1
|
Xie J, Wang H, Ma R, Fan J, Quan Q, Zhang Z, Li M, Li B. The molybdate transport protein ModA regulates nitrate reductase activity to increase the intestinal colonization and extraintestinal dissemination of Klebsiella pneumoniae in the inflamed gut. Virulence 2025; 16:2474185. [PMID: 40033924 PMCID: PMC11901421 DOI: 10.1080/21505594.2025.2474185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025] Open
Abstract
The mammalian intestine is a major site of colonization and a starting point of severe infections by Klebsiella pneumoniae. Inflammatory bowel disease (IBD) is an inflammatory disorder of the gut, and host-derived nitrate in IBD confers a luminal growth advantage upon Escherichia coli and Salmonella typhimurium through nitrate respiration in the inflamed gut. However, the impact of nitrate on the growth and pathogenicity of K. pneumoniae in this microenvironment is poorly understood. In this study, we used oral administration of dextran sodium sulphate to induce IBD in mouse models. We then analysed the colonization levels of K. pneumoniae wild-type (WT), the nitrate reductase gene mutant strains (ΔnarG, ΔnarZ and ΔnarGΔnarZ), and the molybdate uptake gene mutant strain (ΔmodA) in the inflamed intestinal tract. Results showed that the growth, intestinal colonization, and extraintestinal dissemination of K. pneumoniae were increased in the intestines of dextran sulphate sodium (DSS)-treated mice. Nitrate in the inflamed bowel conferred a growth advantage to K. pneumoniae through nitrate respiration. The molybdate transport protein ModA regulated nitrate reductase activity to increase the growth, intestinal colonization, and extraintestinal dissemination of K. pneumoniae. Tungstate will be a promising antibacterial agent to tackle K. pneumoniae infections in IBD patients.
Collapse
Affiliation(s)
- Jichen Xie
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Hui Wang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Renhui Ma
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jinming Fan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Qiuhang Quan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Zhiqiang Zhang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Department of Respiratory, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Bei Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Department of obstetricsl, Maternal and Child Health Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
2
|
Das SK, Negus D. How do Gram-negative bacteria escape predation by Bdellovibrio bacteriovorus? NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:30. [PMID: 39843563 PMCID: PMC11721376 DOI: 10.1038/s44259-024-00048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/17/2024] [Indexed: 01/24/2025]
Abstract
Bdellovibrio bacteriovorus is a small predatory bacterium which reproduces by invading and killing Gram-negative bacteria. The natural antimicrobial activity of B. bacteriovorus has garnered interest for the potential to develop this predatory bacterium as a therapeutic agent. Transitioning B. bacteriovorus from 'bench to bedside' will require a complete understanding of all aspects of bacterial predation, including how prey species may escape predation. Here we discuss recent findings relating to how Gram-negative bacteria may escape predation.
Collapse
Affiliation(s)
- Sourav Kumar Das
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - David Negus
- Department of Biosciences, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
3
|
Kim U, Lee SY, Oh SW. A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food Sci Biotechnol 2023; 32:1665-1677. [PMID: 37780597 PMCID: PMC10533759 DOI: 10.1007/s10068-023-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are an aggregation of microorganisms that have high resistance to antimicrobial agents. In the food industry, it has been widely studied that foodborne pathogens on both food surfaces and food-contact surfaces can form biofilms thereby threatening the safety of the food. In the natural environment, multi-species biofilms formed by more than two different microorganisms are abundant. In addition, the resistance of multi-species biofilms to antimicrobial agents is higher than that of mono-species biofilms. Therefore, studies to elucidate the mechanisms of multi-species biofilms formed by foodborne pathogens are still required in the food industry. In this review paper, we summarized the novel analytical methods studied to evaluate the mechanisms of multi-species biofilms formed by foodborne pathogens by dividing them into four categories: spatial distribution, bacterial interaction, extracellular polymeric substance production and quorum sensing analytical methods.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - So-Young Lee
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02727 Republic of Korea
| |
Collapse
|
4
|
Ormsby MJ, Akinbobola A, Quilliam RS. Plastic pollution and fungal, protozoan, and helminth pathogens - A neglected environmental and public health issue? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163093. [PMID: 36996975 DOI: 10.1016/j.scitotenv.2023.163093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Plastic waste is ubiquitous in the environment and can become colonised by distinct microbial biofilm communities, known collectively as the 'plastisphere.' The plastisphere can facilitate the increased survival and dissemination of human pathogenic prokaryotes (e.g., bacteria); however, our understanding of the potential for plastics to harbour and disseminate eukaryotic pathogens is lacking. Eukaryotic microorganisms are abundant in natural environments and represent some of the most important disease-causing agents, collectively responsible for tens of millions of infections, and millions of deaths worldwide. While prokaryotic plastisphere communities in terrestrial, freshwater, and marine environments are relatively well characterised, such biofilms will also contain eukaryotic species. Here, we critically review the potential for fungal, protozoan, and helminth pathogens to associate with the plastisphere, and consider the regulation and mechanisms of this interaction. As the volume of plastics in the environment continues to rise there is an urgent need to understand the role of the plastisphere for the survival, virulence, dissemination, and transfer of eukaryotic pathogens, and the effect this can have on environmental and human health.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Ayorinde Akinbobola
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
5
|
Ormsby MJ, White HL, Metcalf R, Oliver DM, Quilliam RS. Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121466. [PMID: 36958655 DOI: 10.1016/j.envpol.2023.121466] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Plastic waste is ubiquitous in the environment and there are increasing reports of such waste being colonised by human pathogens. However, the ability of pathogens to persist on plastics for long periods, and the risk that they pose to human health, is unknown. Here, under simulated environmental conditions, we aimed to determine if pathogenic bacteria can retain their virulence following a prolonged period on plastic. Using antibiotic selection and luciferase expression for quantification, we show that clinically important strains of E. coli can survive on plastic for at least 28-days. Importantly, these pathogens also retained their virulence (determined by using a Galleria mellonella model as a surrogate for human infection) and in some cases, had enhanced virulence following their recovery from the plastisphere. This indicates that plastics in the environment can act as reservoirs for human pathogens and could facilitate their persistence for extended periods of time. Most importantly human pathogens in the plastisphere are capable of retaining their pathogenicity. Pathogens colonising environmental plastic waste therefore pose a heightened public health risk, particularly in areas where people are exposed to pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
6
|
Wucher BR, Winans JB, Elsayed M, Kadouri DE, Nadell CD. Breakdown of clonal cooperative architecture in multispecies biofilms and the spatial ecology of predation. Proc Natl Acad Sci U S A 2023; 120:e2212650120. [PMID: 36730197 PMCID: PMC9963355 DOI: 10.1073/pnas.2212650120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/06/2022] [Indexed: 02/03/2023] Open
Abstract
Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.
