1
|
Miyagi K, Shimoji N. Rapid discrimination methods for clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using the N-terminal sequence of the flaA gene and investigation of antimicrobial resistance. Lett Appl Microbiol 2024; 77:ovae052. [PMID: 38830808 DOI: 10.1093/lambio/ovae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa 901-2132, Japan
| |
Collapse
|
2
|
Otero-Olarra JE, Díaz-Cárdenas G, Aguilera-Arreola MG, Curiel-Quesada E, Pérez-Valdespino A. Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms 2024; 12:1091. [PMID: 38930473 PMCID: PMC11206119 DOI: 10.3390/microorganisms12061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Aeromonas trota is sensitive to most antibiotics and the sole species of this genus susceptible to ampicillin. This susceptibility profile could be related to its inability to acquire exogenous DNA. In this study, A. trota isolates were analyzed to establish their capacity to incorporate foreign DNA. Fourteen strains were identified as A. trota by multilocus phylogenetic analysis (MLPA). Minimal inhibitory concentrations of antibiotics (MIC) were assessed, confirming the susceptibility to most antibiotics tested. To explore their capacity to be transformed, A. trota strains were used as recipients in different horizontal transfer assays. Results showed that around fifty percent of A. trota strains were able to incorporate pBAMD1-2 and pBBR1MCS-3 plasmids after conjugal transfer. In all instances, conjugation frequencies were very low. Interestingly, several isoforms of plasmid pBBR1MCS-3 were observed in transconjugants. Strains could not receive pAr-32, a native plasmid from A. salmonicida. A. trota strains were unable to receive DNA by means of electroporation, natural transformation or vesiduction. These results confirm that A. trota species are extremely refractory to horizontal gene transfer, which could be associated to plasmid instability resulting from oligomerization or to the presence of defense systems against exogenous genetic material in their genomes. To explain the poor results of horizontal gene transfer (HGT), selected genomes were sequenced and analyzed, revealing the presence of defense systems, which could prevent the stable incorporation of exogenous DNA in A. trota.
Collapse
Affiliation(s)
- Jorge Erick Otero-Olarra
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Gilda Díaz-Cárdenas
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Ma Guadalupe Aguilera-Arreola
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico;
| | - Everardo Curiel-Quesada
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| | - Abigail Pérez-Valdespino
- Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico; (J.E.O.-O.); (G.D.-C.)
| |
Collapse
|
3
|
Lu TH, Chen CY, Wang WM, Liao CM. One Health-based management for sustainably mitigating tetracycline-resistant Aeromonas hydrophila-induced health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123943. [PMID: 38599271 DOI: 10.1016/j.envpol.2024.123943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/17/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Aeromonas hydrophila has ability to spread tetracycline resistance (tetR) under stresses of oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry. Even though environmental reservoir of Aeromonas allows it to be at interfaces across One Health components, a robust modelling framework for rigorously assessing health risks is currently lacking. We proposed a One Health-based approach and leveraged recent advances in quantitative microbial risk assessment appraised by available dataset to interpret interactions at the human-animal-environment interfaces in various exposure scenarios. The dose-response models were constructed considering the effects on mortality for aquaculture species and tetR genes transfer for humans. A scenario-specific risk assessment on pond species-associated A. hydrophila infection and human gut-associated tetR genes transfer was examined. Risk-based control strategies were involved to test their effectiveness. We showed that farmed shrimp exposed to tetracycline-resistant A. hydrophila in OTC-contaminated water experienced higher infection risk (relative risk: 1.25-1.34). The tetR genes transfer risk for farmers in shrimp ponds (∼2 × 10-4) and swimmers in coastal areas (∼4 × 10-6) during autumn exceeded acceptable risk (10-6). This cautionary finding underscores the importance of accounting for monitoring, assessing, and mitigating occupational health hazards among workers in shrimp farming sectors within future One Health-based strategies for managing water infection risks. We recommend that OTC emission rate together with A. hydrophila concentration should be reduced by up to 70-99% to protect human, farmed shrimp, and environmental health. Our predictive framework can be adopted for other systems and be used as a "risk detector" for assessing tetR-related health risks that invoke potential risk management on addressing sustainable mitigation on offsetting residual OTC emission and tetR genes spread in a species-human-environmental health system.
Collapse
Affiliation(s)
- Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung, 403514, Taiwan, ROC.
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA; Center for Environmental and Human Toxicology, University of Florida, FL, 32608, USA
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 106319, Taiwan, ROC
| |
Collapse
|
4
|
Chong SKT, Liu F, Yuwono C, Tay ACY, Wehrhahn MC, Riordan SM, Liu L, Zhang L. Analysis of global Aeromonas caviae genomes revealed that strains carrying T6SS are more common in human gastroenteritis than in environmental sources and are often phylogenetically related. Microb Genom 2024; 10:001258. [PMID: 38814176 PMCID: PMC11165597 DOI: 10.1099/mgen.0.001258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Aeromonas caviae is an emerging human enteric pathogen. However, the genomic features and virulence genes of A. caviae strains from human gastroenteritis and other sources have not been fully elucidated. Here, we conducted a genomic analysis of 565 global A. caviae strains isolated from different sources, including 261 strains isolated from faecal samples of gastroenteritis patients, of which 18 genomes were sequenced in this study. The presence of bacterial virulence genes and secretion systems in A. caviae strains from different sources was compared, and the phylogenetic relationship of A. caviae strains was assessed based on the core genome. The complete genome of A. caviae strain A20-9 isolated from a gastroenteritis patient was obtained in this study, from which 300 putative virulence factors and a T4SS-encoding plasmid, pAC, were identified. Genes encoding T4SS were also identified in a novel genomic island, ACI-1, from other T4SS-positive strains. The prevalence of T4SS was significantly lower in A. caviae strains from gastroenteritis patients than in environmental strains (3 %, P<0.0001 vs 14 %, P<0.01). Conversely, the prevalence of T6SS was significantly higher in A. caviae strains isolated from gastroenteritis patients than in environmental strains (25 %, P<0.05 vs 13 %, P<0.01). Four phylogenetic clusters were formed based on the core genome of 565 A. caviae strains, and strains carrying T6SS often showed close phylogenetic relationships. T3SS, aerolysin and thermostable cytotonic enterotoxin were absent in all 565 A. caviae strains. Our findings provide novel information on the genomic features of A. caviae and suggest that T6SS may play a role in A. caviae-induced human gastroenteritis.
