1
|
Hossain MA, Fatima NNE, Tushar JH, Mahmud H, Haque FKM. Isolation and characterization of Acinetobacter baumannii from environmental waters in Dhaka City, Bangladesh. BMC Microbiol 2025; 25:314. [PMID: 40399793 PMCID: PMC12096565 DOI: 10.1186/s12866-025-04029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
Acinetobacter baumannii, a gram-negative bacterium commonly associated with nosocomial infections, has been relatively unexplored in the environmental context. The present study was conducted in Dhaka City, Bangladesh, with the primary objective of isolating and characterizing A. baumannii in environmental water sources. Surface water samples were collected from various water reservoirs to detect the presence of A. baumannii. Isolates were confirmed as A. baumannii using culture and PCR. Confirmed isolates were screened for antimicrobial susceptibility, antimicrobial resistance genes, and serum resistance. Results revealed that 32% of the water samples tested positive for A. baumannii. In total, 23 A. baumannii isolates were obtained. All isolates showed resistance to Cefepime. Varying degrees of resistance to other antibiotics were observed, and 56% showed resistance to the bactericidal effect of serum. This study underscored the remarkable adaptability of A. baumannii and its ability to flourish in diverse environmental conditions, highlighting public health concerns of increasing antibiotic resistant bacteria. The study concluded that, given the significance of effective infection control and sanitation and waste management measures, understanding the presence and behavior of A. baumannii in the environment is paramount. This study acts as the first report on environmental A. baumannii in Bangladesh and further research is warranted to elucidate the underlying mechanisms of antibiotic resistance and their implications for human health.
Collapse
Affiliation(s)
- Mohammed Aziz Hossain
- Biotechnology program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Nayara Noor E Fatima
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Jahid H Tushar
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Hasib Mahmud
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh
| | - Fahim Kabir Monjurul Haque
- Microbiology Program, Department of Mathematics and Natural Sciences, BRAC University, Kha-224 Pragati Sarani, Merul Badda, Dhaka, 1212, Bangladesh.
| |
Collapse
|
2
|
Bednarczuk L, Chassard A, Plantade J, Charpentier X, Laaberki MH. Phenotypic and genetic heterogeneity of Acinetobacter baumannii in the course of an animal chronic infection. Microb Genom 2025; 11:001352. [PMID: 39969275 PMCID: PMC11840173 DOI: 10.1099/mgen.0.001352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen associated with various infections, including urinary tract infections (UTIs). In the course of an infection, A. baumannii is known to rapidly become resistant to antibiotic therapy, but much less is known about possible adaptation without antibiotic pressure. Through a retrospective study, we investigated within-host genetic diversity during a subclinical 5-year UTI in an animal-patient after withdrawal of colistin treatment. We conducted whole-genome sequencing and phenotypic assays on 17 clonally related isolates from the Sequence Type 25 lineage. Phylogenomic analysis revealed their proximity with animal and human strains from the same country suggesting zoonotic transmission (France). In this case study, the clonally related strains presented variations in genome sizes and nucleotide sequences. Over the course of the infection, A. baumannii underwent genome reduction through insertion sequence (IS) recombination, phage excision or plasmid curing. Alongside this global genome reduction, we observed an expansion of IS17, initially located on the endogenous large plasmid. Genetic variations were mainly located in biofilm formation and metabolism genes. We observed repeated variations affecting three biofilm genes and two adhesion operons associated with weak biofilm-forming capacity. Conversely, only two metabolic genes were recurrently affected, and phenotypic assays indicated a rather stable metabolism profile between the isolates suggesting minor adaptations to its host. Lastly, an overall decreased antibiotic resistance - expected in the absence of antibiotic treatment - contrasted with a conserved colistin resistance due to a pmrB mutation among the isolates.
Collapse
Affiliation(s)
- Léa Bednarczuk
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Étoile, France
| | - Alexandre Chassard
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Maria-Halima Laaberki
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
- Université de Lyon, VeAgro Sup, 69280 Marcy l'Étoile, France
| |
Collapse
|
3
|
Yin T, Zhang X, Long Y, Jiang J, Zhou S, Chen Z, Hu J, Ma S. Impact of soil physicochemical factors and heavy metals on co-occurrence pattern of bacterial in rural simple garbage dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116476. [PMID: 38820822 DOI: 10.1016/j.ecoenv.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.
Collapse
Affiliation(s)
- Tongyun Yin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyu Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunchuan Long
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, PR China
| | - Zhengquan Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China.
| | - Shengming Ma
- Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China
| |
Collapse
|
4
|
Mazière C, Duran R, Dupuy C, Cravo-Laureau C. Microbial mats as model to decipher climate change effect on microbial communities through a mesocosm study. Front Microbiol 2023; 14:1039658. [PMID: 37396368 PMCID: PMC10308941 DOI: 10.3389/fmicb.2023.1039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Marine environments are expected to be one of the most affected ecosystems by climate change, notably with increasing ocean temperature and ocean acidification. In marine environments, microbial communities provide important ecosystem services ensuring biogeochemical cycles. They are threatened by the modification of environmental parameters induced by climate change that, in turn, affect their activities. Microbial mats, ensuring important ecosystem services in coastal areas, are well-organized communities of diverse microorganisms representing accurate microbial models. It is hypothesized that their microbial diversity and metabolic versatility will reveal various adaptation strategies in response to climate change. Thus, understanding how climate change affects microbial mats will provide valuable information on microbial behaviour and functioning in changed environment. Experimental ecology, based on mesocosm approaches, provides the opportunity to control physical-chemical parameters, as close as possible to those observed in the environment. The exposure of microbial mats to physical-chemical conditions mimicking the climate change predictions will help to decipher the modification of the microbial community structure and function in response to it. Here, we present how to expose microbial mats, following a mesocosm approach, to study the impact of climate change on microbial community.
