1
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
You SH, Chen YP, Shi WJ, Li X, Wu Z, Yao QH. Genome-wide analysis of OPR family genes in Vitis vinifera and the role of VvOPR1 in copper, zinc tolerance. FRONTIERS IN PLANT SCIENCE 2025; 16:1509472. [PMID: 40078634 PMCID: PMC11897507 DOI: 10.3389/fpls.2025.1509472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
12-oxo-phytodienoic acid reductase (OPR) is one of the key enzymes in the octadecanoid pathway, and it controls the last step of jasmonic acid (JA) biosynthesis. Although multiple isoforms and functions of OPRs have been identified in various plants, no OPR genes have been identified, and their possible roles in grapevine development and defense mechanisms remain unknown. In this study, nine VvOPR genes were identified from grapevine genome and classified into two subfamilies. Systematic analyses of the physical and chemical properties, the expression and structure of the VvOPR genes, promoter elements, and chromosome locations were performed via bioinformatics and molecular biology methods. In addition, we described the characterization of the OPRI gene VvOPR1, which was synthesized via a PCR-based two-step DNA synthesis quantification reverse-transcription (PTDS) method. VvOPR1 expression is tissue-specific and induced by various stresses. The overexpression of VvOPR1 in Arabidopsis and rice (OT) significantly increased tolerance to Cu, Zn stress, and Cu, Zn stress-induced restriction of the germination rate, root/shoot length and fresh weight was significantly alleviated in OT. In OT, VvOPR1 enhanced the photosynthetic capacity, promoted ABA synthesis and the ABA-dependent stress response pathway, improved the antioxidation capacity by increasing the activities of ROS scavengers and the expression level of the related genes, while enhancing the accumulation of proline, AsA, GSH and reducing MDA and H2O2 levels. Moreover, VvOPR1 reduced Cu2+, Zn2+ accumulation and translocation. Together, we first systematically characterized the grapevine OPR gene family and reported that VvOPR1 responded to Cu, Zn stress in an ABA-dependent manner, and was quite independent of JA synthesis and signaling. All of the above results provide an important research basis and theoretical basis for further revealing the functions of VvOPR in grapevines in the future.
Collapse
Affiliation(s)
- Shuang-Hong You
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yuan-Ping Chen
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wen-Jing Shi
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xue Li
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zheng Wu
- Fruit Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Ye C, Li M, Gao J, Zuo Y, Xiao F, Jiang X, Cheng J, Huang L, Xu Z, Lian J. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Metab Eng 2024; 84:83-94. [PMID: 38897449 DOI: 10.1016/j.ymben.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojing Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jintao Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Janeczko A, Przywara M, Maslanka R, Raś B, Ziaja K, Kwolek-Mirek M, Zadrag-Tecza R, Bednarska S. Redox perturbations in yeast cells lacking glutathione reductase. Fungal Genet Biol 2023; 167:103810. [PMID: 37172803 DOI: 10.1016/j.fgb.2023.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cellular redox homeostasis has a major effect on cell functions and its maintenance is supported by glutathione and protein thiols which serve as redox buffers in cells. The regulation of the glutathione biosynthetic pathway is a focus of a lot of scientific research. However, still little is known about how complex cellular networks influence glutathione homeostasis. In this work was used an experimental system based on an S. cerevisiae yeast mutant with a lack of the glutathione reductase enzyme and allyl alcohol as a precursor of acrolein inside the cell to determine the cellular processes influencing glutathione homeostasis. The absence of Glr1p slows down the growth rate of the cell population, especially in the presence of allyl alcohol, but does not lead to complete inhibition of the cell's reproductive capacity. It also amends the GSH/GSSG ratio and the share of NADPH and NADP+ in the total NADP(H) pool. The obtained results show that potential pathways involved in the maintenance of redox homeostasis are based from one side on de novo synthesis of GSH as indicated by increased activity of γ-GCS and increased expression of GSH1 gene in the Δglr1 mutant, from the other hand, on increased the level of NADPH. This is because the lower ratio of GSH/GSSG can be counterbalanced with the NADPH/NADP+ alternative system. The higher level of NADPH can be used by the thioredoxin system and other enzymes requiring NADPH to reduce cytosolic GSSG and maintain glutathione redox potential.
Collapse
Affiliation(s)
- Agnieszka Janeczko
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Michał Przywara
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Roman Maslanka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Barbara Raś
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Klaudia Ziaja
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
5
|
Hou R, Jelley RE, van Leeuwen KA, Pinu FR, Fedrizzi B, Deed RC. Hydrogen sulfide production during early yeast fermentation correlates with volatile sulfur compound biogenesis but not thiol release. FEMS Yeast Res 2023; 23:foad031. [PMID: 37279910 PMCID: PMC10569440 DOI: 10.1093/femsyr/foad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Yeasts undergo intensive metabolic changes during the early stages of fermentation. Previous reports suggest the early production of hydrogen sulfide (H2S) is associated with the release of a range of volatile sulfur compounds (VSCs), as well as the production of varietal thiol compounds 3-sulfanylhexan-1-ol (3SH) and 3-sulfanylhexyl acetate (3SHA) from six-carbon precursors, including (E)-hex-2-enal. In this study, we investigated the early H2S potential, VSCs/thiol output, and precursor metabolism of 11 commonly used laboratory and commercial Saccharomyces cerevisiae strains in chemically defined synthetic grape medium (SGM) within 12 h after inoculation. Considerable variability in early H2S potential was observed among the strains surveyed. Chemical profiling suggested that early H2S production correlates with the production of dimethyl disulfide, 2-mercaptoethanol, and diethyl sulfide, but not with 3SH or 3SHA. All strains were capable of metabolizing (E)-hex-2-enal, while the F15 strain showed significantly higher residue at 12 h. Early production of 3SH, but not 3SHA, can be detected in the presence of exogenous (E)-hex-2-enal and H2S. Therefore, the natural variability of early yeast H2S production contributes to the early output of selected VSCs, but the threshold of which is likely not high enough to contribute substantially to free varietal thiols in SGM.
Collapse
Affiliation(s)
- Ruoyu Hou
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Rebecca E Jelley
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
| | - Katryna A van Leeuwen
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
| | - Farhana R Pinu
- Biological Chemistry & Bioactives, The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Böhmer S, Marx C, Goss R, Gilbert M, Sasso S, Happe T, Hemschemeier A. Chlamydomonas reinhardtii mutants deficient for Old Yellow Enzyme 3 exhibit increased photooxidative stress. PLANT DIRECT 2023; 7:e480. [PMID: 36685735 PMCID: PMC9840898 DOI: 10.1002/pld3.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 05/12/2023]
Abstract
Old Yellow Enzymes (OYEs) are flavin-containing ene-reductases that have been intensely studied with regard to their biotechnological potential for sustainable chemical syntheses. OYE-encoding genes are found throughout the domains of life, but their physiological role is mostly unknown, one reason for this being the promiscuity of most ene-reductases studied to date. The unicellular green alga Chlamydomonas reinhardtii possesses four genes coding for OYEs, three of which we have analyzed biochemically before. Ene-reductase CrOYE3 stood out in that it showed an unusually narrow substrate scope and converted N-methylmaleimide (NMI) with high rates. This was recapitulated in a C. reinhardtii croye3 mutant that, in contrast to the wild type, hardly degraded externally added NMI. Here we show that CrOYE3-mediated NMI conversion depends on electrons generated photosynthetically by photosystem II (PSII) and that the croye3 mutant exhibits slightly decreased photochemical quenching in high light. Non-photochemical quenching is strongly impaired in this mutant, and it shows enhanced oxidative stress. The phenotypes of the mutant suggest that C. reinhardtii CrOYE3 is involved in the protection against photooxidative stress, possibly by converting reactive carbonyl species derived from lipid peroxides or maleimides from tetrapyrrole degradation.
