1
|
Nayak SRR, Pohokar P, Das A, Dhivya L, Pasupuleti M, Soundharrajan I, Almutairi BO, Kumaradoss KM, Arockiaraj J. Chalcone derivative enhance poultry meat preservation through quorum sensing inhibition against Salmonella (Salmonella enterica serovar Typhi) contamination. Food Control 2025; 171:111155. [DOI: 10.1016/j.foodcont.2025.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
2
|
Neviani E, Gatti M, Gardini F, Levante A. Microbiota of Cheese Ecosystems: A Perspective on Cheesemaking. Foods 2025; 14:830. [PMID: 40077532 PMCID: PMC11899173 DOI: 10.3390/foods14050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
This review contributes to the knowledge on the complex and adaptive microbial ecosystems within cheese, emphasizing their critical role in determining cheese quality, flavor, and safety. This review synthesizes the current knowledge on the microbial interactions and the dynamics of lactic acid bacteria (LAB), encompassing both starter (SLAB) and non-starter (NSLAB) strains, which are pivotal to the curd fermentation and ripening processes. The adaptability of these microbial consortia to environmental and technological stressors is explored, highlighting their contributions to acidification, proteolysis, and the development of distinctive organoleptic characteristics. Historical and technological perspectives on cheesemaking are also discussed, detailing the impact of milk treatment, starter culture selection, and post-renneting procedures on microbial activity and biochemical transformations. This review underscores the importance of microbial diversity and cooperative interactions in fostering ecosystem resilience and metabolic functionality, and it addresses the challenges in mimicking the technological performance of natural starters using selected cultures. By understanding the ecological roles and interactions of cheese microbiota, this review aims to guide improvements in cheese production practices. Additionally, these insights could spark the development of innovative strategies for microbial community management.
Collapse
Affiliation(s)
- Erasmo Neviani
- International Dairy Federation—Italian Committee, 20135 Milano, Italy;
| | - Monica Gatti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy;
| | - Alessia Levante
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
3
|
Yalew K, Pang X, Huang S, Zhang S, Yang X, Xie N, Wang Y, Lv J, Li X. Recent Development in Detection and Control of Psychrotrophic Bacteria in Dairy Production: Ensuring Milk Quality. Foods 2024; 13:2908. [PMID: 39335837 PMCID: PMC11431268 DOI: 10.3390/foods13182908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Milk is an ideal environment for the growth of microorganisms, especially psychrotrophic bacteria, which can survive under cold conditions and produce heat-resistant enzymes. Psychrotrophic bacteria create the great problem of spoiling milk quality and safety. Several ways that milk might get contaminated by psychrotrophic bacteria include animal health, cowshed hygiene, water quality, feeding strategy, as well as milk collection, processing, etc. Maintaining the quality of raw milk is critically essential in dairy processing, and the dairy sector is still affected by the premature milk deterioration of market-processed products. This review focused on the recent detection and control strategies of psychrotrophic bacteria and emphasizes the significance of advanced sensing methods for early detection. It highlights the ongoing challenges in the dairy industry caused by these microorganisms and discusses future perspectives in enhancing milk quality through innovative rapid detection methods and stringent processing controls. This review advocates for a shift towards more sophisticated on-farm detection technologies and improved control practices to prevent spoilage and economic losses in the dairy sector.
Collapse
Affiliation(s)
- Kidane Yalew
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Vet. Public Health and Food Safety, College of Veterinary Sciences, Mekelle University, Mekelle 0231, Tigrai, Ethiopia
| | - Xiaoyang Pang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixin Huang
- Shanghai Animal Disease Control Center, No. 30,855 Nong, Hongjing Rd., Shanghai 201103, China
| | - Shuwen Zhang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianchao Yang
- Shanghai Animal Disease Control Center, No. 30,855 Nong, Hongjing Rd., Shanghai 201103, China
| | - Ning Xie
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunna Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaping Lv
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xu Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Gao X, Han J, Zhu L, Nychas GJE, Mao Y, Yang X, Liu Y, Jiang X, Zhang Y, Dong P. The Effect of the PhoP/PhoQ System on the Regulation of Multi-Stress Adaptation Induced by Acid Stress in Salmonella Typhimurium. Foods 2024; 13:1533. [PMID: 38790833 PMCID: PMC11121531 DOI: 10.3390/foods13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
Collapse
Affiliation(s)
- Xu Gao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Jina Han
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China;
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - George-John E. Nychas
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xueqing Jiang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| |
Collapse
|
5
|
Chen X, Li J, Liao R, Shi X, Xing Y, Xu X, Xiao H, Xiao D. Bibliometric analysis and visualization of quorum sensing research over the last two decade. Front Microbiol 2024; 15:1366760. [PMID: 38646636 PMCID: PMC11026600 DOI: 10.3389/fmicb.2024.1366760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Liao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Xing
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
6
|
Liu Y, Liu J, Yan P, Kachanuban K, Liu P, Jia A, Zhu W. Carbazole and Quinazolinone Derivatives from a Fluoride-Tolerant Streptomyces Strain OUCMDZ-5511. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6424-6431. [PMID: 38470989 DOI: 10.1021/acs.jafc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Pengcheng Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Fishery Product, Faculty of Fisheries of Kasetsart University, Bangkok 10900, Thailand
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aiqun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
7
|
Lou Z, Dong J, Tao H, Tan Y, Wang H. Regulation and mechanism of organic selenium on quorum sensing, biofilm, and antioxidant effects of Lactobacillus paracasei. Cell Biochem Funct 2024; 42:e3975. [PMID: 38475877 DOI: 10.1002/cbf.3975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 μg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 μg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.