Collapse
Affiliation(s)
- C. Mazière
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - R. Duran
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| | - C. Dupuy
- La Rochelle Université, CNRS, UMR 7266 LIENSs (Littoral Environnement et Sociétés)—2, rue Olympe de Gouges, Bât. ILE, La Rochelle, France
| | - C. Cravo-Laureau
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 525—Bât. IBEAS, BP1155, Pau, France
| |
Collapse
|
5
|
Jia W, Cheng L, Tan Q, Liu Y, Dou J, Yang K, Yang Q, Wang S, Li J, Niu G, Zheng L, Ding A. Response of the soil microbial community to petroleum hydrocarbon stress shows a threshold effect: research on aged realistic contaminated fields. Front Microbiol 2023; 14:1188229. [PMID: 37389339 PMCID: PMC10301742 DOI: 10.3389/fmicb.2023.1188229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction Microbes play key roles in maintaining soil ecological functions. Petroleum hydrocarbon contamination is expected to affect microbial ecological characteristics and the ecological services they provide. In this study, the multifunctionalities of contaminated and uncontaminated soils in an aged petroleum hydrocarbon-contaminated field and their correlation with soil microbial characteristics were analyzed to explore the effect of petroleum hydrocarbons on soil microbes. Methods Soil physicochemical parameters were determined to calculate soil multifunctionalities. In addition, 16S high-throughput sequencing technology and bioinformation analysis were used to explore microbial characteristics. Results The results indicated that high concentrations of petroleum hydrocarbons (565-3,613 mg•kg-1, high contamination) reduced soil multifunctionality, while low concentrations of petroleum hydrocarbons (13-408 mg•kg-1, light contamination) might increase soil multifunctionality. In addition, light petroleum hydrocarbon contamination increased the richness and evenness of microbial community (p < 0.01), enhanced the microbial interactions and widened the niche breadth of keystone genus, while high petroleum hydrocarbon contamination reduced the richness of the microbial community (p < 0.05), simplified the microbial co-occurrence network, and increased the niche overlap of keystone genus. Conclusion Our study demonstrates that light petroleum hydrocarbon contamination has a certain improvement effect on soil multifunctionalities and microbial characteristics. While high contamination shows an inhibitory effect on soil multifunctionalities and microbial characteristics, which has significance for the protection and management of petroleum hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Wenjuan Jia
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Lirong Cheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Qing Yang
- College of Water Sciences, Beijing Normal University, Beijing, China
- Beijing Geological Environment Monitoring Institute, Beijing, China
| | - Senjie Wang
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Jing Li
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Geng Niu
- Beijing Municipal No.4 Construction Engineering Co., Ltd., Beijing, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Liang C, Ye Q, Huang Y, Zhang Z, Wang C, Wang Y, Wang H. Distribution of the new functional marker gene (pahE) of aerobic polycyclic aromatic hydrocarbon (PAHs) degrading bacteria in different ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161233. [PMID: 36586685 DOI: 10.1016/j.scitotenv.2022.161233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Understanding the degradation potentials in PAHs-contaminated sites is significant for formulating effective bioremediation strategies. pahE encoding PAHs hydratase-aldolase has been proven as a better new functional marker gene of aerobic PAHs-degrading bacteria to assess the biodegradation potential of indigenous PAHs-degrading bacterial population. However, the distribution of pahE and its relationship with environmental factors remain unknown. The present study observed spatial variations in the diversity and abundance of pahE across oilfield soils, mangrove sediments, and urban roadside soils. nahE from Pseudomonas, bphE from Hyphomonas oceanitis, nagE from Comamonas testosterone, and novel pahE genes were widely present in these PAHs-polluted ecosystems. The abundance of pahE in PAHs-contaminated sites was in the range of 105-106 copies·g-1 (dry weight). Redundancy analysis and Pearson's correlation analysis implied that the distribution of pahE in the PAHs-contaminated environment was mainly shaped by environmental factors such as PAHs pollution level, nutrient level, salinity, and water content. This work was the first to explore the distribution of the new functional marker gene (pahE) and its links with environmental parameters, which provided new insights into the ecophysiology and distribution of indigenous aerobic PAHs-degrading bacteria in contaminated sites.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Nemoto Y, Ozawa K, Mori JF, Kanaly RA. Nondesulfurizing benzothiophene biotransformation to hetero and homodimeric ortho-substituted diaryl disulfides by the model PAH-degrading Sphingobium barthaii. Biodegradation 2023; 34:215-233. [PMID: 36808269 DOI: 10.1007/s10532-023-10014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/06/2023] [Indexed: 02/21/2023]
Abstract
Understanding the biotransformation mechanisms of toxic sulfur-containing polycyclic aromatic hydrocarbon (PASH) pollutants such as benzothiophene (BT) is useful for predicting their environmental fates. In the natural environment, nondesulfurizing hydrocarbon-degrading bacteria are major active contributors to PASH biodegradation at petroleum-contaminated sites; however, BT biotransformation pathways by this group of bacteria are less explored when compared to desulfurizing organisms. When a model nondesulfurizing polycyclic aromatic hydrocarbon-degrading soil bacterium, Sphingobium barthaii KK22, was investigated for its ability to cometabolically biotransform BT by quantitative and qualitative methods, BT was depleted from culture media but was biotransformed into mostly high molar mass (HMM) hetero and homodimeric ortho-substituted diaryl disulfides (diaryl disulfanes). HMM diaryl disulfides have not been reported as biotransformation products of BT. Chemical structures were proposed for the diaryl disulfides by comprehensive mass spectrometry analyses of the chromatographically separated products and were supported by the identification of transient upstream BT biotransformation products, which included benzenethiols. Thiophenic acid products were also identified, and pathways that described BT biotransformation and novel HMM diaryl disulfide formation were constructed. This work shows that nondesulfurizing hydrocarbon-degrading organisms produce HMM diaryl disulfides from low molar mass polyaromatic sulfur heterocycles, and this may be taken into consideration when predicting the environmental fates of BT pollutants.
Collapse
Affiliation(s)
- Yuki Nemoto
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Kohei Ozawa
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Jiro F Mori
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
8
|
Dynamics and prevalence of specific hydrocarbonoclastic bacterial population with respect to nutrient treatment levels in crude oil sludge. Arch Microbiol 2022; 204:708. [DOI: 10.1007/s00203-022-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
9
|
Andalib S, Mohammad Rahimi H, Niyyati M, Shalileh F, Nemati S, Rouhani S, Zali MR, Mirjalali H, Karanis P. Free-living amoebae in an oil refinery wastewater treatment facility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156301. [PMID: 35636544 DOI: 10.1016/j.scitotenv.2022.156301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Free Living Amoebae (FLA) are ubiquitous microorganisms reported from harsh environmental conditions. Oil refinery facilities consume vast volumes of water during their processes, generating a large amount of wastewater. The present study aimed to evaluate the wastewater treatment process in an oil refinery wastewater treatment facility (ORWWTF) for the presence of FLA. Water samples were collected from an oil refinery wastewater (ORWW) for nine months. After recording physical-chemical features, samples were cultivated onto non-nutrient agar (NNA). The discriminative fragments of the ribosomal RNA (rRNA) gene were amplified and sequenced to characterize the isolated FLA. Phylogenetic tree, and network analysis were employed to evaluate genetic relationships. The thermo- and osmotolerant tests were performed on the isolated FLA. Twenty-five (32.9%) samples were positive for FLA cultivation. Acanthamoeba spp., Vahlkampfiids, and Vermamoeba spp. were detected, of which Acanthamoeba species were predominant. There was no statistical correlation between pH, NH3, PO4, H2S, and TDS with the presence of FLA. A statistical correlation between the presence of FLA and the type of wastewater treatment plants (WWTPs) was significant (P-value = 0.011). All Acanthamoeba spp. isolates belonged to the genotypes T4 (17/21; 80.95%) and T11 (4/21; 19.05%). Vahlkampfiids were Naegleria spp., (7/10; 70%), Tetramitus aberdonicus (1/10; 10%), Learamoeba spp., (1/10; 10%), and Vahlkampfia spp., (1/10; 10%). All three Vermamoeba spp. were V. vermiformis. The ORWW contains toxic materials, and a few microorganisms can stay active in these environments. This is the first study which isolates FLA from such super harsh conditions. For the first time, T. aberdonicus, and Learamoeba spp., were isolated from oily wastewater. Our findings signify the concern due to the distribution of potentially pathogenic FLA to downstream lands via treated wastewater that may be released after treatment processing.
Collapse
Affiliation(s)
- Saeid Andalib
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farzaneh Shalileh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Rouhani
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Panagiotis Karanis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Nicosia University Medical School, Department of Basic and Clinical Sciences, Nicosia 2408, Cyprus
| |
Collapse
|
10
|
Liu Y, Li W, Qiao Y, Yu F, Wang B, Xue J, Wang M, Jiang Q, Zhou Z. Study on the Changes in Immobilized Petroleum-Degrading Bacteria Beads in a Continuous Bioreactor Related to Physicochemical Performance, Degradation Ability, and Microbial Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11348. [PMID: 36141622 PMCID: PMC9517540 DOI: 10.3390/ijerph191811348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Continuous bioreactors for petroleum degradation and the effect factors of these bioreactors have rarely been mentioned in studies. In addition, indigenous bacteria living in seawater could influence the performance of continuous bioreactors with respect to petroleum degradation in practice. In this paper, a bioreactor fitted with immobilized petroleum-degrading bacteria beads was designed for further research. The results indicated that the diesel degradation rate of the bioreactor could remain above 50% over 27 days, while degradation performance decreased with bioremediation time. Intriguingly, the diameters of immobilized petroleum-degrading bacteria beads were reduced by 32.49% after 45 days remediation compared with the initial size of the immobilized petroleum-degrading bacteria beads. Change in immobilized petroleum-degrading bacteria beads was considered to correlate remarkably with reduced degradation efficiency. Therefore, this paper will be helpful for further study and improvement of bioreactors in the practical context of oil-spill accident recovery.