Collapse
Affiliation(s)
- Stefanie Böhmer
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Christina Marx
- SolarBioproducts RuhrBusiness Development Agency HerneHerneGermany
| | - Reimund Goss
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Matthias Gilbert
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of Biology, Plant PhysiologyLeipzig UniversityLeipzigGermany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
7
|
Kwolek-Mirek M, Bednarska S, Dubicka-Lisowska A, Maslanka R, Zadrag-Tecza R, Kaszycki P. Unbalance between Pyridine Nucleotide Cofactors in The SOD1 Deficient Yeast Saccharomyces cerevisiae Causes Hypersensitivity to Alcohols and Aldehydes. Int J Mol Sci 2022; 24:ijms24010659. [PMID: 36614102 PMCID: PMC9820918 DOI: 10.3390/ijms24010659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Alcohol and aldehyde dehydrogenases are especially relevant enzymes involved in metabolic and detoxification reactions that occur in living cells. The comparison between the gene expression, protein content, and enzymatic activities of cytosolic alcohol and aldehyde dehydrogenases of the wild-type strain and the Δsod1 mutant lacking superoxide dismutase 1, which is hypersensitive to alcohols and aldehydes, shows that the activity of these enzymes is significantly higher in the Δsod1 mutant, but this is not a mere consequence of differences in the enzymatic protein content nor in the expression levels of genes. The analysis of the NAD(H) and NADP(H) content showed that the higher activity of alcohol and aldehyde dehydrogenases in the Δsod1 mutant could be a result of the increased availability of pyridine nucleotide cofactors. The higher level of NAD+ in the Δsod1 mutant is not related to the higher level of tryptophan; in turn, a higher generation of NADPH is associated with the upregulation of the pentose phosphate pathway. It is concluded that the increased sensitivity of the Δsod1 mutant to alcohols and aldehydes is not only a result of the disorder of redox homeostasis caused by the induction of oxidative stress but also a consequence of the unbalance between pyridine nucleotide cofactors.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.K.-M.); (R.Z.-T.); Tel.: +48-17-785-5412 (M.K.-M.); +48-17-785-5413 (R.Z.-T.)
| | - Sabina Bednarska
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Aleksandra Dubicka-Lisowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Roman Maslanka
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.K.-M.); (R.Z.-T.); Tel.: +48-17-785-5412 (M.K.-M.); +48-17-785-5413 (R.Z.-T.)
| | - Pawel Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| |
Collapse
|
8
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
9
|
Singh Y, Sharma R, Mishra M, Verma PK, Saxena AK. Crystal structure of ArOYE6 reveals a novel C‐terminal helical extension and mechanistic insights into the distinct class III OYEs from pathogenic fungi. FEBS J 2022; 289:5531-5550. [DOI: 10.1111/febs.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Ruby Sharma
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Manasi Mishra
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory National Institute of Plant Genome Research New Delhi India
- Plant Immunity Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| | - Ajay Kumar Saxena
- Rm‐403/440 Structural Biology Laboratory School of Life Science Jawaharlal Nehru University New Delhi India
| |
Collapse
|
10
|
Gene Coexpression Connectivity Predicts Gene Targets Underlying High Ionic-Liquid Tolerance in Yarrowia lipolytica. mSystems 2022; 7:e0034822. [PMID: 35862814 PMCID: PMC9426553 DOI: 10.1128/msystems.00348-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Microbial tolerance to organic solvents such as ionic liquids (ILs) is a robust phenotype beneficial for novel biotransformation. While most microbes become inhibited in 1% to 5% (vol/vol) IL (e.g., 1-ethyl-3-methylimidazolium acetate), we engineered a robust Yarrowia lipolytica strain (YlCW001) that tolerates a record high of 18% (vol/vol) IL via adaptive laboratory evolution. Yet, genotypes conferring high IL tolerance in YlCW001 remain to be discovered. In this study, we shed light on the underlying cellular processes that enable robust Y. lipolytica to thrive in inhibitory ILs. By using dynamic transcriptome sequencing (RNA-Seq) data, we introduced Gene Coexpression Connectivity (GeCCo) as a metric to discover genotypes conferring desirable phenotypes that might not be found by the conventional differential expression (DE) approaches. GeCCo selects genes based on their number of coexpressed genes in a subnetwork of upregulated genes by the target phenotype. We experimentally validated GeCCo by reverse engineering a high-IL-tolerance phenotype in wild-type Y. lipolytica. We found that gene targets selected by both DE and GeCCo exhibited the best statistical chance at increasing IL tolerance when individually overexpressed. Remarkably, the best combination of dual-overexpression genes was genes selected by GeCCo alone. This nonintuitive combination of genes, BRN1 and OYE2, is involved in guiding/regulating mitotic cell division, chromatin segregation/condensation, microtubule and cytoskeletal organization, and Golgi vesicle transport. IMPORTANCE Cellular robustness to cope with stressors is an important phenotype. Y. lipolytica is an industrial robust oleaginous yeast that has recently been discovered to tolerate record high concentrations of ILs, beneficial for novel biotransformation in organic solvents. However, genotypes that link to IL tolerance in Y. lipolytica are largely unknown. Due to the complex IL-tolerant phenotype, conventional gene discovery and validation based on differential gene expression approaches are time-consuming due to a large search space and might encounter a high false-discovery rate. Here, using the developed Gene Coexpression Connectivity (GeCCo) method, we identified and validated a subset of most promising gene targets conferring the IL-tolerant phenotypes and shed light on their potential mechanisms. We anticipate GeCCo being a useful method to discover the genotype-to-phenotype link.
Collapse
|
11
|
Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun 2022; 13:2568. [PMID: 35546152 PMCID: PMC9095873 DOI: 10.1038/s41467-022-30288-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
de Moura Ferreira MA, da Silveira FA, da Silveira WB. Ethanol stress responses in Kluyveromyces marxianus: current knowledge and perspectives. Appl Microbiol Biotechnol 2022; 106:1341-1353. [DOI: 10.1007/s00253-022-11799-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
|
13
|
Zhu K, Kong J, Zhao B, Rong L, Liu S, Lu Z, Zhang C, Xiao D, Pushpanathan K, Foo JL, Wong A, Yu A. Metabolic engineering of microbes for monoterpenoid production. Biotechnol Adv 2021; 53:107837. [PMID: 34555428 DOI: 10.1016/j.biotechadv.2021.107837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Monoterpenoids are an important class of natural products that are derived from the condensation of two five‑carbon isoprene subunits. They are widely used for flavouring, fragrances, colourants, cosmetics, fuels, chemicals, and pharmaceuticals in various industries. They can also serve as precursors for the production of many industrially important products. Currently, monoterpenoids are produced predominantly through extraction from plant sources. However, the small quantity of monoterpenoids in nature renders this method of isolation non-economically viable. Similarly impractical is the chemical synthesis of these compounds as they suffer from high energy consumption and pollutant discharge. Microbial biosynthesis, however, exists as a potential solution to these hindrances, but the transformation of cells into efficient factories remains a major impediment. Here, we critically review the recent advances in engineering microbes for monoterpenoid production, with an emphasis on categorized strategies, and discuss the challenges and perspectives to offer guidance for future engineering.
