1
|
Cano-Fernández M, Esteban J. New antibiofilm strategies for the management of nontuberculous mycobacteria diseases. Expert Opin Pharmacother 2024; 25:2035-2046. [PMID: 39365052 DOI: 10.1080/14656566.2024.2412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) represent a group of microorganisms comprising more than 190 species. NTM infections have increased recently, and their treatment is a major challenge because to their resistance to conventional treatments. This review focuses on innovative strategies aimed at eradicating NTM biofilms, a critical factor in their resistance. Important areas addressed include biofilm formation mechanisms, current therapeutic challenges, and novel treatment approaches. The main objective is to compile and analyze information on these emerging strategies, identifying pivotal research directions and recent advancements. AREAS COVERED A review of the scientific literature was conducted to identify emerging novel therapies for the treatment of NTM infections and to explore potential synergies with existing treatments. EXPERT OPINION Experts highlights a limited understanding of optimal treatment regimens, often supported by insufficient scientific evidence. Current therapies are typically prolonged, involve multiple antibiotics with adverse effects, and frequently do not achieve patient cure. Certain species are even considered virtually impossible to eradicate. A thorough understanding of these new approaches is imperative for improving patients outcomes. This review provides a robust foundation for developing of more effective antibacterial strategies, which are essential because of the increasing incidence of NTM infections and the limitations of existing therapies.
Collapse
Affiliation(s)
- María Cano-Fernández
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
2
|
Meliefste HM, Mudde SE, Ammerman NC, de Steenwinkel JEM, Bax HI. A laboratory perspective on Mycobacterium abscessus biofilm culture, characterization and drug activity testing. Front Microbiol 2024; 15:1392606. [PMID: 38690364 PMCID: PMC11058659 DOI: 10.3389/fmicb.2024.1392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium abscessus is an emerging opportunistic pathogen causing severe pulmonary infections in patients with underlying lung disease and cystic fibrosis in particular. The rising prevalence of M. abscessus infections poses an alarming threat, as the success rates of available treatment options are limited. Central to this challenge is the absence of preclinical in vitro models that accurately mimic in vivo conditions and that can reliably predict treatment outcomes in patients. M. abscessus is notorious for its association with biofilm formation within the lung. Bacteria in biofilms are more recalcitrant to antibiotic treatment compared to planktonic bacteria, which likely contributes to the lack of correlation between preclinical drug activity testing (typically performed on planktonic bacteria) and treatment outcome. In recent years, there has been a growing interest in M. abscessus biofilm research. However, the absence of standardized methods for biofilm culture, biofilm characterization and drug activity testing has led to a wide spectrum of, sometimes inconsistent, findings across various studies. Factors such as strain selection, culture medium, and incubation time hugely impact biofilm development, phenotypical characteristics and antibiotic susceptibility. Additionally, a broad range of techniques are used to study M. abscessus biofilms, including quantification of colony-forming units, crystal violet staining and fluorescence microscopy. Yet, limitations of these techniques and the selected readouts for analysis affect study outcomes. Currently, research on the activity of conventional antibiotics, such as clarithromycin and amikacin, against M. abscessus biofilms yield ambiguous results, underscoring the substantial impact of experimental conditions on drug activity assessment. Beyond traditional drug activity testing, the exploration of novel anti-biofilm compounds and the improvement of in vitro biofilm models are ongoing. In this review, we outline the laboratory models, experimental variables and techniques that are used to study M. abscessus biofilms. We elaborate on the current insights of M. abscessus biofilm characteristics and describe the present understanding of the activity of traditional antibiotics, as well as potential novel compounds, against M. abscessus biofilms. Ultimately, this work contributes to the advancement of fundamental knowledge and practical applications of accurate preclinical M. abscessus models, thereby facilitating progress towards improved therapies for M. abscessus infections.
Collapse
Affiliation(s)
| | - Saskia Emily Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Christine Ammerman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Hannelore Iris Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
3
|
Fermiano TH, Perez de Souza JV, Murase LS, Salvaterra Pasquini JP, de Lima Scodro RB, Zanetti Campanerut-Sá PA, Caleffi-Ferracioli KR, Dias Siqueira VL, Meneguello JE, Vieira Teixeira JJ, Cardoso RF. Antimicrobial activity of carvacrol and its derivatives on Mycobacterium spp.: systematic review of preclinical studies. Future Med Chem 2024; 16:679-688. [PMID: 38390753 DOI: 10.4155/fmc-2023-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Background: The scope of the study was to analyze original preclinical studies on the antimicrobial effects of carvacrol and derivatives on the Mycobacterium genus. Materials & methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, four databases (PubMed, Web of Science, SCOPUS and EMBASE) were searched. Results: The search retrieved 392 records, of which 11 papers were selected. Heterogeneity in the techniques and mycobacterial targets was observed. Carvacrol demonstrated synergistic antimycobacterial activity with rifampicin against multidrug-resistant Mycobacterium tuberculosis on membranes and biofilms. In silico approaches showed specific targets in mycobacteria, by inhibition and molecular docking assays, on the enzyme chorismate mutase and the heat shock protein 16.3. Conclusion: Carvacrol has been shown to be a scaffold candidate for future molecules with activity against mycobacteria.
Collapse
Affiliation(s)
- Thiago H Fermiano
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - João V Perez de Souza
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Letícia S Murase
- Graduate Program in Health Sciences, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - João P Salvaterra Pasquini
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Regiane B de Lima Scodro
- Graduate Program in Health Sciences, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Paula A Zanetti Campanerut-Sá
- Graduate Program in Health Sciences, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Vera L Dias Siqueira
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Jean E Meneguello
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Jorge J Vieira Teixeira
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| | - Rosilene Fressatti Cardoso
- Graduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Graduate Program in Health Sciences, State University of Maringá, 87020-900, Maringá-PR, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, Maringá-PR, Brazil
| |
Collapse
|
4
|
Juárez-Cepeda J, Valenzuela O, Garibay-Valdez E, Velazquez C, Garibay-Escobar A. Gene expression during the development of Mycobacterium smegmatis biofilms on hydroxyapatite surfaces. Int Microbiol 2024; 27:257-263. [PMID: 37311924 DOI: 10.1007/s10123-023-00385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.
Collapse
Affiliation(s)
- Jacqueline Juárez-Cepeda
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Olivia Valenzuela
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Estefanía Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, México
| | - Carlos Velazquez
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México.
| |
Collapse
|
5
|
Yang J, Hu Y, Zhang Y, Zhou S, Meng D, Xia S, Wang H. Deciphering the diversity and assemblage mechanisms of nontuberculous mycobacteria community in four drinking water distribution systems with different disinfectants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168176. [PMID: 37907107 DOI: 10.1016/j.scitotenv.2023.168176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Nontuberculous mycobacteria (NTM) represent an emerging health concern due to their escalating infections worldwide. Although drinking water distribution systems (DWDSs) have been considered as NTM reservoirs and a potential infection route, NTM community at the species level remain largely elusive in DWDSs. This study employed high-throughput sequencing coupled with qPCR to profile NTM community and estimate their abundances at the species level in water and biofilm samples in four DWDSs using three different disinfectants (i.e. free chlorine, chloramine and chlorine dioxide). Results demonstrated the dominance of Mycobacterium paragordonae and Mycobacterium mucogenicum in both biofilm and water across four DWDSs, whereas Mycobacterium abscessus and Mycobacterium chelonae, the two clinically significant species, exhibited low abundance but high prevalence. Comparable NTM community was observed in biofilm across these four DWDSs. Distinct separation of NTM community between SH-chloramine DWDSs water and other DWDSs highlighted the selective pressure of chloramine on NTM community. Furthermore, the research revealed that biofilm and water exhibited distinct NTM community structures, with biofilm harboring more diverse NTM community. Certain NTM species displayed a preference for biofilm, such as Mycobacterium gordonae, while others, like Mycobacterium mucogenicum, were more abundant in water samples (P < 0.05). In terms of NTM community assembly, stochastic processes dominated biofilm, while comparable role of stochastic and deterministic processes was observed in water. In conclusion, this study offers a pioneering and comprehensive insight into the dynamics and assembly mechanisms of NTM community within four DWDSs treated with three distinct disinfectants. These findings serve as a critical foundation for assessing NTM exposure risks and devising effective management strategies within DWDSs.