Collapse
Affiliation(s)
- Yixuan Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Weisi Li
- Shandong Provincial Eco-Environmental Monitoring Center, Jinan 250102, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fangying Yu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Bowen Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Mianmian Wang
- College of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | | |
Collapse
|
11
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
12
|
Xue J, Shi K, Chen C, Bai Y, Cui Q, Li N, Fu X, Qiao Y. Evaluation of response of dynamics change in bioaugmentation process in diesel-polluted seawater via high-throughput sequencing: Degradation characteristic, community structure, functional genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123569. [PMID: 32798793 DOI: 10.1016/j.jhazmat.2020.123569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Identification of microorganisms that contribute to the whole microbial community is important. In this study, dynamic changes in bioaugmentation process in diesel-polluted seawater collected from two different sites were assessed via simulation experiments. Ultraviolet spectrophotometry and analysis using the molecular operating environment software revealed that the degradation rate of diesel due to bioaugmentation was higher than 70 % after 45 days because of the formation of hydrogen bonds among biosurfactants and diesel components. Community structure and functional genes were analysed via high-throughput sequencing. Results showed that community diversity recovered during bioaugmentation. Principal coordinate analysis showed that the difference in microbial community between the two sites was considerably smaller than that when diesel was added and bioaugmentation was conducted. After bioaugmentation, the main families playing key roles in degradation that became dominant were Alcanivoracaceae, Rhodobiaceae, and Rhodospirillaceae. Moreover, the abundance of functional genes remarkably increased at two different sites.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Chuan Chen
- School of Environment, Harbin Institute of Technology, Haerbin, Heilongjiang, 150001, China
| | - Yu Bai
- Chinaunicom System Integration Co., Ltd, No.131, Xidan North Road, Beijing, 100085, China
| | - Qinqin Cui
- School of Architecture and Engineering, Qingdao Binhai University, Qingdao, Shandong, 266555, China
| | - Nana Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Xinge Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| |
Collapse
|
13
|
Kotoky R, Pandey P. Difference in the rhizosphere microbiome of Melia azedarach during removal of benzo(a)pyrene from cadmium co-contaminated soil. CHEMOSPHERE 2020; 258:127175. [PMID: 32535435 DOI: 10.1016/j.chemosphere.2020.127175] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly persistent biohazard polyaromatic hydrocarbon and often reported to be present in soils co-contaminated with heavy metals. The present study explains the rhizodegradation of BaP using bacterial consortium in the rhizosphere of Melia azedarach, along with a change in taxonomical and functional properties of the rhizosphere microbiome. The relative abundance of most dominant phylum Proteobacteria was 2% higher with BaP, while in the presence of both BaP and Cd, its abundance was 2.2% lower. Functional metagenome analysis also revealed the shifting of microbial community and functional gene abundance in the favor of xenobiotic compound degradation upon augmentation of bacterial consortium. Interestingly, upon the addition of BaP the range of functional abundance for genes of PAH degradation (0.165-0.19%), was found to be decreasing. However, augmentation of a bacterial consortium led to an increase in its abundance including genes for degradation of benzoate (0.55-0.64%), toluene (0.2-0.22%), naphthalene (0.25-0.295%) irrespective of the addition of BaP and Cd. Moreover, under greenhouse condition, the application of M. azedarach-bacterial consortium enhanced the degradation of BaP in the rhizosphere (88%) after 60 days, significantly higher than degradation in bulk soil (68.22%). The analysis also showed an increase in degradation of BaP by 15% with plant-native microbe association than in bulk soil. Therefore, the association of M. azedarach-bacterial consortium enhanced the degradation of BaP in soil along with the taxonomical and functional attributes of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
14
|
Lukhele T, Nyoni H, Mamba BB, Msagati TAM. Unraveling bacterial diversity in oil refinery effluents. Arch Microbiol 2020; 203:1231-1240. [PMID: 33079208 DOI: 10.1007/s00203-020-02062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Oil refinery effluents are among stressful environments, and they are characterized by alkaline pH, high concentrations of dissolved solids, electrical conductivity, and metals (mainly Fe, Al, B, Sr, Mn, Cu, Ni). In this study, bacterial diversity in these habitats was inferred from full-length 16S rRNA gene sequences obtained from the PacBio® sequencing platform. The results have shown low bacterial diversity in both raw and treated effluents, with sequences representing only two phyla: Firmicutes and Proteobacteria. Sequences from the raw effluents represent four major genera: Bacillus, Wenzhouxiangella, Rhodabaculum, and Halomonas. Whilst bacterial communities from the treated effluents are relatively more diverse as sequences represent five dominant genera: Pseudoxanthomonas, Brevundimonas, Pseudomonas, Rhodobaculum and Rhizobium. Most of the genera represented in the dataset are halophilic or halotolerant microbes known to have the competency to catabolize a broad spectrum of organic and inorganic pollutants. Hypothetically, these bacteria may be relevant for biotechnological and industrial applications, particularly for the remediation of saline industrial wastes.
Collapse
Affiliation(s)
- Thabile Lukhele
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Hlengilizwe Nyoni
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
| | - Bhekie Brilliance Mamba
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa.,State Key Laboratory of Separation and Membranes, Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tianjin, 300387, People's Republic of China
| | - Titus Alfred Makudali Msagati
- Institute of Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa. .,School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Tengeru, P O Box 447, Arusha, United Republic of Tanzania.
| |
Collapse
|
15
|
Zhang L, Xu M, Li X, Lu W, Li J. Sediment Bacterial Community Structure Under the Influence of Different Domestic Sewage Types. J Microbiol Biotechnol 2020; 30:1355-1366. [PMID: 32627763 PMCID: PMC9728189 DOI: 10.4014/jmb.2004.04023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Sediment bacterial communities are critical to the biogeochemical cycle in river ecosystems, but our understanding of the relationship between sediment bacterial communities and their specific input streams in rivers remains insufficient. In this study, we analyzed the sediment bacterial community structure in a local river receiving discharge of urban domestic sewage by applying Illumina MiSeq high-throughput sequencing. The results showed that the bacterial communities of sediments samples of different pollution types had similar dominant phyla, mainly Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes, but their relative abundances were different. Moreover, there were great differences at the genus level. For example, the genus Bacillus showed statistically significant differences in the hotel site. The clustering of bacterial communities at various sites and the dominant families (i.e., Nocardioidaceae, and Sphingomonadaceae) observed in the residential quarter differed from other sites. This result suggested that environmentally induced species sorting greatly influenced the sediment bacterial community composition. The bacterial cooccurrence patterns showed that the river bacteria had a nonrandom modular structure. Microbial taxonomy from the same module had strong ecological links (such as the nitrogenium cycle and degradation of organic pollutants). Additionally, PICRUSt metabolic inference analysis showed the most important function of river bacterial communities under the influence of different types of domestic sewage was metabolism (e.g., genes related to xenobiotic degradation predominated in residential quarter samples). In general, our results emphasize that the adaptive changes and interactions in the bacterial community structure of river sediment represent responses to different exogenous pollution sources.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China,Corresponding author Phone: +86-550-3511822 Fax: +550-3511822 E-mail:
| | - Mengli Xu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China
| | - Xingchen Li
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, P.R. China
| | - Wenxuan Lu
- Fisheries Research Institute, Anhui Academy of Sciences, Hefei 230001, P.R. China
| | - Jing Li
- Fisheries Research Institute, Anhui Academy of Sciences, Hefei 230001, P.R. China
| |
Collapse
|
16
|
Aubé J, Senin P, Bonin P, Pringault O, Jeziorski C, Bouchez O, Klopp C, Guyoneaud R, Goñi-Urriza M. Meta-omics Provides Insights into the Impact of Hydrocarbon Contamination on Microbial Mat Functioning. MICROBIAL ECOLOGY 2020; 80:286-295. [PMID: 32076743 DOI: 10.1007/s00248-020-01493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic microbial mats are stable, self-supported communities. Due to their coastal localization, these mats are frequently exposed to hydrocarbon contamination and are able to grow on it. To decipher how this contamination disturbs the functioning of microbial mats, we compared two mats: a contaminated mat exposed to chronic petroleum contamination and a reference mat. The taxonomic and metabolic structures of the mats in spring and fall were determined using metagenomic and metatranscriptomic approaches. Extremely high contamination disturbed the seasonal variations of the mat. ABC transporters, two-component systems, and type IV secretion system-related genes were overabundant in the contaminated mats. Xenobiotic degradation metabolism was minor in the metagenomes of both mats, and only the expression of genes involved in polycyclic aromatic hydrocarbon degradation was higher in the contaminated mat. Interestingly, the expression rates of genes involved in hydrocarbon activation decreased during the 1-year study period, concomitant with the decrease in easily degradable hydrocarbons, suggesting a transient effect of hydrocarbon contamination. Alteromonadales and Oceanospirillales hydrocarbonoclastic bacteria appeared to be key in hydrocarbon remediation in the contaminated mat. Overall, the contaminated microbial mat was able to cope with hydrocarbon contamination and displayed an adaptive functioning that modified seasonal behaviour.