Collapse
Affiliation(s)
- Kun Zhu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Jing Kong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Baixiang Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Lanxin Rong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Shiqi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Zhihui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| | - Krithi Pushpanathan
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Jee Loon Foo
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Adison Wong
- Chemical Engineering and Food Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore.
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China.
| |
Collapse
|
14
|
Jiang G, Yao M, Wang Y, Xiao W, Yuan Y. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae. Metab Eng 2021; 66:51-59. [PMID: 33857581 DOI: 10.1016/j.ymben.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023]
Abstract
Microbial production of monoterpenes has attracted increasing attention in recent years. Up to date, there are only few reports on the biosynthesis of the monoterpene alcohol citronellol that is widely used as fragrant and pharmaceutical intermediates. Here, we engineered Saccharomyces cerevisiae by employing a "push-pull-restrain" strategy to improve citronellol production based on the reduction of geraniol. Starting from a engineered geraniol-producing strain, different reductases were investigated and the best performing iridoid synthase from Catharanthus roseus (CrIS) resulted in 285.89 mg/L enantiomerically pure S-citronellol in shake flasks. Geranyl diphosphate (GPP), the most important precursor for monoterpenes, was enhanced by replacing the wild farnesyl diphosphate synthase (Erg20) with the mutant Erg20F96W, increasing the citronellol titer to 406.01 mg/L without negative influence on cell growth. Moreover, we employed synthetic protein scaffolds and protein fusion to colocalize four sequential enzymes to achieve better substrate channeling along with the deletion of an intermediate degradation pathway gene ATF1, which elevated the citronellol titer to 972.02 mg/L with the proportion of 97.8% of total monoterpenes in YPD medium. Finally, the engineered strain with complemented auxotrophic markers produced 8.30 g/L of citronellol by fed-batch fermentation, which was the highest citronellol titer reported to date. The multi-level engineering strategies developed here demonstrate the potential of monoterpenes overproduction in yeast, which can serve as a generally applicable platform for overproduction of other monoterpenes.
Collapse
Affiliation(s)
- Guozhen Jiang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
Aldehydes are ubiquitous electrophilic compounds that ferment microorganisms including Saccharomyces cerevisiae encounter during the fermentation processes to produce food, fuels, chemicals, and pharmaceuticals. Aldehydes pose severe toxicity to the growth and metabolism of the S. cerevisiae through a variety of toxic molecular mechanisms, predominantly via damaging macromolecules and hampering the production of targeted compounds. Compounds with aldehyde functional groups are far more toxic to S. cerevisiae than all other functional classes, and toxic potency depends on physicochemical characteristics of aldehydes. The yeast synthetic biology community established a design-build-test-learn framework to develop S. cerevisiae cell factories to valorize the sustainable and renewable biomass, including the lignin-derived substrates. However, thermochemically pretreated biomass-derived substrate streams contain diverse aldehydes (e.g., glycolaldehyde and furfural), and biological conversions routes of lignocellulosic compounds consist of toxic aldehyde intermediates (e.g., formaldehyde and methylglyoxal), and some of the high-value targeted products have aldehyde functional group (e.g., vanillin and benzaldehyde). Numerous studies comprehensively characterized both single and additive effects of aldehyde toxicity via systems biology investigations, and novel molecular approaches have been discovered to overcome the aldehyde toxicity. Based on those novel approaches, researchers successfully developed synthetic yeast cell factories to convert lignocellulosic substrates to valuable products, including aldehyde compounds. In this mini-review, we highlight the salient relationship of physicochemical characteristics and molecular toxicity of aldehydes, the molecular detoxification and macromolecules protection mechanisms of aldehydes, and the advances of engineering robust S. cerevisiae against complex mixtures of aldehyde inhibitors. KEY POINTS: • We reviewed structure-activity relationships of aldehyde toxicity on S. cerevisiae. • Two-tier protection mechanisms to alleviate aldehyde toxicity are presented. • We highlighted the strategies to overcome the synergistic toxicity of aldehydes.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA.
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
16
|
Duan Y, Liu J, Du Y, Pei X, Li M. Aspergillus oryzae Biosynthetic Platform for de Novo Iridoid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2501-2511. [PMID: 33599481 DOI: 10.1021/acs.jafc.0c06563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The iridoids and their derivatives monoterpene indole alkaloids (MIAs) are two broad classes of plant-derived natural products with valuable pharmaceutical properties. However, the poor source limited their application. Nepetalactol, a common iridoid scaffold of MIAs, was heterologously produced in Saccharomyces cerevisiae. Although the optimization of nepetalactol production in S. cerevisiae was achieved by metabolic engineering, the inherent metabolic constraints impose a restriction on the production. Herein, we developed a high nepetalactol-producing Aspergillus oryzae platform strain. First, the co-expression of 5 nepetalactol biosynthetic genes, in a high isopentenyl pyrophosphate (IPP)-producing strain A. oryzae AK2, succeeded in the biosynthesis of nepetalactol. Second, the improvement of the IPP supply and the suppression of the byproduct citronellol formation were simultaneously achieved. Finally, the highest titer of nepetalactol of 7.2 mg/L was obtained with the engineered strain, after the optimization of the carbon source. To the best of our knowledge, this is the highest reported titer of nepetalactol in microbial cells. The developed A. oryzae strain represents an attractive biosynthetic platform host for the de novo production of iridoids and MIAs.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiawei Liu
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yun Du
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
17
|
Slaghenaufi D, Indorato C, Troiano E, Luzzini G, Felis GE, Ugliano M. Fate of Grape-Derived Terpenoids in Model Systems Containing Active Yeast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13294-13301. [PMID: 32153191 DOI: 10.1021/acs.jafc.9b08162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Terpenes are important contributors to wine aroma. Free and glycosidically bound terpenes are primarily formed in grapes. During fermentation, they undergo important transformation catalyzed by yeast, so that the terpene profile of grape is substantially different from that of the corresponding wine. The present paper assessed the ability of a Saccharomyces cerevisiae strain to transform 17 different terpenes. Biotransformation was performed by placing target compounds in incubation with resting cells. Volatile compounds produced were extracted by solid-phase extraction and analyzed by gas chromatography-mass spectrometry. Geranyl acetate, neryl acetate, citronellyl acetate, and menthyl acetate were formed from the corresponding terpene alcohols. β-Citronellol was the main product of geraniol transformation; geranial, an intermediate of this pathway, has also been detected. Limonene was hydroxylated by yeast to form carveol, trans-2,8-menthadien-1-ol, and cis-2,8-menthadien-1-ol. Moreover, yeast cells were found to be able to adsorb a significant portion of the terpenes present in the reaction batches, with the extent of this phenomenon being linked to terpene hydrophobicity.
