1
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
2
|
Characterization of Potential Virulence Factors of Vibrio mimicus Isolated from Fishery Products and Water. Int J Microbiol 2021; 2021:8397930. [PMID: 33628259 PMCID: PMC7889394 DOI: 10.1155/2021/8397930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Vibrio mimicus is a Gram-negative bacterium that is closely related to V. cholerae and causes gastroenteritis in humans due to contaminated fish consumption and seafood. This bacterium was isolated and identified from 238 analyzed samples of sea water, oysters, and fish. Twenty strains were identified as V. mimicus according to amplification of the vmhA gene, which is useful as a marker of identification of the species. The production of lipases, proteases, and nucleases was detected; 45% of the strains were able to produce thermonucleases and 40% were capable of producing hydroxamate-type siderophores, and the fragment of the iuT gene was amplified in all of the V. mimicus strains. Seventy-five percent of V. mimicus strains showed cytopathic effect on Chinese hamster ovary (CHO) cells and destruction of the monolayer, and 100% of the strains were adherent on the HEp-2 cell line with an aggregative adherence pattern. The presence of virulence factors in V. mimicus strains obtained from fishery products suggests that another member of the Vibrio genus could represent a risk to the consumer due to production of different metabolites that allows it to subsist in the host.
Collapse
|
3
|
Molecular detection and phylogenetic analysis of Vibrio cholerae genotypes in Hillah, Iraq. New Microbes New Infect 2020; 37:100739. [PMID: 32874595 PMCID: PMC7452163 DOI: 10.1016/j.nmni.2020.100739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae is a cause of serious endemic diarrhoea associated with cholera in many regions in the world. A total of 256 stool and rectal swabs were collected from patients suspected to have cholera admitted to three hospitals in Hillah, Babylon Governorate, Iraq, for the period 1 September to 29 December 2017. After the routine culture of samples for isolation and identification of V. cholerae isolates, PCR was performed for molecular detection of V. cholerae isolates based on 16S ribosomal RNA gene. Toxigenicity was detected by RTX toxin genes. PCR technique emphasized molecular detection of V. cholerae for eight isolates. Only two isolates (25%) possessed both the rtxA and rtxC genes, while only three isolates (37.5%) possessed the rtxB gene. DNA sequencing was performed for the eight isolates via analysis and phylogenetic tree. The observed bacterial variants were compared to their neighbour homologous reference sequences using the National Center for Biotechnology Information (NCBI) BLAST server (Basic Local Alignment Search Tool; https://blast.ncbi.nlm.nih.gov/Blast.cgi). The findings indicated that the eight investigated isolates of V. cholerae were positioned in three different phylogenetic positions. Partial sequence dissimilarities were reported between GenBank isolate accession number MK212155.1 and these six clustered GenBank accession numbers of the same species. For the first time in Babylon Governorate, Iraq, the molecular assay, sequencing and phylogenetic tree are reported for V. cholerae and their toxins isolated during the 2017 cholera outbreak.
Collapse
|
4
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
5
|
Tagousop CN, Tamokou JDD, Ekom SE, Ngnokam D, Voutquenne-Nazabadioko L. Antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum and their mechanism of antibacterial action. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:252. [PMID: 30219066 PMCID: PMC6139119 DOI: 10.1186/s12906-018-2321-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The search for new antimicrobials should take into account drug resistance phenomenon. Medicinal plants are known as sources of potent antimicrobial compounds including flavonoids. The objective of this investigation was to evaluate the antimicrobial activities of flavonoid glycosides from Graptophyllum grandulosum, as well as to determine their mechanism of antibacterial action using lysis, leakage and osmotic stress assays. METHODS The plant extracts were prepared by maceration in organic solvents. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of five flavonoid glycosides. The antimicrobial activities of extracts/compounds were evaluated using the broth microdilution method. The bacteriolytic activity was evaluated using the time-kill kinetic method. The effect of extracts on the red blood cells and bacterial cell membrane was determined by spectrophotometric methods. RESULTS Chrysoeriol-7-O-β-D-xyloside (1), luteolin-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (2), chrysoeriol-7-O-β-D-apiofuranosyl-(1 → 2)-β-D-xylopyranoside (3), chrysoeriol-7-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-(4"-hydrogeno sulfate) glucopyranoside (4) and isorhamnetin-3-O-α-L-rhamnopyranosyl-(1 → 6)-β-D-glucopyranoside (5) were isolated from G. grandulosum and showed different degrees of antimicrobial activities. Their antibacterial activities against multi-drug-resistant Vibrio cholerae strains were in some cases equal to, or higher than those of ciprofloxacin used as reference antibiotic. The antibacterial activities of flavonoid glycosides and chloramphenicol increased under osmotic stress (5% NaCl) whereas that of vancomycin decreased under this condition. V. cholerae suspension treated with flavonoid glycosides, showed a significant increase in the optical density at 260 nm, suggesting that nucleic acids were lost through a damaged cytoplasmic membrane. A decrease in the optical density of V. cholerae NB2 suspension treated with the isolated compounds was observed, indicating the lysis of bacterial cells. The tested samples were non-toxic to normal cells highlighting their good selectivity index. CONCLUSIONS The results of the present study indicate that the purified flavonoids from G. glandulosum possess antimicrobial activities. Their mode of antibacterial activity is due to cell lysis and disruption of the cytoplasmic membrane upon membrane permeability.
