1
|
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. SCIENCE ADVANCES 2024; 10:eadk3208. [PMID: 38266082 PMCID: PMC10807817 DOI: 10.1126/sciadv.adk3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Multicellularity is key to the functional and ecological success of the Eukarya, underpinning much of their modern diversity in both terrestrial and marine ecosystems. Despite the widespread occurrence of simple multicellular organisms among eukaryotes, when this innovation arose remains an open question. Here, we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells. In combination with spectroscopic characteristics, the large size and morphological complexity of these fossils support their interpretation as eukaryotes, likely photosynthetic, based on comparisons with extant organisms. The occurrence of multicellular eukaryotes in Paleoproterozoic rocks not much younger than those containing the oldest unambiguous evidence of eukaryotes as a whole supports the hypothesis that simple multicellularity arose early in eukaryotic history, as much as a billion years before complex multicellular organisms diversified in the oceans.
Collapse
Affiliation(s)
- Lanyun Miao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yuangao Qu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Valentin-Alvarado LE, Fakra SC, Probst AJ, Giska JR, Jaffe AL, Oltrogge LM, West-Roberts J, Rowland J, Manga M, Savage DF, Greening C, Baker BJ, Banfield JF. Autotrophic biofilms sustained by deeply sourced groundwater host diverse bacteria implicated in sulfur and hydrogen metabolism. MICROBIOME 2024; 12:15. [PMID: 38273328 PMCID: PMC10811913 DOI: 10.1186/s40168-023-01704-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Biofilms in sulfide-rich springs present intricate microbial communities that play pivotal roles in biogeochemical cycling. We studied chemoautotrophically based biofilms that host diverse CPR bacteria and grow in sulfide-rich springs to investigate microbial controls on biogeochemical cycling. RESULTS Sulfide springs biofilms were investigated using bulk geochemical analysis, genome-resolved metagenomics, and scanning transmission X-ray microscopy (STXM) at room temperature and 87 K. Chemolithotrophic sulfur-oxidizing bacteria, including Thiothrix and Beggiatoa, dominate the biofilms, which also contain CPR Gracilibacteria, Absconditabacteria, Saccharibacteria, Peregrinibacteria, Berkelbacteria, Microgenomates, and Parcubacteria. STXM imaging revealed ultra-small cells near the surfaces of filamentous bacteria that may be CPR bacterial episymbionts. STXM and NEXAFS spectroscopy at carbon K and sulfur L2,3 edges show that filamentous bacteria contain protein-encapsulated spherical elemental sulfur granules, indicating that they are sulfur oxidizers, likely Thiothrix. Berkelbacteria and Moranbacteria in the same biofilm sample are predicted to have a novel electron bifurcating group 3b [NiFe]-hydrogenase, putatively a sulfhydrogenase, potentially linked to sulfur metabolism via redox cofactors. This complex could potentially contribute to symbioses, for example, with sulfur-oxidizing bacteria such as Thiothrix that is based on cryptic sulfur cycling. One Doudnabacteria genome encodes adjacent sulfur dioxygenase and rhodanese genes that may convert thiosulfate to sulfite. We find similar conserved genomic architecture associated with CPR bacteria from other sulfur-rich subsurface ecosystems. CONCLUSIONS Our combined metagenomic, geochemical, spectromicroscopic, and structural bioinformatics analyses of biofilms growing in sulfide-rich springs revealed consortia that contain CPR bacteria and sulfur-oxidizing Proteobacteria, including Thiothrix, and bacteria from a new family within Beggiatoales. We infer roles for CPR bacteria in sulfur and hydrogen cycling. Video Abstract.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander J Probst
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry,, University of Duisburg-Essen, Essen, Essen, Germany
| | - Jonathan R Giska
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Cleaner Air Oregon Program, Oregon Department of Environmental Quality, Portland, USA
| | - Alexander L Jaffe
- Graduate Group in Microbiology, University of California, Berkeley, CA, USA
| | - Luke M Oltrogge
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Joel Rowland
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- Earth and Env. Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael Manga
- Earth and Planetary Science, University of California, Berkeley, CA, USA
- University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Brett J Baker
- Department of Integrative Biology, University of Texas, Austin, USA
- Department of Marine Science, University of Texas, Austin, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Marine Science, University of Texas, Austin, USA.
