017] [Indexed: 11/23/2022] Open
Abstract
Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens.
Collapse
Affiliation(s)
- Reagan M. Mogire
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Science, Technology and Innovation, Nairobi, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Rosaline W. Macharia
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Dennis W. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Mathew L. Brown
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, Kisumu, Kenya
| | - Hany A. El-Shemy
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Steven G. Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
27
|
Abou-El-Naga IF, El Kerdany ED, Mady RF, Shalaby TI, Zaytoun EM. The effect of lopinavir/ritonavir and lopinavir/ritonavir loaded PLGA nanoparticles on experimental toxoplasmosis. Parasitol Int 2017; 66:735-747. [PMID: 28838776 DOI: 10.1016/j.parint.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
A marked reduction has been achieved in the incidence and clinical course of toxoplasmic encephalitis after the introduction of protease inhibitors within the treatment regimen of HIV (HIV-PIs). This work was undertaken to study for the first time, the efficacy of HIV-PIs, lopinavir/ritonavir (L/R), as a therapeutic agent in acute experimental toxoplasmosis. Lopinavir/ritonavir (L/R) were used in the same ratio present in aluvia, a known HIV-PIs drug used in the developing countries in the treatment regimens of AID's patient. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as a delivery system to L/R therapy. L/R alone or after its encapsulation on PLGA were given to Swiss strain albino mice that were infected with RH virulent toxoplasma strain. Both forms caused parasitological improvement in both mortality rate and parasite count. The higher efficacy was achieved by using L/R PLGA together with minimizing the effective dose. There was significant reduction in the parasite count in the peritoneal fluid and the liver. Parasite viability and infectivity were also significantly reduced. The anti-toxoplasma effect of the drug was attributed to the morphological distortion of the tachyzoites as evident by the ultrastructure examination and suppressed the egress of tachyzoites. L/R also induced changes that suggest apoptosis and autophagy of tachyzoites. The parasitophorous vacuole membrane was disrupted and vesiculated. The nanotubular networks inside the parasitophorous vacuole were disrupted. Therefore, the present work opens a new possible way for the approved HIV-PIs as an alternative treatment against acute toxoplasmosis. Furthermore, it increases the list of the opportunistic parasites that can be treated by this drug. The successful in vivo effect of HIV-PIs against Toxoplasma gondii suggests that this parasite may be a target in HIV treated patients, thus decrease the possibility of toxoplasmic encephalitis development.
Collapse
Affiliation(s)
| | | | - Rasha Fadly Mady
- Medical Parasitology Department, Alexandria Faculty of Medicine, Egypt.
| | | | | |
Collapse
|
28
|
Machado M, Sanches-Vaz M, Cruz JP, Mendes AM, Prudêncio M. Inhibition of Plasmodium Hepatic Infection by Antiretroviral Compounds. Front Cell Infect Microbiol 2017; 7:329. [PMID: 28770176 PMCID: PMC5515864 DOI: 10.3389/fcimb.2017.00329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Recent WHO guidelines on control of human immunodeficiency virus (HIV) call for the widespread use of antiretroviral (AR) therapy (ART) for people living with HIV. Given the considerable overlap between infections by HIV and Plasmodium, the causative agent of malaria, it is important to understand the impact of AR compounds and ART regimens on infections by malaria parasites. We undertook a systematic approach to identify AR drugs and ART drug combinations with inhibitory activity against the obligatory hepatic stage of Plasmodium infection. Our in vitro screen of a wide array of AR drugs identified the non-nucleoside reverse transcriptase inhibitors efavirenz and etravirine (ETV), and the protease inhibitor nelfinavir, as compounds that significantly impair the development of the rodent malaria parasite P. berghei in an hepatoma cell line. Furthermore, we show that WHO-recommended ART drug combinations currently employed in the field strongly inhibit Plasmodium liver infection in mice, an effect that may be significantly enhanced by the inclusion of ETV in the treatment. Our observations are the first report of ETV as an anti-Plasmodial drug, paving the way for further evaluation and potential use of ETV-containing ARTs in regions of geographical overlap between HIV and Plasmodium infections.