Collapse
Affiliation(s)
- Davide Slaghenaufi
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| | - Carla Indorato
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| | - Eleonora Troiano
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| | - Giovanni Luzzini
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, Villa Lebrecht, Via della Pieve 70, 37029 San Pietro in Cariano, Italy
| |
Collapse
|
18
|
Böhmer S, Marx C, Gómez-Baraibar Á, Nowaczyk MM, Tischler D, Hemschemeier A, Happe T. Evolutionary diverse Chlamydomonas reinhardtii Old Yellow Enzymes reveal distinctive catalytic properties and potential for whole-cell biotransformations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Borlinghaus J, Bolger A, Schier C, Vogel A, Usadel B, Gruhlke MC, Slusarenko AJ. Genetic and molecular characterization of multicomponent resistance of Pseudomonas against allicin. Life Sci Alliance 2020; 3:e202000670. [PMID: 32234751 PMCID: PMC7119367 DOI: 10.26508/lsa.202000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/05/2023] Open
Abstract
The common foodstuff garlic produces the potent antibiotic defense substance allicin after tissue damage. Allicin is a redox toxin that oxidizes glutathione and cellular proteins and makes garlic a highly hostile environment for non-adapted microbes. Genomic clones from a highly allicin-resistant Pseudomonas fluorescens (PfAR-1), which was isolated from garlic, conferred allicin resistance to Pseudomonas syringae and even to Escherichia coli Resistance-conferring genes had redox-related functions and were on core fragments from three similar genomic islands identified by sequencing and in silico analysis. Transposon mutagenesis and overexpression analyses revealed the contribution of individual candidate genes to allicin resistance. Taken together, our data define a multicomponent resistance mechanism against allicin in PfAR-1, achieved through horizontal gene transfer.
Collapse
Affiliation(s)
- Jan Borlinghaus
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Anthony Bolger
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Christina Schier
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alexander Vogel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Björn Usadel
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Martin Ch Gruhlke
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH Aachen University), Aachen, Germany
| |
Collapse
|
20
|
[Synthesis and regulation of flavor compounds derived from brewing yeast: fusel alcohols]. Rev Argent Microbiol 2019; 51:386-397. [PMID: 30712956 DOI: 10.1016/j.ram.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Among the main beer components, fusel alcohols are important because of their influence on the flavor of the final product, and therefore on its quality. During the production process, these compounds are generated by yeasts through the metabolism of amino acids. The yeasts, fermentation conditions and wort composition affect fusel alcohols profiles and their concentrations. In this review, we provide detailed information about the enzymes involved in fusel alcohols formation and their regulation. Moreover, we describe how the type of yeast used, the fermentation temperature and the composition of carbohydrates and nitrogen source in wort, among other fermentation parameters, affect the biosynthesis of these alcohols. Knowing how fusel alcohol levels vary during beer production provides a relevant tool for brewers to achieve the desired characteristics in the final product and at the same time highlights the aspects still unknown to science.
Collapse
|
21
|
Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, Tang Y. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng 2019; 55:76-84. [PMID: 31226348 PMCID: PMC6717016 DOI: 10.1016/j.ymben.2019.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Monoterpene indole alkaloids (MIAs) from plants encompass a broad class of structurally complex and medicinally valuable natural products. MIAs are biologically derived from the universal precursor strictosidine. Although the strictosidine biosynthetic pathway has been identified and reconstituted, extensive work is required to optimize production of strictosidine and its precursors in yeast. In this study, we engineered a fully integrated and plasmid-free yeast strain with enhanced production of the monoterpene precursor geraniol. The geraniol biosynthetic pathway was targeted to the mitochondria to protect the GPP pool from consumption by the cytosolic ergosterol pathway. The mitochondrial geraniol producer showed a 6-fold increase in geraniol production compared to cytosolic producing strains. We further engineered the monoterpene-producing strain to synthesize the next intermediates in the strictosidine pathway: 8-hydroxygeraniol and nepetalactol. Integration of geraniol hydroxylase (G8H) from Catharanthus roseus led to essentially quantitative conversion of geraniol to 8-hydroxygeraniol at a titer of 227 mg/L in a fed-batch fermentation. Further introduction of geraniol oxidoreductase (GOR) and iridoid synthase (ISY) from C. roseus and tuning of the relative expression levels resulted in the first de novo nepetalactol production. The strategies developed in this work can facilitate future strain engineering for yeast production of later intermediates in the strictosidine biosynthetic pathway.
Collapse
Affiliation(s)
- Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jenette G Creso
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Vidya Subrahmanyam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
22
|
Marullo P, Durrens P, Peltier E, Bernard M, Mansour C, Dubourdieu D. Natural allelic variations of Saccharomyces cerevisiae impact stuck fermentation due to the combined effect of ethanol and temperature; a QTL-mapping study. BMC Genomics 2019; 20:680. [PMID: 31462217 PMCID: PMC6714461 DOI: 10.1186/s12864-019-5959-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fermentation completion is a major prerequisite in many industrial processes involving the bakery yeast Saccharomyces cerevisiae. Stuck fermentations can be due to the combination of many environmental stresses. Among them, high temperature and ethanol content are particularly deleterious especially in bioethanol and red wine production. Although the genetic causes of temperature and/or ethanol tolerance were widely investigated in laboratory conditions, few studies investigated natural genetic variations related to stuck fermentations in high gravity matrixes. RESULTS In this study, three QTLs linked to stuck fermentation in winemaking conditions were identified by using a selective genotyping strategy carried out on a backcrossed population. The precision of mapping allows the identification of two causative genes VHS1 and OYE2 characterized by stop-codon insertion. The phenotypic effect of these allelic variations was validated by Reciprocal Hemyzygous Assay in high gravity fermentations (> 240 g/L of sugar) carried out at high temperatures (> 28 °C). Phenotypes impacted were mostly related to the late stage of alcoholic fermentation during the stationary growth phase of yeast. CONCLUSIONS Our findings illustrate the complex genetic determinism of stuck fermentation and open new avenues for better understanding yeast resistance mechanisms involved in high gravity fermentations.
Collapse
Affiliation(s)
- Philippe Marullo
- University of Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, 33140 Bordeaux INP, Villenave d’Ornon France
- Biolaffort, 33100 Bordeaux, France
| | - Pascal Durrens
- CNRS UMR 5800, University of Bordeaux, 33405 Talence, France
- Inria Bordeaux Sud-Ouest, Joint team Pleiade Inria/INRA/CNRS, 33405 Talence, France
| | - Emilien Peltier
- University of Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, 33140 Bordeaux INP, Villenave d’Ornon France
- Biolaffort, 33100 Bordeaux, France
| | - Margaux Bernard
- University of Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, 33140 Bordeaux INP, Villenave d’Ornon France
- Biolaffort, 33100 Bordeaux, France
| | | | - Denis Dubourdieu
- University of Bordeaux, ISVV, Unité de recherche OEnologie EA 4577, USC 1366 INRA, 33140 Bordeaux INP, Villenave d’Ornon France
| |
Collapse
|
23
|
Alvim MCT, Vital CE, Barros E, Vieira NM, da Silveira FA, Balbino TR, Diniz RHS, Brito AF, Bazzolli DMS, de Oliveira Ramos HJ, da Silveira WB. Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses. Antonie van Leeuwenhoek 2019; 112:827-845. [DOI: 10.1007/s10482-018-01214-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
24
|
Acrolein-stressed threshold adaptation alters the molecular and metabolic bases of an engineered Saccharomyces cerevisiae to improve glutathione production. Sci Rep 2018. [PMID: 29540749 PMCID: PMC5852114 DOI: 10.1038/s41598-018-22836-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acrolein (Acr) was used as a selection agent to improve the glutathione (GSH) overproduction of the prototrophic strain W303-1b/FGPPT. After two rounds of adaptive laboratory evolution (ALE), an unexpected result was obtained wherein identical GSH production was observed in the selected isolates. Then, a threshold selection mechanism of Acr-stressed adaption was clarified based on the formation of an Acr-GSH adduct, and a diffusion coefficient (0.36 ± 0.02 μmol·min−1·OD600−1) was calculated. Metabolomic analysis was carried out to reveal the molecular bases that triggered GSH overproduction. The results indicated that all three precursors (glutamic acid (Glu), glycine (Gly) and cysteine (Cys)) needed for GSH synthesis were at a relativity higher concentration in the evolved strain and that the accumulation of homocysteine (Hcy) and cystathionine might promote Cys synthesis and then improve GSH production. In addition to GSH and Cys, it was observed that other non-protein thiols and molecules related to ATP generation were at obviously different levels. To divert the accumulated thiols to GSH biosynthesis, combinatorial strategies, including deletion of cystathionine β-lyase (STR3), overexpression of cystathionine γ-lyase (CYS3) and cystathionine β-synthase (CYS4), and reduction of the unfolded protein response (UPR) through up-regulation of protein disulphide isomerase (PDI), were also investigated.