Collapse
Affiliation(s)
- Johanne Aubé
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR6197, IFREMER, CNRS, Université de Bretagne Occidentale, Plouzané, France
| | - Pavel Senin
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France
| | - Patricia Bonin
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS/INSU/IRD, UM 110, Marseille, France
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS, Université de Montpellier, Place Eugène Bataillon, Montpellier, France
| | | | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, France
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, Castanet-Tolosan, France
| | - Rémy Guyoneaud
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Marisol Goñi-Urriza
- Environmental Microbiology, Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
17
|
Handayani S, Safitri R, Surono W, Astika H, Damayanti R, Agung M, Rukiah. Biodegradation of BTEX by indigenous microorganisms isolated from UCG project area, South Sumatra. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/308/1/012017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Coban O, Williams M, Bebout BM. Mechanisms of nitrogen attenuation from seawater by two microbial mats. WATER RESEARCH 2018; 147:373-381. [PMID: 30326399 DOI: 10.1016/j.watres.2018.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/21/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Microbial mats, due to their high microbial diversity, have the potential to express most biogeochemical cycling processes, highlighting their prospective use in bioremediation of various environmental contaminants. In this study the mechanisms of nitrogen attenuation were investigated in naturally occurring microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico. Key processes responsible for this removal were evaluated using quantification of functional genes related to nitrification, denitrification, and nitrogen fixation. Both microbial mats were capable of removing high (up to 2 mM) concentrations of ammonium and nitrate. Ammonium assimilation rates measured for Elkhorn Slough mats showed that this process was responsible for most of the ammonium uptake in these mats. While Elkhorn Slough mats did not show any evidence of nitrogen removal pathways other than microbial assimilation, Baja mats exhibited the potential for nitrification, denitrification, and DNRA as well as assimilation. The results of this study demonstrate the potential of microbial mats for bioremediation of nitrogenous pollutants independent of the mechanisms responsible for their removal.
Collapse
Affiliation(s)
- Oksana Coban
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| | - MiKalley Williams
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Brad M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| |
Collapse
|
20
|
Storey S, Ashaari MM, Clipson N, Doyle E, de Menezes AB. Opportunistic Bacteria Dominate the Soil Microbiome Response to Phenanthrene in a Microcosm-Based Study. Front Microbiol 2018; 9:2815. [PMID: 30519226 PMCID: PMC6258822 DOI: 10.3389/fmicb.2018.02815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
Bioremediation offers a sustainable approach for removal of polycyclic aromatic hydrocarbons (PAHs) from the environment; however, information regarding the microbial communities involved remains limited. In this study, microbial community dynamics and the abundance of the key gene (PAH-RHDα) encoding a ring hydroxylating dioxygenase involved in PAH degradation were examined during degradation of phenanthrene in a podzolic soil from the site of a former timber treatment facility. The 10,000-fold greater abundance of this gene associated with Gram-positive bacteria found in phenanthrene-amended soil compared to unamended soil indicated the likely role of Gram-positive bacteria in PAH degradation. In contrast, the abundance of the Gram-negative PAHs-RHDα gene was very low throughout the experiment. While phenanthrene induced increases in the abundance of a small number of OTUs from the Actinomycetales and Sphingomonadale, most of the remainder of the community remained stable. A single unclassified OTU from the Micrococcaceae family increased ~20-fold in relative abundance, reaching 32% of the total sequences in amended microcosms on day 7 of the experiment. The relative abundance of this same OTU increased 4.5-fold in unamended soils, and a similar pattern was observed for the second most abundant PAH-responsive OTU, classified into the Sphingomonas genus. Furthermore, the relative abundance of both of these OTUs decreased substantially between days 7 and 17 in the phenanthrene-amended and control microcosms. This suggests that their opportunistic phenotype, in addition to likely PAH-degrading ability, was determinant in the vigorous growth of dominant PAH-responsive OTUs following phenanthrene amendment. This study provides new information on the temporal response of soil microbial communities to the presence and degradation of a significant environmental pollutant, and as such has the potential to inform the design of PAH bioremediation protocols.
Collapse
Affiliation(s)
- Sean Storey
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Mardiana Mohd Ashaari
- Department of Biotechnology, Kulliyah of Science, International Islamic University Malaysia, Malaysia, Malaysia
| | - Nicholas Clipson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Evelyn Doyle
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.,Earth Institute, University College Dublin, Dublin, Ireland
| | - Alexandre B de Menezes
- Microbiology, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
21
|
Variation of bacterial biodiversity from saline soils and estuary sediments present near the Mediterranean Sea coast of Camargue (France). Antonie van Leeuwenhoek 2018; 112:351-365. [PMID: 30232678 DOI: 10.1007/s10482-018-1164-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Salinity is an important environmental factor influencing microbial community composition. To better understand this influence, we determined the bacterial communities present in 17 different sites of brackish sediment (underwater) and soil (surface) samples from the Camargue region (Rhône river delta) in southern France during the fall of 2013 and 2014 using pyrosequencing of the V3-V4 regions of the 16S rRNA genes amplified by PCR. This region is known for abundant flora and fauna and, though saline, 30% of rice consumed in France is grown here. We found that bacterial abundance in 1 g of soil or sediment, calculated by qPCR, was higher in sediments than in surface soil samples. Members belonging to the Proteobacteria, Bacteroidetes, Chloroflexi and Firmicutes phyla dominated the bacterial communities of sediment samples, while members belonging to the Proteobacteria, Bacteroidetes, Gemmatimonadetes, Actinobacteria, Firmicutes and Acidobacteria phyla dominated the bacterial communities of the soil samples. The most abundant bacterial genera present in the saline sediments and soils from the Camargue belonged mostly to halophilic and sulphate reducing bacteria, suggesting that the Camargue may be a valuable system to investigate saline, yet agriculturally productive, sediment and soil microbial ecosystem.
Collapse
|
22
|
Xie C, Sun K, Zhang K, Sun Y, Lu Z. Cyanobacterial blooms in oil-contaminated subtidal sediments revealed by integrated approaches. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:444-452. [PMID: 30022608 DOI: 10.1111/1758-2229.12660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are important primary producers on the surface of oceans and are susceptible to oil spills. However, their tolerance to oil and their roles in the bioremediation of crude oil remain elusive. We analysed the response of microbial communities to a simulated oil spill in estuarine sediment microcosms under a series of oil concentrations (0, 25, 125, and 250 g kg-1 dry wt.). Cyanobacterial blooms only occurred on the sediment surface in the low oil (LO, 25 g kg-1 dry wt.) group, and cyanobacteria grew from very small amounts to enriched levels according to an internal mechanism. The dominant phylotypes enriched in the oil-contaminated sediments on day 35 were Leptolyngbya, Oscillatoria, Arthrospira (Spirulina), Geitlerinema and Cyanothece, and the majority were capable of fixing nitrogen. Gammaproteobacterial blooms occurred during the early stage, and Oceanospirillales dominated the sediment surface. The annotation of unassembled metatranscriptomic data revealed an increase in nitrogen metabolism, particularly photosynthesis (antenna proteins) during the later stage, together with depletion of fatty acid metabolism. In summary, high concentrations of crude oil are toxic to cyanobacteria but can facilitate the emergence of cyanobacterial aggregation at low concentrations (crude oil concentration < 25 g kg-1 dry wt.).