Collapse
Affiliation(s)
- Jinhao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuxing Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuang Zhou
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Die Meng
- Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Yamamoto K, Tsujimura Y, Ato M. Catheter-associated Mycobacterium intracellulare biofilm infection in C3HeB/FeJ mice. Sci Rep 2023; 13:17148. [PMID: 37816786 PMCID: PMC10564925 DOI: 10.1038/s41598-023-44403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023] Open
Abstract
Non-tuberculosis mycobacterial (NTM) diseases are steadily increasing in prevalence and mortality worldwide. Mycobacterium avium and M. intracellulare, the two major pathogens of NTM diseases, are resistant to antibiotics, and chlorine, necessitating their capacity to survive in natural environments (e.g. soil and rivers) and disinfected municipal water. They can also form biofilms on artificial surfaces to provide a protective barrier and habitat for bacilli, which can cause refractory systemic disseminated NTM disease. Therefore, preventing biofilm formation by these pathogens is crucial; however, not many in vivo experimental systems and studies on NTM biofilm infection are available. This study develops a mouse model of catheter-associated systemic disseminated disease caused by M. intracellulare that reproduces the pathophysiology of catheter-associated infections observed in patients undergoing peritoneal dialysis. In addition, the bioluminescence system enabled noninvasive visualization of the amount and distribution of bacilli in vivo and conveniently examine the efficacy of antimicrobials. Furthermore, the cellulose-based biofilms, which were extensively formed in the tissue surrounding the catheter insertion site, reduced drug therapy effectiveness. Overall, this study provides insights into the cause of the drug resistance of NTM and may guide the development of new therapies for NTM diseases.
Collapse
Affiliation(s)
- Kentaro Yamamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan.
| | - Yusuke Tsujimura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Aoba-cho, Higashimurayama, Tokyo, Japan
| |
Collapse
|
7
|
Sharma A, Bansal S, Kumari N, Vashistt J, Shrivastava R. Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm. Appl Microbiol Biotechnol 2023; 107:6029-6046. [PMID: 37542577 DOI: 10.1007/s00253-023-12705-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023]
Abstract
Biofilm formation by Mycobacterium fortuitum causes serious threats to human health due to its increased contribution to nosocomial infections. In this study, the first comprehensive global proteome analysis of M. fortuitum was reported under planktonic and biofilm growth states. A label-free Q Exactive Quadrupole-Orbitrap tandem mass spectrometry analysis was performed on the protein lysates. The differentially abundant proteins were functionally characterized and re-annotated using Blast2GO and CELLO2GO. Comparative analysis of the proteins among two growth states provided insights into the phenotypic switch, and fundamental pathways associated with pathobiology of M. fortuitum biofilm, such as lipid biosynthesis and quorum-sensing. Interaction network generated by the STRING database revealed associations between proteins that endure M. fortuitum during biofilm growth state. Hypothetical proteins were also studied to determine their functional alliance with the biofilm phenotype. CARD, VFDB, and PATRIC analysis further showed that the proteins upregulated in M. fortuitum biofilm exhibited antibiotic resistance, pathogenesis, and virulence. Heatmap and correlation analysis provided the biomarkers associated with the planktonic and biofilm growth of M. fortuitum. Proteome data was validated by qPCR analysis. Overall, the study provides insights into previously unexplored biochemical pathways that can be targeted by novel inhibitors, either for shortened treatment duration or for eliminating biofilm of M. fortuitum and related nontuberculous mycobacterial pathogens. KEY POINTS: • Proteomic analyses of M. fortuitum reveals novel biofilm markers. • Acetyl-CoA acetyltransferase acts as the phenotype transition switch. • The study offers drug targets to combat M. fortuitum biofilm infections.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Saurabh Bansal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Neha Kumari
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, H.P, India.
| |
Collapse
|
8
|
Muñoz-Egea MC, Akir A, Esteban J. Mycobacterium biofilms. Biofilm 2023; 5:100107. [PMID: 36798742 PMCID: PMC9925856 DOI: 10.1016/j.bioflm.2023.100107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The genus Mycobacterium includes some of the deadliest pathogens of History (Mycobacterium tuberculosis, Mycobacterium leprae), but most of the species within the genus are environmental microorganisms. Because some of these nontuberculous mycobacteria (NTM) species can be human pathogens, the study of these mycobacterial biofilms has increased during the last decades, and the interest in this issue increased as well as the growing number of patients with diseases caused by NTM. Different molecular mechanisms have been described, being especially well known the importance of glycopeptidolipids. Moreover, the knowledge of the extracellular matrix has shown important differences with other microorganisms, especially because of the presence of lipidic molecules as a key component of this structure. The clinical importance of mycobacterial biofilms has been described for many chronic diseases, especially lung diseases and implant-related ones, both in vitro and in vivo, and even in patients. Moreover, the biofilm-producing capacity has been proven also in M. tuberculosis, while its importance is not well understood. Biofilm studies have also shown the increasing resistance of mycobacteria in sessile form, and the importance of this resistance in the management of the patients is beyond doubt, being surgery necessary in some cases to cure the patients. Diagnosis of mycobacterial diseases is still based on culture-based techniques designed for the detection of M. tuberculosis. Molecular biology-based methods are also broadly used but again designed for tuberculosis diagnosis. Antimicrobial susceptibility testing is also well developed for tuberculosis, but only some species of NTM have standardized techniques for this purpose. New tools or approaches are necessary to treat these patients, whose importance is increasing, as the number of potential hosts is also increasing throughout the world.
Collapse
Affiliation(s)
- Maria-Carmen Muñoz-Egea
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos 2, 28040, Madrid, Spain,CIBERINFEC - CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Arij Akir
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos 2, 28040, Madrid, Spain,CIBERINFEC - CIBER de Enfermedades Infecciosas, Madrid, Spain,Corresponding author. Dept. of Clinical Microbiology, IIS-Fundacion Jimenez Diaz, UAM. Av. Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
10
|
Weathered C, Pennington K, Escalante P, Pienaar E. The Role of Biofilms, Bacterial Phenotypes, and Innate Immune Response in Mycobacterium avium Colonization to Infection. J Theor Biol 2021; 534:110949. [PMID: 34717938 DOI: 10.1016/j.jtbi.2021.110949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium complex (MAC), is known for colonizing and infecting humans following inhalation of the bacteria. MAC pulmonary disease is notoriously difficult to treat and prone to recurrence. Both the incidence and prevalence MAC pulmonary disease have been increasing globally. MAC is well known to form biofilms in the environment, and in vitro, these biofilms have been shown to aid MAC in epithelial cell invasion, protect MAC from phagocytosis, and cause premature apoptosis in macrophages. In vivo, the system of interactions between MAC, biofilms and host macrophages is complex, difficult to replicate in vitro and in animal models, has not been fully characterized. Here we present a three-dimensional agent-based model of a lung airway to help understand how these interactions evolve in the first 14 days post-bacterial inhalation. We parameterized the model using published data and performed uncertainty analysis to characterize outcomes and parameters' effects on those outcomes. Model results show diverse outcomes, including wide ranges of macrophage recruitment levels, and bacterial loads and phenotype distribution. Though most bacteria are phagocytosed by macrophages and remain intracellular, there are also many simulations in which extracellular bacteria continue to drive the colonization and infection. Initial parameters dictating host immune levels, bacterial loads introduced to the airway, and biofilm conditions have significant and lasting impacts on the course of these results. Additionally, though macrophage recruitment is key for suppressing bacterial loads, there is evidence of significant excess recruitment that fail to impact bacterial numbers. These results highlight a need and identify a path for further exploration into the inhalation events in MAC infection. Early infection dynamics could have lasting impacts on the development of nodular bronchiectatic or fibrocavitary disease as well as inform possible preventative and treatment intervention targeting biofilm-macrophage interactions.
