1
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Antimicrobial resistance and prevalence of extended-spectrum beta-lactamase-producing Klebsiella species in East Tennessee dairy farms. Microbiol Spectr 2024; 12:e0353723. [PMID: 39240080 PMCID: PMC11448431 DOI: 10.1128/spectrum.03537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Klebsiella species commonly reside in dairy cattle guts and are consistently exposed to beta-lactam antibiotics, including ceftiofur, which are frequently used on the U.S. dairy farms. This may impose selection pressure and result in the emergence of extended-spectrum beta-lactamase (ESBL)-producing strains. However, information on the status and antimicrobial resistance (AMR) profile of ESBL-Klebsiella spp. in the U.S. dairy farms is largely unknown. This study aimed to determine the prevalence and AMR profile of ESBL-Klebsiella spp. and the factors affecting their occurrence in dairy cattle farms. Rectal fecal samples (n = 508) and manure, feed, and water samples (n = 64) were collected from 14 dairy farms in Tennessee. Samples were directly plated on CHROMagar ESBL, and presumptive Klebsiella spp. were confirmed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was performed on the isolates against panels of 14 antimicrobial agents from 10 classes using minimum inhibitory concentration. Of 572 samples, 57 (10%) were positive for ESBL-Klebsiella spp. The fecal prevalence of ESBL-Klebsiella spp. was 7.2% (95% CI: 6.5-8.0). The herd-level fecal prevalence of ESBL-Klebsiella spp. was 35.7% (95% CI: 12.7-64.8). The fecal prevalence of ESBL-Klebsiella spp. was significantly higher in calves than in cows and higher in cows with higher parity (≥3) as compared to cows with low parity (P < 0.001). Most (96.5%, n = 57) ESBL-Klebsiella spp. were resistant to ceftriaxone. The highest level of acquired co-resistance to ceftriaxone in ESBL-Klebsiella spp. was to sulfisoxazole (66.7%; 38/57). About 19% of ESBL-Klebsiella spp. were multidrug resistant. The presence of ESBL-producing Klebsiella spp. in dairy cattle, feed, and water obtained from troughs could play a crucial epidemiological role in maintaining and spreading the bacteria on farms and serving as a point source of transmission. IMPORTANCE We collected 572 samples from dairy farms, including rectal feces, manure, feed, and water. We isolated and identified extended-spectrum beta-lactamase (ESBL)-Klebsiella spp. and conducted an antimicrobial susceptibility test and analyzed different variables that may be associated with ESBL-Klebsiella spp. in dairy farms. The results of our study shed light on how ESBL-Klebsiella spp. are maintained through fecal-oral routes in dairy farms and possibly exit from the farm into the environment. We determine the prevalence of ESBL-Klebsiella spp. and their antimicrobial susceptibility profiles, underscoring their potential as a vehicle for multiple resistance gene dissemination within dairy farm settings. We also collected data on variables affecting their occurrence and spread in dairy farms. These findings have significant implications in determining sources of community-acquired ESBL-Enterobacteriaceae infections and designing appropriate control measures to prevent their spread from food animal production systems to humans, animals, and environments.
Collapse
Affiliation(s)
- Benti Deresa Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
2
|
Gelalcha BD, Mohamed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology of extended-spectrum beta-lactamase-producing- Klebsiella species in East Tennessee dairy cattle farms. Front Microbiol 2024; 15:1439363. [PMID: 39380685 PMCID: PMC11458399 DOI: 10.3389/fmicb.2024.1439363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction The rising prevalence of Extended-Spectrum Beta-Lactamase (ESBL)-producing Klebsiella species (spp.) poses a significant threat to human and animal health and environmental safety. To address this pressing issue, a comprehensive study was undertaken to elucidate the burden and dissemination mechanisms of ESBL-Klebsiella spp. in dairy cattle farms. Methods Fifty-seven Klebsiella species were isolated on CHROMagar™ ESBL plates and confirmed with MADLI-TOF MS and whole genome sequenced from 14 dairy farms. Results and discussion Six families of beta-lactamase (bla) (bla CTX-M, bla SHV, bla TEM, bla OXY, bla OXA, and bla SED) were detected in ESBL-Klebsiella spp. genomes. Most (73%) of isolates had the first three types of beta-lactamase genes, with bla SHV being the most frequent, followed by bla CTX-M. Most (93%) isolates harbored two or more bla genes. The isolates were genotypically MDR, with 26 distinct types of antibiotic resistance genes (ARGs) and point mutations in gyrA, gyrB, and parC genes. The genomes also harbored 22 different plasmid replicon types, including three novel IncFII. The IncFII and Col440I plasmids were the most frequent and were associated with bla CTXM-27 and qnrB19 genes, respectively. Eighteen distinct sequence types (STs), including eight isolates with novel STs of K. pneumoniae, were detected. The most frequently occurring STs were ST353 (n = 8), ST469 (n = 6), and the novel ST7501 (n = 6). Clusters of ESBL-Klebsiella strains with identical STs, plasmids, and ARGs were detected in multiple farms, suggesting possible clonal expansion. The same ESBL variant was linked to identical plasmids in different Klebsiella STs in some farms, suggesting horizontal spread of the resistance gene. The high burden and dual spread mechanism of ESBL genes in Klebsiella species, combined with the emergence of novel sequence types, could swiftly increase the prevalence of ESBL-Klebsiella spp., posing significant risks to human, animal, and environmental health. Immediate action is needed to implement rigorous surveillance and control measures to mitigate this risk.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohamed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga Edema Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Prevalence and antimicrobial resistance profiles of extended-spectrum beta-lactamase-producing Escherichia coli in East Tennessee dairy farms. Front Vet Sci 2023; 10:1260433. [PMID: 38239744 PMCID: PMC10795760 DOI: 10.3389/fvets.2023.1260433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, such as Escherichia coli, are emerging as a serious threat to global health due to their rapid spread and their multidrug-resistant (MDR) phenotypes. However, limited information is available regarding the prevalence and antimicrobial resistance (AMR) profile of ESBL-E. coli in the United States dairy farms. This study aimed to determine the prevalence and AMR pattern of ESBL-E. coli in East Tennessee dairy cattle farms. Methods Rectal fecal samples from dairy cattle (n = 508) and manure (n = 30), water (n = 19), and feed samples (n = 15) were collected from 14 farms. The presumptive E. coli was isolated on CHROMagar™ ESBL and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Antimicrobial susceptibility testing was performed on the ESBL-E. coli isolates. Results and discussion From 572 fecal and farm environmental samples, a total of 233 (41%, n = 572) ESBL-E. coli were identified. The prevalence of fecal ESBL-E. coli was 47.5% (95% CI: 46.2-49.2). The within-farm prevalence of ESBL-E. coli ranged from 8 to 100%. Recent treatment history with third-generation cephalosporins (3GC), cow parity ≥3, and calves were the independent risk factors associated (P < 0.05) with fecal carriage of ESBL-E. coli. Overall, 99.6% (n = 231) ESBL-E. coli tested were phenotypically resistant to at least one of the 14 antimicrobial agents tested. The most common AMR phenotypes were against beta-lactam antibiotics, ampicillin (99.1%; n = 231 isolates), and ceftriaxone (98.7%, n = 231). Most ESBL-E. coli isolates (94.4%) were MDR (resistance to ≥3 antimicrobial classes), of which 42.6% showed co-resistance to at least six classes of antimicrobials. ESBL-E. coli isolates with concurrent resistance to ceftriaxone, ampicillin, streptomycin, tetracycline, sulfisoxazole, and chloramphenicol are widespread and detected in all the farms. The detection of MDR ESBL-E. coli suggests that dairy cattle can be a reservoir for these bacteria, highlighting the associated public health risk.