Collapse
Affiliation(s)
- Cyrille Ngoufack Tagousop
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Jean-de-Dieu Tamokou
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Steve Endeguele Ekom
- Research Unit of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - David Ngnokam
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Laurence Voutquenne-Nazabadioko
- Groupe Isolement et Structure, Institut de Chimie Moléculaire de Reims (ICMR), CNRS UMR 7312, Bat. 18 BP.1039, 51687 Reims cedex 2, France
| |
Collapse
|
6
|
Guardiola-Avila I, Martínez-Vázquez V, Requena-Castro R, Juárez-Rendón K, Aguilera-Arreola M, Rivera G, Bocanegra-García V. Isolation and identification ofVibriospecies in the Rio Bravo/Grande and water bodies from Reynosa, Tamaulipas. Lett Appl Microbiol 2018; 67:190-196. [DOI: 10.1111/lam.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/02/2023]
Affiliation(s)
- I. Guardiola-Avila
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Martínez-Vázquez
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - R. Requena-Castro
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - K. Juárez-Rendón
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - M.G. Aguilera-Arreola
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; Ciudad de México; Mexico City México
| | - G. Rivera
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Bocanegra-García
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| |
Collapse
|
7
|
Synthesis, Characterization, and Antimicrobial Activity of a Novel Trisazo Dye from 3-Amino-4H-thieno[3,4-c][1]benzopyran-4-one. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9197821. [PMID: 29484208 PMCID: PMC5816859 DOI: 10.1155/2018/9197821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022]
Abstract
A new trisazo dye has been synthesized by coupling the diazonium ion of 3-amino-4H thieno[3,4-c][1]benzopyran-4-one with 2-tert-butyl-4-methoxyphenol. The newly prepared trisazo dye was characterized by its physical, elemental, and spectroscopic data. 2D-NMR (COSY, HSQC, and HMBC) techniques were used to secure the structural assignments. The new trisazo dye (compound 7) along with precursors 3, 4, and 6 was screened by microdilution susceptibility assay for antibacterial and antifungal activities towards eight bacterial strains and three yeasts selected on the basis of their relevance as human pathogens. The results showed that compound 7 (MIC = 2-128 μg/mL) was the most active as compared with its precursors. The most resistant microorganisms were V. cholerae NB2 and V. cholerae SG24, whereas the most sensitive microorganism was C. neoformans. The overall results of this study indicated that compound 7 had the greatest potential value against both yeasts and multidrug-resistant bacteria, so further investigation is warranted.
Collapse
|
8
|
Riverbed Sediments as Reservoirs of Multiple Vibrio cholerae Virulence-Associated Genes: A Potential Trigger for Cholera Outbreaks in Developing Countries. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017. [PMID: 28642796 PMCID: PMC5470021 DOI: 10.1155/2017/5646480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Africa remains the most cholera stricken continent in the world as many people lacking access to safe drinking water rely mostly on polluted rivers as their main water sources. However, studies in these countries investigating the presence of Vibrio cholerae in aquatic environments have paid little attention to bed sediments. Also, information on the presence of virulence-associated genes (VAGs) in environmental ctx-negative V. cholerae strains in this region is lacking. Thus, we investigated the presence of V. cholerae VAGs in water and riverbed sediment of the Apies River, South Africa. Altogether, 120 samples (60 water and 60 sediment samples) collected from ten sites on the river (January and February 2014) were analysed using PCR. Of the 120 samples, 37 sediment and 31 water samples were positive for at least one of the genes investigated. The haemolysin gene (hlyA) was the most isolated gene. The cholera toxin (ctxAB) and non-O1 heat-stable (stn/sto) genes were not detected. Genes were frequently detected at sites influenced by human activities. Thus, identification of V. cholerae VAGs in sediments suggests the possible presence of V. cholerae and identifies sediments of the Apies River as a reservoir for potentially pathogenic V. cholerae with possible public health implications.
Collapse
|
9
|
Patra SK, Bag PK, Ghosh S. Nitrosative Stress Response in Vibrio cholerae: Role of S-Nitrosoglutathione Reductase. Appl Biochem Biotechnol 2016; 182:871-884. [PMID: 28000045 DOI: 10.1007/s12010-016-2367-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Vibrio cholerae, the causative agent of cholera, poses serious threats to humans worldwide. V. cholerae faces host inflammatory response and encounters nitrosative stress before establishing successful colonization. It is not clear how V. cholerae combats nitric oxide and reactive nitrogen species. In the present study, we used three clinical strains of V. cholerae and tested their nitrosative stress response pattern towards sodium nitroprusside (SNP) and S-Nitrosoglutathione (GSNO). Among them, V. cholerae, belonging to both O1 and O139 serotypes, showed moderate resistance to SNP and GSNO. However, a V. cholerae strain belonging to non O1 and non O139 showed sensitivity to SNP but resistance towards GSNO. Reduced glutathione and glutathione reductase play a significant role to combat nitrosative stress in V. cholerae. This is the first report where we show the presence of GSNO reductase activity in V. cholerae and that it plays an important role to detoxify S-Nitrosoglutathione. GSNO reductase activity of V. cholerae was regulated by posttranslational modification through S-nitrosylation under in vitro conditions which could be reversed by dithiothreitol (DTT). In addition, we show that biofilm formation remained unaffected under nitrosative stress in V. cholerae.
Collapse
Affiliation(s)
- Sourav Kumar Patra
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Prasanta Kumar Bag
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
10
|
Jouda JB, Tamokou JDD, Mbazoa CD, Douala-Meli C, Sarkar P, Bag PK, Wandji J. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. Altern Ther Health Med 2016; 16:462. [PMID: 27842536 PMCID: PMC5109658 DOI: 10.1186/s12906-016-1454-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Background The continuous emergence of multidrug-resistant (MDR) bacteria drastically reduced the efficacy of our antibiotic armory and consequently, increased the frequency of therapeutic failure. The search for bioactive constituents from endophytic fungi against MDR bacteria became a necessity for alternative and promising strategies, and for the development of novel therapeutic solutions. We report here the isolation and structure elucidation of antibacterial and cytotoxic compounds from Phomopsis sp., an endophytic fungus associated with Garcinia kola nuts. Methods The fungus Phomopsis sp. was isolated from the nut of Garcinia kola. The crude extract was prepared from mycelium of Phomopsis sp. by maceration in ethyl acetate and sequentially fractionated by column chromatography. The structures of isolated compounds were elucidated on the basis of spectral studies and comparison with published data. The isolated compounds were evaluated for their antibacterial and anticancer properties by broth microdilution and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide methods respectively. The samples were also tested spectrophotometrically for their hemolytic properties against human red blood cells. Results The fractionation of the crude extract afforded three known cytochalasins including 18-metoxycytochalasin J (1), cytochalasins H (2) and J (3) together with alternariol (4). The cytochalasin compounds showed different degrees of antibacterial activities against the tested bacterial pathogens. Shigella flexneri was the most sensitive microorganism while Vibrio cholerae SG24 and Vibrio cholerae PC2 were the most resistant. Ampicillin did not show any antibacterial activity against Vibrio cholerae NB2, Vibrio cholerae PC2 and Shigella flexneri at concentrations up to 512 μg/mL, but interestingly, these multi-drug resistant bacterial strains were sensitive to the cytochalasin metabolites. These compounds also showed significant cytotoxic properties against human cancer cells (LC50 = 3.66–35.69 μg/mL) with low toxicity to normal non-cancer cells. Conclusion The three cytochalasin compounds isolated from the Phomopsis sp. crude extract could be a clinically useful alternative for the treatment of cervical cancer and severe infections caused by MDR Shigella and Vibrio cholerae.