Collapse
Affiliation(s)
- Catherine Weathered
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Kelly Pennington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Patricio Escalante
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| |
Collapse
|
11
|
Sharma A, Vashistt J, Shrivastava R. Response surface modeling integrated microtiter plate assay for Mycobacterium fortuitum biofilm quantification. BIOFOULING 2021; 37:830-843. [PMID: 34503352 DOI: 10.1080/08927014.2021.1974846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effects of agitation, temperature, and pH on biofilm formation by Mycobacterium fortuitum were studied and quantified through response surface modeling. The microtiter plate assay was optimized to achieve conditions favoring maximum mycobacterial biofilm quantification. Optical density (OD) measurement using a crystal violet assay was performed to estimate the amount of biofilm formed. Response surface methodology (RSM) results revealed an R2 value of 96.18%, exhibiting a maximum OD of 2.119 (λ570 nm) at a temperature of 37 °C and pH 7.0, under a static environment. The conditions were experimentally validated. Statistically significant results showed that the maximum biofilm was produced 96 h after mycobacterial inoculation. Thus, the results provide a basis for using RSM as an efficient optimization method for M. fortuitum biofilm assays. This approach can also be incorporated into strategies for screening anti-biofilm compounds, synthetic chemicals, drugs, or inhibitors against pathogenic mycobacteria.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (H.P.), India
| | - Jitendraa Vashistt
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (H.P.), India
| | - Rahul Shrivastava
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan (H.P.), India
| |
Collapse
|
12
|
Sharma S, Kumar M, Kumar J, Srivastava N, Hussain MA, Shelly A, Mazumder S. M. fortuitum-induced CNS-pathology: Deciphering the role of canonical Wnt signaling, blood brain barrier components and cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104111. [PMID: 33933535 DOI: 10.1016/j.dci.2021.104111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Molecular underpinning of mycobacteria-induced CNS-pathology is not well understood. In the present study, zebrafish were infected with Mycobacterium fortuitum and the prognosis of CNS-pathogenesis studied. We observed M. fortuitum triggers extensive brain-pathology. Evans blue extravasation demonstrated compromised blood-brain barrier (BBB) integrity. Further, decreased expression in tight-junction (TJ) and adherens junction complex (AJC) genes were noted in infected brain. Wnt-signaling has emerged as a major player in host-mycobacterial immunity but its involvement/role in brain-infection is not well studied. Sustained expression of wnt2, wnt3a, fzd5, lrp5/6 and β-catenin, with concordant decline in degradation complex components axin, gsk3β and β-catenin regulator capn2a were observed. The surge in ifng1 and tnfa expression preceding il10 and il4 suggested cytokine-interplay critical in M. fortuitum-induced brain-pathology. Therefore, we suggest adult zebrafish as a viable model for studying CNS-pathology and using the same, conclude that M. fortuitum infection is associated with repressed TJ-AJC gene expression and compromised BBB permeability. Our results implicate Wnt/β-catenin pathway in M. fortuitum-induced CNS-pathology wherein Th1-type signals facilitate bacterial clearance and Th2-type signals prevent the disease sequel.
Collapse
Affiliation(s)
- Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, 110021, India.
| |
Collapse
|
13
|
Gerasimova EN, Ismatullin DD, Lyamin AV, Zhestkov AV. General characteristics, features of cultivation and antibiotic resistance representatives of mycobacterium fortuitum group representatives (review of literature). Klin Lab Diagn 2021; 66:223-228. [PMID: 33878244 DOI: 10.51620/0869-2084-2021-66-4-223-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, more and more scientific works have been devoted to non-tuberculous mycobacteria, both by domestic and foreign researchers. One of the main reasons for this is the increase in patients with immunosuppression of various origins, improvement of the quality of laboratory and instrumental diagnostics of mycobacteriosis. This article focuses on the representatives of the M. fortuitum group, as the main pathogens among the group of fast-growing mycobacteria. The data on the modern classification based on the use of molecular genetic studies are indicated. The M. fortuitum group includes: Mycobacterium fortuitum, M. peregrinum, M. senegalense, M. porcinum, M. houstonense, M. neworleansense, M. boenickei, M. conceptionense, M. septicum, M. alvei. According to the new data, mycobacteria were divided into 5 clades (Abscessus-Chelonae, Fortuitum-Vaccae, Terrae, Triviale, Tuberculosis-Simiae), and based on molecular genetic studies, new genera in the Mycobacteriaceae family were isolated: Mycolicibacter spp., Mycolicibacillus spp., Mycolicibacillus spp., Mycobacteroides spp., Mycolicibacterium spp. In accordance with the new classification, representatives of the Mycobacterium fortuitum group belong to the genus Mycolicibacterium. The main epidemiological features of the main sources of the spread of mycobacteria, factors and ways of their transmission are indicated. Due to their wide distribution in the environment, representatives of the M. fortuitum group are capable of causing diseases of the pulmonary and extrapulmonary localization. The distinctive features of pathogenicity factors, due to which the course of the disease is determined, are noted. The article also indicates the main difficulties and features of determining the sensitivity to antimicrobial chemotherapy drugs, provides data on the main features of antibiotic resistance of M.fortuitum group. In preparing the review, literature sources obtained from international and domestic databases were used: Scopus, Web of Science, Springer, RSCI.
Collapse
|
14
|
DeFlorio-Barker S, Egorov A, Smith GS, Murphy MS, Stout JE, Ghio AJ, Hudgens EE, Messier KP, Maillard JM, Hilborn ED. Environmental risk factors associated with pulmonary isolation of nontuberculous mycobacteria, a population-based study in the southeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144552. [PMID: 33383509 PMCID: PMC8317204 DOI: 10.1016/j.scitotenv.2020.144552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing in the United States. Associations were evaluated among residents of central North Carolina between pulmonary isolation of NTM and environmental risk factors including: surface water, drinking water source, urbanicity, and exposures to soils favorable to NTM growth. Reports of pulmonary NTM isolation from patients residing in three counties in central North Carolina during 2006-2010 were collected from clinical laboratories and from the State Laboratory of Public Health. This analysis was restricted to patients residing in single family homes with a valid residential street address and conducted at the census block level (n = 13,495 blocks). Negative binomial regression models with thin-plate spline smoothing function of geographic coordinates were applied to assess effects of census block-level environmental characteristics on pulmonary NTM isolation count. Patients (n = 507) resided in 473 (3.4%) blocks within the study area. Blocks with >20% hydric soils had 26.8% (95% confidence interval (CI): 1.8%, 58.0%), p = 0.03, higher adjusted mean patient counts compared to blocks with ≤20% hydric soil, while blocks with >50% acidic soil had 24.8% (-2.4%, 59.6%), p = 0.08 greater mean patient count compared to blocks with ≤50% acidic soil. Isolation rates varied by county after adjusting for covariates. The effects of using disinfected public water supplies vs. private wells, and of various measures of urbanicity were not significantly associated with NTM. Our results suggest that proximity to certain soil types (hydric and acidic) could be a risk factor for pulmonary NTM isolation in central North Carolina.
Collapse
Affiliation(s)
- Stephanie DeFlorio-Barker
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA.
| | - Andrey Egorov
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Genee S Smith
- Johns Hopkins, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA
| | - Mark S Murphy
- General Dynamics Information Technology, Durham, NC, USA
| | - Jason E Stout
- Duke University Medical Center, Department of Medicine, Durham, NC, USA
| | - Andrew J Ghio
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Edward E Hudgens
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Kyle P Messier
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, USA
| | - Jean-Marie Maillard
- North Carolina Department of Health and Human Services, Division of Public Health, Epidemiology Section, Raleigh, NC, USA
| | - Elizabeth D Hilborn
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Mickymaray S, Alfaiz FA, Paramasivam A. Efficacy and Mechanisms of Flavonoids against the Emerging Opportunistic Nontuberculous Mycobacteria. Antibiotics (Basel) 2020; 9:antibiotics9080450. [PMID: 32726972 PMCID: PMC7460331 DOI: 10.3390/antibiotics9080450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are the causative agent of severe chronic pulmonary diseases and is accountable for post-traumatic wound infections, lymphadenitis, endometritis, cutaneous, eye infections and disseminated diseases. These infections are extremely challenging to treat due to multidrug resistance, which encompasses the classical and existing antituberculosis agents. Hence, current studies are aimed to appraise the antimycobacterial activity of flavonoids against NTM, their capacity to synergize with pharmacological agents and their ability to block virulence. Flavonoids have potential antimycobacterial effects at minor quantities by themselves or in synergistic combinations. A cocktail of flavonoids used with existing antimycobacterial agents is a strategy to lessen side effects. The present review focuses on recent studies on naturally occurring flavonoids and their antimycobacterial effects, underlying mechanisms and synergistic effects in a cocktail with traditional agents.