Collapse
|
25
|
Díaz-Viraqué F, Chiribao ML, Trochine A, González-Herrera F, Castillo C, Liempi A, Kemmerling U, Maya JD, Robello C. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F 2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility. Front Immunol 2018; 9:456. [PMID: 29563916 PMCID: PMC5845897 DOI: 10.3389/fimmu.2018.00456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/20/2018] [Indexed: 01/26/2023] Open
Abstract
The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host-parasite interaction.
Collapse
Affiliation(s)
| | - María Laura Chiribao
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| | - Andrea Trochine
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Christian Castillo
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ana Liempi
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Ulrike Kemmerling
- Programa de Anatomía y Biología del Desarrollo - ICBM, Facultad de Medicina Universidad De Chile, Santiago de Chile, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica - ICBM, Facultad de Medicina Universidad de Chile, Santiago de Chile, Chile
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
26
|
Wang Q, Du X, Ma K, Shi P, Liu W, Sun J, Peng M, Huang Z. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity. Microbiol Res 2018; 207:1-7. [DOI: 10.1016/j.micres.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/28/2022]
|
27
|
Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production. Biotechnol Adv 2017; 35:1022-1031. [DOI: 10.1016/j.biotechadv.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
|
28
|
Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, Chu A, Garg NK, Tang Y. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab Eng 2017; 44:117-125. [PMID: 28939278 DOI: 10.1016/j.ymben.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous 'ene'-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
Collapse
Affiliation(s)
- John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joyann S Barber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joe Horecka
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Angela Chu
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
29
|
O'Doherty PJ, Khan A, Johnson AJ, Rogers PJ, Bailey TD, Wu MJ. Proteomic response to linoleic acid hydroperoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3752509. [PMID: 28449083 DOI: 10.1093/femsyr/fox022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast AP-1 transcription factor (Yap1p) and the enigmatic oxidoreductases Oye2p and Oye3p are involved in counteracting lipid oxidants and their unsaturated breakdown products. In order to uncover the response to linoleic acid hydroperoxide (LoaOOH) and the roles of Oye2p, Oye3p and Yap1p, we carried out proteomic analysis of the homozygous deletion mutants oye3Δ, oye2Δ and yap1Δ alongside the diploid parent strain BY4743. The findings demonstrate that deletion of YAP1 narrowed the response to LoaOOH, as the number of proteins differentially expressed in yap1Δ was 70% of that observed in BY4743. The role of Yap1p in regulating the major yeast peroxiredoxin Tsa1p was demonstrated by the decreased expression of Tsa1p in yap1Δ. The levels of Ahp1p and Hsp31p, previously shown to be regulated by Yap1p, were increased in LoaOOH-treated yap1Δ, indicating their expression is also regulated by another transcription factor(s). Relative to BY4743, protein expression differed in oye3Δ and oye2Δ under LoaOOH, underscored by superoxide dismutase (Sod1p), multiple heat shock proteins (Hsp60p, Ssa1p, and Sse1p), the flavodoxin-like protein Pst2p and the actin stabiliser tropomyosin (Tpm1p). Proteins associated with glycolysis were increased in all strains following treatment with LoaOOH. Together, the dataset reveals, for the first time, the yeast proteomic response to LoaOOH, highlighting the significance of carbohydrate metabolism, as well as distinction between the roles of Oye3p, Oye2p and Yap1p.
Collapse
Affiliation(s)
- Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney NSW 2109 Australia
| | - Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Peter J Rogers
- School of Biomolecular and Physical Sciences, Griffith University, Nathan QLD 4111, Australia
| | - Trevor D Bailey
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
30
|
Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 2017; 13:e1006708. [PMID: 28369054 PMCID: PMC5393896 DOI: 10.1371/journal.pgen.1006708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. Prions are infectious agents which are composed of misfolded proteins and have been implicated in progressive neurodegenerative diseases such as Creutzfeldt Jakob Disease (CJD). Most prion diseases occur sporadically and are then propagated in a protein-only mechanism via induced protein misfolding. Little is currently known regarding how normally soluble proteins spontaneously form their prion forms. Previous studies have implicated oxidative damage of the non-prion form of some proteins as an important trigger for the formation of their heritable prion conformation. Using a yeast prion model we found that the cortical actin cytoskeleton is required for the transition of an oxidized protein to its heritable infectious conformation. In mutants which disrupt the cortical actin cytoskeleton, the oxidized protein aggregates, but does not localize to its normal amyloid deposition site, termed the IPOD. The IPOD serves as a site where prion proteins undergo fragmentation and seeding and we show that preventing actin-mediated localization to this site prevents both spontaneous and oxidant-induced prion formation.
Collapse
|
31
|
Zhao J, Li C, Zhang Y, Shen Y, Hou J, Bao X. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:17. [PMID: 28137282 PMCID: PMC5282783 DOI: 10.1186/s12934-017-0641-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microbial production of monoterpenes provides a promising substitute for traditional chemical-based methods, but their production is lagging compared with sesquiterpenes. Geraniol, a valuable monoterpene alcohol, is widely used in cosmetic, perfume, pharmaceutical and it is also a potential gasoline alternative. Previously, we constructed a geraniol production strain by engineering the mevalonate pathway together with the expression of a high-activity geraniol synthase. RESULTS In this study, we further improved the geraniol production through reducing the endogenous metabolism of geraniol and controlling the precursor geranyl diphosphate flux distribution. The deletion of OYE2 (encoding an NADPH oxidoreductase) or ATF1 (encoding an alcohol acetyltransferase) both involving endogenous conversion of geraniol to other terpenoids, improved geraniol production by 1.7-fold or 1.6-fold in batch fermentation, respectively. In addition, we found that direct down-regulation of ERG20 expression, the branch point regulating geranyl diphosphate flux, does not improve geraniol production. Therefore, we explored dynamic control of ERG20 expression to redistribute the precursor geranyl diphosphate flux and achieved a 3.4-fold increase in geraniol production after optimizing carbon source feeding. Furthermore, the combination of dynamic control of ERG20 expression and OYE2 deletion in LEU2 prototrophic strain increased geraniol production up to 1.69 g/L with pure ethanol feeding in fed-batch fermentation, which is the highest reported production in engineered yeast. CONCLUSION An efficient geraniol production platform was established by reducing the endogenous metabolism of geraniol and by controlling the flux distribution of the precursor geranyl diphosphate. The present work also provides a production basis to synthesis geraniol-derived chemicals, such as monoterpene indole alkaloids.