- Energy Geoscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
4
|
Liu Y, Zhang Y, Huang Y, Niu J, Huang J, Peng X, Peng F. Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4-2, a strain obtained from Antarctica. Front Microbiol 2023; 14:1040201. [PMID: 36876078 PMCID: PMC9975570 DOI: 10.3389/fmicb.2023.1040201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
According to average nucleotide identity (ANI) analysis of the complete genomes, strain 24S4-2 isolated from Antarctica is considered as a potential novel Arthrobacter species. Arthrobacter sp. 24S4-2 could grow and produce ammonium in nitrate or nitrite or even nitrogen free medium. Strain 24S4-2 was discovered to accumulate nitrate/nitrite and subsequently convert nitrate to nitrite intracellularly when incubated in a nitrate/nitrite medium. In nitrogen-free medium, strain 24S4-2 not only reduced the accumulated nitrite for growth, but also secreted ammonia to the extracellular under aerobic condition, which was thought to be linked to nitrite reductase genes nirB, nirD, and nasA by the transcriptome and RT-qPCR analysis. A membrane-like vesicle structure was detected in the cell of strain 24S4-2 by transmission electron microscopy, which was thought to be the site of intracellular nitrogen supply accumulation and conversion. This spatial and temporal conversion process of nitrogen source helps the strain maintain development in the absence of nitrogen supply or a harsh environment, which is part of its adaption strategy to the Antarctic environment. This process may also play an important ecological role, that other bacteria in the environment would benefit from its extracellular nitrogen source secretion and nitrite consumption characteristics.
Collapse
Affiliation(s)
- Yixuan Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yudi Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Niu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoya Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Gureeva MV, Belousova EV, Dubinina GA, Novikov AA, Kopitsyn DS, Grabovich MY. Thioflexithrix psekupsensis gen. nov., sp. nov., a filamentous gliding sulfur bacterium from the family Beggiatoaceae. Int J Syst Evol Microbiol 2019; 69:798-804. [PMID: 30657444 DOI: 10.1099/ijsem.0.003240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulfur-oxidizing, filamentous, gliding micro-organism, strain D3T, was isolated from a sulfidic spring in Goryachy Klyuch, Krasnodar, Russia. The cell walls were Gram-negative. The new isolate was a microaerophilic facultative anaerobe and an obligate chemolithoautotroph. The pH range for growth was pH 6.8-7.6, with an optimum at pH 7.2. The temperature range for growth was 10-46 °C, with an optimum at 32 °C. The G+C content of DNA was 42.1 mol%. Phylogenetic analysis of the 16S rRNA gene showed that strain D3T belongs to the family Beggiatoaceae, order Thiotrichales and was distantly related to the genera of the family Beggiatoaceae(86-88 % sequence similarity). The major respiratory quinone was ubiquinone-6. Major fatty acids were C18:1 ω7 (37.6 %), C16 : 0 (34.7 %) and C16: 1 ω7 (27.7 %). On the basis of its physiological properties and the results of phylogenetic analysis, strain D3T is considered to represent a novel species of a new genus, for which the name Thioflexithrix psekupsensis gen. nov., sp. nov. is proposed. The type strain is D3T (=KCTC 62399=UNIQEM U981).
Collapse
Affiliation(s)
- M V Gureeva
- 1Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, Voronezh 394018, Russia
| | - E V Belousova
- 1Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, Voronezh 394018, Russia
| | - G A Dubinina
- 2Federal State Institution 'Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences', Prospect 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - A A Novikov
- 3Gubkin University, 65/1 Leninsky Prospekt, Moscow 119991, Russia
| | - D S Kopitsyn
- 3Gubkin University, 65/1 Leninsky Prospekt, Moscow 119991, Russia
| | - M Y Grabovich
- 1Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, Voronezh 394018, Russia
| |
Collapse
|
6
|
Neu TR, Kuhlicke U. Fluorescence Lectin Bar-Coding of Glycoconjugates in the Extracellular Matrix of Biofilm and Bioaggregate Forming Microorganisms. Microorganisms 2017; 5:microorganisms5010005. [PMID: 28208623 PMCID: PMC5374382 DOI: 10.3390/microorganisms5010005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
Microbial biofilm systems are defined as interface-associated microorganisms embedded into a self-produced matrix. The extracellular matrix represents a continuous challenge in terms of characterization and analysis. The tools applied in more detailed studies comprise extraction/chemical analysis, molecular characterization, and visualisation using various techniques. Imaging by laser microscopy became a standard tool for biofilm analysis, and, in combination with fluorescently labelled lectins, the glycoconjugates of the matrix can be assessed. By employing this approach a wide range of pure culture biofilms from different habitats were examined using the commercially available lectins. From the results, a binary barcode pattern of lectin binding can be generated. Furthermore, the results can be fine-tuned and transferred into a heat map according to signal intensity. The lectin barcode approach is suggested as a useful tool for investigating the biofilm matrix characteristics and dynamics at various levels, e.g. bacterial cell surfaces, adhesive footprints, individual microcolonies, and the gross biofilm or bio-aggregate. Hence fluorescence lectin bar-coding (FLBC) serves as a basis for a subsequent tailor-made fluorescence lectin-binding analysis (FLBA) of a particular biofilm. So far, the lectin approach represents the only tool for in situ characterization of the glycoconjugate makeup in biofilm systems. Furthermore, lectin staining lends itself to other fluorescence techniques in order to correlate it with cellular biofilm constituents in general and glycoconjugate producers in particular.