Collapse
Affiliation(s)
- Cuixiao Xie
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaikai Sun
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Zhang
- Department of Earth Science, Zhejiang University, Hangzhou, 310027, China
| | - Yongge Sun
- Department of Earth Science, Zhejiang University, Hangzhou, 310027, China
| | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
23
|
Development of a microbial test suite and data integration method for assessing microbial health of contaminated soil. J Microbiol Methods 2017; 143:66-77. [DOI: 10.1016/j.mimet.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022]
|
24
|
Lee J, Han I, Kang BR, Kim SH, Sul WJ, Lee TK. Degradation of crude oil in a contaminated tidal flat area and the resilience of bacterial community. MARINE POLLUTION BULLETIN 2017; 114:296-301. [PMID: 27671845 DOI: 10.1016/j.marpolbul.2016.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Crude oil spills, Hebei Spirit in South Korea, is considered as one of the worst environmental disasters of the region. Our understanding on activation of oil-degrading bacteria and resilience of microbial community in oil contaminated sites are limited due to scarcity of such event. In the present study, tidal flat sediment contaminated by the oil spill were investigated for duration of 13months to identify temporal change in microbial community and functional genes responsible for PAH-degradation. The results showed predominance of previously known oil-degrading genera, such as Cycloclasticus, Alcanivorax, and Thalassolituus, displaying significant increase within first four months of the accident. The disturbance caused by the oil spill altered the microbial community and its functional structures, but they were almost restored to the original state after 13months. Present study demonstrated high detoxification capacity of indigenous bacterial populations in the tidal flat sediments and its resilience of microbial community.
Collapse
Affiliation(s)
- Jaejin Lee
- Unit of Antarctic K-route Expedition, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Il Han
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Bo Ram Kang
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Seong Heon Kim
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Woo Jun Sul
- Department of System Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
25
|
Zafra G, Taylor TD, Absalón AE, Cortés-Espinosa DV. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:702-710. [PMID: 27484946 DOI: 10.1016/j.jhazmat.2016.07.060] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/29/2016] [Accepted: 07/25/2016] [Indexed: 05/02/2023]
Abstract
In this study, we used a taxonomic and functional metagenomic approach to analyze some of the effects (e.g. displacement, permanence, disappearance) produced between native microbiota and a previously constructed Polycyclic Aromatic Hydrocarbon (PAH)-degrading microbial consortium during the bioremediation process of a soil polluted with PAHs. Bioaugmentation with a fungal-bacterial consortium and biostimulation of native microbiota using corn stover as texturizer produced appreciable changes in the microbial diversity of polluted soils, shifting native microbial communities in favor of degrading specific populations. Functional metagenomics showed changes in gene abundance suggesting a bias towards aromatic hydrocarbon and intermediary degradation pathways, which greatly favored PAH mineralization. In contrast, pathways favoring the formation of toxic intermediates such as cytochrome P450-mediated reactions were found to be significantly reduced in bioaugmented soils. PAH biodegradation in soil using the microbial consortium was faster and reached higher degradation values (84% after 30 d) as a result of an increased co-metabolic degradation when compared with other mixed microbial consortia. The main differences between inoculated and non-inoculated soils were observed in aromatic ring-hydroxylating dioxygenases, laccase, protocatechuate, salicylate and benzoate-degrading enzyme genes. Based on our results, we propose that several concurrent metabolic pathways are taking place in soils during PAH degradation.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico
| | - Todd D Taylor
- RIKEN Center for Integrative Medical Sciences, Laboratory for Integrated Bioinformatics, Tsurumi-ku 230-0045, Yokohama, Kanagawa, Japan
| | - Angel E Absalón
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico.
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, CIBA-Tlaxcala, Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala. 90700, Mexico.
| |
Collapse
|
26
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
27
|
Aubé J, Senin P, Pringault O, Bonin P, Deflandre B, Bouchez O, Bru N, Biritxinaga-Etchart E, Klopp C, Guyoneaud R, Goñi-Urriza M. The impact of long-term hydrocarbon exposure on the structure, activity, and biogeochemical functioning of microbial mats. MARINE POLLUTION BULLETIN 2016; 111:115-125. [PMID: 27449831 DOI: 10.1016/j.marpolbul.2016.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/11/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Photosynthetic microbial mats are metabolically structured systems driven by solar light. They are ubiquitous and can grow in hydrocarbon-polluted sites. Our aim is to determine the impact of chronic hydrocarbon contamination on the structure, activity, and functioning of a microbial mat. We compared it to an uncontaminated mat harboring similar geochemical characteristics. The mats were sampled in spring and fall for 2years. Seasonal variations were observed for the reference mat: sulfur cycle-related bacteria dominated spring samples, while Cyanobacteria dominated in autumn. The contaminated mat showed minor seasonal variation; a progressive increase of Cyanobacteria was noticed, indicating a perturbation of the classical seasonal behavior. Hydrocarbon content was the main factor explaining the differences in the microbial community structure; however, hydrocarbonoclastic bacteria were among rare or transient Operational Taxonomic Units (OTUs) in the contaminated mat. We suggest that in long-term contaminated systems, hydrocarbonoclastic bacteria cannot be considered a sentinel of contamination.
Collapse
Affiliation(s)
- Johanne Aubé
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Pavel Senin
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France; Plateforme Bioinformatique Genotoul, UR875, Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France.
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS, Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | - Patricia Bonin
- MIO, Institut Méditerranéen d'Océanologie, UMR 7294, F13288 Marseille, France.
| | - Bruno Deflandre
- EPOC, UMR 5805, Université de Bordeaux, F33615 Pessac, France.
| | - Olivier Bouchez
- GeT-PlaGe, Genotoul, INRA Auzeville, F31326 Castanet-Tolosan, France.
| | - Noëlle Bru
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications de Pau, UMR CNRS 5142, FED 4155 MIRA, Campus Montaury, 64600 Anglet, France.
| | - Edurne Biritxinaga-Etchart
- Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et de leurs Applications de Pau, UMR CNRS 5142, FED 4155 MIRA, Campus Montaury, 64600 Anglet, France.
| | - Christophe Klopp
- Plateforme Bioinformatique Genotoul, UR875, Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France.
| | - Rémy Guyoneaud
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie, IPREM UMR CNRS 5254, Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013 Pau Cedex, France.
| |
Collapse
|
28
|
Ribeiro H, Mucha AP, Azevedo I, Salgado P, Teixeira C, Almeida CMR, Joye SB, Magalhães C. Differential effects of crude oil on denitrification and anammox, and the impact on N2O production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:391-399. [PMID: 27395442 DOI: 10.1016/j.envpol.2016.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
Denitrification and anammox are key processes for reducing the external nitrogen loads delivered to coastal ecosystems, and these processes can be affected by pollutants. In this study, we investigated the effect of crude oil on denitrification and anammox. Controlled laboratory experiments were performed using sediment slurries from the Lima Estuary (NW Portugal). Anammox and denitrification rates were measured using (15)N-labeled NO3(-), and the production of (29)N2 and (30)N2 quantified by membrane inlet mass spectrometry. Results revealed that while denitrification rates were stimulated between 10 and 25 000 times after crude oil amendment, anammox activity was partially (between 2 and 5 times) or completely inhibited by the addition of crude oil when comparing to rates in unamended controls. Similar results were observed across four estuarine sediment types, despite their different physical-chemical characteristics. Moreover, N2O production was reduced by 2-36 times following crude oil addition. Further work is required to fully understand the mechanism(s) of the observed reduction in N2O production. This study represents one of the first contributions to the understanding of the impact of crude oil pollution on denitrification and anammox, with profound implications for the management of aquatic ecosystems regarding eutrophication (N-removal).