Collapse
Affiliation(s)
- Marta Machado
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisboa, Portugal
| | - Margarida Sanches-Vaz
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisboa, Portugal
| | - João P Cruz
- iMed.UL-Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia da Universidade de LisboaLisboa, Portugal
| | - António M Mendes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisboa, Portugal
| | - Miguel Prudêncio
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
29
|
Purification and antiparasitic activity of a few legume serine proteinase inhibitors: Effect on erythrocyte invasion, schizont rupture and proteolytic processing of the Plasmodium falciparum AMA1 protein. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Altered Plasmodium falciparum Sensitivity to the Antiretroviral Protease Inhibitor Lopinavir Associated with Polymorphisms in pfmdr1. Antimicrob Agents Chemother 2016; 61:AAC.01949-16. [PMID: 27821443 DOI: 10.1128/aac.01949-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023] Open
Abstract
The HIV protease inhibitor lopinavir inhibits Plasmodium falciparum aspartic proteases (plasmepsins) and parasite development, and children receiving lopinavir-ritonavir experienced fewer episodes of malaria than those receiving other antiretroviral regimens. Resistance to lopinavir was selected in vitro over ∼9 months, with ∼4-fold decreased sensitivity. Whole-genome sequencing of resistant parasites showed a mutation and increased copy number in pfmdr1 and a mutation in a protein of unknown function, but no polymorphisms in plasmepsin genes.
Collapse
|
31
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Siwo GH, Smith RS, Tan A, Button-Simons KA, Checkley LA, Ferdig MT. An integrative analysis of small molecule transcriptional responses in the human malaria parasite Plasmodium falciparum. BMC Genomics 2015; 16:1030. [PMID: 26637195 PMCID: PMC4670519 DOI: 10.1186/s12864-015-2165-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/29/2015] [Indexed: 12/05/2022] Open
Abstract
Background Transcriptional responses to small molecules can provide insights into drug mode of action (MOA). The capacity of the human malaria parasite, Plasmodium falciparum, to respond specifically to transcriptional perturbations has been unclear based on past approaches. Here, we present the most extensive profiling to date of the parasite’s transcriptional responsiveness to thirty-one chemically and functionally diverse small molecules. Methods We exposed two laboratory strains of the human malaria parasite P. falciparum to brief treatments of thirty-one chemically and functionally diverse small molecules associated with biological effects across multiple pathways based on various levels of evidence. We investigated the impact of chemical composition and MOA on gene expression similarities that arise between perturbations by various compounds. To determine the target biological pathways for each small molecule, we developed a novel framework for encoding small molecule effects on a spectra of biological processes or GO functions that are enriched in the differentially expressed genes of a given small molecule perturbation. Results We find that small molecules associated with similar transcriptional responses contain similar chemical features, and/ or have a shared MOA. The approach also revealed complex relationships between drugs and biological pathways that are missed by most exisiting approaches. For example, the approach was able to partition small molecule responses into drug-specific effects versus non-specific effects. Conclusions Our work provides a new framework for linking transcriptional responses to drug MOA in P. falciparum and can be generalized for the same purpose in other organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2165-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geoffrey H Siwo
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: IBM TJ Watson Research Center, Yorktown Heights, NY, 10598, USA.,Current Address: IBM Research-Africa, South Africa Lab, Sandton, Johannesburg, 2196, South Africa
| | - Roger S Smith
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Current Address: Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Asako Tan
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Epicenter, Madison, WI, 53719, USA
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
33
|
Liu P, Robbins AH, Marzahn MR, McClung SH, Yowell CA, Stevens SM, Dame JB, Dunn BM. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei. PLoS One 2015; 10:e0141758. [PMID: 26510189 PMCID: PMC4624963 DOI: 10.1371/journal.pone.0141758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 01/17/2023] Open
Abstract
The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells. In this study, we cloned PbPM4, the FV plasmepsin gene of P. berghei that encoded an N-terminally truncated pro-segment and the mature enzyme from genomic DNA. We over-expressed this PbPM4 zymogen as inclusion bodies (IB) in Escherichia coli, and purified the protein following in vitro IB refolding. Auto-maturation of the PbPM4 zymogen to mature enzyme was carried out at pH 4.5, 5.0, and 5.5. Interestingly, we found that the PbPM4 zymogen exhibited catalytic activity regardless of the presence of the pro-segment. We determined the optimal catalytic conditions for PbPM4 and studied enzyme kinetics on substrates and inhibitors of aspartic proteinases. Using combinatorial chemistry-based peptide libraries, we studied the active site preferences of PbPM4 at subsites S1, S2, S3, S1’, S2’ and S3’. Based on these results, we designed and synthesized a selective peptidomimetic compound and tested its inhibition of PbPM4, seven FV plasmepsins from human malaria parasites, and human cathepsin D (hcatD). We showed that this compound exhibited a >10-fold selectivity to PbPM4 and human malaria parasite plasmepsin 4 orthologs versus hcatD. Data from this study furthesr our understanding of enzymatic characteristics of the plasmepsin family and provides leads for anti-malarial drug design.