Collapse
Affiliation(s)
- Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
- Correspondence:
| | - Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| | - Anand Paramasivam
- Department of Basic Medical Sciences, College of Dentistry, Al-Zulfi, Majmaah University, Majmaah 11952, Riyadh Region, Saudi Arabia;
| |
Collapse
|
16
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
17
|
Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach. Life Sci 2020; 250:117541. [PMID: 32169520 DOI: 10.1016/j.lfs.2020.117541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Abstract
AIM Nontuberculous mycobacterial (NTM) infection such as endophthalmitis, dacryocystitis, and canaliculitis are pervasive across the globe and are currently managed by antibiotics. However, the recent cases of Mycobacteroides developing drug resistance reported along with the improper practice of medicine intrigued us to explore its genomic and proteomic canvas at a global scale and develop a chimeric vaccine against Mycobacteroides. MAIN METHODS We carried out a vivid genomic study on five recently sequenced strains of Mycobacteroides and explored their Pan-core genome/proteome in three different phases. The promiscuous antigenic proteins were identified via a subtractive proteomics approach that qualified for virulence causation, resistance and essentiality factors for this notorious bacterium. An integrated pipeline was developed for the identification of B-Cell, MHC (Major histocompatibility complex) class I and II epitopes. KEY FINDINGS Phase I identified the shreds of evidence of reductive evolution and propensity of the Pan-genome of Mycobacteroides getting closed soon. Phase II and Phase III produced 8 vaccine constructs. Our final vaccine construct, V6 qualified for all tests such as absence for allergenicity, presence of antigenicity, etc. V6 contains β-defensin as an adjuvant, linkers, Lysosomal-associated membrane protein 1 (LAMP1) signal peptide, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Besides, V6 also interacts with a maximum number of MHC molecules and the TLR4/MD2 (Toll-like receptor 4/Myeloid differentiation factor 2) complex confirmed by docking and molecular dynamics simulation studies. SIGNIFICANCE The knowledge harnessed from the current study can help improve the current treatment regimens or in an event of an outbreak and propel further related studies.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Tulika Bhardwaj
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| |
Collapse
|
18
|
Agarwal RG, Sharma P, Nyati KK. microRNAs in Mycobacterial Infection: Modulation of Host Immune Response and Apoptotic Pathways. Immune Netw 2019; 19:e30. [PMID: 31720041 PMCID: PMC6829074 DOI: 10.4110/in.2019.19.e30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Our current knowledge of mycobacterial infections in humans has progressively increased over the past few decades. The infection of Mycobacterium tuberculosis causes tuberculosis (TB) disease, which has reasoned for excessive morbidity and mortality worldwide, and has become a foremost issue of health problem globally. Mycobacterium leprae, another member of the family Mycobacteriaceae, is responsible for causing a chronic disease known as leprosy that mainly affects mucosa of the upper respiratory tract, skin, peripheral nerves, and eyes. Ample amount of existing data suggests that pathogenic mycobacteria have skilled in utilizing different mechanisms to escape or offset the host immune responses. They hijack the machinery of immune cells through the modulation of microRNAs (miRs), which regulate gene expression and immune responses of the host. Evidence shows that miRs have now gained considerable attention in the research, owing to their involvement in a broad range of inflammatory processes that are further implicated in the pathogenesis of several diseases. However, the knowledge of functions of miRs during mycobacterial infections remains limited. This review summarises recent findings of differential expression of miRs, which are used to good advantage by mycobacteria in offsetting host immune responses generated against them.
Collapse
Affiliation(s)
- Riddhi Girdhar Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Kishan Kumar Nyati
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
19
|
Marini E, Di Giulio M, Ginestra G, Magi G, Di Lodovico S, Marino A, Facinelli B, Cellini L, Nostro A. Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode. PLoS One 2019; 14:e0219038. [PMID: 31260476 PMCID: PMC6602199 DOI: 10.1371/journal.pone.0219038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022] Open
Abstract
Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 μg/mL for most of RGM isolates (32–512 μg/mL), MBCs were 2–4 times higher than MICs, and MICs of vapours were lower (16 μg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61–77%) and at concentration above the MIC (2–8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.
Collapse
Affiliation(s)
- Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gloria Magi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Bruna Facinelli
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Luigina Cellini
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- * E-mail:
| |
Collapse
|
20
|
Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control 2019; 8:76. [PMID: 31131107 PMCID: PMC6524306 DOI: 10.1186/s13756-019-0533-3] [Citation(s) in RCA: 855] [Impact Index Per Article: 142.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Biofilm is a complex structure of microbiome having different bacterial colonies or single type of cells in a group; adhere to the surface. These cells are embedded in extracellular polymeric substances, a matrix which is generally composed of eDNA, proteins and polysaccharides, showed high resistance to antibiotics. It is one of the major causes of infection persistence especially in nosocomial settings through indwelling devices. Quorum sensing plays an important role in regulating the biofilm formation. There are many approaches being used to control infections by suppressing its formation but CRISPR-CAS (gene editing technique) and photo dynamic therapy (PDT) are proposed to be used as therapeutic approaches to subside bacterial biofim infections, especially caused by deadly drug resistant bad bugs.
Collapse
Affiliation(s)
- Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| | - Lama Misba
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
21
|
Chakraborty P, Kumar A. The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? MICROBIAL CELL 2019; 6:105-122. [PMID: 30740456 PMCID: PMC6364259 DOI: 10.15698/mic2019.02.667] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A number of non-tuberculous mycobacterium species are opportunistic pathogens and ubiquitously form biofilms. These infections are often recalcitrant to treatment and require therapy with multiple drugs for long duration. The biofilm resident bacteria also display phenotypic drug tolerance and thus it has been hypothesized that the drug unresponsiveness in vivo could be due to formation of biofilms inside the host. We have discussed the biofilms of several pathogenic non-tuberculous mycobacterium (NTM) species in context to the in vivo pathologies. Besides pathogenic NTMs, Mycobacterium smegmatis is often used as a model organism for understanding mycobacterial physiology and has been studied extensively for understanding the mycobacterial biofilms. A number of components of the mycobacterial cell wall such as glycopeptidolipids, short chain mycolic acids, monomeromycolyl diacylglycerol, etc. have been shown to play an important role in formation of pellicle biofilms. It shall be noted that these components impart a hydrophobic character to the mycobacterial cell surface that facilitates cell to cell interaction. However, these components are not necessarily the constituents of the extracellular matrix of mycobacterial biofilms. In the end, we have described the biofilms of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. Three models of Mtb biofilm formation have been proposed to study the factors regulating biofilm formation, the physiology of the resident bacteria, and the nature of the biomaterial that holds these bacterial masses together. These models include pellicle biofilms formed at the liquid-air interface of cultures, leukocyte lysate-induced biofilms, and thiol reductive stressinduced biofilms. All the three models offer their own advantages in the study of Mtb biofilms. Interestingly, lipids (mainly keto-mycolic acids) are proposed to be the primary component of extracellular polymeric substance (EPS) in the pellicle biofilm, whereas the leukocyte lysate-induced and thiol reductive stress-induced biofilms possess polysaccharides as the primary component of EPS. Both models also contain extracellular DNA in the EPS. Interestingly, thiol reductive stressinduced Mtb biofilms are held together by cellulose and yet unidentified structural proteins. We believe that a better understanding of the EPS of Mtb biofilms and the physiology of the resident bacteria will facilitate the development of shorter regimen for TB treatment.
Collapse
Affiliation(s)
- Poushali Chakraborty
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India 160036
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India 160036.,CSIR-Academy of Scientific & Innovative Research (AcSIR), Council of Scientific & Industrial Research, New Delhi-110001
| |
Collapse
|
22
|
Aboagye G, Rowe MT. Evaluation of denaturing gradient gel electrophoresis for the detection of mycobacterial species and their potential association with waterborne pathogens. JOURNAL OF WATER AND HEALTH 2018; 16:938-946. [PMID: 30540268 DOI: 10.2166/wh.2018.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The versatility of denaturing gradient gel electrophoresis (DGGE) protocol provides enough grounds for its wide application over an array of microorganisms. This work was designed to evaluate DGGE for the detection and confirmation of mycobacteria and their association, if any, with waterborne pathogens. A total of 76 samples comprising raw untreated water, schmutzdecke, floccules and final treated water obtained from a common water source, and two water treatment works (WTW1 and WTW2), were analysed. Thirty-five species were identified from the overall samples, with 7% (5/76), 13% (10/76) and 26% (20/76) from the common raw water source, WTW1 and WTW2 respectively. The majority of the species were Cyanobacteria, with high dominance in the raw water entering WTW2. In the final treated water of WTW1 Eutreptiella braarudii was found, and that of WTW2 contained Anabaena nereformis, Anabaena torulosa and Podocarpus nerrifolius. Furthermore, one Mycobacterium species was found in the raw water of WTW1 aside from the detection of Mycobacterium avium ssp. paratuberculosis by the technique. No association between mycobacteria and the other species was observed. This implies DGGE may be employed to study the diversity of other akin mycobacterial species from various sources, and not as a direct means of elucidating microbial associations.