Collapse
Affiliation(s)
- Zaixiang Lou
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiale Dong
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongwei Tao
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yeexuan Tan
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Jiang Q, Feng L, Luo J, Wu Y, Dong H, Mustafa AM, Su Y, Zhao Y, Chen Y. Simultaneous volatile fatty acids promotion and antibiotic resistance genes reduction in fluoranthene-induced sludge alkaline fermentation: Regulation of microbial consortia and cell functions. BIORESOURCE TECHNOLOGY 2024; 395:130367. [PMID: 38266788 DOI: 10.1016/j.biortech.2024.130367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.
Collapse
Affiliation(s)
- Qingyang Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, School of Medicine, Tongji Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yu Su
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Lawther K, Santos FG, Oyama LB, Huws SA. - Invited Review - Chemical signalling within the rumen microbiome. Anim Biosci 2024; 37:337-345. [PMID: 38186253 PMCID: PMC10838665 DOI: 10.5713/ab.23.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.
Collapse
Affiliation(s)
- Katie Lawther
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Fernanda Godoy Santos
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Linda B Oyama
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| | - Sharon A Huws
- School of Biological Sciences/Institute for Global Food Security, Queen’s University Belfast, Belfast, BT9 5DL,
UK
| |
Collapse
|
10
|
Purk L, Kitsiou M, Ioannou C, El Kadri H, Costello KM, Gutierrez Merino J, Klymenko O, Velliou EG. Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Sci Rep 2023; 13:21811. [PMID: 38071223 PMCID: PMC10710490 DOI: 10.1038/s41598-023-48968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.
Collapse
Affiliation(s)
- Lisa Purk
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Melina Kitsiou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK
| | - Christina Ioannou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Oleksiy Klymenko
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, UK.
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, Fitzrovia, London, W1W 7TY, UK.
| |
Collapse
|
11
|
Kitsiou M, Purk L, Ioannou C, Wantock T, Sandison G, Harle T, Gutierrez-Merino J, Klymenko OV, Velliou E. On the evaluation of the antimicrobial effect of grape seed extract and cold atmospheric plasma on the dynamics of Listeria monocytogenes in novel multiphase 3D viscoelastic models. Int J Food Microbiol 2023; 406:110395. [PMID: 37734280 DOI: 10.1016/j.ijfoodmicro.2023.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.
Collapse
Affiliation(s)
- Melina Kitsiou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | - Lisa Purk
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | - Christina Ioannou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere, GU27 3HA, UK
| | | | - Oleksiy V Klymenko
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini Velliou
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK.
| |
Collapse
|
12
|
Adnan M, Siddiqui AJ, Ashraf SA, Ashraf MS, Alomrani SO, Alreshidi M, Tepe B, Sachidanandan M, Danciu C, Patel M. Saponin-Derived Silver Nanoparticles from Phoenix dactylifera (Ajwa Dates) Exhibit Broad-Spectrum Bioactivities Combating Bacterial Infections. Antibiotics (Basel) 2023; 12:1415. [PMID: 37760712 PMCID: PMC10525761 DOI: 10.3390/antibiotics12091415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antibiotic resistance poses a serious threat to humankind, emphasizing the need for alternative antimicrobial agents. This study focuses on investigating the antibacterial, antibiofilm, and anti-quorum-sensing (anti-QS) activities of saponin-derived silver nanoparticles (AgNPs-S) obtained from Ajwa dates (Phoenix dactylifera L.). The design and synthesis of these novel nanoparticles were explored in the context of developing alternative strategies to combat bacterial infections. The Ajwa date saponin extract was used as a reducing and stabilizing agent to synthesize AgNPs-S, which was characterized using various analytical techniques, including UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The biosynthesized AgNPs-S exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria due to their capability to disrupt bacterial cell membranes and the leakage of nucleic acid and protein contents. The AgNPs-S effectively inhibited biofilm formation and quorum-sensing (QS) activity by interfering with QS signaling molecules, which play a pivotal role in bacterial virulence and pathogenicity. Furthermore, the AgNPs-S demonstrated significant antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and cytotoxicity against small lung cancer cells (A549 cells). Overall, the findings of the present study provide valuable insights into the potential use of these nanoparticles as alternative therapeutic agents for the design and development of novel antibiotics. Further investigations are warranted to elucidate the possible mechanism involved and safety concerns when it is used in vivo, paving the way for future therapeutic applications in combating bacterial infections and overcoming antibiotic resistance.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Syed Amir Ashraf
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohammad Saquib Ashraf
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Riyadh ELM University, Riyadh 12734, Saudi Arabia
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.A.)
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Kilis 7 Aralik University, TR-79000 Kilis, Turkey
| | - Manojkumar Sachidanandan
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
- Department of Oral Radiology, College of Dentistry, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| |
Collapse
|
13
|
Roy PK, Ha AJW, Nahar S, Hossain MI, Ashrafudoulla M, Toushik SH, Mizan MFR, Kang I, Ha SD. Inhibitory effects of vorinostat (SAHA) against food-borne pathogen Salmonella enterica serotype Kentucky mixed culture biofilm with virulence and quorum-sensing relative expression. BIOFOULING 2023; 39:617-628. [PMID: 37580896 DOI: 10.1080/08927014.2023.2242263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Iksoon Kang
- Department of Animal Science, College of Agriculture, Food and Environmental Science, CA Polytechnic State University, San Luis Obispo, California, USA
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Poimenidou SV, Caccia N, Paramithiotis S, Hébraud M, Nychas GJ, Skandamis PN. Influence of temperature on regulation of key virulence and stress response genes in Listeria monocytogenes biofilms. Food Microbiol 2023; 111:104190. [PMID: 36681396 DOI: 10.1016/j.fm.2022.104190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Temperature is a major determinant of Listeria (L.) monocytogenes adherence and biofilm formation on abiotic surfaces. However, its role on gene regulation of L. monocytogenes mature biofilms has not been investigated. In the present study, we aimed to evaluate the impact of temperature up- and down-shift on L. monocytogenes biofilms gene transcription. L. monocytogenes strain EGD-e biofilms were first developed on stainless steel surfaces in Brain Heart Infusion broth at 20 °C for 48 h. Then, nutrient broth was renewed, and mature biofilms were exposed to 10 °C, 20 °C or 37 °C for 24 h. Biofilm cells were harvested and RNA levels of plcA, prfA, hly, mpl, plcB, sigB, bapL, fbpA, fbpB, lmo2178, lmo0880, lmo0160, lmo1115, lmo 2089, lmo2576, lmo0159 and lmo0627 were evaluated by quantitative RT-PCR. The results revealed an over-expression of all genes tested in biofilm cells compared to planktonic cells. When biofilms were further allowed to proliferate at 20 °C for 24 h, the transcription levels of key virulence, stress response and putative binding proteins genes plcA, sigB, fbpA, fbpB, lmo1115, lmo0880 and lmo2089 decreased. A temperature-dependent transcription for sigB, plcA, hly, and lmo2089 genes was observed after biofilm proliferation at 10 °C or 37 °C. Our findings suggest that temperature differentially affects gene regulation of L. monocytogenes mature biofilms, thus modulating attributes such as virulence, stress response and pathogenesis.