Collapse
Affiliation(s)
- Thomas R Neu
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| | - Ute Kuhlicke
- Helmholtz Centre for Environmental Research - UFZ, 39114 Magdeburg, Germany.
| |
Collapse
|
7
|
Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain. Appl Environ Microbiol 2016; 82:2527-36. [PMID: 26896131 PMCID: PMC4959497 DOI: 10.1128/aem.03818-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration.Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoa ceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoa ceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoa ceaein several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies.
Collapse
|
8
|
Shen DS, Du Y, Fang Y, Hu LF, Fang CR, Long YY. Characteristics of H2S emission from aged refuse after excavation exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 154:159-165. [PMID: 25725388 DOI: 10.1016/j.jenvman.2015.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided.
Collapse
Affiliation(s)
- Dong-Sheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yao Du
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuan Fang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li-Fang Hu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Cheng-Ran Fang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yu-Yang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
9
|
Two new Beggiatoa species inhabiting marine mangrove sediments in the Caribbean. PLoS One 2015; 10:e0117832. [PMID: 25689402 PMCID: PMC4331518 DOI: 10.1371/journal.pone.0117832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022] Open
Abstract
Beggiatoaceae, giant sulphur-oxidizing bacteria, are well known to occur in cold and temperate waters, as well as hydrothermal vents, where they form dense mats on the floor. However, they have never been described in tropical marine mangroves. Here, we describe two new species of benthic Beggiatoaceae colonizing a marine mangrove adjacent to mangrove roots. We combined phylogenetic and lipid analysis with electron microscopy in order to describe these organisms. Furthermore, oxygen and sulphide measurements in and ex situ were performed in a mesocosm to characterize their environment. Based on this, two new species, Candidatus Maribeggiatoa sp. and Candidatus Isobeggiatoa sp. inhabiting tropical marine mangroves in Guadeloupe were identified. The species identified as Candidatus Maribeggiatoa group suggests that this genus could harbour a third cluster with organisms ranging from 60 to 120 μm in diameter. This is also the first description of an Isobeggiatoa species outside of Arctic and temperate waters. The multiphasic approach also gives information about the environment and indications for the metabolism of these bacteria. Our study shows the widespread occurrence of members of Beggiatoaceae family and provides new insight in their potential role in shallow-water marine sulphide-rich environments such as mangroves.
Collapse
|
10
|
Absorption and emission spectroscopic characterization of photo-dynamics of photoactivated adenylyl cyclase mutant bPAC-Y7F of Beggiatoa sp. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:182-93. [DOI: 10.1016/j.jphotobiol.2014.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022]
|
11
|
Flood BE, Bailey JV, Biddle JF. Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments. GEOBIOLOGY 2014; 12:119-132. [PMID: 24382125 DOI: 10.1111/gbi.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat-forming micro-organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria-dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record.
Collapse
Affiliation(s)
- B E Flood
- Department of Earth Sciences, University of Minnesota- Twin Cities, Minneapolis, MN, USA
| | | | | |
Collapse
|
12
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
13
|
Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Rodrigues Capítulo A. Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:5801-5815. [PMID: 23149840 DOI: 10.1007/s10661-012-2985-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Our objective was to assess the effect of the physical habitat degradation in three lowland streams of Argentina that are subject to different land uses. To address this matter, we looked into some physical habitat alterations, mainly the water quality and channel changes, the impact on macrophytes' community, and the structural and functional descriptors of the epipelic biofilm and invertebrate assemblages. As a consequence of physical and chemical perturbations, we differentiated sampling sites with different degradation levels. The low degraded sites were affected mainly for the suburban land use, the moderately degraded sites for the rural land use, and the highly degraded sites for the urban land use. The data shows that the biotic descriptors that best reflected the environmental degradation were vegetation cover and macrophytes richness, the dominance of tolerant species (epipelic biofilm and invertebrates), algal biomass, O2 consumption by the epipelic biofilm, and invertebrates' richness and diversity. Furthermore, the results obtained highlight the importance of the macrophytes in the lowland streams, where there is a poor diversification of abiotic substrates and where the macrophytes not only provide shelter but also a food source for invertebrates and other trophic levels such as fish. We also noted that both in benthic communities, invertebrates and epipelic biofilm supplied different information: the habitat's physical structure provided by the macrophytes influenced mainly the invertebrate descriptors; meanwhile, the water quality mainly influenced most of the epipelic biofilm descriptors.