Collapse
Affiliation(s)
- Sarah K. T. Chong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, School of Pathology and Laboratory Medicine, Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Australia
| | | | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Lu Liu
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Wang C, Wei N, Zhang M, Zhang X. Pulmonary infection with Aeromonas dhakensis in a patient with acute T lymphoblastic leukemia: a case report and review of the literature. Front Med (Lausanne) 2024; 11:1357714. [PMID: 38698785 PMCID: PMC11064645 DOI: 10.3389/fmed.2024.1357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Background Aeromonas dhakensis is a gram-negative bacterium. In recent years, Aeromonas dhakensis has gradually attracted increasing attention due to its strong virulence and poor prognosis. Clinical reports of pulmonary infection caused by Aeromonas dhakensis are rare. Case presentation A patient with acute T lymphoblastic leukemia experienced myelosuppression after chemotherapy, developed a secondary pulmonary infection with Aeromonas dhakensis and was hospitalized due to fever. The patient underwent testing for inflammatory markers, chest imaging, blood culture, bronchoalveolar lavage, pleural drainage, and metagenomic next-generation sequencing of alveolar lavage fluid and pleural fluid to obtain evidence of Aeromonas dhakensis infection, and was treated with four generations of cephalosporin combined with fluoroquinolone antibiotics. The patient's condition significantly improved. Discussion Among pulmonary infectious pathogens, Aeromonas dhakensis is relatively rare. Once an Aeromonas strain is cultured in the clinical work, pathogenic sequencing should be performed on the detected samples for early accurate diagnosis and effective anti-infection treatment.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Wei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Moyuan Zhang
- Xinxiang Medical University, Xinxiang, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
7
|
Carusi J, Kabuki DY, de Seixas Pereira PM, Cabral L. Aeromonas spp. in drinking water and food: Occurrence, virulence potential and antimicrobial resistance. Food Res Int 2024; 175:113710. [PMID: 38128981 DOI: 10.1016/j.foodres.2023.113710] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Aeromonas sp. is a Gram-negative, non-spore-forming, rod-shaped, oxidase-positive, facultative anaerobic bacterium and a natural contaminant found in aquatic environments. Some species can invade, colonize, and damage host cells due to the presence of virulence factors, such as flagella, elastase, hemolysins, aerolysins, adhesins, enterotoxins, phospholipases and lipases, that lead to pathogenic activities. Consequently, can cause many health disorders that range from gastrointestinal problems, enteric infections, and ulcers to hemorrhagic septicemia. Aeromonas has been isolated and identified from a variety of sources, including drinking water and ready-to-eat foods (fish, meat, fresh vegetables, dairy products, and others). Some species of this opportunistic pathogen are resistant to several commercial antibiotics, including some used as a last resort for treatment, which represents a major challenge in the clinical segment. Antimicrobial resistance can be attributed to the indiscriminate use of antibiotics by society in aquaculture and horticulture. In addition, antibiotic resistance is attributed to plasmid transfer between microorganisms and horizontal gene transfer. This review aimed to (i) verify the occurrence of Aeromonas species in water and food intended for human consumption; (ii) identify the methods used to detect Aeromonas species; (iii) report on the virulence genes carried by different species; and (iv) report on the antimicrobial resistance of this genus in the last 5 years of research. Additionally, we present the existence of Aeromonas spp. resistant to antimicrobials in food and drinking water represents a potential threat to public health.
Collapse
Affiliation(s)
- Juliana Carusi
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil.
| | - Dirce Yorika Kabuki
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Pedro Marques de Seixas Pereira
- Department of Mechanical Engineering, School of Engineering, São Paulo State University Júlio de Mesquita Filho (UNESP), Ilha Solteira, SP, Brazil
| | - Lucélia Cabral
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| |
Collapse
|
8
|
Erickson VI, Khoi LM, Hounmanou YMG, Dung TT, Phu TM, Dalsgaard A. Comparative genomic analysis of Aeromonas dhakensis and Aeromonas hydrophila from diseased striped catfish fingerlings cultured in Vietnam. Front Microbiol 2023; 14:1254781. [PMID: 37808293 PMCID: PMC10556525 DOI: 10.3389/fmicb.2023.1254781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Motile Aeromonas septicemia (MAS) is a burden for striped catfish (Pangasius hypophthalmus) farmers in Vietnam. MAS can be caused by several species of Aeromonas but Aeromonas hydrophila is seen as the leading cause of MAS in aquaculture, but recent reports suggest that A. dhakensis is also causing MAS. Methods Here we investigated the bacterial etiology of MAS and compared the genomic features of A. hydrophila and A. dhakensis. We collected 86 isolates from diseased striped catfish fingerlings over 5 years from eight provinces in Vietnam. Species identification was done using PCR, MALDI-TOF and whole genome sequence (WGS). The MICs of commonly used antimicrobials was established. Thirty presumed A. hydrophila isolates were sequenced for species confirmation and genomic comparison. A phylogenetic analysis was conducted using publicly available sequences and sequences from this study. Results A total of 25/30 isolates were A. dhakensis sequence type (ST) 656 and 5/30 isolates were A. hydrophila ST 251. Our isolates and all publicly available A. hydrophila isolates from Vietnam belonged to ST 251 and differed with <200 single nucleotide polymorphisms (SNP). Similarly, all A. dhakensis isolates from Vietnam belonged to ST 656 and differed with <100 SNPs. The tet(A) gene was found in 1/5 A. hydrophila and 19/25 A. dhakensis. All A. hydrophila had an MIC ≤2 mg/L while 19/25 A. dhakensis had MIC ≥8 mg/L for oxytetracycline. The floR gene was only found in A. dhakensis (14/25) which showed a MIC ≥8 mg/L for florfenicol. Key virulence genes, i.e., aerA/act, ahh1 and hlyA were present in all genomes, while ast was only present in A. dhakensis. Discussion This study confirms previous findings where A. dhakensis was the dominating pathogen causing MAS and that the importance of A. hydrophila has likely been overestimated. The differences in antimicrobial susceptibility between the two species could indicate a need for targeted antimicrobial treatment plans. The lipopolysaccharide regions and outer membrane proteins did not significantly differ in their immunogenic potentials, but it remains to be determined with in vivo experiments whether there is a difference in the efficacy of available vaccines against A. hydrophila and A. dhakensis.