Collapse
Affiliation(s)
- G Aboagye
- School of Biological Sciences, The Queen's University Belfast, Northern Ireland, UK and Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana E-mail:
| | - M T Rowe
- Food Microbiology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, UK
| |
Collapse
|
23
|
Tan Y, Su B, Shu W, Cai X, Kuang S, Kuang H, Liu J, Pang Y. Epidemiology of pulmonary disease due to nontuberculous mycobacteria in Southern China, 2013-2016. BMC Pulm Med 2018; 18:168. [PMID: 30413193 PMCID: PMC6230232 DOI: 10.1186/s12890-018-0728-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Background Pulmonary nontuberculous mycobacteria (NTM) disease is of increasing public health concern in China. Information is limited regarding risk factors associated with this disease in China. The objective of this study was to describe the epidemiology of pulmonary disease due to NTM in Southern China. Methods We retrospectively reviewed the medical records of pulmonary NTM patients registered in the Guangzhou Chest Hospital with positive mycobacterial cultures during 2013–2016. We described sex, age, residence, treatment history, laboratory examination results and comorbidities of pulmonary NTM patients. Results Among the 607 NTM cases, the most prevalent species were Mycobacterium avium complex (44.5%), Mycobacterium abscessus complex (40.5%), Mycobacterium kansasii (10.0%) and Mycobacterium fortuitum (2.8%). The male:female ratio was significantly lower among patients infected with rapidly growing mycobacteria (RGM) than among those with slowly growing mycobacteria (SGM). The risk of developing SGM disease significantly increased with advancing age. In addition, pulmonary RGM diseases were more common in migrant population than resident population. Notably, patients with pulmonary RGM diseases were significantly more likely to have bronchiectasis underlying noted than those with SGM diseases. No significant difference was observed in in vitro drug susceptibility among NTM species. Conclusion Our data illustrate that the M. avium complex is the most predominant causative agent of pulmonary NTM disease in Southern China. Female, migrant population, the presence of bronchiectasis are independent risk factors for pulmonary diseases due to RGM. In addition, the prevalence of SGM increases significantly with advancing age.
Collapse
Affiliation(s)
- Yaoju Tan
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Biyi Su
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Wei Shu
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research,, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Xingshan Cai
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Shaojia Kuang
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Haobin Kuang
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China
| | - Jianxiong Liu
- Department of Clinical Laboratory, Guangzhou Chest Hospital, State Key Laboratory of Respiratory Disease, No. 62, Hengzhigang Road, Yuexiu District, Guangzhou, Guangdong Province, 510095, People's Republic of China.
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research,, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, No. 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
24
|
Nath Y, Ray SK, Buragohain AK. Essential role of the ESX-3 associated eccD3 locus in maintaining the cell wall integrity of Mycobacterium smegmatis. Int J Med Microbiol 2018; 308:784-795. [PMID: 30257807 DOI: 10.1016/j.ijmm.2018.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022] Open
Abstract
Mycobacterial pathogens have evolved a unique secretory apparatus called the Type VII secretion system (T7SS) which comprises of five gene clusters designated as ESX1, ESX2, ESX3, ESX4, and ESX5. Of these the ESX3 T7SS plays an important role in the regulatory uptake of iron from the environment, thereby enabling the bacteria to establish successful infection in the host. However, ESX3 secretion system is conserved among all the mycobacterial species including the fast-growing nonpathogenic species M. smegmatis. Although the function of ESX3 T7SS is known to be absolutely critical for establishing infection by M. tuberculosis, its conserved nature in all the pathogenic and nonpathogenic mycobacterial species intrigues to explore the additional functional roles in Mycobacterium species through which potent targets for drugs can be identified and developed. In the present study, we investigated the possible role of EccD3, a transmembrane protein of the ESX3 T7SS in M. smegmatis by deleting the entire eccD3 gene by efficient allelic exchange method. The preliminary investigations through the creation of knockout mutant of the eccD3 gene indicate that this secretory apparatus has an important role in maintaining the cell wall integrity which was evident from the abnormal colony morphology, lack of biofilm formation and difference in cell wall permeability.
Collapse
Affiliation(s)
- Yutika Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India; Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
25
|
Monteiro JTC, Lima KVB, Barretto AR, Furlaneto IP, Gonçalves GM, Costa ARFD, Lopes ML, Dalcolmo MP. Clinical aspects in patients with pulmonary infection caused by mycobacteria of the Mycobacterium abscessus complex, in the Brazilian Amazon. ACTA ACUST UNITED AC 2018; 44:93-98. [PMID: 29791556 PMCID: PMC6044653 DOI: 10.1590/s1806-37562016000000378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 10/16/2017] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To describe the clinical manifestations of patients with pulmonary infection caused by mycobacteria of the Mycobacterium abscessus complex (MABSC), and to compare these manifestations with those of patients infected with other nontuberculous mycobacteria (NTM). METHODS This was a retrospective cohort study involving 43 patients divided into two groups: the MABSC group, consisting of patients with pulmonary infection caused by MABSC (n = 17); and the NTM group, consisting of patients with pulmonary infection caused by NTM other than MABSC (n = 26). Patients were previously treated with a regimen of rifampin, isoniazid, pyrazinamide, and ethambutol before the diagnosis of NTM was confirmed by two culture-positive sputum samples. The nucleotide sequences of the hsp65, 16S rRNA, and/or rpoB genes were analyzed to identify the mycobacteria. Data were collected on demographic, clinical, and radiological characteristics, as well as on treatment responses and outcomes. RESULTS Loss of appetite was the only clinical manifestation that was significantly more common in the MABSC group than in the NTM group (p = 0.0306). The chance of having to use a second treatment regimen was almost 12 times higher in the MABSC group than in the NTM group. Treatment success was significantly higher in the NTM group than in the MABSC group (83.2% vs. 17.6%; p < 0.0001). The chance of recurrence was approximately 37 times higher in the MABSC group than in the NTM group. CONCLUSIONS In the study sample, treatment response of pulmonary disease caused by MABSC was less favorable than that of pulmonary disease caused by other NTM.
Collapse
Affiliation(s)
- José Tadeu Colares Monteiro
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Centro Universitário do Estado do Pará, Universidade do Estado do Pará, Belém, PA, Brazil
| | - Karla Valéria Batista Lima
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | | | - Ismari Perini Furlaneto
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Centro Universitário do Estado do Pará, Universidade do Estado do Pará, Belém, PA, Brazil
| | | | - Ana Roberta Fusco da Costa
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - Maria Luiza Lopes
- Laboratório de Biologia Molecular, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - Margareth Pretti Dalcolmo
- Programa de Pós-Graduação, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
26
|
Hydrogel delivery of lysostaphin eliminates orthopedic implant infection by Staphylococcus aureus and supports fracture healing. Proc Natl Acad Sci U S A 2018; 115:E4960-E4969. [PMID: 29760099 PMCID: PMC5984524 DOI: 10.1073/pnas.1801013115] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Orthopedic implant infections require long-term antibiotic therapy and surgical debridement to successfully retain the implant; however, therapeutic failure can lead to implant removal. Here an injectable PEG-based hydrogel that adheres to exposed tissue and fracture surfaces is engineered to deliver the antimicrobial enzyme lysostaphin to infected, implant-fixed, mouse femoral fractures. Lysostaphin encapsulation within the hydrogel enhances enzyme stability while providing enhanced antibiofilm activity and serving as a controlled delivery platform. In a preclinical animal model of orthopedic-implant infection, we show that lysostaphin-delivering hydrogels outperform prophylactic antibiotic therapy and soluble lysostaphin, by eradicating infection while promoting bone repair. Importantly, lysostaphin-delivering hydrogels are effective against antibiotic-resistant infections. This lysostaphin delivery platform could be highly effective at treating and preventing implant infections. Orthopedic implant infections are a significant clinical problem, with current therapies limited to surgical debridement and systemic antibiotic regimens. Lysostaphin is a bacteriolytic enzyme with high antistaphylococcal activity. We engineered a lysostaphin-delivering injectable PEG hydrogel to treat Staphylococcus aureus infections in bone fractures. The injectable hydrogel formulation adheres to exposed tissue and fracture surfaces, ensuring efficient, local delivery of lysostaphin. Lysostaphin encapsulation within this synthetic hydrogel maintained enzyme stability and activity. Lysostaphin-delivering hydrogels exhibited enhanced antibiofilm activity compared with soluble lysostaphin. Lysostaphin-delivering hydrogels eradicated S. aureus infection and outperformed prophylactic antibiotic and soluble lysostaphin therapy in a murine model of femur fracture. Analysis of the local inflammatory response to infections treated with lysostaphin-delivering hydrogels revealed indistinguishable differences in cytokine secretion profiles compared with uninfected fractures, demonstrating clearance of bacteria and associated inflammation. Importantly, infected fractures treated with lysostaphin-delivering hydrogels fully healed by 5 wk with bone formation and mechanical properties equivalent to those of uninfected fractures, whereas fractures treated without the hydrogel carrier were equivalent to untreated infections. Finally, lysostaphin-delivering hydrogels eliminate methicillin-resistant S. aureus infections, supporting this therapy as an alternative to antibiotics. These results indicate that lysostaphin-delivering hydrogels effectively eliminate orthopedic S. aureus infections while simultaneously supporting fracture repair.