Collapse
Affiliation(s)
| | | | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
4
|
Gelalcha BD, Mohammed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing- Escherichia coli and - Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front Microbiol 2023; 14:1283165. [PMID: 38029210 PMCID: PMC10658008 DOI: 10.3389/fmicb.2023.1283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rise in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coli and -Klebsiella spp. isolates from bulk tank milk (BTM). Methods Thirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coli and -Klebsiella spp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). Results Ten presumptive ESBL-producing bacteria, eight E. coli, and two K. pneumoniae were isolated. The prevalence of ESBL-E. coli and -K. pneumoniae in BTM was 21.2% and 6.1%, respectively. ESBL-E. coli were detected in 41.2% of the study farms. Seven of the ESBL-E. coli isolates were multidrug resistant (MDR). The two ESBL-producing K. pneumoniae isolates were resistant to ceftriaxone. Seven ESBL-E. coli strains carry the blaCTX-M gene, and five of them co-harbored blaTEM-1. ESBL-E. coli co-harbored blaCTX-M with other resistance genes, including qnrB19, tet(A), aadA1, aph(3'')-Ib, aph(6)-Id), floR, sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). Most E. coli resistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) of E. coli were detected. All ESBL-E. coli were predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones of E. coli. Up to 40 virulence markers were detected in all E. coli isolates. One of the K. pneumoniae was ST867; the other was novel strain. K. pneumoniae isolates carried three types of beta-lactamase genes (blaCTX-M, blaTEM-1 and blaSHV). The novel K. pneumoniae ST also carried a novel IncFII(K) plasmid ST. Conclusion Detection of high-risk clones of MDR ESBL-E. coli and ESBL-K. pneumoniae in BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coli and -K. pneumoniae.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohammed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Gelalcha BD, Kerro Dego O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics (Basel) 2022; 11:1313. [PMID: 36289970 PMCID: PMC9598938 DOI: 10.3390/antibiotics11101313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the top global health threats of the 21th century. Recent studies are increasingly reporting the rise in extended-spectrum beta-lactamases producing Enterobacteriaceae (ESBLs-Ent) in dairy cattle and humans in the USA. The causes of the increased prevalence of ESBLs-Ent infections in humans and commensal ESBLs-Ent in dairy cattle farms are mostly unknown. However, the extensive use of beta-lactam antibiotics, especially third-generation cephalosporins (3GCs) in dairy farms and human health, can be implicated as a major driver for the rise in ESBLs-Ent. The rise in ESBLs-Ent, particularly ESBLs-Escherichia coli and ESBLs-Klebsiella species in the USA dairy cattle is not only an animal health issue but also a serious public health concern. The ESBLs-E. coli and -Klebsiella spp. can be transmitted to humans through direct contact with carrier animals or indirectly through the food chain or via the environment. The USA Centers for Disease Control and Prevention reports also showed continuous increase in community-associated human infections caused by ESBLs-Ent. Some studies attributed the elevated prevalence of ESBLs-Ent infections in humans to the frequent use of 3GCs in dairy farms. However, the status of ESBLs-Ent in dairy cattle and their contribution to human infections caused by ESBLs-producing enteric bacteria in the USA is the subject of further study. The aims of this review are to give in-depth insights into the status of ESBL-Ent in the USA dairy farms and its implication for public health and to highlight some critical research gaps that need to be addressed.
Collapse
Affiliation(s)
| | - Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Obaidat MM, Gharaibeh WA. Sheep and goat milk in Jordan is a reservoir of multidrug resistant extended spectrum and AmpC beta-lactamases Escherichia coli. Int J Food Microbiol 2022; 377:109834. [PMID: 35841807 DOI: 10.1016/j.ijfoodmicro.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Limited data is available on the prevalence and antimicrobial resistance of extended spectrum (ESBL) and AmpC β-lactamases Escherichia coli in sheep and goats in Jordan. This study determined the molecular prevalence and antimicrobial-resistance of ESBL and AmpC β-lactamases E. coli in 155 sheep and goat flocks across Jordan by testing 948 milk samples. The samples were enriched in MacConkey broth, and then plated on MacConkey agar with cefotaxime. The presence of ESBL and AmpC genes in the E. coli isolates was determined by PCR and the resistance toward critically important antimicrobials was tested by disc diffusion. In total, 1016 E. coli isolates were isolated from the cefotaxime supplemented MacConkey, 382 isolates harbored ESBL genes and 54 harbored blaCMY. The prevalence of blaCTX-M, blaTEM, blaCMY and blaSHVE. coli in the milk samples were 33.5 %, 31.7 %, 5.7 %. and 1.1 %, respectively. At the flock level, 30.3 % flocks had β-lactamase E. coli, specifically 25.2 %, 20.7 %, 5.2 % and 2.6 % had blaCTX-M, blaTEM, blaCMY and blaSHV E. coli, respectively. About 52.2 % of the isolates harbored both blaCTX-M and blaTEM. A high percentage (>59 %) of ESBL and AmpC β-lactamases E. coli resisted sulfamethoxazole/trimethoprim, tetracycline and nalidixic acid. Overall, 93.5 % and 96.3 % of ESBL and AmpC E. coli were resistant to ≥1 another antimicrobial class and 44.5 % and 44.4 % were resistant to ≥3 another antimicrobial class, respectively. This study shows that sheep and goat milk is a reservoir of multidrug resistant ESBL and AmpC β-lactamases E. coli, thus good hygienic practices and judicious antimicrobials use are important in small ruminants' farming.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan.