Collapse
Affiliation(s)
- Vera Irene Erickson
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Le Minh Khoi
- Department of Aquatic Pathology, Can Tho University, Can Tho, Vietnam
| | | | - Tu Thanh Dung
- Department of Aquatic Pathology, Can Tho University, Can Tho, Vietnam
| | - Tran Minh Phu
- Department of Aquatic Product Processing, Can Tho University, Can Tho, Vietnam
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Mulia DS, Pratiwi R, Asmara W, Azzam-Sayuti M, Yasin ISM, Isnansetyo A. Isolation, genetic characterization, and virulence profiling of different Aeromonas species recovered from moribund hybrid catfish ( Clarias spp.). Vet World 2023; 16:1974-1984. [PMID: 37859968 PMCID: PMC10583882 DOI: 10.14202/vetworld.2023.1974-1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim The high diversity of Aeromonas spp. results in various pathogenicity levels. This group of bacteria causes a serious disease named motile Aeromonas septicemia (MAS) in catfish (Clarias spp.). This study aimed to characterize the species and virulence gene diversity of Aeromonas spp. isolated from diseased catfish. Materials and Methods Nine Aeromonas spp. were isolated from infected catfish cultivated in Java, Indonesia, and they were identified at the phenotypic and molecular levels (16S rDNA). The virulence genes assessed included aer/haem, alt, ast, flaA, lafA, and fstA. Results Phylogenetic analysis identified nine isolates of Aeromonas spp.: Aeromonas hydrophila (11.11%), Aeromonas caviae (11.11%), Aeromonas veronii bv. veronii (44.44%), and Aeromonas dhakensis (33.33%). Virulence genes, such as aer/haem, alt, ast, flaA, lafA, and fstA, were detected in all isolates at frequencies of approximately 100%, 66.67%, 88.89%, 100%, 55.56%, and 66.67%, respectively. This study is the first report on A. dhakensis recovered from an Indonesian catfish culture. Furthermore, our study revealed the presence of A. veronii bv veronii, a biovar that has not been reported before in Indonesia. Conclusion This finding confirms that MAS was caused by multiple species of Aeromonas, notably A. dhakensis and A. veronii bv veronii, within Indonesian fish culture. The presence of these Aeromonas species with multiple virulence genes poses a significant threat to the freshwater aquaculture industry.
Collapse
Affiliation(s)
- Dini Siswani Mulia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Purwokerto, Jl. K.H. Ahmad Dahlan, Purwokerto 53182, Indonesia
| | - Rarastoeti Pratiwi
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Senolowo, Yogyakarta 55281, Indonesia
| | - Widya Asmara
- Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna, Caturtunggal, Yogyakarta 55281, Indonesia
| | - Mohamad Azzam-Sayuti
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ina Salwany Md. Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Alim Isnansetyo
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Yuwono C, Wehrhahn MC, Liu F, Zhang L. Enteric Aeromonas Infection: a Common Enteric Bacterial Infection with a Novel Infection Pattern Detected in an Australian Population with Gastroenteritis. Microbiol Spectr 2023; 11:e0028623. [PMID: 37378724 PMCID: PMC10433960 DOI: 10.1128/spectrum.00286-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Aeromonas species are emerging human enteric pathogens. However, they are currently not routinely detected in many diagnostic laboratories, and information regarding Aeromonas enteric infections detected using molecular methods is lacking. Here, we investigated the detection of Aeromonas species and four other enteric bacterial pathogens in 341,330 fecal samples from patients with gastroenteritis processed in a large Australian diagnostic laboratory between 2015 and 2019. These enteric pathogens were detected using quantitative real-time PCR (qPCR) methods. Furthermore, we compared the qPCR cycle threshold (CT) values obtained from fecal samples that tested positive for Aeromonas only by molecular detection with those of samples that tested positive by both molecular detection and bacterial isolation methods. Aeromonas species were found to be the second most common bacterial enteric pathogens among patients with gastroenteritis. We observed a unique pattern of three infection peaks for Aeromonas, which correlated with the age of the patients. Aeromonas species were the most common enteric bacterial pathogens in children younger than 18 months. Fecal samples that tested positive for Aeromonas only by molecular detection had significantly higher CT values than fecal samples that tested positive by both molecular detection and bacterial culture. In conclusion, our findings reveal that Aeromonas enteric pathogens exhibit an age-related three-peak infection pattern, distinguishing them from other enteric bacterial pathogens. Moreover, the high rate of Aeromonas enteric infection discovered in this study suggests that Aeromonas species should be routinely tested in diagnostic laboratories. Our data also show that combining qPCR with bacterial culture can enhance the detection of enteric pathogens. IMPORTANCE Aeromonas species are emerging human enteric pathogens. However, these species are currently not routinely detected in many diagnostic laboratories, and no studies have reported the detection of Aeromonas enteric infection using molecular methods. We investigated the presence of Aeromonas species and four other enteric bacterial pathogens in 341,330 fecal samples from patients with gastroenteritis using quantitative real-time PCR (qPCR) methods. Interestingly, we discovered that Aeromonas species were the second most common bacterial enteric pathogens in patients with gastroenteritis, exhibiting a novel infection pattern compared to those of other enteric pathogens. Furthermore, we found that Aeromonas species were the most prevalent enteric bacterial pathogens in children aged 6 to 18 months. Our data also revealed that qPCR methods exhibit higher sensitivity in detecting enteric pathogens compared to that of bacterial culture alone. Moreover, combining qPCR with bacterial culture enhances the detection of enteric pathogens. These findings emphasize the importance of Aeromonas species in public health.
Collapse
Affiliation(s)
- Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Song HC, Yang YX, Lan QG, Cong W. Immunological effects of recombinant Lactobacillus casei expressing pilin MshB fused with cholera toxin B subunit adjuvant as an oral vaccine against Aeromonas veronii infection in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108934. [PMID: 37419434 DOI: 10.1016/j.fsi.2023.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Aeromonas veronii is a zoonotic agent capable of infecting fish and mammals, including humans, posing a serious threat to the development of aquaculture and public health safety. Currently, few effective vaccines are available through convenient routes against A. veronii infection. Herein, we developed vaccine candidates by inserting MSH type VI pili B (MshB) from A. veronii as an antigen and cholera toxin B subunit (CTB) as a molecular adjuvant into Lactobacillus casei and evaluated their immunological effect as vaccines in a crucian carp (Carassius auratus) model. The results suggested that recombinant L. casei Lc-pPG-MshB and Lc-pPG-MshB-CTB can be stably inherited for more than 50 generations. Oral administration of recombinant L. casei vaccine candidates stimulated the production of high levels of serum-specific immunoglobulin M (IgM) and increased the activity of acid phosphatase (ACP), alkaline phosphatase (AKP) superoxide dismutase (SOD), lysozyme (LZM), complement 3 (C3) and C4 in crucian carp (carassius auratus) compared to the control group (Lc-pPG612 group and PBS group) without significant changes. Moreover, the expression levels of interleukin-10 (IL-10), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) genes in the gills, liver, spleen, kidney and gut of crucian carp orally immunized with recombinant L. casei were significantly upregulated compared to the control groups, indicating that recombinant L. casei induced a significant cellular immune response. In addition, viable recombinant L. casei can be detected and stably colonized in the intestine tract of crucian carp. Particularly, crucian carp immunized orally with Lc-pPG-MshB and Lc-pPG-MshB-CTB exhibited higher survival rates (48% for Lc-pPG-MshB and 60% for Lc-pPG-MshB-CTB) and significantly reduced loads of A. veronii in the major immune organs after A. veronii challenge. Our findings indicated that both recombinant L. casei strains provide favorable immune protection, with Lc-pPG-MshB-CTB in particular being more effective and promising as an ideal candidate for oral vaccination.