Collapse
Affiliation(s)
| | - James B. Winans
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| |
Collapse
|
7
|
Xu T, Xiao Y, Wang H, Zhu J, Lee Y, Zhao J, Lu W, Zhang H. Characterization of Mixed-Species Biofilms Formed by Four Gut Microbiota. Microorganisms 2022; 10:microorganisms10122332. [PMID: 36557585 PMCID: PMC9781930 DOI: 10.3390/microorganisms10122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In natural settings, approximately 40-80% of bacteria exist as biofilms, most of which are mixed-species biofilms. Previous studies have typically focused on single- or dual-species biofilms. To expand the field of study on gut biofilms, we found a group of gut microbiota that can form biofilms well in vitro: Bifidobacterium longum subsp. infantis, Enterococcus faecalis, Bacteroides ovatus, and Lactobacillus gasseri. The increase in biomass and bio-volume of the mixed-species biofilm was confirmed via crystal violet staining, field emission scanning electron microscopy, and confocal laser scanning microscopy, revealing a strong synergistic relationship in these communities, with B. longum being the key biofilm-contributing species. This interaction may be related to changes in the cell number, biofilm-related genes, and metabolic activities. After quantifying the cell number using quantitative polymerase chain reaction, B. longum and L. gasseri were found to be the dominant flora in the mixed-species biofilm. In addition, this study analyzed biological properties of mixed-species biofilms, such as antibiotic resistance, cell metabolic activity, and concentration of water-insoluble polysaccharides. Compared with single-species biofilms, mixed-species biofilms had higher metabolic activity, more extracellular matrix, and greater antibiotic resistance. From these results, we can see that the formation of biofilms is a self-protection mechanism of gut microbiota, and the formation of mixed-species biofilms can greatly improve the survival rate of different strains. Finally, this study is a preliminary exploration of the biological characteristics of gut biofilms, and the molecular mechanisms underlying the formation of biofilms warrant further research.
Collapse
Affiliation(s)
- Tao Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuankun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Barrassso K, Chac D, Debela MD, Geigel C, Steenhaut A, Rivera Seda A, Dunmire CN, Harris JB, Larocque RC, Midani FS, Qadri F, Yan J, Weil AA, Ng WL. Impact of a human gut microbe on Vibrio cholerae host colonization through biofilm enhancement. eLife 2022; 11:73010. [PMID: 35343438 PMCID: PMC8993218 DOI: 10.7554/elife.73010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that the human intestinal microbiota could impact the outcome of infection by Vibrio cholerae, the etiological agent of the diarrheal disease cholera. A commensal bacterium, Paracoccus aminovorans, was previously identified in high abundance in stool collected from individuals infected with V. cholerae when compared to stool from uninfected persons. However, if and how P. aminovorans interacts with V. cholerae has not been experimentally determined; moreover, whether any association between this bacterium alters the behaviors of V. cholerae to affect the disease outcome is unclear. Here, we show that P. aminovorans and V. cholerae together form dual-species biofilm structure at the air–liquid interface, with previously uncharacterized novel features. Importantly, the presence of P. aminovorans within the murine small intestine enhances V. cholerae colonization in the same niche that is dependent on the Vibrio exopolysaccharide and other major components of mature V. cholerae biofilm. These studies illustrate that multispecies biofilm formation is a plausible mechanism used by a gut microbe to increase the virulence of the pathogen, and this interaction may alter outcomes in enteric infections.
Collapse
Affiliation(s)
- Kelsey Barrassso
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Seattle, United States
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, United States
| | - Meti D Debela
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Catherine Geigel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Anjali Steenhaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Abigail Rivera Seda
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Chelsea N Dunmire
- Department of Medicine, University of Washington, Seattle, United States
| | - Jason B Harris
- Department of Pediatrics, Massachusetts General Hospital, Boston, United States
| | - Regina C Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Firas S Midani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, United States
| | | | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Ana A Weil
- Department of Medicine, University of Washington, Seattle, United States
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| |
Collapse
|