Collapse
Affiliation(s)
- Sofia V Poimenidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece
| | - Nelly Caccia
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - Spiros Paramithiotis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece; Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Process Engineering. Iera Odos 75, 11855, Athens, Greece
| | - Michel Hébraud
- University Clermont Auvergne (UCA), Institut National de Recherche pour L'Agriculture, L'alimentation et L'environnement (INRAE), UMR Microbiologie, Environnement Digestif et Santé (MEDiS), Site de Theix, F-63122 Saint-Genès Champanelle, France
| | - George-John Nychas
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Microbiology and Biotechnology. Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene. Iera Odos 75, 11855, Athens, Greece.
| |
Collapse
|
15
|
Doulgeraki AI, Kamarinou CS, Nychas GJE, Argyri AA, Tassou CC, Moulas G, Chorianopoulos N. Role of Microbial Interactions across Food-Related Bacteria on Biofilm Population and Biofilm Decontamination by a TiO 2-Nanoparticle-Based Surfactant. Pathogens 2023; 12:pathogens12040573. [PMID: 37111459 PMCID: PMC10141041 DOI: 10.3390/pathogens12040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial interactions play an important role in initial cell adhesion and the endurance of biofilm toward disinfectant stresses. The present study aimed to evaluate the effect of microbial interactions on biofilm formation and the disinfecting activity of an innovative photocatalytic surfactant based on TiO2 nanoparticles. Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, Leuconostoc spp., Latilactobacillus sakei, Serratia liquefaciens, Serratia proteomaculans, Citrobacter freundii, Hafnia alvei, Proteus vulgaris, Pseudomonas fragi, and Brochothrix thermosphacta left to form mono- or dual-species biofilms on stainless steel (SS) coupons. The effectiveness of the photocatalytic disinfectant after 2 h of exposure under UV light on biofilm decontamination was evaluated. The effect of one parameter i.e., exposure to UV or disinfectant, was also determined. According to the obtained results, the microbial load of a mature biofilm depended on the different species or dual species that had adhered to the surface, while the presence of other species could affect the biofilm population of a specific microbe (p < 0.05). The disinfectant strengthened the antimicrobial activity of UV, as, in most cases, the remaining biofilm population was below the detection limit of the method. Moreover, the presence of more than one species affected the resistance of the biofilm cells to UV and the disinfectant (p < 0.05). In conclusion, this study confirms that microbial interactions affected biofilm formation and decontamination, and it demonstrates the effectiveness of the surfactant with the photocatalytic TiO2 agent, suggesting that it could be an alternative agent with which to disinfect contaminated surfaces.
Collapse
Affiliation(s)
- Agapi I Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Christina S Kamarinou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Anthoula A Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | - Chrysoula C Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-DIMITRA, S. Venizelou 1, 14123 Lycovrissi, Greece
| | | | - Nikos Chorianopoulos
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
16
|
Gu Y, Zhang B, Tian J, Li L, He Y. Physiology, quorum sensing, and proteomics of lactic acid bacteria were affected by Saccharomyces cerevisiae YE4. Food Res Int 2023; 166:112612. [PMID: 36914328 DOI: 10.1016/j.foodres.2023.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
The interaction mode between lactic acid bacteria (LAB) and yeast in a fermentation system directly determines the quality of the products, thus understanding their mode of interaction can improve product quality. The present study investigated the effects of Saccharomyces cerevisiae YE4 on LAB from the perspectives of physiology, quorum sensing (QS), and proteomics. The presence of S. cerevisiae YE4 slowed down the growth of Enterococcus faecium 8-3 but had no significant effect on acid production or biofilm formation. S. cerevisiae YE4 significantly reduced the activity of autoinducer-2 at 19 h in E. faecium 8-3 and at 7-13 h in Lactobacillus fermentum 2-1. Expression of the QS-related genes luxS and pfs was also inhibited at 7 h. Moreover, a total of 107 E. faecium 8-3 proteins differed significantly in coculture with S. cerevisiae YE4-these proteins are involved in metabolic pathways including biosynthesis of secondary metabolites; biosynthesis of amino acids; alanine, aspartate, and glutamate metabolism; fatty acid metabolism; and fatty acid biosynthesis. Among them, proteins involved in cell adhesion, cell wall formation, two-component systems, and ABC transporters were detected. Therefore, S. cerevisiae YE4 might affect the physiological metabolism of E. faecium 8-3 by affecting cell adhesion, cell wall formation, and cell-cell interactions.