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Ana P Mucha
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Isabel Azevedo
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Paula Salgado
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - Catarina Teixeira
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar (ICBAS-UP), Universidade do Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Catarina Magalhães
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| |
Collapse
|
29
|
Subrahmanyam G, Shen JP, Liu YR, Archana G, Zhang LM. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:112. [PMID: 26803661 DOI: 10.1007/s10661-016-5099-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
- Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat, 785700, Assam, India
| | - Ju-Pei Shen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Yu-Rong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Gattupalli Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Li-Mei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| |
Collapse
|
30
|
Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Reservoirs of Non-baumannii Acinetobacter Species. Front Microbiol 2016; 7:49. [PMID: 26870013 PMCID: PMC4740782 DOI: 10.3389/fmicb.2016.00049] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years.
Collapse
Affiliation(s)
- Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Ecole Doctorale des Sciences et de Technologie, Université LibanaiseTripoli, Liban
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
| | - Marie-Laure Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Ecole Doctorale des Sciences et de Technologie, Université LibanaiseTripoli, Liban
- Faculté de Santé Publique, Université LibanaiseTripoli, Lebanon
| | - Marie Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| |
Collapse
|
31
|
Duran R, Cuny P, Bonin P, Cravo-Laureau C. Microbial ecology of hydrocarbon-polluted coastal sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15195-15199. [PMID: 26381785 DOI: 10.1007/s11356-015-5373-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
| | - Philippe Cuny
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography UM 110, 13288, Marseille, France
| | - Patricia Bonin
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography UM 110, 13288, Marseille, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
32
|
Duran R, Bonin P, Jezequel R, Dubosc K, Gassie C, Terrisse F, Abella J, Cagnon C, Militon C, Michotey V, Gilbert F, Cuny P, Cravo-Laureau C. Effect of physical sediments reworking on hydrocarbon degradation and bacterial community structure in marine coastal sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15248-15259. [PMID: 25847440 DOI: 10.1007/s11356-015-4373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
- Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP 1155, 64013, Pau Cedex, France.
| | - Patricia Bonin
- Aix Marseille Université, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Ronan Jezequel
- Centre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des Eaux, 715 rue Alain Colas, CS 41836, Brest, France
| | - Karine Dubosc
- Centre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des Eaux, 715 rue Alain Colas, CS 41836, Brest, France
| | - Claire Gassie
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Fanny Terrisse
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Justine Abella
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Cecile Militon
- Aix Marseille Université, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Valérie Michotey
- Aix Marseille Université, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Franck Gilbert
- Université de Toulouse; INP, UPS; EcoLab (Laboratoire écologie fonctionnelle et environnement), 118 Route de Narbonne, 31062, Toulouse, France
- CNRS; EcoLab, 31062, Toulouse, France
| | - Philippe Cuny
- Aix Marseille Université, CNRS, IRD, MIO UM 110, 13288, Marseille, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY Group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
33
|
Militon C, Jézéquel R, Gilbert F, Corsellis Y, Sylvi L, Cravo-Laureau C, Duran R, Cuny P. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15260-15272. [PMID: 25997808 DOI: 10.1007/s11356-015-4510-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
To study the impact of oxygen regimes on the removal of polycylic aromatic hydrocarbons (PAHs) in oil-spill-affected coastal marine sediments, we used a thin-layer incubation method to ensure that the incubated sediment was fully oxic, anoxic, or was influenced by oxic-anoxic switches without sediment stirring. Hydrocarbon content and microbial assemblages were followed during 60 days to determine PAH degradation kinetics and microbial community dynamics according to the oxygenation regimes. The highest PAH removal, with 69 % reduction, was obtained at the end of the experiment under oxic conditions, whereas weaker removals were obtained under oscillating and anoxic conditions (18 and 12 %, respectively). Bacterial community structure during the experiment was determined using a dual 16S rRNA genes/16S rRNA transcripts approach, allowing the characterization of metabolically active bacteria responsible for the functioning of the bacterial community in the contaminated sediment. The shift of the metabolically active bacterial communities showed that the selection of first responders belonged to Pseudomonas spp. and Labrenzia sp. and included an unidentified Deltaproteobacteria-irrespective of the oxygen regime-followed by the selection of late responders adapted to the oxygen regime. A novel unaffiliated phylotype (B38) was highly active during the last stage of the experiment, at which time, the low-molecular-weight (LMW) PAH biodegradation rates were significant for permanent oxic- and oxygen-oscillating conditions, suggesting that this novel phylotype plays an active role during the restoration phase of the studied ecosystem.
Collapse
Affiliation(s)
- Cécile Militon
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France.
- Campus de Luminy, case 901, 163 avenue de Luminy, 13288, Marseille Cedex 09, France.
| | - Ronan Jézéquel
- Centre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des Eaux, 715 rue Alain Colas, CS 41836, 29218, Brest, France
| | - Franck Gilbert
- Université de Toulouse; INP, UPS; EcoLab (Laboratoire écologie fonctionnelle et environnement), 118 Route de Narbonne, 31062, Toulouse, France
- CNRS; EcoLab, 31062, Toulouse, France
| | - Yannick Corsellis
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Léa Sylvi
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Philippe Cuny
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France
| |
Collapse
|
34
|
Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15215-29. [PMID: 25712885 DOI: 10.1007/s11356-015-4240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 05/27/2023]
Abstract
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
- Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1155, 64013, Pau Cedex, France.
| | - Ana Bielen
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Tina Paradžik
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Claire Gassie
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Emina Pustijanac
- Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Bojan Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Dušica Vujaklija
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
35
|
Sanni GO, Coulon F, McGenity TJ. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15230-15247. [PMID: 25869427 DOI: 10.1007/s11356-015-4313-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.
Collapse
Affiliation(s)
- Gbemisola O Sanni
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Frédéric Coulon
- School of Energy, Environment and Agrifood, Cranfield University, Building 40, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
36
|
Bonin P, Vieira C, Grimaud R, Militon C, Cuny P, Lima O, Guasco S, Brussaard CPD, Michotey V. Substrates specialization in lipid compounds and hydrocarbons of Marinobacter genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15347-15359. [PMID: 25561256 DOI: 10.1007/s11356-014-4009-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of alkane 1-monooxygenase, haloalkane dehalogenase, and flavin-binding monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.
Collapse
Affiliation(s)
- Patricia Bonin
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
| | - Christophe Vieira
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
- Sorbonne Universités, UPMC Univ Paris 06, IFD, 4 Place Jussieu, 75252, Paris cedex 05, France
| | - Régis Grimaud
- Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Equipe Environnement et Microbiologie, UMR 5254, CNRS, IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Cécile Militon
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
| | - Philippe Cuny
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
| | - Oscar Lima
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
- Ecosystèmes, Biodiversité, Evolution (ECOBIO), CNRS : UMR6553 - Université de Rennes 1 - INEE - Observatoire des Sciences de l'Univers de Rennes, Rennes, France
| | - Sophie Guasco
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France
| | - Corina P D Brussaard
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790, Den Burg, AB, Netherlands
| | - Valérie Michotey
- Aix Marseille Université, UM110, MIO CNRS IRD, campus de Luminy, case 901, 13288, Marseille, France.
| |
Collapse
|
37
|
Pringault O, Aube J, Bouchez O, Klopp C, Mariette J, Escudie F, Senin P, Goni-Urriza M. Contrasted effects of natural complex mixtures of PAHs and metals on oxygen cycle in a microbial mat. CHEMOSPHERE 2015; 135:189-201. [PMID: 25957138 DOI: 10.1016/j.chemosphere.2015.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/18/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
The contamination of polluted environments is often due to a complex mixture of pollutants sometimes at trace levels which nevertheless may have significant effects on the diversity and functioning of organisms. The aim of this study was to assess the functional responses of a microbial mat exposed to a natural complex mixture of PAHs and metals as a function of the maturation stage of the biofilm. Microbial mats sampled in a slightly polluted environment were exposed to contaminated water of a retention basin of an oil refinery. The responses of the microbial mats differed according to season. In spring 2012, strong inhibition of both oxygen production and respiration was observed relative to the control, with rates representing less than 5% of the control after 72 h of incubation. A decrease of microbial activities was followed by a decrease of the coupling between autotrophs and heterotrophs. In contrast, in autumn 2012, no significant changes for oxygen production and respiration were observed and the coupling between autotrophs and heterotrophs was not altered. The differences observed between the spring and autumn mats might be explained by the maturity of the microbial mat with dominance of heterotrophic bacteria in spring, and diatoms and cyanobacteria in autumn, as well as by the differences in the chemical composition of the complex mixture of PAHs and metals.