| | - Wasan A Gharaibeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan
| |
Collapse
|
7
|
Cardoso M, Prata I, Rebelo I, Nunes T, Pires A, Carneiro C, Bexiga R. Antimicrobial (ESBL) resistance genes in faecal E. coli of calves fed waste milk with antimicrobial residues. J DAIRY RES 2022; 89:1-6. [PMID: 36039956 DOI: 10.1017/s0022029922000486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This research paper aimed to evaluate the association between feeding waste milk to calves and the occurrence of antimicrobial multi-resistance by extended spectrum β-lactamase (ESBL) enzymes through determining their production by E. coli isolates from 32 dairy farms. Among β-lactamase enzymes, ESBL provide resistance to a wide variety of β-lactam antimicrobials including penicillin and 2nd, 3rd and 4th generation cephalosporins. Feeding waste milk to calves has been observed to lead to increased antimicrobial resistance in faecal isolates of calves. In each farm included in this study, faecal samples were collected from the rectum of five healthy calves in the first month of life and pooled into a single container. Five isolates from each pool were selected and confirmed to be E. coli by amplification of the 16S rRNA gene. ESBL production was confirmed phenotypically on 148 isolates from 31 farms by use of the double-disk synergy test. Genotypic confirmation of ESBL production was performed by PCR for the genes blaCTX-M-1, -2, -8, -9 and blaCMY-2. A questionnaire was also performed and a mixed logistic regression model was used to identify risk factors for the occurrence of antimicrobial resistance. A negative binomial regression model was also used, in order to assess whether there was any association between certain farm management practices and the number of ESBL-producing E. coli isolates from each farm. Phenotypic confirmation of ESBL production was obtained on 40 E. coli isolates from 15 farms (48.4%), whereas genotypic confirmation was obtained on 55 isolates from 20 farms (64.5%). The use of three or more different intramammary antimicrobials to treat mastitis within the previous year significantly impacted the number of ESBL-producing E. coli isolates; on farms that did so, there were more isolates in which ESBL-producing E. coli was present, when compared to farms that had used less formulations within the same time span.
Collapse
Affiliation(s)
- Manuel Cardoso
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| | - Inês Prata
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
- HVME - Hospital Veterinário Muralha de Évora, Évora, Portugal
| | - Inês Rebelo
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| | - Telmo Nunes
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| | - Ana Pires
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| | - Carla Carneiro
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| | - Ricardo Bexiga
- Faculty of Veterinary Medicine, CIISA - Centre for Interdisciplinary Research in Animal Health, University of Lisbon, Lisbon, Portugal
- Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Excreted Antibiotics May Be Key to Emergence of Increasingly Efficient Antibiotic Resistance in Food Animal Production. Appl Environ Microbiol 2022; 88:e0079122. [PMID: 35867586 PMCID: PMC9361830 DOI: 10.1128/aem.00791-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A β-lactamase-encoding gene (blaCTX-M-15) appear to be displacing strains that harbor a class C β-lactamase gene (blaCMY-2) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 μg/mL) and ceftiofur (≥16 μg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 μg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 μg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 μg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with blaCTX-M-15 is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.
Collapse
|
9
|
Khalifeh OM, Obaidat MM. Urinary tract virulence genes in extended-spectrum beta-lactamase E. coli from dairy cows, beef cattle, and small ruminants. Acta Trop 2022; 234:106611. [PMID: 35850234 DOI: 10.1016/j.actatropica.2022.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 11/01/2022]
Abstract
Extended-spectrum β-lactamase Escherichia coli is an important cause of urinary tract infections in humans. ESBL producers E. coli were reported in food-producing animals, but no previous study reported the virulence potential of these isolates. Thus, this study determined the virulence potential of ESBL producers E. coli isolates from 518 beef feces, 610 dairy cow feces, 305 dairy cow milk, 503 sheep milk and 445 goat milk samples. A total of 278 isolates; specifically, 130 from beef feces, 39 from the cow's feces, 42 from cow's milk, 44 from sheep milk and 23 from goats' milk were isolated and then tested for 14 virulence genes by polymerase chain reaction. After that, the correlation of virulence genes presence among the isolates was determined statistically. Overall, 97% of the isolates carried fimH, 39% carried iroN E. coli and 32% carried papC. The kpsMT K1, cnf1, papAH, papG allele II & III, papG allele II, and kpsMT II were carried by 6 to 23% of the isolates, while less than 6% of the isolates carried papG allele III, papG allele I, Univcnf, iutA and hlyA. About 68.2% of the isolates carried two or more virulence genes and 41.8% carried three or more. Moreover, the isolates had 71 different profiles of virulence genes, where the most common profiles were fimH alone (86 isolate), fimH + iroN E. coli (35 isolate), fimH + papC (20 isolate), and fimH + papC + iroN E. coli (13 isolate). The adhesion, capsule synthesis and toxins secretion genes were significantly associated (p ˂ 0.01) with each other. These results call for awareness about the risk of food animals as reservoirs of ESBL uropathogenic E. coli that would threaten public health and limits the treatment options for urinary tract infections.
Collapse
Affiliation(s)
- Omar Mohammad Khalifeh
- Faculty of Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid, Jordan
| | - Mohammad M Obaidat
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Ar-Ramtha, Irbid 22110, Jordan.
| |
Collapse
|
10
|
Bakry N, Awad W, Ahmed S, Kamel M. The role of Musca domestica and milk in transmitting pathogenic multidrug-resistant Escherichia coli and associated phylogroups to neonatal calves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39593-39609. [PMID: 35107727 DOI: 10.1007/s11356-022-18747-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Escherichia coli, as a global source of antimicrobial resistance, is a serious veterinary and public health concern. The transmission of pathogenic multidrug-resistant (MDR) E. coli within diarrheic calves and its correlation with Musca domestica and milk strains have been investigated. In total, 110, 80, and 26 E. coli strains were obtained from 70 rectal swabs from diarrheic calves, 60 milk samples and 20 M. domestica, respectively. Molecular pathotyping of E. coli revealed the presence of pathogenic E. coli with a higher percentage of shigatoxigenic strains within diarrheic calves and M. domestica at 46.4% and 34.6%, respectively. Phenotypic antimicrobial resistance revealed higher β-lactams resistance except for cefquinome that exhibited low resistance in M.domestica and milk strains at 30.8% and 30%, respectively. The extended-spectrum cephalosporin (ESC) resistant strains were detected within fecal, M. domestica, and milk strains at 69.1%, 73.1%, and 71.3%, respectively. All E. coli strains isolated from M. domestica exhibited MDR, while fecal and milk strains were harboring MDR at 99.1% and 85%, respectively. Molecular detection of resistant genes revealed the predominance of the blaTEM gene, while none of these strains harbored the blaOXA gene. The highest percentages for blaCTXM and blaCMYII genes were detected in M. domestica strains at 53.8% and 61.5%, respectively. Regarding colistin resistance, the mcr-1 gene was detected only in fecal and milk strains at 35.5% and 15%, respectively. A high frequency of phylogroup B2 was detected within fecal and M. domestica strains, while milk strains were mainly assigned to the B1 phylogroup. Pathogenic E. coli strains with the same phenotypic and genotypic antimicrobial resistance and phylogroups were identified for both diarrheic calves and M. domestica, suggesting that the possible role of M. domestica in disseminating pathogenic strains and antimicrobial resistance in dairy farms.