Collapse
Affiliation(s)
- Peng Liu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| | - Arthur H. Robbins
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Melissa R. Marzahn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Scott H. McClung
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Charles A. Yowell
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Stanley M. Stevens
- Protein Core, Interdisciplinary Center for Biotechnology Research, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - John B. Dame
- Department of Infectious Diseases and Pathology, University of Florida, College of Veterinary Medicine, Gainesville, Florida, United States of America
| | - Ben M. Dunn
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail: (PL); (BMD)
| |
Collapse
|
34
|
Pharmacokinetic interactions between artesunate-mefloquine and ritonavir-boosted lopinavir in healthy Thai adults. Malar J 2015; 14:400. [PMID: 26452725 PMCID: PMC4600319 DOI: 10.1186/s12936-015-0916-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022] Open
Abstract
Background Concomitant use of anti-malarial and antiretroviral drugs is increasingly frequent in malaria and HIV endemic regions. The aim of the study was to investigate the pharmacokinetic interaction between the anti-malarial drugs, artesunate-mefloquine and the antiretroviral drug, lopinavir boosted with ritonavir (LPV/r). Methods The study was an open-label, three-way, sequential, cross-over, pharmacokinetic study in healthy Thai adults. Subjects received the following treatments: Period 1: standard 3-day artesunate-mefloquine combination; Period 2 (2 months wash-out): oral LPV/r 400 mg/100 mg twice a day for 14 days; and, Period 3: artesunate-mefloquine and LPV/r twice a day for 3 days. Sixteen subjects (eight females) were enrolled and pharmacokinetic parameters were determined by non-compartmental analysis. Results In the presence of LPV/r, artesunate Cmax and systemic exposure were significantly increased by 45–80 %, while the metabolic ratio of dihydroartemisinin to artesunate was significantly reduced by 72 %. In addition, mefloquine Cmax and systemic exposure were significantly reduced by 19–37 %. In the presence of artesunate-mefloquine, lopinavir Cmax was significantly reduced by 22 % but without significant change in systemic drug exposure. The 90 % CI of the geometric mean ratio (GMR) of AUC0−∞ and Cmax were outside the acceptable bioequivalent range for each drug. Drug treatments were generally well tolerated with no serious adverse events. Vertigo, nausea and vomiting were the most common adverse events reported. Conclusion The reduction in systemic exposure of all investigated drugs raises concerns of an increased risk of treatment failure rate in co-infected patients and should be further investigated.