Collapse
Affiliation(s)
- Hai-Chao Song
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China
| | - Yi-Xuan Yang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Qi-Guan Lan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, PR China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong Province, 264209, PR China.
| |
Collapse
|
12
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
13
|
Behera BK, Parida SN, Kumar V, Swain HS, Parida PK, Bisai K, Dhar S, Das BK. Aeromonas veronii Is a Lethal Pathogen Isolated from Gut of Infected Labeo rohita: Molecular Insight to Understand the Bacterial Virulence and Its Induced Host Immunity. Pathogens 2023; 12:pathogens12040598. [PMID: 37111485 PMCID: PMC10143776 DOI: 10.3390/pathogens12040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A case of severe mortality in farmed Labeo rohita was investigated to characterize the causative agent. We identified the bacterial strain as Aeromonas veronii isolated from the gut of infected L. rohita by biochemical assay, scanning electron microscopy and 16S rRNA gene sequence analysis. The in vivo challenge experiment showed that the LD50 of A. veronii was 2.2 × 104 CFU/fish. Virulence gene investigation revealed that the isolated A. veronii possesses Aerolysin, Cytotoxic enterotoxin, Serine protease, Dnase and Type III secretion system genes. The isolated strain was resistant to two antibiotics (ampicillin and dicloxacillin) while susceptible to 22 other antibiotics. The study further revealed that A. veronii induced both stresses along with non-specific and specific immune responses marked by elevated cortisol HSP70, HSP90 and IgM levels in the treated L. rohita fingerlings. Although the bacterial pathogen enhances the immune response, the negative effect on fish, including stress, and high mortality, create concern and a need for A. veronii management in L. rohita farms. The knowledge gained from this study would facilitate future research aimed at assessing the pathogenicity of A. veronii, with an emphasis on microbial disease management in other farmed fish species.
Collapse
Affiliation(s)
- Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Satya Narayan Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Vikash Kumar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Himanshu Sekhar Swain
- Aquaculture Production and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar 751002, Orissa, India
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Kampan Bisai
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Souvik Dhar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata 700120, West Bengal, India
| |
Collapse
|
14
|
Ortega RCMH, Tabugo SRM, Martinez JGT, Padasas CS, Balcázar JL. Occurrence of Aeromonas Species in the Cutaneous Mucus of Barbour’s Seahorses (Hippocampus barbouri) as Revealed by High-Throughput Sequencing. Animals (Basel) 2023; 13:ani13071241. [PMID: 37048497 PMCID: PMC10092988 DOI: 10.3390/ani13071241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Although several studies have described the bacterial community composition associated with marine fish, there is limited information related to seahorses. Moreover, previous studies have demonstrated that the skin microbiota is useful for determining health status and common disorders in the host. This study, therefore, aimed to explore the skin bacterial community composition in Barbour’s seahorse (Hippocampus barbouri) using high-throughput sequencing of 16S ribosomal RNA genes. Water and sediment samples from the surrounding environment were also analyzed for comparative purposes. The results revealed that sequences affiliated with the Shewanellaceae family were dominant in the skin of female Barbour’s seahorses and sediment samples, whereas sequences affiliated with the Bacillaceae family were dominant in the skin of male Barbour’s seahorses. Interestingly, sequences affiliated with the Aeromonas genus were found in the skin of Barbour’s seahorses, whose abundance was slightly similar between the female and male specimens. Further comparative analysis showed that the presence of Aeromonas species in the skin of Barbour’s seahorses was strongly influenced by the surrounding sediment. Given that some Aeromonas species are known to be important pathogens in humans and fish, these results may be used for further research on the dependency of the skin microbial composition on the environment as well as determine whether the presence of Aeromonas and other detected species has implications on seahorse health.
Collapse
Affiliation(s)
- Rose Chinly Mae H. Ortega
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Sharon Rose M. Tabugo
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Joey Genevieve T. Martinez
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Mathematical Biology and Nematology Research Cluster, Complex Systems Group, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Chinee S. Padasas
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - José L. Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| |
Collapse
|
15
|
Song Y, Wang LF, Zhou K, Liu S, Guo L, Ye LY, Gu J, Cheng Y, Shen DX. Epidemiological characteristics, virulence potential, antimicrobial resistance profiles, and phylogenetic analysis of Aeromonas caviae isolated from extra-intestinal infections. Front Cell Infect Microbiol 2023; 13:1084352. [PMID: 36909720 PMCID: PMC9999030 DOI: 10.3389/fcimb.2023.1084352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Objective Aeromonas caviae (A. caviae) is one of the major etiological agents in human intestinal infections reported to be associated with a broad spectrum of extra-intestinal infections with increasing incidence over recent years. Although previous studies have established its significance as a causative agent of both bloodstream and gastrointestinal infections, the characteristics of A. caviae that cause extra-intestinal infections remain unilluminated.In this single-center retrospective study, we investigated epidemiological characteristics, antimicrobial resistance genes and phenotypes, virulence genes, and phyloevolution of 47 clinical A. caviae isolated from patients with extra-intestinal infections from 2017 to 2020. Methods A. caviae strains were identified by biochemical tests and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS), ultimately confirmed to species level by whole-genome sequencing (WGS). Antimicrobial resistance and virulence genes were identified using the Comprehensive Antibiotic Resistance Database (CARD) and the virulence factor database (VFDB), respectively. Phylogenetic analysis of 47 clinical strains was performed by combining with 521 A. caviae strains from NCBI database. Results A. caviae was an opportunistic pathogen in immunocompromised patients, especially those with underlying hepatobiliary diseases and malignancies. 19 out of 47 isolates were identified as multidrug resistance (MDR) strains. Piperacillin-tazobactam, levofloxacin, gentamicin, amikacin with a resistance rate of less than 10% remained as options to treat extra-intestinal infections. 24 out of 47 isolates exhibited non-susceptibility to cephalosporins and cephamycins, all of which carried β-lactamase gene, including bla MOX, bla PER-3, bla OXA, bla NDM, and bla CphA. Most stains (98%, 46/47) carried at least one of the virulence genes, but extra-intestinal infections had a low mortality rate. Phylogenetic analysis indicated the risk of nosocomial transmission but revealed no outbreak. However, the emergence of MDR and β-lactamase resistance genes in extra-intestinal isolates of A. caviae is becoming an increasing risk to public health and requires attention. Conclusions This study strengthen our understanding of A.caviae isolated from extra-intestinal infections. It may contribute to the management of extra-intestinal infections as well as the prevention and control of drug resistance.