Collapse
Affiliation(s)
- Jianzhi Zhao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Chen Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yan Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China.
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China. .,Shandong Provincial Key Laboratory of Microbial Engineering, School of Bioengineering, QiLu University of Technology, Jinan, 250353, China.
| |
Collapse
|
32
|
Acrolein-Induced Oxidative Stress and Cell Death Exhibiting Features of Apoptosis in the Yeast Saccharomyces cerevisiae Deficient in SOD1. Cell Biochem Biophys 2016; 71:1525-36. [PMID: 25395196 PMCID: PMC4449388 DOI: 10.1007/s12013-014-0376-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is a useful eukaryotic model to study the toxicity of acrolein, an important environmental toxin and endogenous product of lipid peroxidation. The study was aimed at elucidation of the cytotoxic effect of acrolein on the yeast deficient in SOD1, Cu, Zn-superoxide dismutase which is hypersensitive to aldehydes. Acrolein generated within the cell from its precursor allyl alcohol caused growth arrest and cell death of the yeast cells. The growth inhibition involved an increase in production of reactive oxygen species and high level of protein carbonylation. DNA condensation and fragmentation, exposition of phosphatidylserine at the cell surface as well as decreased dynamic of actin microfilaments and mitochondria disintegration point to the induction of apoptotic-type cell death besides necrotic cell death.
Collapse
|
33
|
Iijima M, Kenmoku H, Takahashi H, Lee JB, Toyota M, Asakawa Y, Kurosaki F, Taura F. Characterization of 12-Oxophytodienoic Acid Reductases from Rose-scented Geranium (Pelargonium graveolens). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pelargonium graveolens L'Hér, also referred to as rose geranium, is a popular herbal plant with typical rosy fragrance largely based on the blend of monoterpenoid constituents. Among them, citronellol, which is biosynthesized from geraniol via double bond reduction, is the most abundant scent compound. In this study, three 12-oxophytodienoic acid reductases (PgOPR1–3) have been cloned from P. graveolens, as possible candidates for the double-bond reductase involved in citronellol biosynthesis. The bacterially expressed recombinant PgOPRs did not reduce geraniol to citronellol, but stereoselectively converted citral into ( S)-citronellal in the presence of NADPH. Thus, the α,β-unsaturated carbonyl moiety in the substrate is essential for the catalytic activity of PgOPRs, as reported for OPRs from other plants and structurally related yeast old yellow enzymes. PgOPRs promiscuously accepted linear and cyclic α,β-unsaturated carbonyl substrates, including methacrolein, a typical reactive carbonyl compound. The possible biotechnological applications for PgOPRs in plant metabolic engineering, based on their catalytic properties, are discussed herein.
Collapse
Affiliation(s)
- Miu Iijima
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Hiromichi Kenmoku
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Jung-Bum Lee
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Masao Toyota
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Fumiya Kurosaki
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Futoshi Taura
- Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
34
|
van Bergen B, Cyr N, Strasser R, Blanchette M, Sheppard JD, Jardim A. α,β-Dicarbonyl reduction is mediated by the Saccharomyces Old Yellow Enzyme. FEMS Yeast Res 2016; 16:fow059. [PMID: 27400981 DOI: 10.1093/femsyr/fow059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2016] [Indexed: 11/13/2022] Open
Abstract
The undesirable flavor compounds diacetyl and 2,3-pentanedione are vicinal diketones (VDKs) formed by extracellular oxidative decarboxylation of intermediate metabolites of the isoleucine, leucine and valine (ILV) biosynthetic pathway. These VDKs are taken up by Saccharomyces and enzymatically converted to acetoin and 3-hydroxy-2-pentanone, respectively. Purification of a highly enriched diacetyl reductase fraction from Saccharomyces cerevisiae in conjunction with mass spectrometry identified Old Yellow Enzyme (Oye) as an enzyme capable of catalyzing VDK reduction. Kinetic analysis of recombinant Oye1p, Oye2p and Oye3p isoforms confirmed that all three isoforms reduced diacetyl and 2,3-pentanedione in an NADPH-dependent reaction. Transcriptomic analysis of S. cerevisiae (ale) and S. pastorianus (lager) yeast during industrial fermentations showed that the transcripts for OYE1, OYE2, arabinose dehydrogenase (ARA1), α-acetolactate synthase (ILV2) and α-acetohydroxyacid reductoisomerase (ILV5) were differentially regulated in a manner that correlated with changes in extracellular levels of VDKs. These studies provide insights into the mechanism for reducing VDKs and decreasing maturation times of beer which are of commercial importance.
Collapse
Affiliation(s)
- Barry van Bergen
- Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Normand Cyr
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27612, USA
| | - Rona Strasser
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Maxime Blanchette
- Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - John D Sheppard
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27612, USA
| | - Armando Jardim
- Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
35
|
Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJJ. Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids. ACS Synth Biol 2016; 5:405-14. [PMID: 26981892 DOI: 10.1021/acssynbio.5b00289] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The monoterpene indole alkaloids (MIAs) are a valuable family of chemicals that include the anticancer drugs vinblastine and vincristine. These compounds are of global significance-appearing on the World Health Organization's list of model essential medicines-but remain exorbitantly priced due to low in planta levels. Chemical synthesis and genetic manipulation of MIA producing plants such as Catharanthus roseus have so far failed to find a solution to this problem. Synthetic biology holds a potential answer, by building the pathway into more tractable organisms such as Saccharomyces cerevisiae. Recent work has taken the first steps in this direction by producing small amounts of the intermediate strictosidine in yeast. In order to help improve on these titers, we aimed to optimize the early biosynthetic steps of the MIA pathway to the metabolite nepetalactol. We combined a number of strategies to create a base strain producing 11.4 mg/L of the precursor geraniol. We also show production of the critical intermediate 10-hydroxygeraniol and demonstrate nepetalactol production in vitro. Lastly we demonstrate that activity of the iridoid synthase toward the intermediates geraniol and 10-hydroxygeraniol results in the synthesis of the nonproductive intermediates citronellol and 10-hydroxycitronellol. This discovery has serious implications for the reconstruction of the MIA in heterologous organisms.