Collapse
|
11
|
Sarkar P, Acharyya S, Banerjee A, Patra A, Thankamani K, Koley H, Bag PK. Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus. J Med Microbiol 2016; 65:1205-1214. [PMID: 27553840 DOI: 10.1099/jmm.0.000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Staphylococcus aureus is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant S.aureus (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from Azadirachta indica against MDR MRSA. In vitro antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the S. aureus cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid (Cc/Ce for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular S. aureus was decreased [reduction of ~2 log10 c.f.u. (mg Vero cell protein)-1] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.
Collapse
Affiliation(s)
- Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Anirban Banerjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Karthika Thankamani
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|
12
|
Bhuyan SK, Vairale MG, Arya N, Yadav P, Veer V, Singh L, Yadava PK, Kumar P. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India. INFECTION GENETICS AND EVOLUTION 2016; 40:352-356. [DOI: 10.1016/j.meegid.2015.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 11/16/2022]
|
13
|
Chowdhury G, Joshi S, Bhattacharya S, Sekar U, Birajdar B, Bhattacharyya A, Shinoda S, Ramamurthy T. Extraintestinal Infections Caused by Non-toxigenic Vibrio cholerae non-O1/non-O139. Front Microbiol 2016; 7:144. [PMID: 26904017 PMCID: PMC4749697 DOI: 10.3389/fmicb.2016.00144] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/25/2016] [Indexed: 12/03/2022] Open
Abstract
Vibrio cholerae is an aerobic, sucrose fermentative Gram-negative bacterium that generally prevails in the environment. Pathogenic V. cholerae is well-known as causative agent of acute diarrhea. Apart from enteric infections, V. cholerae may also cause other diseases. However, their role in causing extraintestinal infections is not fully known as it needs proper identification and evaluation. Four cases of extraintestinal infections due to V. cholerae non-O1/non-O139 have been investigated. The isolates were screened for phenotypic and genetic characteristics with reference to their major virulence genes. Serologically distinct isolates harbored rtx, msh, and hly but lacked enteric toxin encoding genes that are generally present in toxigenic V. cholerae. Timely detection of this organism can prevent fatalities in hospital settings. The underlying virulence potential of V. cholerae needs appropriate testing and intervention.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | | | | | - Uma Sekar
- Sri Ramachandra Medical Centre Chennai, India
| | | | | | - Sumio Shinoda
- Collaborative Research Centre of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Thandavarayan Ramamurthy
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster Faridabad, India
| |
Collapse
|
14
|
Mabou FD, Tamokou JDD, Ngnokam D, Voutquenne-Nazabadioko L, Kuiate JR, Bag PK. Complex secondary metabolites from Ludwigia leptocarpa with potent antibacterial and antioxidant activities. Drug Discov Ther 2016; 10:141-9. [DOI: 10.5582/ddt.2016.01040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Florence Déclaire Mabou
- Laboratory of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang
| | - Jean-de-Dieu Tamokou
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang
| | - David Ngnokam
- Laboratory of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang
| | | | - Jules-Roger Kuiate
- Laboratory of Microbiology and Antimicrobial Substances, Department of Biochemistry, Faculty of Science, University of Dschang
| | | |
Collapse
|
15
|
Li X, Wang D, Li B, Zhou H, Liang S, Ke C, Deng X, Kan B, Morris JG, Cao W. Characterization of environmental Vibrio cholerae serogroups O1 and O139 in the Pearl River Estuary, China. Can J Microbiol 2015; 62:139-47. [PMID: 26674584 DOI: 10.1139/cjm-2015-0443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Toxigenic isolates of Vibrio cholerae serogroups O1 and O139 from aquatic reservoirs are a key source for recurrent epidemics of cholera in human populations. However, we do not have an optimal understanding of the microbiology of the strains within these reservoirs, particularly outside of the time periods when there are active cholera cases in the surrounding community. The main objective of the present study was to identify and characterize V. cholerae O1 and O139 in the Pearl River Estuary at a time when active disease was not being identified, despite prior occurrence of epidemic cholera in the region. Water samples were collected at 24 sites in the research area at monthly intervals between 2007 and 2010, and screened for the presence of V. cholerae O1 and O139. All isolates were screened for the presence of ctxAB, ompW, toxR, and tcpA genes. Multilocus variable number tandem repeat analysis (MLVA) was used to assess possible relationships among strains. The results show that Vibrio cholerae O1 or O139 was isolated, on average, from 6.7% of the sites screened at each time point. All V. cholerae O1 and O139 isolates were ctxAB negative, and 37% were positive for tcpA. Isolation was most common in the oldest, most urbanized district compared with other districts, and was associated with lower pH. Despite year-to-year variability in isolation rates, there was no evidence of seasonality. MLVA of 27 selected isolates showed evidence of high genetic diversity, with no evidence of clustering by year or geographic location. In this region where cholera has been epidemic in the past, there is evidence of environmental persistence of V. cholerae O1 and O139 strains. However, environmental strains were consistently nontoxigenic, with a high level of genetic diversity; their role as current or future agents of human disease remains uncertain.
Collapse
Affiliation(s)
- Xiujun Li
- a School of Public Health Shandong University, Wenhuaxi Road, Shandong 250012, People's Republic of China
| | - Duochun Wang
- b Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, 155 Chang-Bai Street, Changping District, Beijing 102206, People's Republic of China
| | - Baisheng Li
- c Center for Diseases Control and Prevention of Guangdong Province, Guangzhou 510300, People's Republic of China
| | - Haijian Zhou
- b Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, 155 Chang-Bai Street, Changping District, Beijing 102206, People's Republic of China
| | - Song Liang
- d Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Changwen Ke
- c Center for Diseases Control and Prevention of Guangdong Province, Guangzhou 510300, People's Republic of China
| | - Xiaoling Deng
- c Center for Diseases Control and Prevention of Guangdong Province, Guangzhou 510300, People's Republic of China
| | - Biao Kan
- b Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, 155 Chang-Bai Street, Changping District, Beijing 102206, People's Republic of China
| | - J Glenn Morris
- d Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wuchun Cao
- e State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, People's Republic of China
| |
Collapse
|
16
|
Acharyya S, Sarkar P, Saha DR, Patra A, Ramamurthy T, Bag PK. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol 2015; 64:901-909. [PMID: 26272388 DOI: 10.1099/jmm.0.000107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24 h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20 h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.