Collapse
Affiliation(s)
- Noha Bakry
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid Awad
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samia Ahmed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
11
|
Ahmadvand P, Avillan JJ, Lewis JA, Call DR, Kang C. Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin. Int J Mol Sci 2022; 23:5229. [PMID: 35563620 PMCID: PMC9100253 DOI: 10.3390/ijms23095229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamases (ESBLs) are commonly associated with Gram-negative, hospital-acquired infections worldwide. Several beta-lactamase inhibitors, such as clavulanate, are used to inhibit the activity of these enzymes. To understand the mechanism of CTX-M-15 activity, we have determined the crystal structures of CTX-M-15 in complex with two specific classes of beta-lactam compounds, desfuroylceftiofur (DFC) and ampicillin, and an inhibitor, clavulanic acid. The crystal structures revealed that Ser70 and five other residues (Lys73, Tyr105, Glu166, Ser130, and Ser237) participate in catalysis and binding of those compounds. Based on analysis of steady-state kinetics, thermodynamic data, and molecular docking to both wild-type and S70A mutant structures, we determined that CTX-M-15 has a similar affinity for all beta-lactam compounds (ceftiofur, nitrocefin, DFC, and ampicillin), but with lower affinity for clavulanic acid. A catalytic mechanism for tested β-lactams and two-step inhibition mechanism of clavulanic acid were proposed. CTX-M-15 showed a higher activity toward DFC and nitrocefin, but significantly lower activity toward ampicillin and ceftiofur. The interaction between CTX-M-15 and both ampicillin and ceftiofur displayed a higher entropic but lower enthalpic effect, compared with DFC and nitrocefin. DFC, a metabolite of ceftiofur, displayed lower entropy and higher enthalpy than ceftiofur. This finding suggests that compounds containing amine moiety (e.g., ampicillin) and the furfural moiety (e.g., ceftiofur) could hinder the hydrolytic activity of CTX-M-15.
Collapse
Affiliation(s)
- Parvaneh Ahmadvand
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (P.A.); (J.A.L.)
| | - Johannetsy J. Avillan
- Paul G Allen School for Global Health, Washington State University, Pullman, WA 99164, USA; (J.J.A.); (D.R.C.)
| | - Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (P.A.); (J.A.L.)
| | - Douglas R. Call
- Paul G Allen School for Global Health, Washington State University, Pullman, WA 99164, USA; (J.J.A.); (D.R.C.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (P.A.); (J.A.L.)
| |
Collapse
|
12
|
Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021; 9:microorganisms9122550. [PMID: 34946151 PMCID: PMC8706950 DOI: 10.3390/microorganisms9122550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.
Collapse
|
13
|
Liu J, Yu F, Call DR, Mills DA, Zhang A, Zhao Z. On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141694. [PMID: 32871373 DOI: 10.1016/j.scitotenv.2020.141694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
We determined the immediate impact of exposure to antibiotic-treated animals on housing soil microbiome and resistome. Fecal (n = 36) and soil (n = 108) samples from dairy calves (n = 6) treated with and without florfenicol over 30 days were collected. There were temporary changes in the gut microbiome of antibiotic-treated calves as measured by Shannon diversity (16S rRNA gene sequencing; P = 0.03), but not in the housing soil microbiome (P > 0.05). Droplet-digital PCR demonstrated that floR gene increased by 1-log in soil exposed to treated animals (P < 0.001), but it remained relatively stable in the control soil whereby calves were not treated with antibiotic. Resistome in exposed soil was largely modified (P = 0.004) with the overall prevalence of antimicrobial resistance genes (ARGs) significantly elevated (3.8-fold increase by day 10; P = 0.01). In addition to florfenicol, enriched ARGs collectively conferring resistance to tetracyclines, aminoglycosides, sulfonamides, elfamycins, macrolides-lincosamides-streptrogramin A/B, and beta-lactams. Quantitative PCR validated that ARGs including str and tetG in soil exposed to florfenicol-treated calves had gradually increased fold-change difference relative to the control soil over time. Moreover, a greater diversity of transferrable ARGs was observed in exposed soil and these were associated with a greater diversity of bacterial species. Evaluation of on-farm effects to soil in situ after exposure to antibiotic-treated animals can help design effective managements to mitigate antibiotic resistance in food-animal production.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA; Foods for Health Institute, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Feng Yu
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - David A Mills
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA; Foods for Health Institute, University of California, One Shields Ave., Davis, CA 95616, USA; Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhe Zhao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
14
|
Iramiot JS, Kajumbula H, Bazira J, Kansiime C, Asiimwe BB. Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci Rep 2020; 10:14737. [PMID: 32895433 PMCID: PMC7477235 DOI: 10.1038/s41598-020-70517-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Intensive usage of antimicrobials in the management of animal diseases leads to selection for resistance among microorganisms. This study aimed to assess antimicrobial use and to describe factors associated with the transmission of antimicrobial resistance between humans and animals in pastoralist communities of Kasese district. A mixed-methods approach was employed in this study. Rectal swabs were collected from the participants and cattle and transported in Carry-Blaire transport medium to the laboratory within 24 h of collection for culture and sensitivity to confirm carriage of multi-drug resistant bacteria. In-depth interviews were conducted among veterinary officers, veterinary drug vendors, human health facility in-charges in both public and private health facilities, and operators of human pharmacies and drug shops. Carriage of multi-drug resistant bacteria among humans was 88 (93%) and 76(80%) among cattle. Consumption of lakeshore water and carriage of multi-drug resistant bacteria in cattle were associated with carriage of multi-drug resistant bacteria in the human population. The prevalence of multi-drug resistance among organisms Isolated from both humans and animals was high. There is a high likelihood of transmission of multi-drug resistance between humans and animals.
Collapse
Affiliation(s)
- Jacob Stanley Iramiot
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
- Department of Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| | - Joel Bazira
- Department of Microbiology, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Catherine Kansiime
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| | - Benon B. Asiimwe
- Department of Medical Microbiology, College of Health Sciences, Makerere University School of Biomedical Sciences, P.O Box 7072, Kampala, Uganda
| |
Collapse
|
15
|
Adator EH, Narvaez-Bravo C, Zaheer R, Cook SR, Tymensen L, Hannon SJ, Booker CW, Church D, Read RR, McAllister TA. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020; 8:microorganisms8060885. [PMID: 32545206 PMCID: PMC7355928 DOI: 10.3390/microorganisms8060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Shaun R. Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Calvin W. Booker
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Deirdre Church
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Ron R. Read
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
16
|
Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020; 103:1051-1071. [DOI: 10.3168/jds.2019-16778] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
|
17
|
Dantas Palmeira J, Ferreira HMN. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in cattle production - a threat around the world. Heliyon 2020; 6:e03206. [PMID: 32042963 PMCID: PMC7002838 DOI: 10.1016/j.heliyon.2020.e03206] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023] Open
Abstract
Food producing animal is a global challenge in terms of antimicrobial resistance spread. Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are relevant opportunistic pathogens that may spread in many ecological niches of the One Health approach as human, animal and environment due to intestinal selection of antimicrobial resistant commensals in food production animals. Cattle production is a relevant ecological niche for selection of commensal bacteria with antimicrobial resistance from microbiota. Enterobacteriaceae show importance in terms of circulation of resistant-bacteria and antimicrobial resistance genes via food chain creating a resistance reservoir, setting up a threat for colonization of humans and consequent health risk. ESBL-producing Enterobacteriaceae are a threat in terms of human health responsible for life threatening outbreaks and silent enteric colonization of community populations namely the elder population. Food associated colonization is a risk difficult to handle and control. In a time of globalization of food trading, population intestinal colonization is a mirror of food production and in that sense this work aims to make a picture of ESBL-producing Enterobacteriaceae in animal production for food over the world in order to make some light in this reality of selection of resistant threats in food producing animal.