Collapse
Affiliation(s)
- Yang Song
- Department of Clinical Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Li-feng Wang
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kuai Zhou
- Department of Clinical Laboratory, Xuanhan People’s Hospital, Xuanhan, Sichuan, China
| | - Shuang Liu
- Department of Clinical Laboratory, Hainan Modern Women and Children’s Hospital, Haikou, China
| | - Ling Guo
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-yan Ye
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiang Gu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University, Chongqing, China
| | - Yan Cheng
- Department of Basic Medical Laboratory, The 980th Hospital of the PLA Joint Logistical Support Force, Bethune International Peace Hospital, Shijiazhuang, China
- *Correspondence: Ding-xia Shen, ; Yan Cheng,
| | - Ding-xia Shen
- Department of Clinical Laboratory, Medical School of Chinese PLA, Beijing, China
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ding-xia Shen, ; Yan Cheng,
| |
Collapse
|
16
|
Gieseker CM, Gaunt PS, Hawke JP, Crosby TC, Hasbrouck NR, Gao DX, Stine CB, Evans ER, Grim CJ. Epidemiological Cutoff Values for Standard Broth Microdilution and Disk Diffusion Susceptibility Testing of Aeromonas hydrophila Isolated from Fish. Microb Drug Resist 2022; 28:893-903. [PMID: 35972765 PMCID: PMC11421686 DOI: 10.1089/mdr.2021.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila and other closely related Aeromonas species cause motile aeromonad septicemia, a common fish disease. The disease affects many aquaculture sectors potentially requiring antimicrobial treatments. Therefore, researchers and laboratory diagnosticians need criteria called epidemiological cutoff values (ECVs) to determine whether a bacterial isolate has developed decreased susceptibility to an antimicrobial. To generate ECVs for this bacterium, we assembled a diverse collection of 245 isolates previously identified as A. hydrophila from fish. Using rpoD sequencing, we confirmed that 97 of the 245 isolates were A. hydrophila. We allocated the isolates among three laboratories and tested their susceptibility against eight antimicrobials using standard Clinical and Laboratory Standards Institute (CLSI) disk diffusion and broth microdilution methods. The resulting frequency distributions were statistically analyzed to determine wild-type cutoff estimates, which, along with scatterplots, were used to estimate potential ECVs. In collaboration with the CLSI, aquaculture working group, we proposed ECVs for six of the eight antimicrobials tested. Subsequently, the CLSI Subcommittee on Veterinary Antimicrobial Susceptibility Testing reviewed our data and approved the ECVs to be added to the 2020 edition of the VET04 performance standards for antimicrobial susceptibility testing of aquatic bacteria.
Collapse
Affiliation(s)
- Charles M Gieseker
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Patricia S Gaunt
- Thad Cochran National Warmwater Aquaculture Center, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - John P Hawke
- Department of Pathobiological Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tina C Crosby
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Nicholas R Hasbrouck
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Dana X Gao
- Thad Cochran National Warmwater Aquaculture Center, College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | - Cynthia B Stine
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Eric R Evans
- Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland, USA
| | - Christopher J Grim
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, Laurel, Maryland, USA
| |
Collapse
|
17
|
Puah SM, Khor WC, Aung KT, Lau TTV, Puthucheary SD, Chua KH. Aeromonas dhakensis: Clinical Isolates with High Carbapenem Resistance. Pathogens 2022; 11:833. [PMID: 35894056 PMCID: PMC9394330 DOI: 10.3390/pathogens11080833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Aeromonas dhakensis is ubiquitous in aquatic habitats and can cause life-threatening septicaemia in humans. However, limited data are available on their antimicrobial susceptibility testing (AST) profiles. Hence, we aimed to examine their AST patterns using clinical (n = 94) and non-clinical (n = 23) isolates with dehydrated MicroScan microdilution. Carbapenem resistant isolates were further screened for genes related to carbapenem resistance using molecular assay. The isolates exhibited resistance to imipenem (76.9%), doripenem (62.4%), meropenem (41.9%), trimethoprim/sulfamethoxazole (11.1%), cefotaxime (8.5%), ceftazidime (6%), cefepime (1.7%) and aztreonam (0.9%), whereas all isolates were susceptible to amikacin. Clinical isolates showed significant association with resistance to doripenem, imipenem and meropenem compared to non-clinical isolates. These blacphA were detected in clinical isolates with resistance phenotypes: doripenem (67.2%, 45/67), imipenem (65.9%, 54/82) and meropenem (65.2%, 30/46). Our findings showed that the MicroScan microdilution method is suitable for the detection of carbapenem resistance in both clinical (48.9-87.2%) and non-clinical (4.3-13.0%) isolates. This study revealed that A. dhakensis isolates had relatively high carbapenem resistance, which may lead to potential treatment failure. Continued monitoring of aquatic sources with a larger sample size should be carried out to provide further insights.
Collapse
Affiliation(s)
- Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Wei Ching Khor
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
| | - Kyaw Thu Aung
- National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, 14-01, Singapore 608550, Singapore; (W.C.K.); (K.T.A.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tien Tien Vicky Lau
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - S. D. Puthucheary
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.M.P.); (T.T.V.L.); (S.D.P.)
| |
Collapse
|
18
|
Mangar P, Barman P, Kumar A, Saha A, Saha D. Detection of Virulence-Associated Genes and in vitro Gene Transfer From Aeromonas sp. Isolated From Aquatic Environments of Sub-himalayan West Bengal. Front Vet Sci 2022; 9:887174. [PMID: 35754535 PMCID: PMC9230572 DOI: 10.3389/fvets.2022.887174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Aeromonas is omnipresent in aquatic environments and cause disease within a wide host range. A total of thirty-four isolates from water samples of small fish farms were identified as Aeromonas based on biochemical characteristics and 16S rRNA gene sequence. A total of six virulent factors were analyzed which indicated 100% of isolates as beta-haemolytic and proteolytic, whereas 44.1, 38.2, and 70.6% of isolates produced DNAse, siderophore, and amylase, respectively. Studies on the occurrence of four genetic determinants of virulence factors revealed that aer/haem (haemolytic toxin) and flaA (polar flagella) genes were present in 44.1% of strains whereas ascV (type 3 secretion system) and aspA (serine protease) genes were detected in 21.5 and 8.82% of strains, respectively. Fish (Anabas testudineus) challenge studies showed that the isolate GP3 (Aeromonas veronii) bearing five virulent factors with the combination of aer/haem+/ascV+/fla+ genes induced severe lesions leading to 100% of mortality. In contrast, RB7 possessing four virulence factors and three genes (aer/haem+/ascV+/aspA+) could not produce severe lesions and any mortality indicating the absence of correlation between the virulence factors, its genes, and the pathogenicity in fishes. GP3 was cytotoxic to human liver cell line (WRL-68) in trypan blue dye exclusion assay. The 431 bp aer/haem gene of GP3 was transferable to E. coli Dh5α with a conjugational efficiency of 0.394 × 10–4 transconjugants per recipient cell. The transfer was confirmed by PCR and by the presence of 23-kb plasmids in both donor and transconjugants. Therefore, the occurrence of mobile genetic elements bearing virulence-associated genes in Aeromonas indicates the need for periodic monitoring of the aquatic habitat to prevent disease outbreaks.