Collapse
Affiliation(s)
- Agustina Cortelezzi
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable (UNCPBA, Tandil), Paraje Arroyo Seco S/N, Tandil, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
14
|
Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 2012; 79:1183-90. [PMID: 23220958 DOI: 10.1128/aem.02538-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.
Collapse
|
15
|
Beutler M, Milucka J, Hinck S, Schreiber F, Brock J, Mußmann M, Schulz-Vogt HN, de Beer D. Vacuolar respiration of nitrate coupled to energy conservation in filamentousBeggiatoaceae. Environ Microbiol 2012; 14:2911-9. [DOI: 10.1111/j.1462-2920.2012.02851.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 07/04/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Susanne Hinck
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | | | - Jörg Brock
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Heide N. Schulz-Vogt
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| |
Collapse
|
16
|
Glas MS, Sato Y, Ulstrup KE, Bourne DG. Biogeochemical conditions determine virulence of black band disease in corals. ISME JOURNAL 2012; 6:1526-34. [PMID: 22318304 DOI: 10.1038/ismej.2012.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microenvironmental dynamics of the microbial mat of black band disease (BBD) and its less virulent precursor, cyanobacterial patch (CP), were extensively profiled using microsensors under different light intensities with respect to O(2), pH and H(2)S. BBD mats exhibited vertical stratification into an upper phototrophic and lower anoxic and sulphidic zone. At the progression front of BBD lesions, high sulphide levels up to 4977 μM were measured in darkness along with lower than ambient levels of pH (7.43±0.20). At the base of the coral-BBD microbial mat, conditions were hypoxic or anoxic depending on light intensity exposure. In contrast, CP mats did not exhibit strong microchemical stratification with mostly supersaturated oxygen conditions throughout the mats at all light intensities and with levels of pH generally higher than in BBD. Two of three replicate CP mats were devoid of sulphide, while the third replicate showed only low levels of sulphide (up to 42 μM) present in darkness and at intermediate light levels. The level of oxygenation and sulphide correlated well with lesion migration rates, that is virulence of the mats, which were greater in BBD than in CP. The results suggest that biogeochemical microgradients of BBD shaped by the complex microbial community, rather than a defined pathogen, are the major trigger for high virulence and the associated derived coral mortality of this disease.
Collapse
Affiliation(s)
- Martin S Glas
- Max Planck Institute for Marine Microbiology, Microsensor Group Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
17
|
Schwedt A, Kreutzmann AC, Polerecky L, Schulz-Vogt HN. Sulfur respiration in a marine chemolithoautotrophic beggiatoa strain. Front Microbiol 2012; 2:276. [PMID: 22291687 PMCID: PMC3253548 DOI: 10.3389/fmicb.2011.00276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022] Open
Abstract
The chemolithoautotrophic strain Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen–sulfide interface. However, upon prolonged incubation, a subpopulation migrates actively downward into the anoxic and sulfidic section of the medium, where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA) inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur- and PHA-depleted filaments return to the oxygen–sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of stored PHA under anoxic conditions. Until now, nitrate has always been assumed to be the alternative electron acceptor in chemolithoautotrophic Beggiatoa spp. under anoxic conditions. As the medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO2 fixed by the filaments while at the oxygen–sulfide interface. We propose that the directed migration of filaments into the anoxic section of an oxygen–sulfide gradient system is used as a last resort to preserve cell integrity, which would otherwise be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is still unknown.
Collapse
Affiliation(s)
- Anne Schwedt
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | | | | |
Collapse
|
18
|
Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN. Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie van Leeuwenhoek 2011; 101:347-57. [PMID: 21909788 PMCID: PMC3261416 DOI: 10.1007/s10482-011-9640-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/27/2011] [Indexed: 11/29/2022]
Abstract
Sulfide-oxidizing bacteria of the genus Beggiatoa are known to accumulate phosphate intracellularly as polyphosphate but little is known about the structure and properties of these inclusions. Application of different staining techniques revealed the presence of unusually large polyphosphate inclusions in the marine Beggiatoa strain 35Flor. The inclusions showed a co-occurrence of polyphosphate, calcium and magnesium when analyzed by scanning electron microscopy and energy dispersive X-ray analysis. Similar to polyphosphate-enriched acidocalcisomes of prokaryotes and eukaryotes, the polyphosphate inclusions in Beggiatoa strain 35Flor are enclosed by a lipid layer and store cations. However, they are not notably acidic. 16S rRNA gene sequence-based phylogenetic reconstruction showed an affiliation of Beggiatoa strain 35Flor to a monophyletic branch, comprising other narrow vacuolated and non-vacuolated Beggiatoa species. The polyphosphate inclusions represent a new type of membrane surrounded storage compartment within the genus Beggiatoa, distinct from the mostly nitrate-storing vacuoles known from other marine sulfide-oxidizing bacteria of the family Beggiatoaceae.