Collapse
Affiliation(s)
- Saurabh Acharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Prodipta Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| | - Dhira R Saha
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Amarendra Patra
- Department of Chemistry, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - T Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge, Circular Road, Kolkata 700019, India
| |
Collapse
|
17
|
Abstract
Vibrio cholerae is widely known to be the etiological agent of the life-threatening diarrheal disease cholera. Cholera remains a major scourge in many developing countries, infecting hundreds of thousands every year. Remarkably, V. cholerae is a natural inhabitant of brackish riverine, estuarine, and coastal waters, and only a subset of strains are known to be pathogenic to humans. Recent studies have begun to uncover a very complex network of relationships between V. cholerae and other sea dwellers, and the mechanisms associated with the occurrence of seasonal epidemics in regions where cholera is endemic are beginning to be elucidated. Many of the factors required for the organism's survival and persistence in its natural environment have been revealed, as well as the ubiquitous presence of horizontal gene transfer in the emergence of pathogenic strains of V. cholerae. In this article, we will focus on the environmental stage of pathogenic V. cholerae and the interactions of the microorganism with other inhabitants of aquatic environments. We will discuss the impact that its environmental reservoirs have on disease transmission and the distinction between reservoirs of V. cholerae and the vectors that establish cholera as a zoonosis.
Collapse
|
18
|
Lugo MR, Merrill AR. The Father, Son and Cholix Toxin: The Third Member of the DT Group Mono-ADP-Ribosyltransferase Toxin Family. Toxins (Basel) 2015. [PMID: 26213968 PMCID: PMC4549722 DOI: 10.3390/toxins7082757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cholix toxin gene (chxA) was first identified in V. cholerae strains in 2007, and the protein was identified by bioinformatics analysis in 2008. It was identified as the third member of the diphtheria toxin group of mono-ADP-ribosyltransferase toxins along with P. aeruginosa exotoxin A and C. diphtheriae diphtheria toxin. Our group determined the structure of the full-length, three-domain cholix toxin at 2.1 Å and its C-terminal catalytic domain (cholixc) at 1.25 Å resolution. We showed that cholix toxin is specific for elongation factor 2 (diphthamide residue), similar to exotoxin A and diphtheria toxin. Cholix toxin possesses molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm and inhibition of protein synthesis. More recently, we also solved the structure of full-length cholix toxin in complex with NAD+ and proposed a new kinetic model for cholix enzyme activity. In addition, we have taken a computational approach that revealed some important properties of the NAD+-binding pocket at the residue level, including the role of crystallographic water molecules in the NAD+ substrate interaction. We developed a pharmacophore model of cholix toxin, which revealed a cationic feature in the side chain of cholix toxin active-site inhibitors that may determine the active pose. Notably, several recent reports have been published on the role of cholix toxin as a major virulence factor in V. cholerae (non-O1/O139 strains). Additionally, FitzGerald and coworkers prepared an immunotoxin constructed from domains II and III as a cancer treatment strategy to complement successful immunotoxins derived from P. aeruginosa exotoxin A.
Collapse
Affiliation(s)
- Miguel R Lugo
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
19
|
|
20
|
Akoachere JFTK, Mbuntcha CKP. Water sources as reservoirs of Vibrio cholerae O1 and non-O1 strains in Bepanda, Douala (Cameroon): relationship between isolation and physico-chemical factors. BMC Infect Dis 2014; 14:421. [PMID: 25073409 PMCID: PMC4131033 DOI: 10.1186/1471-2334-14-421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/11/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cholera has been endemic in Douala since 1971. Most outbreaks start from Bepanda, an overcrowded neighbourhood with poor hygiene and sanitary conditions. We investigated water sources in Bepanda as reservoirs of Vibrio cholerae, the causative agent of cholera, determined its antibiotic susceptibility and some physico-chemical characteristics that could maintain the endemicity of this organism in Bepanda. METHODS Three hundred and eighteen water samples collected from 45 wells, 8 taps and 1 stream from February to July 2009 were analyzed for V. cholerae using standard methods. Isolates were characterized morphologically, biochemically and serologically. The disc diffusion technique was employed to investigate antibiotic susceptibility. Differences in prevalence of organism between seasons were analysed. Correlation strength and direction of association between physico-chemical parameters and occurrence of V. cholerae was analyzed using the Kendall tau_b non-parametric correlation. This was further confirmed with the forward-stepwise binary logistic regression. RESULTS Eighty-seven (27.4%) samples were positive for V. cholerae. Isolation was highest from wells. The organism was isolated in the rainy season and dry season but the frequency of isolation was significantly higher (χ2 = 7.009, df = 1, P = 0.008) in the rainy season. Of the 96 confirmed V. cholerae isolates, 32 (33.3%) belonged to serogroup O1 and 64 (66.6%) were serogroup non-O1/non-O139. Isolates from tap (municipal water) were non-O1/non-O139 strains. Salinity had a significant positive correlation with isolation in the dry season (+0.267, P = 0.015) and rainy season (+0.223, P = 0.028). The forward-stepwise method of binary logistic regression indicated that as pH (Wald = 11.753, df = 1), P = 0.001) increased, odds of isolation of V. cholerae also increased (B = 1.297, S.E = 0.378, Exp(B) = 3.657). All isolates were sensitive to ciprofloxacin and ofloxacin. Multi-drug resistance was predominant among the non-O1/non-O139 isolates. CONCLUSION V. cholerae was found in wells and stream in both seasons. Cholera will continue to be a health threat in Bepanda if intervention measures to prevent outbreak are not implemented. Continuous monitoring of water sources in this and other cholera high-risk areas in Cameroon is necessary, for a better preparedness and control of cholera.
