1
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
2
|
Lauriero G, Abbad L, Vacca M, Celano G, Chemouny JM, Calasso M, Berthelot L, Gesualdo L, De Angelis M, Monteiro RC. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front Immunol 2021; 12:694787. [PMID: 34712223 PMCID: PMC8546224 DOI: 10.3389/fimmu.2021.694787] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis. Several observations suggest that gut microbiota could be implicated in IgAN pathophysiology. Aiming at exploring whether microbiota modulation is able to influence disease outcome, we performed fecal microbiota transplantation (FMT) from healthy controls (HC-sbjs), non-progressor (NP-pts) and progressor (P-pts) IgAN patients to antibiotic-treated humanized IgAN mice (α1KI-CD89Tg), by oral gavage. FMT was able to modulate renal phenotype and inflammation. On one hand, the microbiota from P-pts was able to induce an increase of serum BAFF and galactose deficient-IgA1 levels and a decrease of CD89 cell surface expression on blood CD11b+ cells which was associated with soluble CD89 and IgA1 mesangial deposits. On the other hand, the microbiota from HC-sbjs was able to induce a reduction of albuminuria immediately after gavage, an increased cell surface expression of CD89 on blood CD11b+ cells and a decreased expression of KC chemokine in kidney. Higher serum BAFF levels were found in mice subjected to FMT from IgAN patients. The main bacterial phyla composition and volatile organic compounds profile significantly differed in mouse gut microbiota. Microbiota modulation by FMT influences IgAN phenotype opening new avenues for therapeutic approaches in IgAN.
Collapse
Affiliation(s)
- Gabriella Lauriero
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France.,Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Lilia Abbad
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jonathan M Chemouny
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Laureline Berthelot
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Renato C Monteiro
- Center for Research on Inflammation, Inflamex Laboratory of Excellence, Paris University, Paris, France.,INSERM U1149, Paris, France.,CNRS ERL8252, Paris, France
| |
Collapse
|
3
|
Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2016; 27:167-99. [PMID: 24696432 DOI: 10.1128/cmr.00080-13] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract.
Collapse
|
4
|
Liu Y, Tran DQ, Fatheree NY, Marc Rhoads J. Lactobacillus reuteri DSM 17938 differentially modulates effector memory T cells and Foxp3+ regulatory T cells in a mouse model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G177-G186. [PMID: 24852566 PMCID: PMC4101683 DOI: 10.1152/ajpgi.00038.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease with evidence of increased production of proinflammatory cytokines in the intestinal mucosa. Lactobacillus reuteri DSM 17938 (LR17938) has been shown to have anti-inflammatory activities in an experimental model of NEC. Activated effector lymphocyte recruitment to sites of inflammation requires the sequential engagement of adhesion molecules such as CD44. The phenotype of CD44(+)CD45RB(lo) separates T effector/memory (Tem) cells from naive (CD44(-)CD45RB(hi)) cells. It is unknown whether these Tem cells participate in the inflammation associated with NEC and can be altered by LR17938. NEC was induced in 8- to 10-day-old C57BL/6J mice by gavage feeding with formula and exposure to hypoxia and cold stress for 4 days. Survival curves and histological scores were analyzed. Lymphocytes isolated from mesenteric lymph nodes and ileum were labeled for CD4, CD44, CD45RB, intracellular Foxp3, and Helios and subsequently analyzed by flow cytometry. LR17938 decreased mortality and the incidence and severity of NEC. The percentage of Tem cells in the ileum and mesenteric lymph nodes was increased in NEC but decreased by LR17938. Conversely, the percentage of CD4(+)Foxp3(+) regulatory T (Treg) cells in the intestine decreased during NEC and was restored to normal by LR17938. The majority of the Treg cells preserved by LR17938 were Helios+ subsets, possibly of thymic origin. In conclusion, LR17938 may represent a useful treatment to prevent NEC. The mechanism of protection by LR17938 involves modulation of the balance between Tem and Treg cells. These T cell subsets might be potential biomarkers and therapeutic targets during intestinal inflammation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cytokines/metabolism
- Disease Models, Animal
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Forkhead Transcription Factors/metabolism
- Ileum/immunology
- Ileum/metabolism
- Ileum/microbiology
- Ileum/pathology
- Immunity, Mucosal
- Immunologic Memory