Collapse
Affiliation(s)
- Yue Gu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Baojun Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China
| | - Lijie Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| | - Yinfeng He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
17
|
Zeng X, Mo Z, Zheng J, Wei C, Dai Y, Yan Y, Qiu S. Effects of biofilm and co-culture with Bacillus velezensis on the synthesis of esters in the strong flavor Baijiu. Int J Food Microbiol 2023; 394:110166. [PMID: 36921483 DOI: 10.1016/j.ijfoodmicro.2023.110166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023]
Abstract
Biofilm plays an important role in resisting the adverse environment, improving the taste and texture, and promoting the synthesis of flavor substances. However, to date, the findings on the effect of biofilm and dominating bacteria Bacillus on the ester synthesis in the Baijiu field have been largely lacked. Therefore, the objectives of the present study were to primarily isolate biofilm-producing microbes in the fermented grains, evaluate the stress tolerance capacity, and unveil the effect of biofilm and co-culture with Bacillus on the ester synthesis in the strong flavor Baijiu. Results indicated that after isolation and evaluation of stress-tolerance capacity, bacterial strain BG-5 and yeast strains YM-21 and YL-10 were demonstrated as mediate or strong biofilm-producing microbes and were identified as Bacillus velezensis, Saccharomycopsis fibuligera, and Zygosaccharomyces bailii, respectively. Solid phase microextraction/gas chromatography-mass spectrometer indicated that biofilm could enhance the diversity of esters while reduce the contents of ester. The scanning electron microscopy showed an inhibitory effect of B. velezensis on the growth of S. fibuligera, further restraining the production of esters. Taken together, both biofilm and B. velezensis influence the ester synthesis process. The present study is the first to reveal the biofilm-producing microorganisms in fermented grains and to preliminarily investigate the effect of biofilm on the ester synthesis in the Baijiu field.
Collapse
Affiliation(s)
- Xiangyong Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China.
| | - Zhenni Mo
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Department of Light Industry and Chemical Engineering, Guizhou Light Industry Technical College, Guiyang City 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co Ltd, No.150 Minjiang West Road, Yibin City 644007, China
| | - Chaoyang Wei
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yifeng Dai
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Yan Yan
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Guizhou University, Guiyang City 550025, China; Guizhou Provincial Key Laboratory of Fermentation and Biopharmacy, Guizhou University, Guiyang City 550025, China
| |
Collapse
|
18
|
Patel R, Soni M, Soyantar B, Shivangi S, Sutariya S, Saraf M, Goswami D. A clash of quorum sensing vs quorum sensing inhibitors: an overview and risk of resistance. Arch Microbiol 2023; 205:107. [PMID: 36881156 DOI: 10.1007/s00203-023-03442-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Indiscriminate use of antibiotics to treat microbial pathogens has caused emergence of multiple drug resistant strains. Most infectious diseases are caused by microbes that are capable of intercommunication using signaling molecules, which is known as quorum sensing (QS). Such pathogens express their pathogenicity through various QS-regulated virulence factors. Interference of QS could lead to decisive results in controlling such pathogenicity. Hence, QS inhibition has become an attractive new approach for the development of novel drugs. Many quorum sensing inhibitors (QSIs) of diverse origins have been reported. It is imperative that more such anti-QS compounds be found and studied, as they have significant effect on microbial pathogenicity. This review attempts to give a brief account of QS mechanism, its inhibition and describes some compounds with anti-QS potential. Also discussed is the possibility of emergence of quorum sensing resistance.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mansi Soni
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bilv Soyantar
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Suruchi Shivangi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Swati Sutariya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
19
|
Role of siderophore in Pseudomonas fluorescens biofilm formation and spoilage potential function. Food Microbiol 2023; 109:104151. [DOI: 10.1016/j.fm.2022.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022]
|
20
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
21
|
Falà AK, Álvarez-Ordóñez A, Filloux A, Gahan CGM, Cotter PD. Quorum sensing in human gut and food microbiomes: Significance and potential for therapeutic targeting. Front Microbiol 2022; 13:1002185. [PMID: 36504831 PMCID: PMC9733432 DOI: 10.3389/fmicb.2022.1002185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Human gut and food microbiomes interact during digestion. The outcome of these interactions influences the taxonomical composition and functional capacity of the resident human gut microbiome, with potential consequential impacts on health and disease. Microbe-microbe interactions between the resident and introduced microbiomes, which likely influence host colonisation, are orchestrated by environmental conditions, elements of the food matrix, host-associated factors as well as social cues from other microorganisms. Quorum sensing is one example of a social cue that allows bacterial communities to regulate genetic expression based on their respective population density and has emerged as an attractive target for therapeutic intervention. By interfering with bacterial quorum sensing, for instance, enzymatic degradation of signalling molecules (quorum quenching) or the application of quorum sensing inhibitory compounds, it may be possible to modulate the microbial composition of communities of interest without incurring negative effects associated with traditional antimicrobial approaches. In this review, we summarise and critically discuss the literature relating to quorum sensing from the perspective of the interactions between the food and human gut microbiome, providing a general overview of the current understanding of the prevalence and influence of quorum sensing in this context, and assessing the potential for therapeutic targeting of quorum sensing mechanisms.
Collapse
Affiliation(s)
- A. Kate Falà
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cormac G. M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland,School of Pharmacy, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland,*Correspondence: Paul D. Cotter,
| |
Collapse
|
22
|
Alain KY, Tamfu AN, Kucukaydin S, Ceylan O, Cokou Pascal AD, Félicien A, Koko Dominique SC, Duru ME, Dinica RM. Phenolic profiles, antioxidant, antiquorum sensing, antibiofilm and enzyme inhibitory activities of selected Acacia species collected from Benin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Chen L, Ku L, Li M. Editorial: Frontiers in bacterial quorum sensing research. Front Cell Infect Microbiol 2022; 12:999388. [PMID: 36118023 PMCID: PMC9471556 DOI: 10.3389/fcimb.2022.999388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Lina Ku
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi’an, China
- *Correspondence: Mingkai Li,
| |
Collapse
|
24
|
Gu Y, Tian J, Zhang Y, Wu J, He Y. Effect of Saccharomyces cerevisiae cell-free supernatant on the physiology, quorum sensing, and protein synthesis of lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Current Advances in the Concept of Quorum Sensing-Based Prevention of Spoilage of Fish Products by Pseudomonads. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial spoilage of fish is attributed to quorum sensing (QS)-based activities. QS is a communication process between the cells in which microorganisms secrete and sense the specific chemicals (autoinductors, AIs) that regulate proteolysis, lipolysis, and biofilm formation. These activities change the organoleptic characteristics and reduce the safety of the products. Although the microbial community of fish is diverse and may consist of a range of bacterial strains, the deterioration of fish-based products is attributed to the growth and activity of Pseudomonas spp. This work summarizes recent advancements to assess the influence of QS mechanisms on seafood spoilage by Pseudomonas spp. The quorum sensing inhibition (QSI) in the context of fish preservation has also been discussed. Detailed recognition of this phenomenon is crucial in establishing effective strategies to prevent the premature deterioration of fish-based products.