Collapse
Affiliation(s)
- Josman Dantas Palmeira
- Microbiology - Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO - Research Unit on Applied Molecular Biosciences, REQUIMTE, Portugal
| | - Helena Maria Neto Ferreira
- Microbiology - Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,UCIBIO - Research Unit on Applied Molecular Biosciences, REQUIMTE, Portugal
| |
Collapse
|
18
|
Mc Carlie S, Boucher CE, Bragg RR. Molecular basis of bacterial disinfectant resistance. Drug Resist Updat 2019; 48:100672. [PMID: 31830738 DOI: 10.1016/j.drup.2019.100672] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Antibiotic resistance could accelerate humanity towards an already fast-approaching post-antibiotic era, where disinfectants and effective biosecurity measures will be critically important to control microbial diseases. Disinfectant resistance has the potential to change our way of life from compromising food security to threatening our medical health systems. Resistance to antimicrobial agents occurs through either intrinsic or acquired resistance mechanisms. Acquired resistance occurs through the efficient transfer of mobile genetic elements, which can carry single, or multiple resistance determinants. Drug resistance genes may form part of integrons, transposons and insertions sequences which are capable of intracellular transfer onto plasmids or gene cassettes. Thereafter, resistance plasmids and gene cassettes mobilize by self-transmission between bacteria, increasing the prevalence of drug resistance determinants in a bacterial population. An accumulation of drug resistance genes through these mechanisms gives rise to multidrug resistant (MDR) bacteria. The study of this mobility is integral to safeguard current antibiotics, disinfectants and other antimicrobials. Literature evidence, however, indicates that knowledge regarding disinfectant resistance is severly limited. Genome engineering such as the CRISPR-Cas system, has identified disinfectant resistance genes, and reversed resistance altogether in certain prokaryotes. Demonstrating that these techniques could prove invaluable in the combat against disinfectant resistance by uncovering the secrets of MDR bacteria.
Collapse
|
19
|
Liu J, Zhao Z, Avillan JJ, Call DR, Davis M, Sischo WM, Zhang A. Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113058. [PMID: 31454571 PMCID: PMC7646532 DOI: 10.1016/j.envpol.2019.113058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Dairy cattle of different ages experience different living conditions and varied frequency of antibiotic administration that likely influence the distribution of microbiome and resistome in ways that reflect different risks of microbial transmission. To assess the degree of variance in these distributions, fecal and soil samples were collected from six distinct housing areas on commercial dairy farms (n = 7) in Washington State. 16S rRNA gene sequencing indicated that the microbiota differed between different on-farm locations in feces and soil, and in both cases, the microbiota of dairy calves was often distinct from others (P < 0.05). Thirty-two specific antibiotic resistance genes (ARGs) were widely distributed on dairies, of which several clinically relevant ARGs (including cfr, cfrB, and optrA) were identified for the first time at U.S. dairies. Overall, ARGs were observed more frequently in feces and soil from dairy calves and heifers than from hospital, fresh, lactation and dry pens. Droplet-digital PCR demonstrated that the absolute abundance of floR varied greatly across housing areas and this gene was enriched the most in calves and heifers. Furthermore, in an extended analysis with 14 dairies, environmental soils in calf pens had the most antibiotic-resistant Escherichia coli followed by heifer and hospital pens. All soil E. coli isolates (n = 1,905) are resistant to at least 4 different antibiotics, and the PFGE analysis indicated that florfenicol-resistant E. coli is probably shared across geographically-separated farms. This study identified a discrete but predictable distribution of antibiotic resistance genes and organisms, which is important for designing mitigation for higher risk areas on dairy farms.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China; Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, PR China; Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA
| | - Zhe Zhao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, PR China
| | - Johannetsy J Avillan
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Margaret Davis
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - William M Sischo
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
20
|
Cormier AC, Chalmers G, Cook SR, Zaheer R, Hannon SJ, Booker CW, Read RR, Gow SP, McAllister TA, Boerlin P. Presence and Diversity of Extended-Spectrum Cephalosporin Resistance Among Escherichia coli from Urban Wastewater and Feedlot Cattle in Alberta, Canada. Microb Drug Resist 2019; 26:300-309. [PMID: 31553261 DOI: 10.1089/mdr.2019.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A recent preliminary study from our group found that extended-spectrum cephalosporin-resistance determinants can be detected in the majority of composite fecal samples collected from Alberta feedlot cattle. Most notably, blaCTX-M genes were detected in 46.5% of samples. Further isolate characterization identified blaCTX-M-15 and blaCTX-M-27, which are widespread in bacteria from humans. We hypothesized that Escherichia coli of human and beef cattle origins share the same pool of blaCTX-M genes. In this study, we aimed to assess and compare the genomic profiles of a larger collection of blaCTX-M-positive E. coli recovered from fecal composite samples from Canadian beef feedlot cattle and human wastewater through whole-genome sequencing. The variants blaCTX-M-55, blaCTX-M-32, blaCTX-M-27, blaCTX-M-15, and blaCTX-M-14 were found in both urban wastewater and cattle fecal isolates. Core genome multilocus sequence typing showed little similarity between the fecal and wastewater isolates. Thus, if the dissemination of genes between urban wastewater and feedlot cattle occurs, it does not appear to be related to the expansion of specific clonal lineages. Further investigations are warranted to assemble and compare plasmids carrying these genes to better understand the modalities and directionality of transfer.
Collapse
Affiliation(s)
- Ashley C Cormier
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Shaun R Cook
- Agriculture and Agri-Food Canada, Lethbridge, Canada.,Alberta Agriculture and Forestry, Lethbridge, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Ron R Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Sheryl P Gow
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
21
|
Zhang A, Call DR, Besser TE, Liu J, Jones L, Wang H, Davis MA. β-lactam resistance genes in bacteriophage and bacterial DNA from wastewater, river water, and irrigation water in Washington State. WATER RESEARCH 2019; 161:335-340. [PMID: 31212239 DOI: 10.1016/j.watres.2019.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 05/04/2023]
Abstract
Our objective was to determine whether β-lactamase genes are carried within bacteriophage capsids, as a first step towards exploring the possible role of bacteriophages as vehicles for dispersal of antimicrobial resistance genes through an agricultural region of Washington State. Water samples (n = 178) from municipal wastewater treatment plants, river and irrigation canals were collected over a period of eight months. The occurrence of four β-lactam resistance gene groups (blaTEM, blaCTX-M, blaPSE and blaCMY-2) and three carbapenem resistance genes (blaKPC, blaOXA-48-like, and blaNDM) in bacterial and phage fractions of water samples was evaluated by PCR. All of the seven targeted resistance genes were detected both in wastewater and river water samples. Relatively high proportions of samples (7.3%-64.9%) positive for resistance genes were found in bacteriophage fractions of water samples compared to the bacterial fractions (5.4%-36.8%). blaOXA-48-like (57.3%) and blaTEM (64.0%) were the most prevalent antimicrobial resistance genes detected at all the sampling points. Resistance genes are commonly present in treated wastewater flowing through municipal and agricultural environments, indicating a plausible role for this water in the dissemination of antimicrobial resistance traits, including blaCTX-M.