- Inflammation Mediators/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Limosilactobacillus reuteri/physiology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Lymph Nodes/microbiology
- Mice
- Mice, Inbred C57BL
- Probiotics
- Severity of Illness Index
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/microbiology
- Time Factors
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - Dat Q Tran
- Division of Allergy/Immunology/Rheumatology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; and Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - Nicole Y Fatheree
- Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| |
Collapse
|
5
|
Forano E, Chaucheyras-Durand F, Bertin Y, Martin C. [EHEC carriage in ruminants and probiotic effects]. Biol Aujourdhui 2013; 207:261-7. [PMID: 24594574 DOI: 10.1051/jbio/2013023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 01/01/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) are Shiga-Toxin producing E. coli (STEC) that cause human outbreaks which can lead to a severe illness such as haemolytic-uraemic syndrome (HUS), particularly in young children. The gastrointestinal tract of cattle and other ruminants is the principal reservoir of EHEC strains and outbreaks have been associated with direct contact with the farm environment, and with the consumption of meat, dairy products, water and fruit or vegetable contaminated with ruminant manure. Several outbreaks occurred these last years in France. In Brazil, although STEC carriage in ruminants is important, human cases due to EHEC are fairly rare. In order to reduce EHEC survival in the ruminant gastrointestinal tract and thus limit contamination of food products, it is necessary to determine the mechanisms underlying EHEC persistence in this ecosystem with the aim of developing nutritional or ecological strategies. The effect of probiotics has been tested in vitro on the growth and survival of EHEC strains and in vivo on the animal carriage of these strains. Various studies have then shown that lactic bacteria or non-pathogenic E. coli strains were able to limit EHEC fecal shedding. In addition, understanding EHEC physiology in the ruminant gut is also critical for limiting EHEC shedding. We found that EHEC O157:H7 is able to use ethanolamine and mucus-derived sugars as nitrogen and carbon sources, respectively. Thus, these substrates represent an ecological niche for EHEC and their utilization confers a competitive growth advantage to these pathogens as they use them more rapidly than the bacteria belonging to the resident intestinal microbiota. Understanding EHEC metabolism and ecology in the bovine intestinal tract will allow proposing probiotic strains to compete with EHEC for nutrients and thus decrease the sanitary risk.
Collapse
Affiliation(s)
- Evelyne Forano
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Frédérique Chaucheyras-Durand
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France - Lallemand Animal Nutrition, 19 rue des Briquetiers, 31702 Blagnac, France
| | - Yolande Bertin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Christine Martin
- INRA, UR 454 Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| |
Collapse
|
6
|
Moslehi-Jenabian S, Vogensen FK, Jespersen L. The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes. Int J Food Microbiol 2011; 149:269-73. [PMID: 21784546 DOI: 10.1016/j.ijfoodmicro.2011.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/06/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
The luxS gene involved in quorum sensing has been shown to control different behaviour of probiotic lactobacilli. In this study we investigated if luxS in Lactobacillus acidophilus NCFM was up-regulated in response to Listeria monocytogenes EGD-e. The two bacterial strains were grown in mono- and co-culture and the growth of both bacteria and the transcriptional level of luxS in L. acidophilus cells were monitored. Contrary to L. acidophilus, the growth of L. monocytogenes was significantly affected by co-cultivation. Transcriptional analysis showed that the expression of luxS increased during exponential growth in L. acidophilus cells with the highest level in the late-exponential growth phase, decreasing in the stationary phase. Following co-cultivation with L. monocytogenes, the transcriptional level of luxS increased significantly in mid-exponential growing cells of L. acidophilus after incubation with viable L. monocytogenes cells and by addition of cell-free culture supernatant of L. monocytogenes, whereas incubation with heat killed cells of L. monocytogenes had no effect on the transcriptional level. This could indicate that the up-regulation of luxS is due to a response to a secreted compound produced by L. monocytogenes cells.