Collapse
|
26
|
Ranjbaran M, Verma MS. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kim YK, Roy PK, Ashrafudoulla M, Nahar S, Toushik SH, Hossain MI, Mizan MFR, Park SH, Ha SD. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Dahibhate NL, Shukla SK, Kumar K. A Cyclic Disulfide Diastereomer From Bioactive Fraction of Bruguiera gymnorhiza Shows Anti- Pseudomonas aeruginosa Activity. Front Pharmacol 2022; 13:890790. [PMID: 35721160 PMCID: PMC9201687 DOI: 10.3389/fphar.2022.890790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes hospital-acquired infection and is of great concern in immunocompromised patients. The quorum sensing (QS) mechanism of P. aeruginosa is well studied and known to be responsible for pathogenicity and virulence. The QS inhibitor derived from the natural product can be an important therapeutic agent for pathogen control. The present study reports the role of Bruguiera gymnorhiza purified fraction (BG138) in inhibiting virulence factor production, biofilm formation, quorum sensing molecules, and expression of QS-related genes of P. aeruginosa. Structural characterization of BG138 by high resolution mass spectrometry, Fourier transform infrared spectroscopy, 1D (1H and 13C NMR) and 2D NMR reveals that the fraction is a mixture of already known cyclic disulfide diastereomer, namely, brugierol and isobrugierol. The minimum inhibitory concentration (MIC) of BG138 against P. aeruginosa was 32 μg/ml. Biofilm formation was significantly reduced at sub-MIC concentrations of BG138. Scanning electron microscopy analysis reports the concentration-dependent biofilm inhibition and morphological changes of P. aeruginosa. Flow cytometry–based cell viability assay showed that P. aeruginosa cells exhibit increased propidium iodide uptake on treatment with 32 and 64 μg/ml of BG138. At sub-MIC concentrations, BG138 exhibited significant inhibition of virulence factors and reduced swimming and swarming motility of P. aeruginosa. Furthermore, the effect of BG138 on the expression of QS-related genes was investigated by qRT-PCR. Taken together, our study reports the isolation and structural characterization of bioactive fraction BG138 from B. gymnorhiza and its anti-biofilm, anti-virulence, anti-quorum sensing, and cell-damaging activities against P. aeruginosa.
Collapse
Affiliation(s)
- Nilesh Lakshman Dahibhate
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, India
| |
Collapse
|
29
|
Abbamondi GR, Tommonaro G. Research Progress and Hopeful Strategies of Application of Quorum Sensing in Food, Agriculture and Nanomedicine. Microorganisms 2022; 10:1192. [PMID: 35744710 PMCID: PMC9229978 DOI: 10.3390/microorganisms10061192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Quorum sensing (QS) regulates the expression of several genes including motility, biofilm development, virulence expression, population density detection and plasmid conjugation. It is based on "autoinducers", small molecules that microorganisms produce and release in the extracellular milieu. The biochemistry of quorum sensing is widely discussed and numerous papers are available to scientists. The main purpose of this research is to understand how knowledge about this mechanism can be exploited for the benefit of humans and the environment. Here, we report the most promising studies on QS and their resulting applications in different fields of global interest: food, agriculture and nanomedicine.
Collapse
Affiliation(s)
- Gennaro Roberto Abbamondi
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy;
| | | |
Collapse
|
30
|
Exploring communication signals inside the microbial community of a Listeria monocytogenes-carrying biofilm contamination site. Int J Food Microbiol 2022; 376:109773. [DOI: 10.1016/j.ijfoodmicro.2022.109773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
|
31
|
Escobar-Muciño E, Arenas-Hernández MMP, Luna-Guevara ML. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022; 10:884. [PMID: 35630329 PMCID: PMC9143355 DOI: 10.3390/microorganisms10050884] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.
Collapse
Affiliation(s)
- Esmeralda Escobar-Muciño
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - M. Lorena Luna-Guevara
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico
| |
Collapse
|
32
|
Roy PK, Song MG, Park SY. Impact of Quercetin against Salmonella Typhimurium Biofilm Formation on Food-Contact Surfaces and Molecular Mechanism Pattern. Foods 2022; 11:977. [PMID: 35407064 PMCID: PMC8997561 DOI: 10.3390/foods11070977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022] Open
Abstract
Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, μg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0−125 μg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09−2.49 and 0.20−2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation.