Collapse
Affiliation(s)
- Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, case 093, 34095 Montpellier cedex 5, France
| | - Johanne Aube
- Equipe Environnement et Microbiologie, UMR IPREM 5254, IBEAS BP 1155, Université de Pau et des Pays de l'Adour, 64013 Pau cedex, France
| | - Olivier Bouchez
- Plateforme Génomique Campus INRA, 24 chemin de borde rouge, 31326 Castanet-Tolosan Cedex, France
| | - Christophe Klopp
- Plateforme Génomique Campus INRA, 24 chemin de borde rouge, 31326 Castanet-Tolosan Cedex, France
| | - Jérome Mariette
- Plateforme Génomique Campus INRA, 24 chemin de borde rouge, 31326 Castanet-Tolosan Cedex, France
| | - Frédéric Escudie
- Plateforme Génomique Campus INRA, 24 chemin de borde rouge, 31326 Castanet-Tolosan Cedex, France
| | - Pavel Senin
- Plateforme Génomique Campus INRA, 24 chemin de borde rouge, 31326 Castanet-Tolosan Cedex, France
| | - Marisol Goni-Urriza
- Equipe Environnement et Microbiologie, UMR IPREM 5254, IBEAS BP 1155, Université de Pau et des Pays de l'Adour, 64013 Pau cedex, France
| |
Collapse
|
38
|
Sauret C, Böttjer D, Talarmin A, Guigue C, Conan P, Pujo-Pay M, Ghiglione JF. Top-Down Control of Diesel-Degrading Prokaryotic Communities. MICROBIAL ECOLOGY 2015; 70:445-458. [PMID: 25805213 DOI: 10.1007/s00248-015-0596-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm experiment using pre-filtered (<50 μm) surface seawater from the Bay of Banyuls-sur-Mer (North-Western Mediterranean Sea) and examined the top-down effect exerted by heterotrophic nanoflagellates (HNF) and virus-like particles (VLP) on prokaryotic abundance, activity and diversity in the presence or absence of diesel fuel. Prokaryotes, HNF and VLP abundances showed a predator-prey succession, with a co-development of HNF and VLP. In the polluted system, we observed a stronger impact of viral lysis on prokaryotic abundances than in the control. Analysis of the diversity revealed that a bloom of Vibrio sp. occurred in the polluted mesocosm. That bloom was rapidly followed by a less abundant and more even community of predation-resistant bacteria, including known hydrocarbon degraders such as Oleispira spp. and Methylophaga spp. and opportunistic bacteria such as Percisivirga spp., Roseobacter spp. and Phaeobacter spp. The shift in prokaryotic dominance in response to viral lysis provided clear evidence of the 'killing the winner' model. Nevertheless, despite clear effects on prokaryotic abundance, activity and diversity, the diesel degradation was not impacted by top-down control. The present study investigates for the first time the functioning of a complex microbial network (including VLP) using a nutrient-based biostimulation strategy and highlights some key processes useful for tailoring bioremediation.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, 66650, Banyuls-sur-mer, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Diversity of Acinetobacter baumannii strains isolated in humans, companion animals, and the environment in Reunion Island: an exploratory study. Int J Infect Dis 2015; 37:64-9. [DOI: 10.1016/j.ijid.2015.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/21/2022] Open
|
40
|
Koo H, Mojib N, Huang JP, Donahoe RJ, Bej AK. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252). 3 Biotech 2015; 5:379-392. [PMID: 28324540 PMCID: PMC4522729 DOI: 10.1007/s13205-014-0233-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
| | - Nazia Mojib
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jonathan P Huang
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
| | - Rona J Donahoe
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487-0338, USA
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA.
| |
Collapse
|
41
|
Bacterial communities during the process of high-temperature Daqu production of roasted sesame-like flavour liquor. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Bioremediation of Coastal and Marine Pollution due to Crude Oil Using a Microorganism Bacillus subtilis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.08.284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
El-Sheshtawy HS, Khalil NM, Ahmed W, Abdallah RI. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles. MARINE POLLUTION BULLETIN 2014; 87:191-200. [PMID: 25139301 DOI: 10.1016/j.marpolbul.2014.07.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem.
Collapse
Affiliation(s)
- H S El-Sheshtawy
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt.
| | - N M Khalil
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - W Ahmed
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - R I Abdallah
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| |
Collapse
|
44
|
Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L, Golyshin PN, Giuliano L, Yakimov MM. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front Microbiol 2014; 5:162. [PMID: 24782850 PMCID: PMC3995047 DOI: 10.3389/fmicb.2014.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 11/13/2022] Open
Abstract
The purpose of present study was the simulation of an oil spill accompanied by burial of significant amount of petroleum hydrocarbons (PHs) in coastal sediments. Approximately 1000 kg of sediments collected in Messina harbor were spiked with Bunker C furnace fuel oil (6500 ppm). The rapid consumption of oxygen by aerobic heterotrophs created highly reduced conditions in the sediments with subsequent recession of biodegradation rates. As follows, after 3 months of ageing, the anaerobic sediments did not exhibit any significant levels of biodegradation and more than 80% of added Bunker C fuel oil remained buried. Anaerobic microbial community exhibited a strong enrichment in sulfate-reducing PHs-degrading and PHs-associated Deltaproteobacteria. As an effective bioremediation strategy to clean up these contaminated sediments, we applied a Modular Slurry System (MSS) allowing the containment of sediments and their physical-chemical treatment, e.g., aeration. Aeration for 3 months has increased the removal of main PHs contaminants up to 98%. As revealed by CARD-FISH, qPCR, and 16S rRNA gene clone library analyses, addition of Bunker C fuel oil initially affected the activity of autochthonous aerobic obligate marine hydrocarbonoclastic bacteria (OMHCB), and after 1 month more than the third of microbial population was represented by Alcanivorax-, Cycloclasticus-, and Marinobacter-related organisms. In the end of the experiment, the microbial community composition has returned to a status typically observed in pristine marine ecosystems with no detectable OMHCB present. Eco-toxicological bioassay revealed that the toxicity of sediments after treatment was substantially decreased. Thus, our studies demonstrated that petroleum-contaminated anaerobic marine sediments could efficiently be cleaned through an in situ oxygenation which stimulates their self-cleaning potential due to reawakening of allochtonous aerobic OMHCB.