Collapse
|
27
|
Roguet A, Therial C, Catherine A, Bressy A, Varrault G, Bouhdamane L, Tran V, Lemaire BJ, Vincon-Leite B, Saad M, Moulin L, Lucas FS. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes. MICROBIAL ECOLOGY 2018; 75:834-846. [PMID: 29063147 DOI: 10.1007/s00248-017-1088-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 103 to 1.9 × 108 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.
Collapse
Affiliation(s)
- Adélaïde Roguet
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France.
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | - Claire Therial
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Arnaud Catherine
- Unité Molécules de Communication et Adaptation des Micro-organismes (MCAM UMR 7245), Sorbonne Université, Muséum National d'Histoire Naturelle, Case 39, 57 rue Cuvier, FR 75005, Paris, France
| | - Adèle Bressy
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Gilles Varrault
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Lila Bouhdamane
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Viet Tran
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Bruno J Lemaire
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | | | - Mohamed Saad
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| | - Laurent Moulin
- Eau de Paris, Direction Recherche et Développement Qualité de l'Eau (DRDQE), 33 avenue Jean Jaurès, FR 94200, Ivry-sur-Seine, France
| | - Françoise S Lucas
- Leesu, UMR-MA 102, UPEC, École des Ponts, AgroParisTech, 94000, Créteil, France
| |
Collapse
|
28
|
Abstract
The genus Mycobacterium includes human pathogens (Mycobacterium tuberculosis and Mycobacterium leprae) and environmental organisms known as non-tuberculous mycobacteria (NTM) that, when associated with biomaterials and chronic disease, can cause human infections. A common pathogenic factor of mycobacteria is the formation of biofilms. Various molecules are involved in this process, including glycopeptidolipids, shorter-chain mycolic acids, and GroEL1 chaperone. Nutrients, ions, and carbon sources influence bacterial behavior and have a regulatory role in biofilm formation. The ultrastructure of mycobacterial biofilms can be studied by confocal laser scanning microscopy, a technique that reveals different phenotypic characteristics. Cording is associated with NTM pathogenicity, and is also considered an important property of M. tuberculosis strains. Mycobacterial biofilms are more resistant to environmental aggressions and disinfectants than the planktonic form. Biofilm-forming mycobacteria have been reported in many environmental studies, especially in water systems. NTM cause respiratory disease in patients with underlying diseases, such as old tuberculosis scars, bronchiectasis, and cystic fibrosis. Pathogens can be either slowly growing mycobacteria, such as Mycobacterium avium complex, or rapidly growing species, such as Mycobacterium abscessus. Another important biofilm-related group of infections are those associated with biomaterials, and in this setting the most frequently isolated organisms are rapidly growing mycobacteria. M. tuberculosis can develop a biofilm which plays a role in the process of casseous necrosis and cavity formation in lung tissue. M. tuberculosis also develops biofilms on clinical biomaterials. Biofilm development is an important factor for antimicrobial resistance, as it affords protection against antibiotics that are normally active against the same bacteria in the planktonic state. This antibiotic resistance of biofilm-forming microorganisms may result in treatment failure, and biofilms have to be physically eradicated to resolve the infection. New strategies with potential antibiofilm molecules that improve treatment efficacy have been developed. A novel antibiofilm approach focuses on Methylobacterium sp. An understanding of biofilm is essential for the appropriate management of patients with many NTM diseases, while the recent discovery of M. tuberculosis biofilms opens a new research field.
Collapse
Affiliation(s)
- Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | | |
Collapse
|
29
|
|
30
|
Cardona PJ. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm Infecc Microbiol Clin 2017; 36:38-46. [PMID: 29198784 DOI: 10.1016/j.eimc.2017.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
The evolution between Mycobacterium tuberculosis infection and active tuberculosis is multifactorial and involves different biological scales. The synthesis of ESAT-6 or the induction of alveolar macrophage necrosis are key, but to understand it, it is necessary to consider the dynamics of endogenous and exogenous reinfection, drainage of lung parenchyma and respiratory mechanics, local fibrosis processes and blood supply. Paradoxically, the immune response generated by the infection is highly protective (90%) against active tuberculosis, although as it is essentially based on the proliferation of Th1 lymphocytes, it cannot prevent reinfection. Severe immunosuppression can only explain 10% of active tuberculosis cases, while the remainder are attributable to comorbidities, a proinflammatory environment and an unknown genetic propensity. The pathogenic capacity of environmental mycobacteria is discrete, linked to deficits in the innate and acquired immune response. The ability to generate biofilms and the ability of M. ulcerans to generate the exotoxin mycolactone is remarkable.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Badalona, Barcelona, España.
| |
Collapse
|
31
|
Marini E, Di Giulio M, Magi G, Di Lodovico S, Cimarelli ME, Brenciani A, Nostro A, Cellini L, Facinelli B. Curcumin, an antibiotic resistance breaker against a multiresistant clinical isolate ofMycobacterium abscessus. Phytother Res 2017; 32:488-495. [DOI: 10.1002/ptr.5994] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/09/2017] [Accepted: 11/01/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Emanuela Marini
- Unit of Microbiology, Department of Biomedical Sciences and Public Health; Polytechnic University of Marche; Ancona Italy
| | - Mara Di Giulio
- Department of Pharmacy; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | - Gloria Magi
- Unit of Microbiology, Department of Biomedical Sciences and Public Health; Polytechnic University of Marche; Ancona Italy
| | - Silvia Di Lodovico
- Department of Pharmacy; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | | | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health; Polytechnic University of Marche; Ancona Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Luigina Cellini
- Department of Pharmacy; “G. d'Annunzio” University of Chieti-Pescara; Chieti Italy
| | - Bruna Facinelli
- Unit of Microbiology, Department of Biomedical Sciences and Public Health; Polytechnic University of Marche; Ancona Italy
| |
Collapse
|
32
|
Multiple abdominal abscesses - A not so common presentation of NTM. Indian J Tuberc 2017; 64:225-227. [PMID: 28709494 DOI: 10.1016/j.ijtb.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/27/2016] [Indexed: 01/15/2023]
Abstract
Non-tuberculous Mycobacteria/Mycobacterium other than tuberculosis (MOTT) are ubiquitous organisms. They are acid fast bacilli often giving trouble to the physician to distinguish it from Mycobacterium tuberculosis. These organisms are a menace for the treating physician as when to treat and when not to treat. They are often difficult to diagnose and may present in a variety of forms with propensity to cause number of infections of different body parts and organs. They are more common in immunocompromised individuals e.g. HIV infection. Here we are reporting a not so common manifestation of NTM which presented as multiple abdominal abscesses in a middle aged female probably secondary to surgical site infection, however she responded dramatically to the designed treatment.
Collapse
|
33
|
Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci Rep 2017; 7:41775. [PMID: 28155911 PMCID: PMC5290538 DOI: 10.1038/srep41775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is the major causative agent of nontuberculous mycobacteriosis, the representative case of environment-related infectious diseases the incidence of which is increasing in industrialized countries. MAH is found in biofilm in drinking water distribution system and residential environments. We investigated the effect of gaseous and nutritional conditions, and the role of glycopeptidolipids (GPLs) on biofilm-like pellicle formation in MAH. Pellicle formation was observed under 5% oxygen in Middlebrook 7H9 broth containing 0.2% glycerol and 10% albumin-dextrose-catalase enrichment but not under normoxia or in nutrient-poor media. An analysis of 17 environmental isolates revealed that hypoxia (5% oxygen) preferentially enhanced pellicle formation both in plastic plates and in glass tubes, compared with hypercapnia (5% carbon dioxide). Wild-type strains (WT) developed much thicker pellicles than GPL-deficient rough mutants (RM). WT bacterial cells distributed randomly and individually in contrast to that RM cells positioned linearly in a definite order. Exogenous supplementation of GPLs thickened the pellicles of RM, resulting in a similar morphological pattern to WT. These data suggest a significant implication of eutrophication and hypoxia in biofilm-like pellicle formation, and a functional role of GPLs on development of pellicles in MAH.