Collapse
Affiliation(s)
| | | | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea; (P.K.R.); (M.G.S.)
| |
Collapse
|
33
|
Dai J, Fang L, Wu Y, Liu B, Cheng X, Yao M, Huang L. Effects of exogenous AHLs on the spoilage characteristics of
Pseudomonas koreensis
PS1. J Food Sci 2022; 87:819-832. [DOI: 10.1111/1750-3841.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyue Dai
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Limin Fang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Yan Wu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Baoyu Liu
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Xin Cheng
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| | - Mingyin Yao
- College of Engineering, Jiangxi Agricultural University Jiangxi Key Laboratory of Modern Agricultural Equipment Nanchang China
| | - Lin Huang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources Institute of Applied Microbiology Nanchang China
| |
Collapse
|
34
|
Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. The combination of hexanal and geraniol in sublethal concentrations synergistically inhibits Quorum Sensing of Pseudomonas fluorescens - in vitro and in silico approaches. J Appl Microbiol 2022; 133:2122-2136. [PMID: 35007388 DOI: 10.1111/jam.15446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
AIM Hexanal and geraniol are essential oil components with anti-Quorum Sensing (QS) activity against Pseudomonas fluorescens. This study demonstrated that QS inhibition (QSI) efficacy of hexanal and geraniol combination (HG) was significantly increased compared with their mono-counterparts at the same concentration. METHODS AND RESULTS Tests on P. fluorescens motility, biofilm formation, acyl-homoserine lactones (AHLs) production, gene expression in vitro, and molecular docking in silico were conducted to evaluate the synergistic effect of hexanal and geraniol on QSI. HG mixture at 0.5 minimal inhibitory concentration (MIC) showed a strong synergistic inhibition of biofilm formation (51.8%), motility (60.13%), and extracellular protease activity (58.9%) of P. fluorescens. The synthesis of AHLs, e.g. C8 -HSL and C12 -HSL was inhibited by hexanal, geraniol, and HG; both AHLs are responsible for regulating virulence factors in P. fluorescens. The expression of pcoI and gacA genes regulating AHLs synthetase and sensor kinase was significantly down-regulated by HG (0.29 and 0.38-fold) at 0.5 MIC. Hexenal and HG showed significant inhibition of pcoR and gacS genes expression regulating AHLs receptor protein and response regulator; however, geraniol failed to down-regulate the two genes. Molecular docking in silico also supported these findings. Hexenal inserted into minor groove of pcoI/pcoR DNA fragments to inhibit genes expression. Both hexanal (-31.487 kcal/mol) and geraniol (-25.716 kcal/mol) had a higher binding affinity with PcoI protein than halogenated furanone C30 (-24.829 kcal/mol) as a known competitor of AHLs. Similarly, hexenal and geraniol would also strongly bind to the PcoR protein. CONCLUSIONS It was found that HG at 0.5 MIC would effectively inhibit QS through suppressing pcoR/gacS and gacA/gacS genes expression and therefore, inhibit motility and biofilm formation in P. fluorescens. SIGNIFICANCE AND IMPACT OF THE STUDY The present study indicated that HG at sub-MIC as QS inhibitor could be further developed as a new preservative of agri-food products.
Collapse
Affiliation(s)
- Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China.,Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| |
Collapse
|
35
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
36
|
Mining marine metagenomes revealed a quorum-quenching lactonase with improved biochemical properties that inhibits the food spoilage bacteria Pseudomonas fluorescens. Appl Environ Microbiol 2021; 88:e0168021. [PMID: 34910563 DOI: 10.1128/aem.01680-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30-40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named marine originated Lactonase Related Protein (moLRP). This enzyme presented greater activity and stability at a broad range of temperatures and pH, and tolerance to high salinity levels (up to 5M NaCl), as well as higher durability in bacterial culture, compared to another PLL member. The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment, and can potentially serve as an effective QQ enzyme, inhibiting the QS process in gram-negative bacteria involved in food spoilage. Importance Our results emphasize the potential of sequence and structure-based identification of new quorum-quenching (QQ) enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.
Collapse
|
37
|
Quintieri L, Caputo L, Brasca M, Fanelli F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021; 10:3088. [PMID: 34945641 PMCID: PMC8701193 DOI: 10.3390/foods10123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, 20133 Milan, Italy;
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| |
Collapse
|
38
|
Carvalho F, Duarte AP, Ferreira S. Antimicrobial activity of Melissa officinalis and its potential use in food preservation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
He W, Yang H, Wang X, Li H, Dong Q. Growth of Salmonella Enteritidis in the presence of quorum sensing signaling compounds produced by Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Quorum sensing (QS) can exist in food-related bacteria and potentially affect bacterial growth through acyl-homoserine lactones (AHLs). To verify the role of QS compounds in the cell-free supernatant, this study examined the effect of supernatant extracted from Pseudomonas aeruginosa culture on the growth kinetics of Salmonella Enteritidis. The results showed that the lag time (λ) of S. Enteritidis was apparently reduced (p < 0.05) under the influence of P. aeruginosa culture supernatant compared with the S. Enteritidis culture supernatant. HPLC-MS/MS test demonstrated that AHLs secreted by P. aeruginosa were mainly C14-HSL with a content of 85.71 μg/mL and a small amount of 3-oxo-C12-HSL. In addition, the commercially synthetic C14-HSL had positive effects on the growth of S. Enteritidis, confirming once again that the growth of S. Enteritidis was affected by AHL metabolized by other bacteria and the complexity of bacterial communication.