Collapse
Affiliation(s)
- Jane-Francis Tatah Kihla Akoachere
- />Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
- />Laboratory for Emerging Infectious Diseases, Faculty of Science, University of Buea, Buea, Cameroon
| | | |
Collapse
|
21
|
Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl Environ Microbiol 2014; 80:4987-92. [PMID: 24907334 DOI: 10.1128/aem.01021-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Non-O1/O139 Vibrio cholerae is naturally present in aquatic ecosystems and has been linked with cholera-like diarrhea and local outbreaks. The distribution of virulence-associated genes and genetic relationships among aquatic isolates from China are largely unknown. In this study, 295 aquatic isolates of V. cholerae non-O1/O139 serogroups from different regions in China were investigated. Only one isolate was positive for ctxB and harbored a rare genotype; 10 (3.4%) isolates carried several types of rstR sequences, eight of which carried rare types of toxin-coregulated pili (tcpA). Furthermore, 16 (5.4%) isolates carried incomplete (with partial open reading frames [ORFs]) vibrio seventh pandemic island I (VSP-I) or VSP-II clusters, which were further classified as 11 novel types. PCR-based analyses revealed remarkable variations in the distribution of putative virulence genes, including mshA (95.6%), hlyA (95.3%), rtxC (89.8%), rtxA (82.7%), IS1004 (52.9%), chxA (30.2%), SXT (15.3%), type III secretion system (18.0%), and NAG-ST (3.7%) genes. There was no correlation between the prevalence of putative virulence genes and that of CTX prophage or TCP genes, whereas there were correlations among the putative virulence genes. Further multilocus sequence typing (MLST) placed selected isolates (n = 70) into 69 unique sequence types (STs), which were different from those of the toxigenic O1 and O139 counterparts, and each isolate occupied a different position in the MLST tree. The V. cholerae non-O1/O139 aquatic isolates predominant in China have high genotypic diversity; these strains constitute a reservoir of potential virulence genes, which may contribute to evolution of pathogenic isolates.
Collapse
|
22
|
|
23
|
Rajpara N, Vinothkumar K, Mohanty P, Singh AK, Singh R, Sinha R, Nag D, Koley H, Kushwaha Bhardwaj A. Synergistic effect of various virulence factors leading to high toxicity of environmental V. cholerae non-O1/ non-O139 isolates lacking ctx gene : comparative study with clinical strains. PLoS One 2013; 8:e76200. [PMID: 24086707 PMCID: PMC3781066 DOI: 10.1371/journal.pone.0076200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Background Vibrio cholerae non-O1/ non-O139 serogroups have been reported to cause sporadic diarrhoea in humans. Cholera toxins have been mostly implicated for hypersecretion of ions and water into the small intestine. Though most of the V. cholerae non-O1/ non-O139 strains lack these cholera toxins, several other innate virulence factors contribute towards their pathogenicity. The environmental isolates may thus act as reservoirs for potential spreading of these virulence genes in the natural environment which may cause the emergence of epidemic-causing organisms. Results The environmental isolates of vibrios were obtained from water samples, zooplanktons and phytoplanktons, from a village pond in Gandhinagar, Gujarat, India. They were confirmed as Vibrio cholerae non-O1/ non-O139 using standard biochemical and serotyping tests. PCR experiments revealed that the isolates lacked ctxA, ctxB, tcpA, zot and ace genes whereas other pathogenicity genes like toxR, rtxC, hlyA, hapA and prtV were detected in these isolates. Compared with epidemic strain V. cholerae O1 El Tor N16961, culture supernatants from most of these isolates caused higher cytotoxicity to HT29 cells and higher hemolytic, hemagglutinin and protease activities. In rabbit ileal loop assays, the environmental isolates showed only 2-4 folds lesser fluid accumulation in comparison to N16961 and a V. cholerae clinical isolate IDH02365 of 2009. Pulsed Field Gel electrophoresis and Random amplification of Polymorphic DNA indicated that these isolates showed considerable diversity and did not share the same clonal lineage even though they were derived from the same water source. All the isolates showed resistance to one or more antibiotics. Conclusion Though these environmental isolates lacked the cholera toxins, they seem to have adopted other survival strategies by optimally utilising a diverse array of several other toxins. The current findings indicate the possibility that these isolates could cause some gastroenteric inflammation when ingested and may serve as progenitors for overt disease-causing organisms.
Collapse
Affiliation(s)
- Neha Rajpara
- Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Kittappa Vinothkumar
- Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Priyabrata Mohanty
- Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Arun Kumar Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Rajesh Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Ritam Sinha
- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Dhrubajyoti Nag
- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Hemanta Koley
- National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Ashima Kushwaha Bhardwaj
- Department of Human Health and Diseases, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India
- * E-mail:
| |
Collapse
|
24
|
Octavia S, Salim A, Kurniawan J, Lam C, Leung Q, Ahsan S, Reeves PR, Nair GB, Lan R. Population structure and evolution of non-O1/non-O139 Vibrio cholerae by multilocus sequence typing. PLoS One 2013; 8:e65342. [PMID: 23776471 PMCID: PMC3679125 DOI: 10.1371/journal.pone.0065342] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/24/2013] [Indexed: 01/09/2023] Open
Abstract
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Anna Salim
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacob Kurniawan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Connie Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Queenie Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sunjukta Ahsan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - G. Balakrish Nair
- Translational Health Science and Technology Institute, Gurgaon, Haryana, India
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
25
|
Manjusha K, Jayesh P, Jose D, Sreelakshmi B, Priyaja P, Gopinath P, Saramma AV, Bright Singh IS. Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture. Cytotechnology 2013; 65:199-212. [PMID: 22717659 PMCID: PMC3560880 DOI: 10.1007/s10616-012-9472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/31/2012] [Indexed: 10/28/2022] Open
Abstract
Vibrio sp. V26 isolated from mangrove sediment showed 98 % similarity to 16S rRNA gene of Vibrio cholerae, V. mimicus, V. albensis and uncultured clones of Vibrio. Phenotypically also it resembled both V. cholerae and V. mimicus. Serogrouping, virulence associated gene profiling, hydrophobicity, and adherence pattern clearly pointed towards the non-toxigenic nature of Vibrio sp. V26. Purification and characterization of the enzyme revealed that it was moderately thermoactive, nonhemagglutinating alkaline metalloprotease with a molecular mass of 32 kDa. The application of alkaline protease from Vibrio sp. V26 (APV26) in sub culturing cell lines (HEp-2, HeLa and RTG-2) and dissociation of animal tissue (chick embryo) for primary cell culture were investigated. The time required for dissociation of cells as well as the viable cell yield obtained by while administering APV26 and trypsin were compared. Investigations revealed that the alkaline protease of Vibrio sp. V26 has the potential to be used in animal cell culture for subculturing cell lines and dissociation of animal tissue for the development of primary cell cultures, which has not been reported earlier among metalloproteases of Vibrios.