Collapse
|
34
|
Abstract
Treatment of non-tuberculous mycobacterial lung disease (NTM-LD) is challenging for several reasons including the relative resistance of NTM to currently available drugs and the difficulty in tolerating prolonged treatment with multiple drugs. Yet-to-be-done, large, multicenter, prospective randomized studies to establish the best regimens will also be arduous because multiple NTM species are known to cause human lung disease, differences in virulence and response to treatment between different species and strains within a species will make randomization more difficult, the need to distinguish relapse from a new infection, and the difficulty in adhering to the prescribed treatment due to intolerance, toxicity, and/or drug-drug interactions, often necessitating modification of therapeutic regimens. Furthermore, the out-of-state resident status of many patients seen at the relatively few centers that care for large number of NTM-LD patients pose logistical issues in monitoring response to treatment. Thus, current treatment regimens for NTM-LD is largely based on small case series, retrospective analyses, and guidelines based on expert opinions. It has been nearly 10 years since the publication of a consensus guideline for the treatment of NTM-LD. This review is a summary of the available evidence on the treatment of the major NTM-LD until more definitive studies and guidelines become available.
Collapse
|
35
|
Revetta R, Gomez-Alvarez V, Gerke T, Santo Domingo J, Ashbolt N. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system. J Appl Microbiol 2016; 121:294-305. [DOI: 10.1111/jam.13150] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 03/15/2016] [Accepted: 03/28/2016] [Indexed: 01/18/2023]
Affiliation(s)
- R.P. Revetta
- United States Environmental Protection Agency; Cincinnati OH USA
| | - V. Gomez-Alvarez
- United States Environmental Protection Agency; Cincinnati OH USA
| | - T.L. Gerke
- ORISE; United States Environmental Protection Agency; Cincinnati OH USA
| | | | - N.J. Ashbolt
- United States Environmental Protection Agency; Cincinnati OH USA
| |
Collapse
|
36
|
Padhi A, Naik SK, Sengupta S, Ganguli G, Sonawane A. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis. Microbes Infect 2016; 18:224-36. [DOI: 10.1016/j.micinf.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
37
|
High mycobacterial diversity in recreational lakes. Antonie van Leeuwenhoek 2016; 109:619-31. [PMID: 26873594 DOI: 10.1007/s10482-016-0665-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
Although nontuberculous mycobacteria (NTM) are natural inhabitants of freshwater ecosystems, few studies have focused on their distribution in these habitats. Thus, the knowledge about the abundance as well as the composition of NTM remains limited and patchy in these environments. In this context, a prospective study was performed to identify favourable habitats for mycobacteria in two recreational lakes. Mycobacterial density and diversity were measured using quantitative real-time PCR and the MiSeq Illumina platform. For both lakes, five compartments were investigated, i.e. water column, air-water interface, sediment, epilithon and epiphyton biofilms. Nontuberculous mycobacteria were detected in all compartments in large densities and displayed a remarkable diversity. NTM were dominated by fast-growing species. Lakes and compartments appeared to shape mycobacteria assemblage composition as well as their densities. In both lakes, some OTUs assigned to the species level were identified as related to known opportunistic pathogens.
Collapse
|
38
|
Klein T, Zihlmann D, Derlon N, Isaacson C, Szivak I, Weissbrodt DG, Pronk W. Biological control of biofilms on membranes by metazoans. WATER RESEARCH 2016; 88:20-29. [PMID: 26458189 DOI: 10.1016/j.watres.2015.09.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis.
Collapse
Affiliation(s)
- Theresa Klein
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland
| | - David Zihlmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Carl Isaacson
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland
| | - Ilona Szivak
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland
| | - David G Weissbrodt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Wouter Pronk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Process Engineering, Dübendorf, Switzerland.
| |
Collapse
|
39
|
General Overview on Nontuberculous Mycobacteria, Biofilms, and Human Infection. J Pathog 2015; 2015:809014. [PMID: 26618006 PMCID: PMC4649093 DOI: 10.1155/2015/809014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 11/17/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are emergent pathogens whose importance in human health has been growing. After being regarded mainly as etiological agents of opportunist infections in HIV patients, they have also been recognized as etiological agents of several infections on immune-competent individuals and healthcare-associated infections. The environmental nature of NTM and their ability to assemble biofilms on different surfaces play a key role in their pathogenesis. Here, we review the clinical manifestations attributed to NTM giving particular importance to the role played by biofilm assembly.
Collapse
|
40
|
Li B, Ju F, Cai L, Zhang T. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10492-502. [PMID: 26252189 DOI: 10.1021/acs.est.5b02345] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong , Hong Kong SAR, China
| | - Lin Cai
- Environmental Biotechnology Lab, The University of Hong Kong , Hong Kong SAR, China
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
41
|
Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother 2015; 59:6904-12. [PMID: 26303795 DOI: 10.1128/aac.00459-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/15/2015] [Indexed: 12/11/2022] Open
Abstract
Over the last 10 years, Mycobacterium abscessus group strains have emerged as important human pathogens, which are associated with significantly higher fatality rates than any other rapidly growing mycobacteria. These opportunistic pathogens are widespread in the environment and can cause a wide range of clinical diseases, including skin, soft tissue, central nervous system, and disseminated infections; by far, the most difficult to treat is the pulmonary form. Infections with M. abscessus are often multidrug-resistant (MDR) and require prolonged treatment with various regimens and, many times, result in high mortality despite maximal therapy. We report here the evaluation of diverse mouse infection models for their ability to produce a progressive high level of infection with M. abscessus. The nude (nu/nu), SCID (severe combined immunodeficiency), gamma interferon knockout (GKO), and granulocyte-macrophage colony-stimulating factor (GMCSF) knockout mice fulfilled the criteria for an optimal model for compound screening. Thus, we set out to assess the antimycobacterial activity of clarithromycin, clofazimine, bedaquiline, and clofazimine-bedaquiline combinations against M. abscessus-infected GKO and SCID murine infection models. Treatment of GKO and SCID mice with a combination of clofazimine and bedaquiline was the most effective in decreasing the M. abscessus organ burden.
Collapse
|
42
|
Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:749-58. [PMID: 25793551 PMCID: PMC4529011 DOI: 10.1289/ehp.1408692] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/17/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. OBJECTIVES The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. METHODS A Water Research Foundation-sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. DISCUSSION OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. CONCLUSIONS Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter water) to reduce home exposures.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | |
Collapse
|
43
|
Muñoz-Egea MC, García-Pedrazuela M, Mahillo I, Esteban J. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol 2015; 15:18. [PMID: 25887547 PMCID: PMC4372270 DOI: 10.1186/s12866-015-0359-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to analyze the effect of ciprofloxacin at different times on the development and behavior of intrinsic autofluorescence, covered area, thickness and cell viability in a biofilm formed by non-pigmented rapidly growing mycobacteria (NPRGM).Confocal laser scanning microscopy and image analysis were used to study the behavior of ciprofloxacin on biofilms. Results Thickness was the most affected parameter, although some species showed changes in other parameters. At the same time, we also measured the minimum inhibitory concentration and the minimum biofilm eradication concentration (MBEC). An increase in MBEC was observed in all the strains, M. peregrinum being the species that presented the highest increase. Conclusions This study help us to understand better how mycobacterial biofims can be affected by ciprofloxacin.
Collapse
Affiliation(s)
- María-Carmen Muñoz-Egea
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz. Av. Reyes Católicos 2, 28040, Madrid, Spain.
| | - María García-Pedrazuela
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz. Av. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Ignacio Mahillo
- Department of Epidemiology, IIS- Fundación Jiménez Díaz Av. Reyes Católicos 2, 28040, Madrid, Spain.
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS- Fundación Jiménez Díaz. Av. Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Wang ML, Vosbikian MM, Abboudi J, Beredjiklian PK. Treatment of a Chronic Multidrug-Resistant Cutaneous Mycobacterium chelonae Infection of the Hand with Wide Debridement and Skin-Grafting: A Case Report. JBJS Case Connect 2014; 4:e102. [PMID: 29252770 DOI: 10.2106/jbjs.cc.n.00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CASE We present a case of a healthy thirty-seven-year-old woman with a chronic cutaneous Mycobacterium chelonae infection of the hand recalcitrant to antibiotics and excisional biopsies. She was treated with wide excision of the lesion and staged full-thickness skin-grafting. At the sixth-month follow-up, she reported no activity limitations and demonstrated full painless digital motion without evidence of recurrent infection. CONCLUSION The technique presented offers the advantage of early digital range of motion with temporary soft-tissue coverage prior to definitive coverage with a full-thickness skin graft while laboratory analysis is performed.