Collapse
Affiliation(s)
- Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Thomas E Besser
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jinxin Liu
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Lisa Jones
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Margaret A Davis
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
22
|
Cao H, Pradhan AK, Karns JS, Hovingh E, Wolfgang DR, Vinyard BT, Kim SW, Salaheen S, Haley BJ, Van Kessel JAS. Age-Associated Distribution of Antimicrobial-Resistant Salmonella enterica and Escherichia coli Isolated from Dairy Herds in Pennsylvania, 2013–2015. Foodborne Pathog Dis 2019; 16:60-67. [DOI: 10.1089/fpd.2018.2519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Huilin Cao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Abani K. Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
- Center of Food Safety and Security Systems, University of Maryland, College Park, Maryland
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Ernest Hovingh
- Bureau of Animal Health and Diagnostic Services, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - David R. Wolfgang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Bryan T. Vinyard
- Statistic Group, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland
| |
Collapse
|
23
|
Salaheen S, Kim SW, Cao H, Wolfgang DR, Hovingh E, Karns JS, Haley BJ, Van Kessel JAS. Antimicrobial Resistance Among Escherichia coli Isolated from Veal Calf Operations in Pennsylvania. Foodborne Pathog Dis 2019; 16:74-80. [DOI: 10.1089/fpd.2018.2530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Huilin Cao
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - David R. Wolfgang
- Bureau of Animal Health and Diagnostic Services, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania
| | - Jeffrey S. Karns
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, Maryland
| |
Collapse
|
24
|
Springer HR, Denagamage TN, Fenton GD, Haley BJ, Van Kessel JAS, Hovingh EP. Antimicrobial Resistance in Fecal Escherichia coli and Salmonella enterica from Dairy Calves: A Systematic Review. Foodborne Pathog Dis 2018; 16:23-34. [PMID: 30481058 DOI: 10.1089/fpd.2018.2529] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The discovery of antibiotics brought with it many advances in the health and well-being of humans and animals; however, in recent years development of antimicrobial resistance (AMR) has increasingly become a concern. Much of the antibiotic use on dairy farms is for disease management in mature cattle, and AMR in fecal organisms is relatively rare in this group. However, young dairy calves often carry high levels of AMR in their fecal Escherichia coli and Salmonella enterica, which could provide a potential reservoir of AMR genes on dairy farms. To develop practical and effective antibiotic stewardship policies for dairy calf rearing, it is vital to have a solid understanding of the current state of knowledge regarding AMR in these animals. A systematic review process was used to summarize the current scientific literature regarding AMR in fecal S. enterica and E. coli and associations between management practices and AMR prevalence in dairy calves in the United States and Canada. Seven online databases were searched for literature published from 1997 to 2018. Multiple studies indicated an association between preweaned calves and increased risk of fecal shedding of resistant bacteria, compared to other animal groups on dairy farms. There also was evidence, although less consistent, of an impact of antibiotic treatment, antibiotic-containing milk replacer feeding, and feeding nonsalable or waste milk (WM) on the presence of AMR bacteria. Overall, the research summarized in this systematic review highlights the need for continued research on the impact of management practices, including antibiotic use, WM feeding, and disease prevention practices in reducing AMR in E. coli and S. enterica in dairy calves. In addition, few data were available on physiological and microbiological factors that may contribute to the high relative populations of resistant bacteria in young calves, suggesting another valuable area of future research.
Collapse
Affiliation(s)
- Hayley R Springer
- 1 Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Thomas N Denagamage
- 1 Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Ginger D Fenton
- 2 Penn State Extension, The Pennsylvania State University, Mercer, Pennsylvania
| | - Bradd J Haley
- 3 Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, Maryland
| | - Jo Ann S Van Kessel
- 3 Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Services, United States Department of Agriculture, Beltsville, Maryland
| | - Ernest P Hovingh
- 1 Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
25
|
Prevalence of β-haemolytic multi-drug resistant E. coli in cow and camel milk in Kenya. J Verbrauch Lebensm 2018. [DOI: 10.1007/s00003-018-1187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Population Structure and Antimicrobial Resistance of Canine Uropathogenic Escherichia coli. J Clin Microbiol 2018; 56:JCM.00788-18. [PMID: 29997200 DOI: 10.1128/jcm.00788-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/30/2018] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli is the most common cause of human and canine urinary tract infection (UTI). Clonal groups, often with high levels of antimicrobial resistance, are a major component of the E. coli population that causes human UTI. While little is known about the population structure of E. coli that causes UTI in dogs, there is evidence that dogs and humans can share fecal strains of E. coli and that human-associated strains can cause disease in dogs. In order to better characterize the E. coli strains that cause canine UTI, we analyzed 295 E. coli isolates obtained from canine urine samples from five veterinary diagnostic laboratories and analyzed their multilocus sequence types, phenotypic and genotypic antimicrobial resistance profiles, and virulence-associated gene repertoires. Sequence type 372 (ST372), an infrequent human pathogen, was the predominant sequence type in dogs at all locations. Extended-spectrum β-lactamase-producing isolates with blaCTX-M genes were uncommon in canine isolates but when present were often associated with sequence types that have been described in human infections. This provides support for occasional cross-host-species sharing of strains that cause extraintestinal disease and highlights the importance of understanding the role of companion animals in the overall transmission patterns of extraintestinal pathogenic E. coli.
Collapse
|
27
|
Tadesse DA, Li C, Mukherjee S, Hsu CH, Bodeis Jones S, Gaines SA, Kabera C, Loneragan GH, Torrence M, Harhay DM, McDermott PF, Zhao S. Whole-Genome Sequence Analysis of CTX-M Containing Escherichia coli Isolates from Retail Meats and Cattle in the United States. Microb Drug Resist 2018; 24:939-948. [PMID: 30148698 PMCID: PMC6154757 DOI: 10.1089/mdr.2018.0206] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In recent years, there have been increased reports on the detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Salmonella strains from food-producing animals and animal products in the United States. We characterized 18 ESBL E. coli isolates from cattle (n = 5), chicken breast (n = 5), ground turkey (n = 6), ground beef (n = 1), and pork chops (n = 1) that were collected by the National Antimicrobial Resistance Monitoring System (NARMS) between 2011 and 2015. In vitro antimicrobial susceptibility testing was done against a panel of 14 antimicrobials followed by a secondary panel of 9 β-lactam agents. Whole-genome sequencing was used to characterize the resistome, plasmids, and the genetic structures of the ESBL genes. All ESBL-producing E. coli isolates were resistant to at least three antimicrobial classes and carried various blaCTX-M genes. Most of the cattle and ground turkey isolates carried blaCTX-M-27. In chicken breast isolates, blaCTX-M-1 was present as part of an ISEcp1 transposition unit carried on a plasmid that shares sequence similarity with the backbone structure of the IncI plasmid. Isolates carrying the blaCTX-M-14 and blaCTX-M-15 genes, widely distributed in human clinical isolates, were also isolated. To our knowledge, this is the first report of the widely distributed blaCTX-M-14 and blaCTX-M-15 in E. coli isolates from retail meat samples in the United States. Different insertional sequences were identified upstream of these blaCTX-Ms, including ISEcp1, IS26, and IS903-D. CTX-M in E. coli from food animals and retail chicken breast were often present on plasmids with other resistance genes. Other resistance genes identified included aadA, strA, strB, aac(3)-IId, aac(3)-VIa, aph(3′)-Ic, blaTEM, blaHERA-3, floR, sul1, sul2, catA1, tetA, tetB, dfrA, and qacE. These data describe the emergence of CTX-M-carrying E. coli isolates in food animals and animal products monitored by NARMS program.