Collapse
Affiliation(s)
- K. Manjusha
- />Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - P. Jayesh
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - Divya Jose
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - B. Sreelakshmi
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - P. Priyaja
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - Prem Gopinath
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - A. V. Saramma
- />Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - I. S. Bright Singh
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| |
Collapse
|
26
|
Tamura S, Taniguchi F, Nakamoto C, Nakamoto H, Arakawa E, Fukuchi T, Nakano Y, Fujimoto T. Fatal diarrheal disease caused by Vibrio cholerae O67 in a patient with myelodysplastic syndrome. Intern Med 2013; 52:1635-9. [PMID: 23857100 DOI: 10.2169/internalmedicine.52.0398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 71-year-old man with myelodysplastic syndrome (MDS) receiving treatment with azacitidine developed extensive watery diarrhea for three consecutive days. As a result of high-grade dehydration, the patient was urgently admitted to the hospital and fluid replacement therapy was initiated. However, the patient's diarrhea did not improve. Vibrio cholerae non-O1/non-O139 was detected in a fecal culture. On the fourth day, the patient died due to circulatory collapse. An autopsy revealed extensive necrosis of the intestinal mucosa. Vibrio cholerae non-O1/non-O139-induced diarrheal disease often develops in patients with hepatic cirrhosis and has a serious clinical course. We herein report a fatal outcome of Vibrio cholerae O67 infection in an immunocompromised MDS patient.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Internal Medicine, Social Insurance Kinan Hospital, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Serotyping, Antibiotic Susceptibility Pattern and Detection of hlyA Gene Among Cholera Patients in Iran. Jundishapur J Microbiol 2012. [DOI: 10.5812/jjm.4709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Fieldhouse RJ, Jørgensen R, Lugo MR, Merrill AR. The 1.8 Å cholix toxin crystal structure in complex with NAD+ and evidence for a new kinetic model. J Biol Chem 2012; 287:21176-88. [PMID: 22535961 DOI: 10.1074/jbc.m111.337311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Certain Vibrio cholerae strains produce cholix, a potent protein toxin that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 1.8 Å crystal structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD(+)). We also substituted hallmark catalytic residues by site-directed mutagenesis and analyzed both NAD(+) binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These data are the basis for a new kinetic model of cholix toxin activity. Further, the new structural data serve as a reference for continuing inhibitor development for this toxin class.
Collapse
Affiliation(s)
- Robert J Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
29
|
Rattanama P, Thompson JR, Kongkerd N, Srinitiwarawong K, Vuddhakul V, Mekalanos JJ. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi. PLoS One 2012; 7:e32523. [PMID: 22384269 PMCID: PMC3285676 DOI: 10.1371/journal.pone.0032523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/30/2012] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei). Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σ(E)), was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030) to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN) and an upregulated protease (DegQ) which have been associated with σ(E) in other organisms. Our study is the first report linking hemolytic activity to the σ(E) regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.
Collapse
Affiliation(s)
- Pimonsri Rattanama
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Natthawan Kongkerd
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kanchana Srinitiwarawong
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - John J. Mekalanos
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
30
|
Saleh TH, Sabbah MA, Jasem KA, Hammad ZN. Identification of virulence factors in Vibrio cholerae isolated from Iraq during the 2007–2009 outbreak. Can J Microbiol 2011; 57:1024-31. [DOI: 10.1139/w11-094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thousands of people were infected with Vibrio cholerae during the outbreak in Iraq in 2007–2009. Vibrio cholerae was shown to be variable in its content of virulence determinants and in its antibiotic sensitivity. This study was designed to isolate and characterize clinical and environmental V. cholerae isolates and to determine antibiotic sensitivity, enzyme and toxin production, and the presence of virulence genes. Eighty clinical and five environmental bacterial isolates were collected and diagnosed by subjecting them to microscopic, biochemical, serological, and molecular analysis. The results revealed that 55% of clinical isolates belonged to the Inaba serotype, 32.5% to the Ogawa serotypes, and 12.5% to the Non-O1 serotype. All environmental V. cholerae isolates belonged to the Non-O1 serotype. All environmental isolates were sensitive to all examined antimicrobial agents, while all clinical isolates showed a high sensitivity (100%) to ampicillin, gentamicin, cephalothin, tetracycline, erythromycin, and ciprofloxacin, and a high resistance (97.5%) to co-trimoxazole, nalidixic acid, and chloramphenicol. It was found that all V. cholerae (O1) isolates were resistant to the Vibrio static O129 and all Non-O1 V. cholerae isolates were sensitive to the Vibrio static O129. All clinical and environmental isolates produced hemolysin (100%) and lecithinase (100%), while they showed various production rates of protease (90% of clinical and 60% of environmental) and lipase (50% of clinical and 20% of environmental). The ompW gene was amplified in all the clinical and environmental V. cholerae isolates, but not in other related and nonrelated bacteria. Multiplex PCR analysis showed that the toxR gene was amplified in all clinical and environmental isolates, while ctxA, ctxB, tcpA genes were amplified only in clinical (O1) isolates. This study indicates the differences in the production of some enzymes and toxins and in the content of virulence genes between clinical and environmental isolates in Iraq during the outbreak (2007–2009).
Collapse
Affiliation(s)
- Tahreer Hadi Saleh
- Biology Department, College of Science, Almustansyria University, Baghdad, Iraq
| | | | - Kifah A. Jasem
- Central Public Health Laboratories, Ministry of Health, Baghdad, Iraq
| | | |
Collapse
|
31
|
Collin B, Rehnstam-Holm AS. Occurrence and potential pathogenesis of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus on the South Coast of Sweden. FEMS Microbiol Ecol 2011; 78:306-13. [PMID: 21692819 DOI: 10.1111/j.1574-6941.2011.01157.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During the summer of 2006, several wound infections - of which three were fatal - caused by Vibrio cholerae were reported from patients who had been exposed to water from the Baltic Sea. Before these reports, we initiated a sampling project investigating the occurrence of potential human pathogenic V. cholerae, Vibrio vulnificus and Vibrio parahaemolyticus in The Sound between Sweden and Denmark. The Blue mussel (Mytilus edulis) was used as an indicator to follow the occurrence of vibrios over time. Molecular analyses showed high frequencies of the most potent human pathogenic Vibrio spp.; 53% of mussel samples were positive for V. cholerae (although none were positive for the cholera toxin gene), 63% for V. vulnificus and 79% for V. parahaemolyticus (of which 47% were tdh(+) and/or trh(+)). Viable vibrios were also isolated from the mussel meat and screened for virulence by PCR. The mortality of eukaryotic cells when exposed to bacteria was tested in vivo, with results showing that the Vibrio strains, independent of species and origin, were harmful to the cells. Despite severe infections and several deaths, no report on potential human pathogenic vibrios in this area had been published before this study.