Collapse
|
35
|
Orlov M, Smeaton LM, Kumwenda J, Hosseinipour MC, Campbell TB, Schooley RT. Presence of Plasmodium falciparum DNA in Plasma Does Not Predict Clinical Malaria in an HIV-1 Infected Population. PLoS One 2015; 10:e0129519. [PMID: 26053030 PMCID: PMC4460081 DOI: 10.1371/journal.pone.0129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND HIV-1 and Plasmodium falciparum malaria cause substantial morbidity in Sub-Saharan Africa, especially as co-infecting pathogens. We examined the relationship between presence of P. falciparum DNA in plasma samples and clinical malaria as well as the impact of atazanavir, an HIV-1 protease inhibitor (PI), on P. falciparum PCR positivity. METHODS ACTG study A5175 compared two NNRTI-based regimens and one PI-based anti-retroviral (ARV) regimen in antiretroviral therapy naïve participants. We performed nested PCR on plasma samples for the P. falciparum 18s rRNA gene to detect the presence of malaria DNA in 215 of the 221 participants enrolled in Blantyre and Lilongwe, Malawi. We also studied the closest sample preceding the first malaria diagnosis from 102 persons with clinical malaria and randomly selected follow up samples from 88 persons without clinical malaria. RESULTS PCR positivity was observed in 18 (8%) baseline samples and was not significantly associated with age, sex, screening CD4+ T-cell count, baseline HIV-1 RNA level or co-trimoxazole use within the first 8 weeks. Neither baseline PCR positivity (p = 0.45) nor PCR positivity after initiation of antiretroviral therapy (p = 1.0) were significantly associated with subsequent clinical malaria. Randomization to the PI versus NNRTI ARV regimens was not significantly associated with either PCR positivity (p = 0.5) or clinical malaria (p = 0.609). Clinical malaria was associated with a history of tuberculosis (p = 0.006) and a lower BMI (p = 0.004). CONCLUSION P. falciparum DNA was detected in 8% of participants at baseline, but was not significantly associated with subsequent development of clinical malaria. HIV PI therapy did not decrease the prevalence of PCR positivity or incidence of clinical disease.
Collapse
Affiliation(s)
- Marika Orlov
- School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Laura M Smeaton
- Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | | | - Mina C Hosseinipour
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America; University of North Carolina Project, Lilongwe, Malawi
| | - Thomas B Campbell
- School of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Robert T Schooley
- School of Medicine, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
36
|
Qin L, Qin L, Xu W, Zhao S, Chen X. Ritonavir-boosted indinavir but not lopinavir inhibits erythrocytic stage Plasmodium knowlesi malaria in rhesus macaques. Bioorg Med Chem Lett 2015; 25:1538-40. [PMID: 25704890 DOI: 10.1016/j.bmcl.2015.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/02/2015] [Accepted: 02/07/2015] [Indexed: 11/28/2022]
Abstract
The inhibitive activities of the human immunodeficiency virus protease inhibitors ritonavir (RTV) boosted indinavir (IDV) and RTV boosted lopinavir (LPV) for erythrocytic stage malaria were evaluated in rhesus macaques. The IDV/RTV regimen effectively inhibits the replication of Plasmodium knowlesi with clinically relevant doses, whereas the LPV/RTV regimen did not show activity against plasmodium infection.
Collapse
Affiliation(s)
- Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Limei Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Wanwan Xu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China.
| |
Collapse
|
37
|
New paradigm of an old target: an update on structural biology and current progress in drug design towards plasmepsin II. Eur J Med Chem 2015; 95:324-48. [PMID: 25827401 DOI: 10.1016/j.ejmech.2015.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/09/2015] [Accepted: 03/20/2015] [Indexed: 11/20/2022]
Abstract
Malaria is one of the major parasitic disease whose rapid spreading and mortality rate affects all parts of the world especially several parts of Asia as well as Africa. The emergence of multi-drug resistant strains hamper the progress of current antimalarial therapy and displayed an urgent need for new antimalarials by targeting novel drug targets. Until now, several promising targets were explored in order to develop a promising Achilles hill to counter malaria. Plasmepsin, an aspartic protease, which is involved in the hemoglobin breakdown into smaller peptides emerged as a crucial target to develop new chemical entities to counter malaria. Due to early crystallographic evidence, plasmepsin II (Plm II) emerged as well explored target to develop novel antimalarials as well as a starting point to develop inhibitors targeting some other subtypes of plasmepsins i.e. Plm I, II, IV and V. With the advancements in drug discovery, several computational and synthetic approaches were employed in order to develop novel inhibitors targeting Plm II. Strategies such as fragment based drug design, molecular dynamics simulation, double drug approach etc. were employed in order to develop new chemical entities targeting Plm II. But majority of Plm II inhibitors suffered from poor selectivity over cathepsin D as well as other subtypes of plasmepsins. This review highlights an updated account of drug discovery efforts targeting plasmepsin II from a medicinal chemistry perspective.