Collapse
Affiliation(s)
- Preeti Mangar
- Department of Botany, University of North Bengal, Siliguri, India
| | - Partha Barman
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Siliguri, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, India
| |
Collapse
|
19
|
Fuentes-Valencia MA, Osornio-Esquivel JL, Martínez Palacios CA, Contreras-Ávila JL, Barriga-Tovar E, la Mora GID, Arellano-Torres A, Baizabal-Aguirre VM, Bravo-Patiño A, Cajero-Juárez M, Valdez Alarcón JJ. Bacterial and parasite co-infection in Mexican golden trout (Oncorhynchus chrysogaster) by Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator. BMC Vet Res 2022; 18:137. [PMID: 35414073 PMCID: PMC9004087 DOI: 10.1186/s12917-022-03208-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Background Bacterial infections are responsible of high economic losses in aquaculture. Mexican golden trout (Oncorhynchus chrysogaster) is a threatened native trout species that has been introduced in aquaculture both for species conservation and breeding for production and for which no studies of bacterial infections have been reported. Case presentation Fish from juvenile stages of Mexican golden trout showed an infectious outbreak in a farm in co-culture with rainbow trout (Oncorhynchus mykiss), showing external puntiform red lesions around the mouth and caudal pedunculus resembling furuncles by Aeromonas spp. and causing an accumulated mortality of 91%. Isolation and molecular identification of bacteria from lesions and internal organs showed the presence of Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator isolated from a single individual. All bacterial isolates were resistant to amoxicillin-clavulanic acid and cefazoline. P. shigelloides was resistant to third generation β-lactamics. Conclusions This is the first report of coinfection by Aeromonas bestiarum, Aeromonas sobria, Plesiomonas shigelloides and Ichthyobodo necator in an individual of Mexican golden trout in co-culture with rainbow trout. Resistance to β-lactams suggests the acquisition of genetic determinants from water contamination by human- or livestock-associated activities.
Collapse
Affiliation(s)
- María Anel Fuentes-Valencia
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - José Luis Osornio-Esquivel
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | | | - Erik Barriga-Tovar
- Comité Estatal de Sanidad e Inocuidad Acuícola de Michoacán A.C. (CESAMICH), Morelia, Mexico
| | - Genoveva Ingle-de la Mora
- Dirección General Adjunta de Investigación en Acuacultura, Instituto Nacional de Pesca y Acuacultura, Pátzcuaro, Mexico.,Centro Regional de Investigación Acuícola y Pesquera en Pátzcuaro, Instituto Nacional de Pesca y Acuacultura, Pátzcuaro, Mexico
| | - Andrés Arellano-Torres
- Dirección General Adjunta de Investigación en Acuacultura, Instituto Nacional de Pesca y Acuacultura, Pátzcuaro, Mexico.,Centro Regional de Investigación Acuícola y Pesquera en Pátzcuaro, Instituto Nacional de Pesca y Acuacultura, Pátzcuaro, Mexico
| | - Víctor Manuel Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandro Bravo-Patiño
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Marcos Cajero-Juárez
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.,Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Juan José Valdez Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.
| |
Collapse
|
20
|
Jin S, Guan T, Hu M, Li W, Liu Y. Isolation, identification and virulence gene characterization of Aeromona dhakensis isolated from sea lion (Zalophus californianus). Lett Appl Microbiol 2022; 74:932-940. [PMID: 35239198 DOI: 10.1111/lam.13688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
Species of Aeromonas are ubiquitous pathogens of fish and aquatic animals and can infect humans and other animals through the food chain. However, there are few reports of marine mammalian infections. In 2020, a sea lion (Zalophus californianus) died acutely at an aquarium in Harbin, Heilongjiang Province, China. In order to explore the cause of death, we dissected the animal and observed pathological changes. Ogans were aseptically collected and used for bacterial isolation and culture. This revealed that the sea lion had died of sepsis caused by a bacterial infection. Isolated bacteria were investigated by morphology, biochemical phenotype and molecular identification, and this determined the pathogen as A. dhakensis. The isolate contained six virulence genes, hlyA, aerA, act, lafA, ela, fla, and was susceptible to most antibiotics. This is the first report of A. dhakensis associated with septicemia in pinnipeds and a description of its virulence and resistance profiles. Its presence in aquatic environments poses a potential threat to marine mammals.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tongxu Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Mengxin Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Wanying Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
21
|
Nakayama T, Hoa TTT, Huyen HM, Yamaguchi T, Jinnai M, Minh DTN, Hoang ON, Thi HL, Thanh PN, Hoang Hoai P, Nguyen Do P, Van CD, Kumeda Y, Hase A. Isolation of carbapenem-resistant Enterobacteriaceae harbouring NDM-1, 4, 5, OXA48 and KPC from river fish in Vietnam. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Liu F, Yuwono C, Tay ACY, Wehrhahn MC, Riordan SM, Zhang L. Analysis of global Aeromonas veronii genomes provides novel information on source of infection and virulence in human gastrointestinal diseases. BMC Genomics 2022; 23:166. [PMID: 35227192 PMCID: PMC8883699 DOI: 10.1186/s12864-022-08402-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aeromonas veronii is a Gram-negative rod-shaped motile bacterium that inhabits mainly freshwater environments. A. veronii is a pathogen of aquatic animals, causing diseases in fish. A. veronii is also an emerging human enteric pathogen, causing mainly gastroenteritis with various severities and also often being detected in patients with inflammatory bowel disease. Currently, limited information is available on the genomic information of A. veronii strains that cause human gastrointestinal diseases. Here we sequenced, assembled and analysed 25 genomes (one complete genome and 24 draft genomes) of A. veronii strains isolated from patients with gastrointestinal diseases using combine sequencing technologies from Illumina and Oxford Nanopore. We also conducted comparative analysis of genomes of 168 global A. veronii strains isolated from different sources. RESULTS We found that most of the A. veronii strains isolated from patients with gastrointestinal diseases were closely related to each other, and the remaining were closely related to strains from other sources. Nearly 300 putative virulence factors were identified. Aerolysin, microbial collagenase and multiple hemolysins were present in all strains isolated from patients with gastrointestinal diseases. Type III Secretory System (T3SS) in A. veronii was in AVI-1 genomic island identified in this study, most likely acquired via horizontal transfer from other Aeromonas species. T3SS was significantly less present in A. veronii strains isolated from patients with gastrointestinal diseases as compared to strains isolated from fish and domestic animals. CONCLUSIONS This study provides novel information on source of infection and virulence of A. veronii in human gastrointestinal diseases.