Collapse
Affiliation(s)
- Betty Collin
- Department of Clinical Microbiology, Institute of Biomedicin, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
32
|
Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. mBio 2011; 2:e00106-11. [PMID: 21673189 PMCID: PMC3111608 DOI: 10.1128/mbio.00106-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cholera is a severe diarrheal disease typically caused by O1 serogroup strains of Vibrio cholerae. The pathogenicity of all pandemic V. cholerae O1 strains relies on two critical virulence factors: cholera toxin, a potent enterotoxin, and toxin coregulated pilus (TCP), an intestinal colonization factor. However, certain non-O1, non-O139 V. cholerae strains, such as AM-19226, do not produce cholera toxin or TCP, yet they still cause severe diarrhea. The molecular basis for the pathogenicity of non-O1, non-O139 V. cholerae has not been extensively characterized, but many of these strains encode related type III secretion systems (TTSSs). Here, we used infant rabbits to assess the contribution of the TTSS to non-O1, non-O139 V. cholerae pathogenicity. We found that all animals infected with wild-type AM-19226 developed severe diarrhea even more rapidly than rabbits infected with V. cholerae O1. Unlike V. cholerae O1 strains, which do not damage the intestinal epithelium in rabbits or humans, AM-19226 caused marked disruptions of the epithelial surface in the rabbit small intestine. TTSS proved to be essential for AM-19226 virulence in infant rabbits; an AM-19226 derivative deficient for TTSS did not elicit diarrhea, colonize the intestine, or induce pathological changes in the intestine. Deletion of either one of the two previously identified or two newly identified AM-19226 TTSS effectors reduced but did not eliminate AM-19226 pathogenicity, suggesting that at least four effectors contribute to this strain’s virulence. In aggregate, our results suggest that the TTSS-dependent virulence in non-O1, non-O139 V. cholerae represents a new type of diarrheagenic mechanism. Cholera, which is caused by Vibrio cholerae, is an important cause of diarrheal disease in many developing countries. The mechanisms of virulence of nonpandemic strains that can cause a diarrheal illness are poorly understood. AM-19226, like several other pathogenic, nonpandemic V. cholerae strains, carries genes that encode a type III secretion system (TTSS), but not cholera toxin (CT) or toxin coregulated pilus (TCP). In this study, we used infant rabbits to study AM-19226 virulence. Infant rabbits orally inoculated with this strain rapidly developed a fatal diarrheal disease, which was accompanied by marked disruptions of the intestinal epithelium. This strain’s TTSS proved essential for its pathogenicity, and there was no diarrhea, intestinal pathology, or colonization in rabbits infected with a TTSS mutant. The effector proteins translocated by the TTSS all appear to contribute to AM-19226 virulence. Thus, our study provides insight into in vivo mechanisms by which a novel TTSS contributes to diarrheal disease caused by nonpandemic strains of V. cholerae.
Collapse
|
33
|
Shamini G, Ravichandran M, Sinnott JT, Somboonwit C, Sidhu HS, Shapshak P, Kangueane P. Structural inferences for Cholera toxin mutations in Vibrio cholerae. Bioinformation 2011; 6:1-9. [PMID: 21464837 PMCID: PMC3064844 DOI: 10.6026/97320630006001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/01/2011] [Indexed: 11/23/2022] Open
Abstract
Cholera is a global disease that has persisted for millennia. The cholera toxin (CT) from Vibrio cholerae is responsible for the clinical symptoms of cholera. This toxin is a hetero-hexamer (AB(5)) complex consisting of a subunit A (CTA) with a pentamer (B(5)) of subunit B (CTB). The importance of the AB(5) complex for pathogenesis is established for the wild type O1 serogroup using known structural and functional data. However, its role is not yet documented in other known serogroups harboring sequence level residue mutations. The sequences for the toxin from different serogroups are available in GenBank (release 177). Sequence analysis reveals mutations at several sequence positions in the toxin across serogroups. Therefore, it is of interest to locate the position of these mutations in the AB(5) structure to infer complex assembly for its functional role in different serogroups. We show that mutations in the CTA are at the solvent exposed regions of the AB(5) complex, whereas those in the CTB are at the CTB/CTB interface of the homo-pentamer complex. Thus, the role of mutations at the CTB/CTB interface for B(5) complex assembly is implied. It is observed that these mutations are often non-synonymous (e.g. polar to non-polar or vice versa). The formation of the AB(5) complex involves inter-subunit residue-residue interactions at the protein-protein interfaces. Hence, these mutations, at the structurally relevant positions, are of importance for the understanding of pathogenesis by several serogroups. This is also of significance in the improvement of recombinant CT protein complex analogs for vaccine design and their use against multiple serogroups.
Collapse
Affiliation(s)
- Gunasagaran Shamini
- Department of Biotechnology, AIMST University, Semeling 08100, Kedah, Malaysia
- Biomedical Informatics, Pondicherry, India 607402
| | | | - John T Sinnott
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, University of South Florida, College of Medicine, Tampa, Florida 33606, USA
- Clinical Research Unit, Hillsborough Health Department,Tampa, Florida 33602, USA
| | - Charurut Somboonwit
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, University of South Florida, College of Medicine, Tampa, Florida 33606, USA
- Clinical Research Unit, Hillsborough Health Department,Tampa, Florida 33602, USA
| | - Harcharan S Sidhu
- Department of Biotechnology, AIMST University, Semeling 08100, Kedah, Malaysia
| | - Paul Shapshak
- Division of Infectious Disease, Department of Internal Medicine, Tampa General Hospital, University of South Florida, College of Medicine, Tampa, Florida 33606, USA
- Department of Psychiatry and Behavioral Medicine, University of South Florida, College of Medicine, Tampa, Florida 33613, USA
| | - Pandjassarame Kangueane
- Department of Biotechnology, AIMST University, Semeling 08100, Kedah, Malaysia
- Biomedical Informatics, Pondicherry, India 607402
| |
Collapse
|
34
|
Presence of Bacteroidales as a predictor of pathogens in surface waters of the central California coast. Appl Environ Microbiol 2010; 76:5802-14. [PMID: 20639358 DOI: 10.1128/aem.00635-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The value of Bacteroidales genetic markers and fecal indicator bacteria (FIB) to predict the occurrence of waterborne pathogens was evaluated in ambient waters along the central California coast. Bacteroidales host-specific quantitative PCR (qPCR) was used to quantify fecal bacteria in water and provide insights into contributing host fecal sources. Over 140 surface water samples from 10 major rivers and estuaries within the Monterey Bay region were tested over 14 months with four Bacteroidales-specific assays (universal, human, dog, and cow), three FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., Escherichia coli O157:H7, Salmonella spp., and Vibrio spp.). Indicator and pathogen distribution was widespread, and detection was not highly seasonal. Vibrio cholerae was detected most frequently, followed by Giardia, Cryptosporidium, Salmonella, and Campylobacter spp. Bayesian conditional probability analysis was used to characterize the Bacteroidales performance assays, and the ratios of concentrations determined using host-specific and universal assays were used to show that fecal contamination from human sources was more common than livestock or dog sources in coastal study sites. Correlations were seen between some, but not all, indicator-pathogen combinations. The ability to predict pathogen occurrence in relation to indicator threshold cutoff levels was evaluated using a weighted measure that showed the universal Bacteroidales genetic marker to have a comparable or higher mean predictive potential than standard FIB. This predictive ability, in addition to the Bacteroidales assays providing information on contributing host fecal sources, supports using Bacteroidales assays in water quality monitoring programs.