Collapse
|
38
|
Braissant O, Keiser J, Meister I, Bachmann A, Wirz D, Göpfert B, Bonkat G, Wadsö I. Isothermal microcalorimetry accurately detects bacteria, tumorous microtissues, and parasitic worms in a label-free well-plate assay. Biotechnol J 2015; 10:460-8. [PMID: 25511812 PMCID: PMC4406140 DOI: 10.1002/biot.201400494] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 12/04/2022]
Abstract
Isothermal microcalorimetry is a label-free assay that allows monitoring of enzymatic and metabolic activities. The technique has strengths, but most instruments have a low throughput, which has limited their use for bioassays. Here, an isothermal microcalorimeter, equipped with a vessel holder similar to a 48-well plate, was used. The increased throughput of this microcalorimeter makes it valuable for biomedical and pharmaceutical applications. Our results show that the sensitivity of the instrument allows the detection of 3 × 10(4) bacteria per vial. Growth of P. mirabilis in Luria Broth medium was detected between 2 and 9 h with decreasing inoculum. The culture released 2.1J with a maximum thermal power of 76 μW. The growth rate calculated using calorimetric and spectrophotometric data were 0.60 and 0.57 h(-1) , respectively. Additional insight on protease activities of P. mirabilis matching the last peak in heat production could be gathered as well. Growth of tumor microtissues releasing a maximum thermal power of 2.1 μW was also monitored and corresponds to a diameter increase of the microtissues from ca. 100 to 428 μm. This opens new research avenues in cancer research, diagnostics, and development of new antitumor drugs. For parasitic worms, the technique allows assessment of parasite survival using motor and metabolic activities even with a single worm.
Collapse
Affiliation(s)
- Olivier Braissant
- Center for Biomechanics and Biocalorimetry, c/o Biozentrum-Pharmazentrum, Basel, Switzerland; Department of Urology, University Hospital of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hobbs CV, Dixit S, Penzak SR, Sahu T, Orr-Gonzalez S, Lambert L, Zeleski K, Chen J, Neal J, Borkowsky W, Wu Y, Duffy PE. Neither the HIV protease inhibitor lopinavir-ritonavir nor the antimicrobial trimethoprim-sulfamethoxazole prevent malaria relapse in plasmodium cynomolgi-infected non-human primates. PLoS One 2014; 9:e115506. [PMID: 25541998 PMCID: PMC4277318 DOI: 10.1371/journal.pone.0115506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022] Open
Abstract
Plasmodium vivax malaria causes significant morbidity and mortality worldwide, and only one drug is in clinical use that can kill the hypnozoites that cause P. vivax relapses. HIV and P. vivax malaria geographically overlap in many areas of the world, including South America and Asia. Despite the increasing body of knowledge regarding HIV protease inhibitors (HIV PIs) on P. falciparum malaria, there are no data regarding the effects of these treatments on P. vivax's hypnozoite form and clinical relapses of malaria. We have previously shown that the HIV protease inhibitor lopinavir-ritonavir (LPV-RTV) and the antibiotic trimethoprim sulfamethoxazole (TMP-SMX) inhibit Plasmodium actively dividing liver stages in rodent malarias and in vitro in P. falciparum, but effect against Plasmodium dormant hypnozoite forms remains untested. Separately, although other antifolates have been tested against hypnozoites, the antibiotic trimethoprim sulfamethoxazole, commonly used in HIV infection and exposure management, has not been evaluated for hypnozoite-killing activity. Since Plasmodium cynomolgi is an established animal model for the study of liver stages of malaria as a surrogate for P. vivax infection, we investigated the antimalarial activity of these drugs on Plasmodium cynomolgi relapsing malaria in rhesus macaques. Herein, we demonstrate that neither TMP-SMX nor LPV-RTV kills hypnozoite parasite liver stage forms at the doses tested. Because HIV and malaria geographically overlap, and more patients are being managed for HIV infection and exposure, understanding HIV drug impact on malaria infection is important.