Collapse
Affiliation(s)
- Weijia He
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Huamei Yang
- Taizhou Center for Disease Control and Prevention , Taizhou , Jiangsu 225300 , P. R. China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Hongmei Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology , Shanghai, 516 Jungong Rd. , Shanghai 200093 , P. R. China
| |
Collapse
|
40
|
Costello KM, Velliou E, Gutierrez-Merino J, Smet C, Kadri HE, Impe JFV, Bussemaker M. The effect of ultrasound treatment in combination with nisin on the inactivation of Listeria innocua and Escherichia coli. ULTRASONICS SONOCHEMISTRY 2021; 79:105776. [PMID: 34662803 PMCID: PMC8560821 DOI: 10.1016/j.ultsonch.2021.105776] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 05/21/2023]
Abstract
Ultrasound, alone or in combination with natural antimicrobials, is a novel food processing technology of interest to replace traditional food decontamination methods, as it is milder than classical sterilisation (heat treatment) and maintains desirable sensory characteristics. However, ultrasound efficacy can be affected by food structure/composition, as well as the order in which combined treatments are applied. More specifically, treatments which target different cell components could result in enhanced inactivation if applied in the appropriate order. The microbial properties i.e. Gram positive/Gram negative can also impact the treatment efficacy. This work presents a systematic study of the combined effect of ultrasound and nisin on the inactivation of the bacteria Listeria innocua (Gram positive) and Escherichia coli (Gram negative), at a range of cavitation conditions (44, 500, 1000 kHz). The order of treatment application was varied, and the impact of system structure was also investigated by varying the concentration of Xanthan gum used to create the food model systems (0 - 0.5% w/v). Microbial inactivation kinetics were monitored, and advanced microscopy and flow cytometry techniques were utilised to quantify the impact of treatment on a cellular level. Ultrasound was shown to be effective against E. coli at 500 kHz only, with L. innocua demonstrating resistance to all frequencies studied. Enhanced inactivation of E. coli was observed for the combination of nisin and ultrasound at 500 kHz, but only when nisin was applied before ultrasound treatment. The system structure negatively impacted the inactivation efficacy. The combined effect of ultrasound and nisin on E. coli was attributed to short-lived destabilisation of the outer membrane as a result of sonication, allowing nisin to penetrate the cytoplasmic membrane and facilitate cell inactivation.
Collapse
Affiliation(s)
- Katherine M Costello
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| | - Eirini Velliou
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London W1W 7TY, UK
| | | | - Cindy Smet
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Hani El Kadri
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven Campus Gent, Gent, Belgium
| | - Madeleine Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
41
|
Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Antonie van Leeuwenhoek 2021; 114:1977-1989. [PMID: 34537868 DOI: 10.1007/s10482-021-01655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD595nm) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome.
Collapse
|
42
|
İnat G, Sırıken B, Başkan C, Erol İ, Yıldırım T, Çiftci A. Quorum sensing systems and related virulence factors in Pseudomonas aeruginosa isolated from chicken meat and ground beef. Sci Rep 2021; 11:15639. [PMID: 34341384 PMCID: PMC8329004 DOI: 10.1038/s41598-021-94906-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The objective of this study was to evaluate 50 [chicken meat (n = 45) and ground beef (n = 5)] Pseudomonas aeruginosa isolates to determine the expression of the lasI and rhl QS systems, related virulence factors, and the presence of N-3-oxo-dodecanoyl homoserine lactone (AHL: 3-O-C12-HSL). For the isolation and identification of P. aeruginosa, conventional culture and oprL gene-based molecular techniques were used. In relation to QS systems, eight genes consisting of four intact and four internal (lasI/R, rhlI/R) genes were analyzed with PCR assay. The two QS systems genes in P. aeruginosa isolates from ground beef (80.00%) and chicken meat (76.00%) were present at quite high levels. The 3-O-C12-HSL was detected in 14.00% of the isolates. Both biofilm formation and motility were detected in 98.00% of the isolates. Protease activity was determined in 54.00% of the isolates. Pyocyanin production was detected in 48.00% of the isolates. The las system scores strongly and positively correlated with the rhl system (p ˂ .01). PYA moderately and positively correlated with protease (p ˂ .05). In addition, there was statistically significance between lasI and protease activity (p < .10), and rhlI and twitching motility (p < .10). In conclusion, the high number of isolates having QS systems and related virulence factors are critical for public health. Pyocyanin, protease, and biofilm formation can cause spoilage and play essential role in food spoilage and food safety.
Collapse
Affiliation(s)
- Gökhan İnat
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Belgin Sırıken
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| | - Ceren Başkan
- Department of Physical Therapy and Rehabilitation, Sabuncuoğlu Şerefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - İrfan Erol
- Faculty of Health Sciences, Eastern Mediterranean University, Gazimagusa TRNC Via Mersin, Turkey
| | - Tuba Yıldırım
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Alper Çiftci
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
43
|
Nath BJ, Parasar DP, Sarma HK. Linking the Diversity of Yeasts Inherent in Starter Cultures to Quorum Sensing Mechanism in Ethnic Fermented Alcoholic Beverages of Northeast India. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.678045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this review, the relevance of diversity of yeasts and their interactive association in household ethnic fermentation are discussed. The longstanding traditional household fermentation practice involves preparation of fermented product such as alcoholic beverages from various indigenous agricultural products with the help of microorganisms cultivated from local environment and perpetuated for hundreds of years through generations indoctrinating an indigenous knowledge system. Northeast India is known for its rich physiographic and geo-demographic diversity and is home to several ethnicities who follow unique practices of household traditional fermentation. The diversity of yeasts present within the microbial inoculum used for fermentation by different indigenous communities has been keenly studied and reported to be unique in spite of their common source for starter substrates. Saccharomyces yeasts are primarily involved in alcoholic fermentation, whereas non-Saccharomyces yeasts, which are reportedly confined to a particular geographical region, have been reported to contribute toward the final outcome of fermentation produce. During fermentation, interaction among these large microbial communities and their resulting physiological expression within the fermentation micro-environment is believed to affect the final quality of the product. Mechanism of quorum sensing plays an important role in these interactions in order to maintain proportionality of different yeast populations wherein the quorum sensing molecules not only regulate population density but also effectively aid in enhancement of alcoholic fermentation. Additionally, various secondary metabolites, which are secreted as a result of inter-species interactions, have been found to affect the quality of beverages produced. This review concludes that diverse species of yeasts and their interaction within the fermentation micro-environment influence the sustainability and productivity of household ethnic fermentation.