Collapse
Affiliation(s)
- Mark L Wang
- Rothman Institute at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107
| | - Michael M Vosbikian
- Department of Orthopaedic Surgery, Thomas Jefferson University Hospital, 1025 Walnut Street, Room 516 College, Philadelphia, PA 19107.
| | - Jack Abboudi
- Rothman Institute at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107
| | - Pedro K Beredjiklian
- Rothman Institute at Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107
| |
Collapse
|
45
|
Host response to nontuberculous mycobacterial infections of current clinical importance. Infect Immun 2014; 82:3516-22. [PMID: 24914222 DOI: 10.1128/iai.01606-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The nontuberculous mycobacteria are a large group of acid-fast bacteria that are very widely distributed in the environment. While Mycobacterium avium was once regarded as innocuous, its high frequency as a cause of disseminated disease in HIV-positive individuals illustrated its potential as a pathogen. Much more recently, there is growing evidence that the incidence of M. avium and related nontuberculous species is increasing in immunocompetent individuals. The same has been observed for M. abscessus infections, which are very difficult to treat; accordingly, this review focuses primarily on these two important pathogens. Like the host response to M. tuberculosis infections, the host response to these infections is of the TH1 type but there are some subtle and as-yet-unexplained differences.
Collapse
|
46
|
Meyer A, Prasad KG, Antisdel J. Mycobacterium chelonae dacryocystitis after endoscopic dacryocystorhinostomy. ALLERGY & RHINOLOGY 2014; 5:87-90. [PMID: 24613068 PMCID: PMC4124583 DOI: 10.2500/ar.2014.5.0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium chelonae is a rapidly growing nontuberculous Mycobacterium and an uncommon cause of aggressive, treatment-resistant ocular and periocular infection. This is the first known case report of a woman who developed unilateral M. chelonae dacryocystitis after undergoing endoscopic sinus surgery and right endoscopic dacryocystorhinostomy (DCR) with Crawford stent placement. We describe our findings and effective methods to manage the infection. Three weeks after undergoing DCR, the patient acutely developed symptoms consistent with dacryocystitis. The patient was treated with broad-spectrum antibiotics followed by incision and drainage of the dacryocystocele abscess, with initial cultures showing no organisms. With continued signs of infection, the Crawford stent was later removed. Cultures eventually grew M. chelonae and the patient was treated with 4 months of antibiotic therapy. While receiving antibiotics, the patient developed three abscesses along the inferior lid requiring excision. After 21 months, the patient remains free of infection and has not experienced any other complications. This case serves as a reminder to consider M. chelonae as a potential cause of periocular infection, which may be more likely to occur postoperatively with indwelling devices, as well as in patients with sinonasal issues requiring nasal irrigations. This organism can be difficult to treat because of multidrug resistance and biofilm production. Recommended therapy includes surgical debridement, removal of any implanted devices, and a two-drug antibiotic regimen for at least 4 months.
Collapse
Affiliation(s)
- Annika Meyer
- Department of Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
47
|
Perez-Martinez I, Aguilar-Ayala DA, Fernandez-Rendon E, Carrillo-Sanchez AK, Helguera-Repetto AC, Rivera-Gutierrez S, Estrada-Garcia T, Cerna-Cortes JF, Gonzalez-Y-Merchand JA. Occurrence of potentially pathogenic nontuberculous mycobacteria in Mexican household potable water: a pilot study. BMC Res Notes 2013; 6:531. [PMID: 24330835 PMCID: PMC3874667 DOI: 10.1186/1756-0500-6-531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 12/06/2013] [Indexed: 12/26/2022] Open
Abstract
Background Nontuberculous mycobacteria (NTM) are environmental opportunistic pathogens found in natural and human-engineered waters, including drinking water distribution systems and household plumbing. This pilot study examined the frequency of occurrence of NTM in household potable water samples in Mexico City. Potable water samples were collected from the “main house faucet” and kitchen faucet. The presence of aerobic-mesophilic bacteria (AMB), total coliforms (TC), fecal coliforms (FC) and NTM species were determined. Mycobacteria species were identified by PCR restriction enzyme pattern analysis (PRA) of the 65-kDa heat shock protein gene (hsp65) and sequencing of the hypervariable region 2 (V2) of the 16S rRNA gene and of the rpoB gene. Results AMB (<100 CFU/ml) were present in 118 out of 120 samples; only two samples were outside guidelines ranges (>100 CFU/ml). TC and FC were detected in four and one samples, respectively. NTM species were recovered from 16% samples (19/120) and included M. mucogenicum (nine), M. porcinum (three), M. avium (three), M. gordonae (one), M. cosmeticum (one), M. fortuitum (one), and Mycobacterium sp (one). All household water samples that contained NTM complied with the standards required to grade the water as “good quality” potable water. Conclusion Household potable water may be a potential source of NTM infection in Mexico City.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas-Instituto Politecnico Nacional, Prolongacion Carpio y Plan de Ayala S/N, Col, Casco de Santo Tomas, Delegacion Miguel Hidalgo, Mexico, D,F, CP 11340, Mexico.
| |
Collapse
|
48
|
Bukh AS, Roslev P. Mycobacterium avium complex in day care hot water systems, and persistence of live cells and DNA in hot water pipes. Curr Microbiol 2013; 68:428-39. [PMID: 24272032 DOI: 10.1007/s00284-013-0493-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
Abstract
The Mycobacterium avium complex (MAC) is a group of opportunistic human pathogens that may thrive in engineered water systems. MAC has been shown to occur in drinking water supplies based on surface water, but less is known about the occurrence and persistence of live cells and DNA in public hot water systems based on groundwater. In this study, we examined the occurrence of MAC in hot water systems of public day care centers and determined the persistence of live and dead M. avium cells and naked DNA in model systems with the modern plumbing material cross-linked polyethylene (PEX). The occurrence of MAC and co-occurrence of Legionella spp. and Legionella pneumophila were determined using cultivation and qPCR. Co-occurrences of MAC and Legionella were detected in water and/or biofilms in all hot water systems at temperatures between 40 and 54 °C. Moderate correlations were observed between abundance of culturable MAC and that of MAC genome copies, and between MAC and total eubacterial genome copies. No quantitative relationship was observed between occurrence of Legionella and that of MAC. Persistence in hot water of live and dead M. avium cells and naked DNA was studied using PEX laboratory model systems at 44 °C. Naked DNA and DNA in dead M. avium cells persisted for weeks. Live M. avium increased tenfold in water and biofilms on PEX. The results suggest that water and biofilms in groundwater-based hot water systems can constitute reservoirs of MAC, and that amplifiable naked DNA is relatively short-lived, whereas PEX plumbing material supports persistence and proliferation of M. avium.
Collapse
Affiliation(s)
- Annette S Bukh
- Section of Biology and Environmental Science, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 57, 9000, Alborg, Denmark
| | | |
Collapse
|
49
|
Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system. Appl Environ Microbiol 2013; 79:5498-508. [PMID: 23835173 DOI: 10.1128/aem.00900-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.
Collapse
|
50
|
Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS One 2013; 8:e57402. [PMID: 23451220 PMCID: PMC3581440 DOI: 10.1371/journal.pone.0057402] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/21/2013] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium abscessus is a rapidly growing mycobacterium increasingly detected in the neutrophil-rich environment of inflamed tissues, including the cystic fibrosis airway. Studies of the immune reaction to M. abscessus have focused primarily on macrophages and epithelial cells, but little is known regarding the neutrophil response despite the predominantly neutrophillic inflammation typical of these infections. In the current study, human neutrophils released less superoxide anion in response to M. abscessus than to Staphylococcus aureus, a pathogen that shares common sites of infection. Exposure to M. abscessus induced neutrophil-specific chemokine and proinflammatory cytokine genes. Although secretion of these protein products was confirmed, the quantity of cytokines released, and both the number and level of gene induction, was reduced compared to S. aureus. Neutrophils mediated killing of M. abscessus, but phagocytosis was reduced when compared to S. aureus, and extracellular DNA was detected in response to both bacteria, consistent with extracellular trap formation. In addition, M. abscessus did not alter cell death compared to unstimulated cells, while S. aureus enhanced necrosis and inhibited apoptosis. However, neutrophils augment M. abscessus biofilm formation. The response of neutrophils to M. abscessus suggests that the mycobacterium exploits neutrophil-rich settings to promote its survival and that the overall neutrophil response was reduced compared to S. aureus. These studies add to our understanding of M. abscessus virulence and suggest potential targets of therapy.
Collapse
|