Collapse
Affiliation(s)
- Charlotte V. Hobbs
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| | - Saurabh Dixit
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Scott R. Penzak
- Department of Pharmacotherapy, University of North Texas System College of Pharmacy, Fort Worth, Texas, 76107, United States of America
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Sachy Orr-Gonzalez
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lynn Lambert
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katie Zeleski
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jingyang Chen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - William Borkowsky
- Department of Pediatrics, Division of Infectious Disease and Immunology, New York University School of Medicine, New York, New York, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
40
|
Lerdsirisuk P, Maicheen C, Ungwitayatorn J. Antimalarial activity of HIV-1 protease inhibitor in chromone series. Bioorg Chem 2014; 57:142-147. [PMID: 25462990 DOI: 10.1016/j.bioorg.2014.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent.
Collapse
Affiliation(s)
| | - Chirattikan Maicheen
- Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| | - Jiraporn Ungwitayatorn
- Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand.
| |
Collapse
|
41
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
42
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2014; 66:815-68. [PMID: 24958636 PMCID: PMC4081729 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
43
|
Natureeba P, Ades V, Luwedde F, Mwesigwa J, Plenty A, Okong P, Charlebois ED, Clark TD, Nzarubara B, Havlir DV, Achan J, Kamya MR, Cohan D, Dorsey G. Lopinavir/ritonavir-based antiretroviral treatment (ART) versus efavirenz-based ART for the prevention of malaria among HIV-infected pregnant women. J Infect Dis 2014; 210:1938-45. [PMID: 24958908 DOI: 10.1093/infdis/jiu346] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected pregnant women are at increased risk of malaria and its complications. In vitro and in vivo data suggest that the HIV protease inhibitors lopinavir/ritonavir may have potent antimalarial activity. We sought to evaluate whether lopinavir/ritonavir-based antiretroviral therapy (ART) reduced the risk of placental malaria. METHODS HIV-infected, ART-naive pregnant women were enrolled between gestational weeks 12 and 28 and randomly assigned to receive lopinavir/ritonavir-based or efavirenz-based ART. Women received daily trimethoprim-sulfamethoxazole prophylaxis and insecticide-treated bed nets at enrollment and were followed up to 1 year after delivery. The primary outcome was placental malaria, defined by the detection of malaria parasites, using microscopy or polymerase chain reaction (PCR) analysis of placental blood specimens. Secondary outcomes included placental malaria, defined by histopathologic results; adverse birth outcomes; incidence of malaria; and prevalence of asymptomatic parasitemia. Analyses were done using an intention-to-treat approach. RESULTS Of 389 subjects randomly assigned to a treatment group, 377 were followed through to delivery. There was no significant difference in the risk of placental malaria, as defined by thick smear or PCR findings, between the lopinavir/ritonavir-based and efavirenz-based ART arms (7.4% vs 9.8%; P = .45). Similarly, there were no differences in secondary outcomes between the 2 treatment arms. CONCLUSIONS Lopinavir/ritonavir-based ART did not reduce the risk of placental or maternal malaria or improve birth outcomes, compared with efavirenz-based ART. CLINICAL TRIALS REGISTRATION NCT00993031.
Collapse
Affiliation(s)
| | - Veronica Ades
- Department of Obstetrics and Gynecology, New York University, New York City
| | | | | | | | | | | | | | | | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Cohan
- Department of Obstetrics and Gynecology, University of California-San Francisco
| | | |
Collapse
|
44
|
Transition-state inhibitors of purine salvage and other prospective enzyme targets in malaria. Future Med Chem 2014; 5:1341-60. [PMID: 23859211 DOI: 10.4155/fmc.13.51] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Malaria is a leading cause of human death within the tropics. The gradual generation of drug resistance imposes an urgent need for the development of new and selective antimalarial agents. Kinetic isotope effects coupled to computational chemistry have provided the relevant details on geometry and charge of enzymatic transition states to facilitate the design of transition-state analogs. These features have been reproduced into chemically stable mimics through synthetic chemistry, generating inhibitors with dissociation constants in the pico- to femto-molar range. Transition-state analogs are expected to contribute to the control of malaria.