Collapse
Affiliation(s)
- Saloomeh Moslehi-Jenabian
- University of Copenhagen, Faculty of Life Sciences, Department of Food Science, Food Microbiology, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
7
|
Lee KM, Lim J, Nam S, Yoon MY, Kwon YK, Jung BY, Park Y, Park S, Yoon SS. Inhibitory effects of broccoli extract on Escherichia coli O157:H7 quorum sensing and in vivo virulence. FEMS Microbiol Lett 2011; 321:67-74. [DOI: 10.1111/j.1574-6968.2011.02311.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
8
|
Ryan KA, O'Hara AM, van Pijkeren JP, Douillard FP, O'Toole PW. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 2009; 58:996-1005. [PMID: 19528183 DOI: 10.1099/jmm.0.009407-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human infection by the gastric pathogen Helicobacter pylori is characterized by a robust immune response which rarely prevents persistent H. pylori colonization. Emerging evidence suggests that lactobacilli may reduce H. pylori infection rates and associated inflammation. In this study, we measured the ability of two model strains of Lactobacillus salivarius (UCC118 and UCC119) to modulate gastric epithelial cell chemokine responses to H. pylori infection. Pre-treatment of AGS cells with either L. salivarius strain significantly decreased interleukin-8 (IL-8) production upon exposure to H. pylori, but not in cells stimulated with TNF-alpha. The production of the chemokines CCL20 and IP-10 by AGS cells infected with H. pylori was also altered following pre-treatment with UCC118 and UCC119. We showed that a greater reduction in IL-8 production with UCC119 was due to the production of more acid by this strain. Furthermore, UV-killed cells of both lactobacillus strains were still able to reduce H. pylori-induced IL-8 in the absence of acid production, indicating the action of a second anti-inflammatory mechanism. This immunomodulatory activity was not dependent on adhesion to epithelial cells or bacteriocin production. Real-time RT-PCR analysis showed that expression of eight of twelve Cag pathogenicity island genes tested was downregulated by exposure to L. salivarius, but not by cells of four other lactobacillus species. CagA accumulated in H. pylori cells following exposure to L. salivarius presumably as a result of loss of functionality of the Cag secretion system. These data identified a new mechanism whereby some probiotic bacteria have a positive effect on H. pylori-associated inflammation without clearing the infection.
Collapse
Affiliation(s)
- Kieran A Ryan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Ann M O'Hara
- Department of Medicine, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jan-Peter van Pijkeren
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Paul W O'Toole
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 2009; 136:2015-31. [PMID: 19462507 PMCID: PMC4108289 DOI: 10.1053/j.gastro.2009.01.072] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of metagenomics and the human microbiome will tremendously expand our knowledge of the composition of microbial communities in the human body. As our understanding of microbial variation and corresponding genetic parameters is refined, this information can be applied to rational remodeling or "tailoring" of human-associated microbial communities and their associated functions. Physiologic features such as the development of innate and adaptive immunity, relative susceptibilities to infections, immune tolerance, bioavailability of nutrients, and intestinal barrier function may be modified by changing the composition and functions of the microbial communities. The specialty of gastroenterology will be affected profoundly by the ability to modify the gastrointestinal microbiota through the rational deployment of antibiotics, probiotics, and prebiotics. Antibiotics might be used to remove or suppress undesirable components of the human microbiome. Probiotics can introduce missing microbial components with known beneficial functions for the human host. Prebiotics can enhance the proliferation of beneficial microbes or probiotics, to maximize sustainable changes in the human microbiome. Combinations of these approaches might provide synergistic and effective therapies for specific disorders. The human microbiome could be manipulated by such "smart" strategies to prevent and treat acute gastroenteritis, antibiotic-associated diarrhea and colitis, inflammatory bowel disease, irritable bowel syndrome, necrotizing enterocolitis, and a variety of other disorders.
Collapse
Affiliation(s)
- Geoffrey A. Preidis
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Departments of Pathology, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Departments of Pathology, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2009; 72:728-64, Table of Contents. [PMID: 19052326 DOI: 10.1128/mmbr.00017-08] [Citation(s) in RCA: 651] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
Collapse
|