Collapse
Affiliation(s)
- Daniel A Tadesse
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Cong Li
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Sampa Mukherjee
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Chih-Hao Hsu
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Sonya Bodeis Jones
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Stuart A Gaines
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Claudine Kabera
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Guy H Loneragan
- 2 Texas Tech University , Department of Animal and Food Science, Lubbock, Texas
| | - Mary Torrence
- 3 U.S. FDA-CFSAN, Office of Applied Research and Safety Assessment (OARSA) , Laurel, Maryland
| | - Dayna M Harhay
- 4 USDA-ARS, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, Clay Center , Nebraska
| | - Patrick F McDermott
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| | - Shaohua Zhao
- 1 Division of Animal and Food Microbiology , U.S. FDA, CVM, Laurel, Maryland
| |
Collapse
|
28
|
Awosile B, McClure J, Sanchez J, Rodriguez-Lecompte JC, Keefe G, Heider LC. Salmonella enterica and extended-spectrum cephalosporin-resistant Escherichia coli recovered from Holstein dairy calves from 8 farms in New Brunswick, Canada. J Dairy Sci 2018; 101:3271-3284. [DOI: 10.3168/jds.2017-13277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|
29
|
Molecular Epidemiology of Dairy Cattle-Associated Escherichia coli Carrying blaCTX-M Genes in Washington State. Appl Environ Microbiol 2018; 84:AEM.02430-17. [PMID: 29305512 DOI: 10.1128/aem.02430-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
An increase in the prevalence of commensal Escherichia coli carrying blaCTX-M genes among dairy cattle was observed between 2008 and 2012 in Washington State. To study the molecular epidemiology of this change, we selected 126 blaCTX-M-positive and 126 blaCTX-M-negative isolates for determinations of the multilocus sequence types (MLSTs) and antibiotic resistance phenotypes from E. coli obtained during a previous study. For 99 isolates, we also determined the blaCTX-M alleles using PCR and sequencing and identified the replicon types of blaCTX-M-carrying plasmids. The blaCTX-M-negative E. coli isolates comprised 76 sequence types (STs) compared with 32 STs in blaCTX-M-positive E. coli isolates. The blaCTX-M-positive E. coli isolates formed three MLST clonal complexes, accounting for 83% of these isolates; 52% of blaCTX-M-negative E. coli isolates clustered into 10 clonal complexes, and the remainder were singletons. Overall, blaCTX-M-negative E. coli isolates had more diverse genotypes that were distinct to farms, whereas blaCTX-M-positive E. coli isolates had a clonal population structure and were widely disseminated on farms in both regions included in the study. Plasmid replicon types included IncI1 which predominated, followed by IncFIB and IncFIA/FIB. blaCTX-M-15 was the predominant CTX-M gene allele, followed by blaCTX-M-27 and blaCTX-M-14 There was no significant association between plasmid replicon types and bacterial STs, and neither clonal complexes nor major plasmid groups were associated with two discrete dairy-farming regions of Washington State.IMPORTANCE Infections caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli occur globally and present treatment challenges because of their resistance to multiple antimicrobial drugs. Cattle are potential reservoirs of ESBL-producing Enterobacteriaceae, and so understanding the causes of successful dissemination of blaCTX-M genes in commensal bacteria will inform future approaches for the prevention of antibiotic-resistant pathogen emergence.
Collapse
|
30
|
Poole TL, Callaway TR, Norman KN, Scott HM, Loneragan GH, Ison SA, Beier RC, Harhay DM, Norby B, Nisbet DJ. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients. J Glob Antimicrob Resist 2017; 11:123-132. [PMID: 28801276 DOI: 10.1016/j.jgar.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate conjugative transfer of cephalosporin resistance among 100 strains of multidrug-resistant Escherichia coli (MDRE) to Salmonella enterica serotype Newport and E. coli DH5α recipients. METHODS Phenotypic and genotypic profiles were determined for MDRE as well as for Salmonella Newport (trSN) and E. coli DH5α (trDH) transconjugants. RESULTS Of 95 MDRE donor isolates, 26 (27%) and 27 (28%) transferred resistance to trSN and trDH recipients, respectively. A total of 27 MDRE (27%) were confirmed as extended-spectrum β-lactamase (ESBL)-producers based on the double-disk synergy assay and whole-genome sequencing (WGS). WGS was performed on 25 of the ESBL-producing isolates, showing that 2 isolates carried blaCTX-M-6, 22 possessed blaCTX-M-32 and 1 was negative for blaCTX-M genes. Fourteen of the ESBLs sequenced were qnrB19. Differential transfer of IncA/C and IncN from MDRE32 was observed between trSN32 and trDH32. IncN-positive trDH32 displayed an ESBL phenotype, whereas IncA/C-positive trSN32 displayed an AmpC phenotype. The rate of ESBL transfer to trSN and trDH recipients was 11% and 96%, respectively. CONCLUSIONS Twenty-seven MDRE were phenotypically identified as ESBL-producers. WGS of 25 MDRE revealed that 2 and 22 isolates carried blaCTX-M-6 and blaCTX-M-32, respectively. One multidrug-resistant isolate exhibited conversion from an AmpC phenotype to an ESBL phenotype with the transfer of only the IncN plasmid. The rate of resistance transfer to Salmonella or E. coli recipients was nearly identical. However, the ESBL phenotype was transferred with significantly greater prevalence to E. coli compared with Salmonella Newport (96% and 11%, respectively).