Collapse
|
45
|
Falade CO, Adesina-Adewole B, Dada-Adegbola HO, Ajayi IO, Akinyemi JO, Ademowo OG, Adewole IF, Kanki P. Evaluation of Paracheck-Pf(TM) rapid malaria diagnostic test for the diagnosis of malaria among HIV-positive patients in Ibadan, south-western Nigeria. Pathog Glob Health 2013; 107:69-77. [PMID: 23683333 DOI: 10.1179/2047773213y.0000000077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Febrile illnesses occur frequently among HIV positive patients and these are often treated presumptively as malaria in endemic areas. Parasite-based diagnosis of malaria will eliminate unnecessary treatment, reduce drug-drug interactions and the chances for the emergence of drug resistant Plasmodium. We evaluated finger prick blood samples from 387 people living with HIV (PLWHIV) and suspected of having malaria by expert microscopy and Paracheck-Pf(TM) - a histidine-rich protein-II based malaria rapid diagnostic test. The study was conducted at the PEPFAR supported AIDS Prevention Initiative in Nigeria (APIN) Clinic of the University College Hospital Ibadan, southwest Nigeria. Outcome parameters were prevalence of malaria parasitemia, sensitivity and specificity of Paracheck-Pf as well as the positive and negative predictive values for Paracheck-Pf using microscopy of Giemsa-stained blood film as gold standard. Malaria parasites were detected in 19·1% (74/387) of enrollees by microscopy and 19·3% (74/383) by Paracheck-Pf. Geometric mean parasite density was 501/μl (range 39-749 202/μl). Sensitivity and specificity of Paracheck-Pf at all parasite densities were 55·4% and 89·3% while corresponding figures at parasite densities ≥200/μl were 90·9% and 90·3%. Sensitivity and specificity at parasite densities ≥500/μl was 97·6% and 90·3%. Positive and negative predictive values for parasite density ≥200/μl were 55·4% and 98·7%, respectively. Paracheck-Pf was found to be a useful malaria diagnostic tool at parasite densities ≥200/μl facilitating appropriate clinical management.
Collapse
Affiliation(s)
- C O Falade
- Department of Pharmacology & Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ahmed BS, Phelps BR, Reuben EB, Ferris RE. Does a significant reduction in malaria risk make lopinavir/ritonavir-based ART cost-effective for children with HIV in co-endemic, low-resource settings? Trans R Soc Trop Med Hyg 2013; 108:49-54. [PMID: 24300443 DOI: 10.1093/trstmh/trt108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND HIV infection and malaria co-infection is not uncommon among children in co-endemic regions, and evidence suggests that HIV is a risk factor for severe malaria among children. HIV protease inhibitors (PIs) are highly effective in pediatric HIV treatment regimens, however, their effectiveness against malaria has been mixed, with some PIs demonstrating in vitro activity against Plasmodium falciparum. Recent findings suggest lopinavir/ritonavir (LPV/r)-based treatment regimens reduce the incidence of malaria infection by over 40% in pediatric HIV patients compared to non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens. METHODS We assessed whether a significant reduction in malaria risk makes LPV/r-based ART regimens cost-effective compared to NNRTI-based regimens in co-endemic, low-resource settings. We modeled the difference in unit cost per disability adjusted life year (DALY) gained among two theoretical groups of HIV+ children under 5 years old receiving ART in a resource-limited setting co-endemic for malaria. The first group received standard NNRTI-based antiretrovirals, the second group received a standard regimen containing LPV/r. We used recent cohort data for the incidence reduction for malaria. Drug costs were taken from the 2011 Clinton Health Access Initiative Antiretroviral (ARV) ceiling price list. DALYs for HIV and malaria were derived from WHO estimates. RESULTS Our model suggests a unit cost of US$147 per DALY gained for the LPV/r-based group compared to US$37 per DALY gained for the NNRTI-based group. CONCLUSION In HIV and malaria co-endemic settings, considerations of PI cost effectiveness incorporating known reductions in malaria mortality suggest a nominal increase in DALYs gained for PIs over NNRTI-based regimens for HIV positive children under five on ART. Our analysis was based on several assumptions due to lack of sound data on malaria and HIV DALY attribution among pediatric populations. Further study in this area is required.