Collapse
Affiliation(s)
- Alex Campbell
- Department
of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Philippe Bauchart
- Department
of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Nicholas D. Gold
- Department
of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Yun Zhu
- Department
of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Vincenzo De Luca
- Department
of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
36
|
Stine A, Zhang M, Ro S, Clendennen S, Shelton MC, Tyo KE, Broadbelt LJ. Exploring
De Novo
metabolic pathways from pyruvate to propionic acid. Biotechnol Prog 2016; 32:303-11. [DOI: 10.1002/btpr.2233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/21/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew Stine
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Miaomin Zhang
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Soo Ro
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | | | | | - Keith E.J. Tyo
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| | - Linda J. Broadbelt
- Dept. of Chemical and Biological EngineeringNorthwestern UniversityEvanston IL
| |
Collapse
|
37
|
Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M. Enhanced glutathione production by evolutionary engineering of
Saccharomyces cerevisiae
strains. Biotechnol J 2015; 10:1719-26. [DOI: 10.1002/biot.201400809] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/23/2015] [Accepted: 04/21/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Anett Patzschke
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Matthias G. Steiger
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | - Diethard Mattanovich
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, BOKU‐VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| |
Collapse
|
38
|
Golla U, Bandi G, Tomar RS. Molecular Cytotoxicity Mechanisms of Allyl Alcohol (Acrolein) in Budding Yeast. Chem Res Toxicol 2015; 28:1246-64. [DOI: 10.1021/acs.chemrestox.5b00071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Upendarrao Golla
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| | - Goutham Bandi
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology,
Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India
| |
Collapse
|
39
|
Yin B, Deng J, Lim L, Yuan YA, Wei D. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans. Biosci Biotechnol Biochem 2015; 79:410-21. [PMID: 25561169 DOI: 10.1080/09168451.2014.993355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report the crystal structure of old yellow enzyme (OYE) family protein Gox0502 (a.a 1-315) in free form at 3.3 Å. Detailed structural analysis revealed the key residues involved in stereospecific determination of Gox0502, such as Trp66 and Trp100. Structure-based computational analysis suggested the bulky side chains of these tryptophan residues may play important roles in product stereoselectivity. The introduction of Ile or Phe or Tyr mutation significantly reduced the product diastereoselectivity. We hypothesized that less bulky side chains at these critical residues could create additional free space to accommodate intermediates with different conformations. Notably, the introduction of Phe mutation at residue Trp100 increased catalytic activity compared to wild-type Gox0502 toward a set of substrates tested, which suggests that a less bulky Phe side chain at residue W100F may facilitate product release. Therefore, Gox0502 structure could provide useful information to generate desirable OYEs suitable for biotechnological applications in industry.
Collapse
Affiliation(s)
- Bo Yin
- a State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology , East China University of Science and Technology , Shanghai , China
| | | | | | | | | |
Collapse
|
40
|
Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. J Proteomics 2014; 112:14-26. [PMID: 25173100 DOI: 10.1016/j.jprot.2014.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Saccharomyces cerevisiae is considered a safe microorganism widely used as a dietary supplement. However, in the latest decades several cases of S. cerevisiae infections have been reported. Recent studies in a murine model of systemic infection have also revealed the virulence of some S. cerevisiae dietary strains. Here we use an immunoproteomic approach based on protein separation by 2D-PAGE followed by Western-blotting to compare the serological response against a virulent dietary and a non-virulent laboratory strains leading to the identification of highly different patterns of antigenic proteins. Thirty-six proteins that elicit a serological response in mice have been identified. Most of them are involved in stress responses and metabolic pathways. Their selectivity as putative biomarkers for S. cerevisiae infections was assessed by testing sera from S. cerevisiae-infected mice against Candida albicans and C. glabrata proteins. Some chaperones and metabolic proteins showed cross-reactivity. We also compare the S. cerevisiae immunodetected proteins with previously described C. albicans antigens. The results point to the stress-related proteins Ahp1, Yhb1 and Oye2, as well as the glutamine synthetase Gln1 and the oxysosterol binding protein Kes1 as putative candidates for being evaluated as biomarkers for diagnostic assays of S. cerevisiae infections. BIOLOGICAL SIGNIFICANCE S. cerevisiae can cause opportunistic infections, and therefore, a precise diagnosis of fungal infections is necessary. This immunoproteomic analysis of sera from a model murine infection with a virulent dietary S. cerevisiae strain has been shown to be a source of candidate proteins for being evaluated as biomarkers to develop assays for diagnosis of S. cerevisiae infections. To our knowledge, this is the first study devoted to the identification of S. cerevisiae immunogenic proteins and the results allowed the proposal of five antigens to be further investigated.
Collapse
|
41
|
Nizam S, Gazara RK, Verma S, Singh K, Verma PK. Comparative structural modeling of six old yellow enzymes (OYEs) from the necrotrophic fungus Ascochyta rabiei: insight into novel OYE classes with differences in cofactor binding, organization of active site residues and stereopreferences. PLoS One 2014; 9:e95989. [PMID: 24776850 PMCID: PMC4002455 DOI: 10.1371/journal.pone.0095989] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022] Open
Abstract
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.
Collapse
Affiliation(s)
- Shadab Nizam
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rajesh Kumar Gazara
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
42
|
Nizam S, Verma S, Borah NN, Gazara RK, Verma PK. Comprehensive genome-wide analysis reveals different classes of enigmatic old yellow enzyme in fungi. Sci Rep 2014; 4:4013. [PMID: 24500274 PMCID: PMC3915301 DOI: 10.1038/srep04013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/09/2022] Open
Abstract
In this study, we systematically identify Old Yellow Enzymes (OYEs) from a diverse range of economically important fungi representing different ecology and lifestyle. Using active site residues and sequence alignments, we present a classification for these proteins into three distinct classes including a novel class (Class III) and assign names to sequences. Our in-depth phylogenetic analysis suggests a complex history of lineage-specific expansion and contraction for the OYE gene family in fungi. Comparative analyses reveal remarkable diversity in the number and classes of OYE among fungi. Quantitative real-time PCR (qRT-PCR) of Ascochyta rabiei OYEs indicates differential expression of OYE genes during oxidative stress and plant infection. This study shows relationship of OYE with fungal ecology and lifestyle, and provides a foundation for future functional analysis and characterization of OYE gene family.
Collapse
Affiliation(s)
- Shadab Nizam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandhya Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nilam Nayan Borah
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Rajesh Kumar Gazara
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
43
|
Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal 2014; 2014:417842. [PMID: 24634611 PMCID: PMC3918703 DOI: 10.1155/2014/417842] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/31/2013] [Indexed: 12/21/2022] Open
Abstract
Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS.
Collapse
|
44
|
Liu J, Zhu Y, Du G, Zhou J, Chen J. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress. Appl Microbiol Biotechnol 2013; 97:6467-75. [DOI: 10.1007/s00253-013-4931-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 02/02/2023]
|
45
|
Dong W, Wang M, Xu F, Quan T, Peng K, Xiao L, Xia G. Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging. PLANT PHYSIOLOGY 2013; 161:1217-28. [PMID: 23321418 PMCID: PMC3585591 DOI: 10.1104/pp.112.211854] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/12/2013] [Indexed: 05/18/2023]
Abstract
The 12-oxo-phytodienoic acid reductases (OPRs) are classified into the two subgroups OPRI and OPRII. The latter proteins participate in jasmonic acid synthesis, while the function of the former ones is as yet unclear. We describe here the characterization of the OPRI gene TaOPR1, isolated from the salinity-tolerant bread wheat (Triticum aestivum) cultivar SR3. Salinity stress induced a higher level of TaOPR1 expression in the seedling roots of cv SR3 than in its parental cultivar, JN177. This induction was abolished when abscisic acid (ABA) synthesis was inhibited. The overexpression of TaOPR1 in wheat significantly enhanced the level of salinity tolerance, while its heterologous expression in Arabidopsis alleviated root growth restriction in the presence of salinity and oxidants and raised the sensitivity to ABA. In Arabidopsis, TaOPR1 promoted ABA synthesis and the ABA-dependent stress-responsive pathway, partially rescued the sensitivity of the Arabidopsis aba2 mutant defective in ABA synthesis to salinity, and improved the activities of reactive oxygen species scavengers and the transcription of their encoding genes while reducing malondialdehyde and reactive oxygen species levels. TaOPR1 did not interact with jasmonate synthesis or the jasmonate signaling pathway. Rather than serving purely as an antioxidant, we believe that TaOPR1 acts during episodes of abiotic stress response as a signaling compound associated with the regulation of the ABA-mediated signaling network.