Collapse
Affiliation(s)
- T L Poole
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA.
| | - T R Callaway
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| | - K N Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University College of Veterinary Medicine & Biomedical Sciences (TAMU/CVM), College Station, TX 77843, USA
| | - H M Scott
- Department of Veterinary Pathobiology, TAMU/CVM, College Station, TX 77843, USA
| | - G H Loneragan
- Texas Tech University (TTU), Department of Animal and Food Science, Lubbock, TX 79409, USA
| | - S A Ison
- Texas Tech University (TTU), Department of Animal and Food Science, Lubbock, TX 79409, USA
| | - R C Beier
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| | - D M Harhay
- USDA/ARS/MARC, Clay Center, NE 68933, USA
| | - B Norby
- Michigan State University College of Veterinary Medicine (MSU-CVM), Large Animal Clinical Sciences, East Lansing, MI 48824, USA
| | - D J Nisbet
- USDA/ARS/SPARC, 2881 F&B Road, College Station, TX 77845, USA
| |
Collapse
|
31
|
Singer RS, Ruegg PL, Bauman DE. Quantitative Risk Assessment of Antimicrobial-Resistant Foodborne Infections in Humans Due to Recombinant Bovine Somatotropin Usage in Dairy Cows. J Food Prot 2017; 80:1099-1116. [PMID: 28574304 DOI: 10.4315/0362-028x.jfp-16-404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recombinant bovine somatotropin (rbST) is a production-enhancing technology that allows the dairy industry to produce milk more efficiently. Concern has been raised that cows supplemented with rbST are at an increased risk of developing clinical mastitis, which would potentially increase the use of antimicrobial agents and increase human illnesses associated with antimicrobial-resistant bacterial pathogens delivered through the dairy beef supply. The purpose of this study was to conduct a quantitative risk assessment to estimate the potential increased risk of human infection with antimicrobial-resistant bacteria and subsequent adverse health outcomes as a result of rbST usage in dairy cattle. The quantitative risk assessment included the following steps: (i) release of antimicrobial-resistant organisms from the farm, (ii) exposure of humans via consumption of contaminated beef products, and (iii) consequence of the antimicrobial-resistant infection. The model focused on ceftiofur (parenteral and intramammary) and oxytetracycline (parenteral) treatment of clinical mastitis in dairy cattle and tracked the bacteria Campylobacter spp., Salmonella enterica subsp. enterica, and Escherichia coli in the gastrointestinal tract of the cow. Parameter estimates were developed to be maximum risk to overestimate the risk to humans. The excess number of cows in the U.S. dairy herd that were predicted to carry resistant bacteria at slaughter due to rbST administration was negligible. The total number of excess human illnesses caused by resistant bacteria due to rbST administration was also predicted to be negligible with all risks considerably less than one event per 1 billion people at risk per year for all bacteria. The results indicate a high probability that the use of rbST according to label instructions presents a negligible risk for increasing the number of human illnesses and subsequent adverse outcomes associated with antimicrobial-resistant Campylobacter, Salmonella, or E. coli .
Collapse
Affiliation(s)
- Randall S Singer
- 1 University of Minnesota, St. Paul, Minnesota 55108.,2 Mindwalk Consulting Group, LLC, Falcon Heights, Minnesota 55113
| | | | | |
Collapse
|
32
|
Extended-Spectrum Cephalosporin-Resistant Enterobacteriaceae in Enteric Microflora of Wild Ducks. J Wildl Dis 2017; 53:690-694. [DOI: 10.7589/2016-12-272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Mathys DA, Mathys BA, Mollenkopf DF, Daniels JB, Wittum TE. EnterobacteriaceaeHarboring AmpC (blaCMY) and ESBL (blaCTX-M) in Migratory and Nonmigratory Wild Songbird Populations on Ohio Dairies. Vector Borne Zoonotic Dis 2017; 17:254-259. [DOI: 10.1089/vbz.2016.2038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Dimitria A. Mathys
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Blake A. Mathys
- Division of Mathematics, Computer and Natural Sciences, Ohio Dominican University, Columbus, Ohio
| | - Dixie F. Mollenkopf
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Joshua B. Daniels
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Thomas E. Wittum
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Mathys DA, Mollenkopf DF, Bremer CA, Daniels JB, Wittum TE. Prevalence of AmpC- and Extended-Spectrum β-Lactamase-Harbouring Enterobacteriaceae in Faecal Flora of a Healthy Domestic Canine Population. Zoonoses Public Health 2017; 64:554-560. [PMID: 28220620 DOI: 10.1111/zph.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/30/2022]
Abstract
In order to estimate the prevalence of AmpC- and ESBL β-lactamase-producing Enterobacteriaceae in the faecal flora of a healthy domestic canine population, faecal samples were obtained from healthy dogs receiving routine parasitology screening at the Ohio State University Veterinary Medical Center, between January 2013 and April 2013. Samples were screened for the presence of AmpC and ESBL β-lactamase phenotypes, and the clinically important genotypes, blaCMY and blaCTX-M , were confirmed via conventional PCR. Minimum inhibitory concentrations were determined for isolates and plasmids were characterized. Two hundred and twelve canine faecal samples were screened, of which 30 harboured isolates carrying the AmpC blaCMY , representing 14.2% of the population (95% CI: 9.4-18.9%). Nine samples harboured isolates that carried the ESBL blaCTX-M , representing 4.2% of the population (95% CI: 1.5-7.0%). Isolates containing blaCMY harboured multiple plasmid replicon types, while isolates containing blaCTX-M harboured few plasmid replicon types. Our results suggest that domestic dogs may serve as a reservoir for extended-spectrum cephalosporin resistance genes for other domestic animal populations as well as for their human companions. This represents a potential veterinary and public health risk that warrants further investigation and continued surveillance to ascertain the nature and extent of the risk. The high level of diversity of plasmid content among isolates harbouring blaCMY suggests broader dissemination relative to blaCTX-M isolates.
Collapse
Affiliation(s)
- D A Mathys
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - D F Mollenkopf
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - C A Bremer
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - J B Daniels
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - T E Wittum
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Bajaj P, Singh NS, Virdi JS. Escherichia coli β-Lactamases: What Really Matters. Front Microbiol 2016; 7:417. [PMID: 27065978 PMCID: PMC4811930 DOI: 10.3389/fmicb.2016.00417] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli strains belonging to diverse pathotypes have increasingly been recognized as a major public health concern. The β-lactam antibiotics have been used successfully to treat infections caused by pathogenic E. coli. However, currently, the utility of β-lactams is being challenged severely by a large number of hydrolytic enzymes – the β-lactamases expressed by bacteria. The menace is further compounded by the highly flexible genome of E. coli, and propensity of resistance dissemination through horizontal gene transfer and clonal spread. Successful management of infections caused by such resistant strains requires an understanding of the diversity of β-lactamases, their unambiguous detection, and molecular mechanisms underlying their expression and spread with regard to the most relevant information about individual bacterial species. Thus, this review comprises first such effort in this direction for E. coli, a bacterial species known to be associated with production of diverse classes of β-lactamases. The review also highlights the role of commensal E. coli as a potential but under-estimated reservoir of β-lactamases-encoding genes.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Nambram S Singh
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus New Delhi, India
| | - Jugsharan S Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus New Delhi, India
| |
Collapse
|
36
|
Evaluation of two multi-locus sequence typing schemes for commensal Escherichia coli from dairy cattle in Washington State. J Microbiol Methods 2016; 124:57-61. [PMID: 27001705 DOI: 10.1016/j.mimet.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli.
Collapse
|
37
|
Extended-Spectrum-Cephalosporin Resistance Genes in Escherichia coli from Beef Cattle. Antimicrob Agents Chemother 2015; 60:1162-3. [PMID: 26596933 DOI: 10.1128/aac.02516-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|