Collapse
Affiliation(s)
- Bilaal S Ahmed
- United States Agency for International Development, Office of HIV/AIDS, 1300 Pennsylvania Ave., Washington, DC 20523, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Drugs that kill or inhibit the sexual stages of Plasmodium in order to prevent transmission are important components of malaria control programmes. Reducing gametocyte carriage is central to the control of Plasmodium falciparum transmission as infection can result in extended periods of gametocytaemia. Unfortunately the number of drugs with activity against gametocytes is limited. Primaquine is currently the only licensed drug with activity against the sexual stages of malaria parasites and its use is hampered by safety concerns. This shortcoming is likely the result of the technical challenges associated with gametocyte studies together with the focus of previous drug discovery campaigns on asexual parasite stages. However recent emphasis on malaria eradication has resulted in an upsurge of interest in identifying compounds with activity against gametocytes. This review examines the gametocytocidal properties of currently available drugs as well as those in the development pipeline and examines the prospects for discovery of new anti-gametocyte compounds.
Collapse
|
48
|
Monzote L, Rodríguez M, Alfonso Y, Cox R. Antiretroviral activity of protease inhibitors against Toxoplasma gondii. Rev Inst Med Trop Sao Paulo 2013; 55:65-7. [PMID: 23328729 DOI: 10.1590/s0036-46652013000100012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/27/2012] [Indexed: 11/22/2022] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) has caused a marked reduction in the occurrence and severity of parasitic infections, including the toxoplasmic encephalitis (TE). These changes have been attributed to the restoration of cell-mediated immunity. This study was developed to examine the activity of six antiretroviral protease inhibitors (API) on Toxoplasma gondii tachyzoites. The six API showed anti-Toxoplasma activity, with IC50 value between 1.4 and 6.6 µg/mL. Further studies at the molecular level should be performed to clarify if the use of API could be beneficial or not for AIDS patients with TE.
Collapse
Affiliation(s)
- Lianet Monzote
- Parasitology Department, Institute of Tropical Medicine Pedro Kouri, Havana, Cuba
| | | | | | | |
Collapse
|
49
|
Abstract
HIV and malaria overlap geographically, but the full impact of different antiretrovirals on malaria remains poorly understood. We examined the antimalarial activity of the HIV protease inhibitors lopinavir and saquinavir and the non-nucleoside reverse transcriptase inhibitor nevirapine on Plasmodium falciparum liver stages. Our results demonstrate that the HIV PI lopinavir inhibits liver stage parasites at clinically relevant concentrations, that is, at drug levels achieved in HIV-infected patients on standard dosing regimens. Because drugs that inhibit liver stages target parasites when they are present in lower numbers, these results might have implications for eradication efforts.
Collapse
|
50
|
Ikilezi G, Achan J, Kakuru A, Ruel T, Charlebois E, Clark TD, Rosenthal PJ, Havlir D, Kamya MR, Dorsey G. Prevalence of asymptomatic parasitemia and gametocytemia among HIV-infected Ugandan children randomized to receive different antiretroviral therapies. Am J Trop Med Hyg 2013; 88:744-6. [PMID: 23358639 DOI: 10.4269/ajtmh.12-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In a recent randomized controlled trial, the use of protease inhibitor (PI)-based antiretroviral therapy (ART) was associated with a significantly lower incidence of malaria compared with non-nucleoside reverse transcriptase inhibitor-based ART in a cohort of human immunodeficiency virus-infected Ugandan children living in an area of high malaria transmission intensity. In this report, we compared the prevalence of asymptomatic parasitemia and gametocytemia using data from the same cohort. The prevalence of asymptomatic parasitemia did not differ between the two ART treatment arms. The PI-based arm was associated with a lower risk of gametocytemia at the time of diagnosis of malaria (6.6% versus 14.5%, P = 0.03) and during the 28 days after malaria diagnosis (3.4% versus 6.5%, P = 0.04). Thus, in addition to decreasing the incidence of malaria, the use of PI-based ART may lower transmission, as a result of a decrease in gametocytemia, in areas of high malaria transmission intensity.
Collapse
Affiliation(s)
- Gloria Ikilezi
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | | | | | | | | | | | | | | | | |
Collapse
|