Collapse
|
35
|
vttRA and vttRB Encode ToxR family proteins that mediate bile-induced expression of type three secretion system genes in a non-O1/non-O139 Vibrio cholerae strain. Infect Immun 2010; 78:2554-70. [PMID: 20385759 DOI: 10.1128/iai.01073-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Strain AM-19226 is a pathogenic non-O1/non-O139 serogroup Vibrio cholerae strain that does not encode the toxin-coregulated pilus or cholera toxin but instead causes disease using a type three secretion system (T3SS). Two genes within the T3SS pathogenicity island, herein named vttR(A) (locus tag A33_1664) and vttR(B) (locus tag A33_1675), are predicted to encode proteins that show similarity to the transcriptional regulator ToxR, which is found in all strains of V. cholerae. Strains with a deletion of vttR(A) or vttR(B) showed attenuated colonization in vivo, indicating that the T3SS-encoded regulatory proteins play a role in virulence. lacZ transcriptional reporter fusions to intergenic regions upstream of genes encoding the T3SS structural components identified growth in the presence of bile as a condition that modulates gene expression. Under this condition, VttR(A) and VttR(B) were necessary for maximal gene expression. In contrast, growth in bile did not substantially alter the expression of a reporter fusion to the vopF gene, which encodes an effector protein. Increased vttR(B) reporter fusion activity was observed in a DeltavttR(B) strain background, suggesting that VttR(B) may regulate its own expression. The collective results are consistent with the hypothesis that T3SS-encoded regulatory proteins are essential for pathogenesis and control the expression of selected T3SS genes.
Collapse
|
36
|
Raz N, Danin-Poleg Y, Broza YY, Arakawa E, Ramakrishna BS, Broza M, Kashi Y. Environmental monitoring of Vibrio cholerae using chironomids in India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:96-103. [PMID: 23766003 DOI: 10.1111/j.1758-2229.2009.00109.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Environmental Vibrio cholerae strains belonging to the non-O1/non-O139 serogroups are natural inhabitants of freshwater including estuarine environments. Recent findings indicated that chironomids (Diptera: Chironomidae), the most widely distributed insects in freshwater, serve as a natural reservoir of these bacteria. Here we study the role of chironomids, particularly exuviae as carriers and as a monitoring tool for the distribution of V. cholerae in the environment. During a survey conducted in India (June 2006), 326 V. cholerae non-O1/non-O139 isolates were isolated from chironomid egg masses, larvae and exuviae. In addition, a heat-stable enterotoxin (nag-st) positive strain was isolated from exuviae during the local cholera outbreak. We identified 62 different strains in a subset of 102 isolates by analysis of variable number of tandem repeats (VNTR), demonstrating a high variation of V. cholerae on hosting chironomids. Our results show that chironomids can both maintain and distribute this overwhelming diversity of environmental V. cholerae strains, including toxigenic ones. Exuviae proved to be an efficient tool for the monitoring of environmental V. cholerae, offering simple, direct and practical access for on-shore collection. Finally, finding toxigenic V. cholerae on chironomids in endemic areas, together with molecular typing, may potentially improve monitoring of cholera in the future.
Collapse
Affiliation(s)
- Nili Raz
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. Division of Bacteriology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan. Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India. Department of Biology, Faculty of Science and Science Education, University of Haifa, Oranim, Tivon 36006, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Bhowmik P, Bag PK, Hajra TK, De R, Sarkar P, Ramamurthy T. Pathogenic potential of Aeromonas hydrophila isolated from surface waters in Kolkata, India. J Med Microbiol 2009; 58:1549-1558. [DOI: 10.1099/jmm.0.014316-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Aeromonas (family Aeromonadaceae) are medically important, Gram-negative, rod-shaped micro-organisms and are ubiquitous in aquatic environments. Aeromonas species are increasingly recognized as enteric pathogens; they possess several virulence factors associated with human disease, and represent a serious public health concern. In the present study, putative virulence traits of Aeromonas hydrophila isolates collected from different natural surface waters of Kolkata, India, were compared with a group of clinical isolates from the same geographical area using tissue culture and PCR assays. Enteropathogenic potential was investigated in the mouse model. Of the 21 environmental isolates tested, the majority showed cytotoxicity to HeLa cells (81 %), haemolysin production (71 %) and serum resistance properties (90 %), and they all exhibited multi-drug resistance. Some of the isolates induced fluid accumulation (FA ratio≥100), damage to the gut and an inflammatory reaction in the mouse intestine; these effects were comparable to those of clinical strains of A. hydrophila and toxigenic Vibrio cholerae. Interestingly, two of the isolates evoked a cell vacuolation effect in HeLa cells, and were also able to induce FA. These findings demonstrate the presence of potentially pathogenic and multi-drug-resistant A. hydrophila in the surface waters, thereby indicating a significant risk to public health. Continuous monitoring of surface waters is important to identify potential water-borne pathogens and to reduce the health risk caused by the genus Aeromonas.
Collapse
Affiliation(s)
- Poulami Bhowmik
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Prasanta K. Bag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Tapas K. Hajra
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Rituparna De
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| | - Pradipto Sarkar
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - T. Ramamurthy
- National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700 010, India
| |
Collapse
|