Collapse
Affiliation(s)
- Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alfred Chin Yen Tay
- Helicobacter Research Laboratory, School of Pathology and Laboratory Medicine, Marshall Centre for Infectious Diseases Research and Training, University of Western Australia, Perth, Australia
| | - Michael C Wehrhahn
- Douglass Hanly Moir Pathology, 14 Giffnock Ave, Macquarie Park, NSW, 2113, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
23
|
Lu TH, Chen CY, Wang WM, Liao CM. A Risk-Based Approach for Managing Aquaculture Used Oxytetracycline-Induced TetR in Surface Water Across Taiwan Regions. Front Pharmacol 2022; 12:803499. [PMID: 35002737 PMCID: PMC8733663 DOI: 10.3389/fphar.2021.803499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Oxytetracycline (OTC), one of the most important antibiotics in aquaculture industry, has been linked to emergence of antibiotic resistant genes in the aquatic environment. Given rapid growth of the aquaculture industry and unregulated use of antibiotics, it is necessary to implement measures to mitigate the impact of antibiotic resistance risk on environmental and human health. However, there is a lack of quantitative models to properly assess risk of antibiotic resistance associated with environmentally relevant antibiotic residues. To address this issue, here we developed a computational framework to assess antibiotic resistance risk posed by low-concentration OTC in aquaculture ponds and rivers across Taiwan regions. To this end, estimated amount of aquaculture used OTC as a crucial input parameter was incorporated into a multimedia fugacity model to predict environmental concentrations of OTC in surface water/sediment. A pharmacodynamic-based dose–response model was used to characterize the OTC concentration–antibiotic resistance relationships. The risk of antibiotic resistance selection in an aquatic environment could be assessed based on a probabilistic risk model. We also established a control measure model to manage the risks of substantial OTC-induced antibiotic resistance impacts. We found that OTC residues were likely to pose a high risk of tetracycline resistance (tetR) genes selection in aquaculture ponds among all the study basins, whereas risk of tetR genes selection in rivers experienced a variably changing fashion. We also showed that it was extremely difficult to moderate the tetR genes selection rates to less than 10% increase in aquaculture ponds situated at northeastern river basins in that the minimum reductions on OTC emission rates during spring, summer, and autumn were greater than 90%. On the other hand, water concentrations of OTC during spring and summer in southwestern rivers should be prioritized to be severely limited by reducing 67 and 25% of OTC emission rate, respectively. Overall, incorporating a computational fugacity model into a risk assessment framework can identify relative higher risk regions to provide the risk-based control strategies for public health decision-making and development of robust quantitative methods to zero-in on environment with high risk of tetR genes selection in relation to aquaculture-used pharmaceutical residues.
Collapse
Affiliation(s)
- Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Chen YW, Su SL, Li CW, Tsai CS, Lo CL, Syue LS, Li MC, Lee CC, Lee NY, Ko WC, Chen PL. Pancreaticobiliary Cancers and Aeromonas Isolates Carrying Type Ⅲ Secretion System Genes ascF-ascG Are Associated With Increased Mortality: An Analysis of 164 Aeromonas Infection Episodes in Southern Taiwan. Front Cell Infect Microbiol 2021; 11:749269. [PMID: 34737976 PMCID: PMC8562565 DOI: 10.3389/fcimb.2021.749269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
This prospective study aimed to investigate the clinical and microbiological characteristics of different Aeromonas species. Clinical isolates of Aeromonas species between 2016 to 2018 were collected in a university hospital in southern Taiwan. The species was determined by rpoD or gyrB sequencing. A total of 222 Aeromonas isolates from 160 patients in 164 episodes were identified. The crude in-hospital mortality was 17.2%. The most frequently isolated species was Aeromonas veronii (30.6%), followed by A. caviae (24.8%), A. hydrophila (23%), and A. dhakensis (16.7%). The major clinical manifestations were primary bacteremia (31.1%), skin and soft tissue infection (22.6%), and biliary tract infection (18.3%). The most common underlying diseases were malignancy (45.1%), diabetes mellitus (27.4%), and liver cirrhosis or chronic hepatitis (26.2%). A. hydrophila and A. dhakensis predominated in the skin and soft tissue infection (p<0.0001), whereas A. vernoii and A. caviae prevailed in primary bacteremia and biliary tract infections (p=0.012). Pneumonia, malignancy, and ascF-ascG genotype were independent factors associated with mortality. Ertapenem susceptibility was decreased in A. sobria (42.9%), A. veronii (66.7%), A. dhakensis (73%), and A. hydrophila (84.3%). Cefotaxime resistance was found in 30.9% of A. caviae and 18.9% of A. dhakensis isolates, much more prevalent than the other species. The metallo-β-lactamase blaCphA was almost invariably present in A. dhakensis, A. hydrophila, and A. veronii (100%, 100% and 89.9%, respectively). Amp-C β-lactamases such as blaMOX and blaAQU-1 were identified in all A. caviae and 91.9% of A. dhakensis isolates. Cefepime, fluoroquinolones and tigecycline showed good in vitro activity against aeromonads.