Collapse
|
44
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|
45
|
Yu T, Ma M, Sun Y, Xu X, Qiu S, Yin J, Chen L. The effect of sublethal concentrations of benzalkonium chloride on the LuxS/AI-2 quorum sensing system, biofilm formation and motility of Escherichia coli. Int J Food Microbiol 2021; 353:109313. [PMID: 34175578 DOI: 10.1016/j.ijfoodmicro.2021.109313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022]
Abstract
Escherichia coli can survive improper disinfection processes, which is a potential source of contamination of food products. Benzalkonium chloride (BC) is a common disinfectant widely used in food industry. Bacterial quorum sensing (QS) plays a major role in food spoilage, biofilm formation and food-related pathogenesis. Understanding QS can help to control the growth of undesirable food-related bacteria. The LuxS/AI-2 QS system of E. coli has been confirmed to regulate many important phenotypes including biofilm formation and motility. In the current study, we aimed to investigate the effect of sublethal concentrations of BC on the LuxS/AI-2 system of E. coli isolates from retail meat samples, as well as bacterial biofilm formation and motility. Our results showed that sublethal concentrations of BC promoted AI-2 production in four test E. coli isolates. The results from microplate assay and confocal laser scanning microscopy (CLSM) analysis indicated that sublethal concentrations of BC enhanced biofilm formation of E. coli. When treated with sublethal concentrations of BC, exopolysaccharides (EPS) production during biofilm development increased significantly and swimming motility of tested isolates was also promoted. The expression levels of luxS, biofilm-associated genes and flagellar motility genes were increased by BC at sublethal concentrations. Our findings underline the importance of proper use of the disinfectant BC in food processing environments to control food contamination by E. coli.
Collapse
Affiliation(s)
- Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Muyuan Ma
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu Province 215123, China
| | - Yaxi Sun
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Xiaobo Xu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China
| | - Shuxing Qiu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Junlei Yin
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China; Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, Henan Province 453000, China
| | - Leishan Chen
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, Henan Province 453000, China.
| |
Collapse
|
46
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
47
|
Zhang Y, Dai Z, Zhou Z, Yin H, Zhang M, Zhang H, Liu Y, Li Q, Nan X, Liu X, Meng D. Development of the yeast and lactic acid bacteria co-culture agent for atmospheric ammonia removing: Genomic features and on-site applications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112287. [PMID: 33933812 DOI: 10.1016/j.ecoenv.2021.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Odorous gas (e.g. atmospheric ammonia) in low ventilation public places, such as public toilets and waste transfer stations, causes severe health problems. Many technologies are developed to purify the atmospheric ammonia, among which the microbial agents are supposed to be a green and economical approach. In this study, we developed a yeast, Pichia sp. J1, and a lactic acid bacterium (LAB), Lactobacillus paracasei B1, co-culture agent for atmospheric ammonia removing. The on-site application results indicated the yeast and LAB mixed fermented agent had a maximum ammonia removing efficiency of 98.78%, which is significantly higher than the pure cultures (78.93% for B1 and 75.00% for J1), indicating the co-culture agent is an excellent biological product for ammonia removal. The excellent performance of the agent is closely related to the synergy behaviors between the yeast and LAB. In the co-culture agents, some of the LAB cells adhered closely to the yeast, and the growth and lactic acid producing ability of LAB were significantly promoted by yeast. Genomic analysis indicated the complementary of nutrients, i.e. carbon and nitrogen resources, signal transduction, and adhesion proteins (regulates adhesion behavior) played roles in regulating the synergy effects. Our study offers a novel biological solution of odorous gas purification.
Collapse
Affiliation(s)
- Yanfang Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhimin Dai
- Central South Water Science and Technology Co. Ltd, Changsha 410001, China; National City Water Supply Water Quality Monitoring Network Changsha Monitoring Station, Changsha 410001, China
| | - Zhicheng Zhou
- Hunan Tobacco Science Institute, Changsha 410010, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Hetian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yongjun Liu
- Hunan Tobacco Science Institute, Changsha 410010, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Xiaolong Nan
- 306 Bridge of Hunan Nuclear Geology, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
48
|
de Almeida OGG, Vitulo N, De Martinis ECP, Felis GE. Pangenome analyses of LuxS-coding genes and enzymatic repertoires in cocoa-related lactic acid bacteria. Genomics 2021; 113:1659-1670. [PMID: 33839269 DOI: 10.1016/j.ygeno.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/04/2021] [Accepted: 04/05/2021] [Indexed: 01/15/2023]
Abstract
Lactobacillaceae presents potential for interspecific Quorum Sensing (QS) in spontaneous cocoa fermentation, correlated with high abundance of luxS. Three Brazilian isolates from cocoa fermentation were characterized by Whole Genome Sequencing and luxS gene was surveyed in their genomes, in comparison with public databases. They were classified as Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Pediococcus acidilactici. LuxS genes were conserved in core genomes of the novel isolates, but in some non-cocoa related Lactic Acid Bacteria (LAB) it was accessory and plasmid-borne. The conservation and horizontal acquisition of luxS reinforces that QS is determinant for bacterial adaptation in several environments, especially taking into account the luxS has been correlated with modulation of bacteriocin production, stress tolerance and biofilm formation. Therefore, in this paper, new clade and species-specific primers were designed for future application for screening of luxS gene in LAB to evaluate the adaptive potential to diverse food fermentations.
Collapse
Affiliation(s)
| | - Nicola Vitulo
- University of Verona, Department of Biotechnology, Verona, Italy
| | | | - Giovanna E Felis
- University of Verona, Department of Biotechnology, Verona, Italy
| |
Collapse
|
49
|
Hong X, Wang Y, Chen S, Zhu J. Efficacy of Ten Structurally Related Essential Oil Components on Anti-biofilm and Anti-quorum Sensing against Fish Spoilers Pseudomonas and Aeromonas. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1895943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiaoli Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Yaying Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Shuai Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
50
|
Proner MC, de Meneses AC, Veiga AA, Schlüter H, Oliveira DD, Luccio MD. Industrial Cooling Systems and Antibiofouling Strategies: A Comprehensive Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariane Carolina Proner
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Alessandra Cristina de Meneses
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Andrea Azevedo Veiga
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Helga Schlüter
- Petrobras R&D Center, CENPES, Av. Horácio Macedo, 950, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Rio de Janeiro 21941-915, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|