Collapse
|
46
|
Plapp BV, Lee ATI, Khanna A, Pryor JM. Bradykinetic alcohol dehydrogenases make yeast fitter for growth in the presence of allyl alcohol. Chem Biol Interact 2012. [PMID: 23200945 DOI: 10.1016/j.cbi.2012.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies showed that fitter yeast (Saccharomyces cerevisiae) that can grow by fermenting glucose in the presence of allyl alcohol, which is oxidized by alcohol dehydrogenase I (ADH1) to toxic acrolein, had mutations in the ADH1 gene that led to decreased ADH activity. These yeast may grow more slowly due to slower reduction of acetaldehyde and a higher NADH/NAD(+) ratio, which should decrease the oxidation of allyl alcohol. We determined steady-state kinetic constants for three yeast ADHs with new site-directed substitutions and examined the correlation between catalytic efficiency and growth on selective media of yeast expressing six different ADHs. The H15R substitution (a test for electrostatic effects) is on the surface of ADH and has small effects on the kinetics. The H44R substitution (affecting interactions with the coenzyme pyrophosphate) was previously shown to decrease affinity for coenzymes 2-4-fold and turnover numbers (V/Et) by 4-6-fold. The W82R substitution is distant from the active site, but decreases turnover numbers by 5-6-fold, perhaps by effects on protein dynamics. The E67Q substitution near the catalytic zinc was shown previously to increase the Michaelis constant for acetaldehyde and to decrease turnover for ethanol oxidation. The W54R substitution, in the substrate binding site, increases kinetic constants (Ks, by >10-fold) while decreasing turnover numbers by 2-7-fold. Growth of yeast expressing the different ADHs on YPD plates (yeast extract, peptone and dextrose) plus antimycin to require fermentation, was positively correlated with the log of catalytic efficiency for the sequential bi reaction (V1/KiaKb=KeqV2/KpKiq, varying over 4 orders of magnitude, adjusted for different levels of ADH expression) in the order: WT≈H15R>H44R>W82R>E67Q>W54R. Growth on YPD plus 10mM allyl alcohol was inversely correlated with catalytic efficiency. The fitter yeast are "bradytrophs" (slow growing) because the ADHs have decreased catalytic efficiency.
Collapse
Affiliation(s)
- Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA 52242-1109, USA.
| | | | | | | |
Collapse
|
47
|
Identification of pOENI-1 and related plasmids in Oenococcus oeni strains performing the malolactic fermentation in wine. PLoS One 2012; 7:e49082. [PMID: 23139835 PMCID: PMC3489775 DOI: 10.1371/journal.pone.0049082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.
Collapse
|
48
|
Styger G, Jacobson D, Prior BA, Bauer FF. Genetic analysis of the metabolic pathways responsible for aroma metabolite production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:4429-42. [PMID: 23111598 DOI: 10.1007/s00253-012-4522-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/13/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
During alcoholic fermentation, higher alcohols, esters, and acids are formed from amino acids via the Ehrlich pathway by yeast, but many of the genes encoding the enzymes have not yet been identified. When the BAT1/2 genes, encoding transaminases that deaminate amino acids in the first step of the Ehrlich pathway are deleted, higher metabolite formation is significantly decreased. Screening yeast strains with deletions of genes encoding decarboxylases, dehydrogenases, and reductases revealed nine genes whose absence had the most significant impact on higher alcohol production. The seven most promising genes (AAD6, BAT2, HOM2, PAD1, PRO2, SPE1, and THI3) were further investigated by constructing double- and triple-deletion mutants. All double-deletion strains showed a greater decrease in isobutanol, isoamyl alcohol, isobutyric, and isovaleric acid production than the corresponding single deletion strains with the double-deletion strains in combination with ∆bat2 and the ∆hom2-∆aad6 strain revealing the greatest impact. BAT2 is the dominant gene in these deletion strains and this suggests the initial transaminase step of the Ehrlich pathway is rate-limiting. The triple-deletion strains in combination with BAT2 (∆bat2-∆thi3-∆aad6 and ∆bat2-∆thi3-∆hom2) had the greatest impact on the end metabolite production with the exception of isoamyl alcohol and isovaleric acid. The strain deleted for two dehydrogenases and a reductase (∆hom2-∆pro2-∆aad6) had a greater effect on the levels of these two compounds. This study contributes to the elucidation of the Ehrlich pathway and its significance for aroma production by fermenting yeast cells.
Collapse
Affiliation(s)
- Gustav Styger
- Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | | |
Collapse
|
49
|
Steyer D, Erny C, Claudel P, Riveill G, Karst F, Legras JL. Genetic analysis of geraniol metabolism during fermentation. Food Microbiol 2012. [PMID: 23200656 DOI: 10.1016/j.fm.2012.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Geraniol produced by grape is the main precursor of terpenols which play a key role in the floral aroma of white wines. We investigated the fate of geraniol during wine fermentation by Saccharomyces cerevisiae. The volatile compounds produced during fermentation of a medium enriched with geraniol were extracted by Stir-bar sorptive extraction and analysed by GC-MS. We were able to detect and quantify geranyl acetate but also citronellyl- and neryl-acetate. The presence of these compounds partly explains the disparition of geraniol. The amounts of terpenyl esters are strain dependant. We demonstrated both by gene overexpression and gene-deletion the involvement of ATF1 enzyme but not ATF2 in the acetylation of terpenols. The affinity of ATF1 enzyme for several terpenols and for isoamyl alcohol was compared. We also demonstrated that OYE2 is the enzyme involved in geraniol to citronellol reduction. Fermenting strain deleted from OYE2 gene produces far less citronellol than wild type strain. Moreover lab strain over-expressing OYE2 allows 87% geraniol to citronellol reduction in bioconversion experiment compared to about 50% conversion with control strain.
Collapse
|
50
|
Mac Aogáin M, Mooij MJ, McCarthy RR, Plower E, Wang YP, Tian ZX, Dobson A, Morrissey J, Adams C, O'Gara F. The non-classical ArsR-family repressor PyeR (PA4354) modulates biofilm formation in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2012; 158:2598-2609. [PMID: 22820840 DOI: 10.1099/mic.0.058636-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PyeR (PA4354) is a novel member of the ArsR family of transcriptional regulators and modulates biofilm formation in Pseudomonas aeruginosa. Characterization of this regulator showed that it has negative autoregulatory properties and binds to a palindromic motif conserved among PyeR orthologues. These characteristics are in line with classical ArsR-family regulators, as is the fact that PyeR is part of an operon structure (pyeR-pyeM-xenB). However, PyeR also exhibits some atypical features in comparison with classical members of the ArsR family, as it does not harbour metal-binding motifs and does not appear to be involved in metal perception or resistance. Hence, PyeR belongs to a subgroup of non-classical ArsR-family regulators and is the second ArsR regulator shown to be involved in biofilm formation.
Collapse
Affiliation(s)
- M Mac Aogáin
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - M J Mooij
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - R R McCarthy
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - E Plower
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - Y P Wang
- National Laboratory of Plant Engineering and Protein Genetic Engineering, College of Life Science, Peking University, Beijing, PR China
| | - Z X Tian
- National Laboratory of Plant Engineering and Protein Genetic Engineering, College of Life Science, Peking University, Beijing, PR China.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - A Dobson
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - J Morrissey
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - C Adams
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| | - F O'Gara
- Department of Microbiology, University College Cork, Cork, Ireland.,Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland.,BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|