Collapse
Affiliation(s)
- Maria Genovese
- Institute for Coastal Marine Environment, CNRMessina, Italy
| | | | - Renata Denaro
- Institute for Coastal Marine Environment, CNRMessina, Italy
| | | | - Daniela Russo
- Institute for Coastal Marine Environment, CNRMessina, Italy
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy
| | | | - Santina Santisi
- Institute for Coastal Marine Environment, CNRMessina, Italy
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy
| | | | - Alfonso Modica
- Environmental Laboratory, Syndial SpAPriolo Gargallo, Italy
| | | | | | - Peter N. Golyshin
- Environmental Genomics, School of Biological Sciences, Bangor UniversityBangor, UK
| | - Laura Giuliano
- Institute for Coastal Marine Environment, CNRMessina, Italy
- Mediterranean Science CommissionMonaco, Monaco
| | | |
Collapse
|
45
|
Scott NM, Hess M, Bouskill NJ, Mason OU, Jansson JK, Gilbert JA. The microbial nitrogen cycling potential is impacted by polyaromatic hydrocarbon pollution of marine sediments. Front Microbiol 2014; 5:108. [PMID: 24723913 PMCID: PMC3971162 DOI: 10.3389/fmicb.2014.00108] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/03/2014] [Indexed: 11/20/2022] Open
Abstract
During hydrocarbon exposure, the composition and functional dynamics of marine microbial communities are altered, favoring bacteria that can utilize this rich carbon source. Initial exposure of high levels of hydrocarbons in aerobic surface sediments can enrich growth of heterotrophic microorganisms having hydrocarbon degradation capacity. As a result, there can be a localized reduction in oxygen potential within the surface layer of marine sediments causing anaerobic zones. We hypothesized that increasing exposure to elevated hydrocarbon concentrations would positively correlate with an increase in denitrification processes and the net accumulation of dinitrogen. This hypothesis was tested by comparing the relative abundance of genes associated with nitrogen metabolism and nitrogen cycling identified in 6 metagenomes from sediments contaminated by polyaromatic hydrocarbons from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, and 3 metagenomes from sediments associated with natural oil seeps in the Santa Barbara Channel. An additional 8 metagenomes from uncontaminated sediments from the Gulf of Mexico were analyzed for comparison. We predicted relative changes in metabolite turnover as a function of the differential microbial gene abundances, which showed predicted accumulation of metabolites associated with denitrification processes, including anammox, in the contaminated samples compared to uncontaminated sediments, with the magnitude of this change being positively correlated to the hydrocarbon concentration and exposure duration. These data highlight the potential impact of hydrocarbon inputs on N cycling processes in marine sediments and provide information relevant for system scale models of nitrogen metabolism in affected ecosystems.
Collapse
Affiliation(s)
- Nicole M Scott
- Institute of Genomic and Systems Biology, Argonne National Laboratory Lemont, IL, USA ; Department of Ecology and Evolutionary Biology, University of Chicago Chicago, IL, USA
| | - Matthias Hess
- Energy and Efficiency Division, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory Richland, WA, USA ; Systems Microbiology and Biotechnology Group, Washington State University Richland, WA, USA
| | - Nick J Bouskill
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Olivia U Mason
- Earth, Ocean and Atmospheric Science, Florida State University Tallahassee, FL, USA
| | - Janet K Jansson
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - Jack A Gilbert
- Institute of Genomic and Systems Biology, Argonne National Laboratory Lemont, IL, USA ; Department of Ecology and Evolutionary Biology, University of Chicago Chicago, IL, USA
| |
Collapse
|
46
|
Miteva V, Burlingame C, Sowers T, Brenchley J. Comparative evaluation of the indigenous microbial diversity vs. drilling fluid contaminants in the NEEM Greenland ice core. FEMS Microbiol Ecol 2014; 89:238-56. [DOI: 10.1111/1574-6941.12286] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/21/2013] [Accepted: 01/16/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Vanya Miteva
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA USA
| | - Caroline Burlingame
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA USA
| | - Todd Sowers
- Department of Geosciences; Earth and Environment Systems Institute; The Pennsylvania State University; University Park PA USA
| | - Jean Brenchley
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park PA USA
| |
Collapse
|
47
|
Cravo-Laureau C, Duran R. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era. Front Microbiol 2014; 5:39. [PMID: 24575083 PMCID: PMC3921567 DOI: 10.3389/fmicb.2014.00039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we present the main conclusions of our studies in this field.
Collapse
Affiliation(s)
- Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie UMR IPREM 5254, Université de Pau et des Pays de l'Adour Pau, France
| | - Robert Duran
- Equipe Environnement et Microbiologie UMR IPREM 5254, Université de Pau et des Pays de l'Adour Pau, France
| |
Collapse
|
48
|
Newell SE, Eveillard D, McCarthy MJ, Gardner WS, Liu Z, Ward BB. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:106-12. [PMID: 24596268 DOI: 10.1111/1758-2229.12114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 05/25/2023]
Abstract
The Gulf of Mexico is affected by hurricanes and suffers seasonal hypoxia. The Deepwater Horizon oil spill impacted every trophic level in the coastal region. Despite their importance in bioremediation and biogeochemical cycles, it is difficult to predict the responses of microbial communities to physical and anthropogenic disturbances. Here, we quantify sediment ammonia-oxidizing archaeal (AOA) community diversity, resistance and resilience, and important geochemical factors after major hurricanes and the oil spill. Dominant AOA archetypes correlated with different geochemical factors, suggesting that different AOA are constrained by distinct parameters. Diversity was lowest after the hurricanes, showing weak resistance to physical disturbances. However, diversity was highest during the oil spill and coincided with a community shift, suggesting a new alternative stable state sustained for at least 1 year. The new AOA community was not significantly different from that at the spill site 1 year after the spill. This sustained shift in nitrifier community structure may be a result of oil exposure.
Collapse
|
49
|
Bacterial Biodegradation of Crude Oil Using Local Isolates. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2014; 2014:863272. [PMID: 26904742 PMCID: PMC4745458 DOI: 10.1155/2014/863272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/08/2013] [Indexed: 11/17/2022]
Abstract
An experimental study was undertaken to assess the efficiency of Pseudomonas aeruginosa, Bacillus subtilis, and Acinetobacter lwoffi isolated from petroleum contaminated water and soil samples to degrade crude oil, separately and in a mixed bacterial consortium. Capillary gas chromatography was used for testing the effect of those bacterial species on the biodegradation of crude oil. Individual bacterial cultures showed less growth and degradation than did the mixed bacterial consortium. At temperature 22°C, the mixed bacterial consortium degraded a maximum of 88.5% of Egyptian crude oil after 28 days of incubation. This was followed by 77.8% by Pseudomonas aeruginosa, 76.7% by Bacillus subtilis, and 74.3% by Acinetobacter lwoffi. The results demonstrated that the selected bacterial isolates could be effective in biodegradation of oil spills individually and showed better biodegradation abilities when they are used together in mixed consortium.
Collapse
|
50
|
Stauffert M, Duran R, Gassie C, Cravo-Laureau C. Response of archaeal communities to oil spill in bioturbated mudflat sediments. MICROBIAL ECOLOGY 2014; 67:108-119. [PMID: 24057322 DOI: 10.1007/s00248-013-0288-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
The response of archaeal community to oil spill with the combined effect of the bioturbation activity of the polychaetes Hediste diversicolor was determined in mudflat sediments from the Aber-Benoît basin (Brittany, French Atlantic coast), maintained in microcosms. The dynamics of the archaeal community was monitored by combining comparative terminal restriction fragment length polymorphism (T-RFLP) fingerprints and sequence library analyses based on 16S rRNA genes and 16S cDNA. Methanogens were also followed by targeting the mcrA gene. Crenarchaeota were always detected in all communities irrespective of the addition of H. diversicolor and/or oil. In the presence of oil, modifications of archaeal community structures were observed. These modifications were more pronounced when H. diversicolor was added resulting in a more diverse community especially for the Euryarchaeota and Thaumarchaeota. The analysis of mcrA transcripts showed a specific structure for each condition since the beginning of the experiment. Overall, oiled microcosms showed different communities irrespective of H. diversicolor addition, while similar hydrocarbon removal capacities were observed.
Collapse
Affiliation(s)
- Magalie Stauffert
- Equipe Environnement et Microbiologie, IPREM - UMR CNRS 5254, Université de Pau et des Pays de l'Adour, BP 1155, 64013, Pau Cedex, France
| | | | | | | |
Collapse
|