Collapse
Affiliation(s)
- Jörg Brock
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
| | | | | | | | | |
Collapse
|
19
|
Hinck S, Mussmann M, Salman V, Neu TR, Lenk S, Beer DD, Jonkers HM. Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus. Environ Microbiol 2011; 13:3194-205. [PMID: 21651683 DOI: 10.1111/j.1462-2920.2011.02513.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, members of a specific group of thin (6-14 µm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.
Collapse
Affiliation(s)
- Susanne Hinck
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dunker R, Røy H, Kamp A, Jørgensen BB. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp. FEMS Microbiol Ecol 2011; 77:176-85. [DOI: 10.1111/j.1574-6941.2011.01099.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 2011; 34:243-59. [PMID: 21498017 DOI: 10.1016/j.syapm.2011.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/20/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
The colorless, large sulfur bacteria are well known because of their intriguing appearance, size and abundance in sulfidic settings. Since their discovery in 1803 these bacteria have been classified according to their conspicuous morphology. However, in microbiology the use of morphological criteria alone to predict phylogenetic relatedness has frequently proven to be misleading. Recent sequencing of a number of 16S rRNA genes of large sulfur bacteria revealed frequent inconsistencies between the morphologically determined taxonomy of genera and the genetically derived classification. Nevertheless, newly described bacteria were classified based on their morphological properties, leading to polyphyletic taxa. We performed sequencing of 16S rRNA genes and internal transcribed spacer (ITS) regions, together with detailed morphological analysis of hand-picked individuals of novel non-filamentous as well as known filamentous large sulfur bacteria, including the hitherto only partially sequenced species Thiomargarita namibiensis, Thioploca araucae and Thioploca chileae. Based on 128 nearly full-length 16S rRNA-ITS sequences, we propose the retention of the family Beggiatoaceae for the genera closely related to Beggiatoa, as opposed to the recently suggested fusion of all colorless sulfur bacteria into one family, the Thiotrichaceae. Furthermore, we propose the addition of nine Candidatus species along with seven new Candidatus genera to the family Beggiatoaceae. The extended family Beggiatoaceae thus remains monophyletic and is phylogenetically clearly separated from other related families.
Collapse
Affiliation(s)
- Verena Salman
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 2011; 286:1181-8. [PMID: 21030594 PMCID: PMC3020725 DOI: 10.1074/jbc.m110.185496] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/26/2010] [Indexed: 11/06/2022] Open
Abstract
The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
Collapse
Affiliation(s)
- Manuela Stierl
- From the Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Patrick Stumpf
- the Department of Botany I, the University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Daniel Udwari
- the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ronnie Gueta
- the Department of Botany I, the University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Rolf Hagedorn
- From the Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| | - Aba Losi
- the Department of Physics, University of Parma, 43121 Parma, Italy
| | - Wolfgang Gärtner
- the Max-Planck-Institute for Bioinorganic Chemistry, Postfach 1013 56, D-45410 Mülheim, Germany, and
| | - Linda Petereit
- the Department of Biology, Free University Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Marina Efetova
- the Department of Biology, Free University Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Martin Schwarzel
- the Department of Biology, Free University Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - Thomas G. Oertner
- the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Georg Nagel
- the Department of Botany I, the University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Peter Hegemann
- From the Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, D-10115 Berlin, Germany
| |
Collapse
|
23
|
Comparative analysis of Beggiatoa from hypersaline and marine environments. Micron 2010; 41:507-17. [DOI: 10.1016/j.micron.2010.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 11/22/2022]
|
24
|
Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 2010; 72:1-21. [PMID: 20180852 DOI: 10.1111/j.1574-6941.2010.00837.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.
Collapse
Affiliation(s)
- Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
A method for imaging of low pH in live cells based on excited state saturation. J Microbiol Methods 2009; 77:98-101. [DOI: 10.1016/j.mimet.2009.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/16/2009] [Indexed: 11/18/2022]
|