Collapse
Affiliation(s)
- Ying-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
25
|
Kumar CB, Kumar A, Paria A, Kumar S, Prasad KP, Rathore G. Effect of spatio-temporal variables, host fish species and on-farm biosecurity measures on the prevalence of potentially pathogenic Aeromonas species in freshwater fish farms. J Appl Microbiol 2021; 132:1700-1712. [PMID: 34664343 DOI: 10.1111/jam.15330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
AIMS To determine the prevalence of Aeromonas species in freshwater fish farms, factors affecting their prevalence and virulence factors associated with each species. METHODS AND RESULTS In a cross-sectional study from 128 farms in four districts of Uttar Pradesh, India, 11 species of Aeromonas were identified by gyrB sequencing including the first report of Aeromonas crassostreae from fish. Four species of Aeromonas were more prevalent (MP) in fish farms, A. veronii bv. sobria (50.0%) was the highest, followed by A. caviae (18.8%), A. veronii bv. veronii (11.7%) and A. dhakensis (7.0%). The less prevalent (LP) species were A. hydrophila, A. media, A. jandaei, A. allosaccharophila, A. salmonicida, A. crassostreae and A. taiwanensis. Spatial variation in the prevalence of Aeromonas species was observed. Dominance of biovar sobria ranged from 33.3 to 68.6%, notably lesser in farms with on-farm biosecurity measures. The prevalence of biovar veronii was significantly associated with pangas fish, rainy season and farms with on-farm biosecurity measures. The prevalence of LP species was significantly higher in mrigal fish and winter season. Multiple virulence factors (>6) were detected in 70.2% of the Aeromonas species. Significant association of β-hemolysin, DNase, slime production, act, ahh1, aexT and lip was observed with different species of Aeromonas. Moreover, 75.8% of Aeromonas species possessed one or more enterotoxins genes (act/alt/ast). CONCLUSION Significant association of spatio-temporal variables, host fish species and on-farm biosecurity measures were observed on the prevalence of some of the Aeromonas species in freshwater fish farms. Most of the Aeromonas species harboured virulence factors indicating their potential for pathogenicity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that determined the prevalence and identified the factors that affect the prevalence of Aeromonas species in freshwater fish farms. This information will be useful in managing Aeromonas infection in fish and their risks to public health.
Collapse
Affiliation(s)
| | - Anil Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, India
| | - Saurav Kumar
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - K Pani Prasad
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| | - Gaurav Rathore
- ICAR- Central Institute of Fisheries Education, Andheri (west), India
| |
Collapse
|
26
|
Yuwono C, Wehrhahn MC, Liu F, Riordan SM, Zhang L. The Isolation of Aeromonas Species and Other Common Enteric Bacterial Pathogens from Patients with Gastroenteritis in an Australian Population. Microorganisms 2021; 9:1440. [PMID: 34361876 PMCID: PMC8306920 DOI: 10.3390/microorganisms9071440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aeromonas species are emerging human enteric pathogens. However, systematic analysis of Aeromonas species infection in human gastroenteritis in comparison with other enteric bacterial pathogens in the Australian population is lacking. Here we analysed the isolation of Aeromonas species and other bacterial pathogens in five consecutive years (2015-2019) from 375,842 stool samples of patients with gastroenteritis in a large Australian diagnostic laboratory and identified a subset (48 isolates) of Aeromonas isolates to species level, using multilocus phylogenetic analysis. Aeromonas species were the third most common bacterial pathogens, following Campylobacter and Salmonella species. Aeromonas infection rate was significantly correlated with increasing age (p < 0.001). Aeromonas species were more often isolated in warm seasons and in males than females (p < 0.001). Five Aeromonas species were identified. Most of the infections were from three species, namely Aeromonas veronii (52%), Aeromonas caviae (27%) and Aeromonas hydrophila (12.5%). The majority of patients with Aeromonas species infection did not have a documented overseas travel history. The findings from this study support the importance of Aeromonas species in human gastroenteritis and suggest that the sources of Aeromonas infection in Australian patients should be further investigated.
Collapse
Affiliation(s)
- Christopher Yuwono
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (C.Y.); (F.L.)
| | - Michael C. Wehrhahn
- Douglass Hanly Moir Pathology, 14 Giffnock Ave, Macquarie Park, NSW 2113, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (C.Y.); (F.L.)
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW 2031, Australia;
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (C.Y.); (F.L.)
| |
Collapse
|
27
|
Grilo ML, Isidoro S, Chambel L, Marques CS, Marques TA, Sousa-Santos C, Robalo JI, Oliveira M. Molecular Epidemiology, Virulence Traits and Antimicrobial Resistance Signatures of Aeromonas spp. in the Critically Endangered Iberochondrostoma lusitanicum Follow Geographical and Seasonal Patterns. Antibiotics (Basel) 2021; 10:759. [PMID: 34206643 PMCID: PMC8300795 DOI: 10.3390/antibiotics10070759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022] Open
Abstract
Despite the fact that freshwater fish populations are experiencing severe declines worldwide, our knowledge on the interaction between endangered populations and pathogenic agents remains scarce. In this study, we investigated the prevalence and structure of Aeromonas communities isolated from the critically endangered Iberochondrostoma lusitanicum, a model species for threatened Iberian leuciscids, as well as health parameters in this species. Additionally, we evaluated the virulence profiles, antimicrobial resistance signatures and genomic relationships of the Aeromonas isolates. Lesion prevalence, extension and body condition were deeply affected by location and seasonality, with poorer performances in the dry season. Aeromonas composition shifted among seasons and was also different across river streams. The pathogenic potential of the isolates significantly increased during the dry season. Additionally, isolates displaying clinically relevant antimicrobial resistance phenotypes (carbapenem and fluroquinolone resistance) were detected. As it inhabits intermittent rivers, often reduced to disconnected pools during the summer, the dry season is a critical period for I. lusitanicum, with lower general health status and a higher potential of infection by Aeromonas spp. Habitat quality seems a determining factor on the sustainable development of this fish species. Also, these individuals act as reservoirs of important antimicrobial resistant bacteria with potential implications for public health.
Collapse
Affiliation(s)
- Miguel L. Grilo
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Sara Isidoro
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| | - Lélia Chambel
- BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Carolina S. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
| | - Tiago A. Marques
- Departamento de Biologia Animal, Centro de Estatística e Aplicações, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (C.S.M.); (T.A.M.)
- Centre for Research into Ecological & Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK
| | - Carla Sousa-Santos
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Joana I. Robalo
- MARE—Marine and Environmental Sciences Centre, ISPA—Instituto Universitário de Ciências Psicológicas, Sociais e da Vida, 1149-041 Lisbon, Portugal; (C.S.-S.); (J.I.R.)
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
| |
Collapse
|
28
|
Sun Y, Zhao Y, Xu W, Fang R, Wu Q, He H, Xu C, Zhou C, Cao J, Chen L, Zhou T. Taxonomy, virulence determinants and antimicrobial susceptibility of Aeromonas spp. isolated from bacteremia in southeastern China. Antimicrob Resist Infect Control 2021; 10:43. [PMID: 33640019 PMCID: PMC7913257 DOI: 10.1186/s13756-021-00911-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background The study aimed to elucidate the species taxonomy, clinical manifestations, virulence gene profiles and antimicrobial susceptibilities of Aeromonas strains isolated from life-threatening bacteremia in southeastern China. Methods Clinical samples of Aeromonas causing bacteremia were isolated from a teaching hospital in Wenzhou from 2013 to 2018 and a retrospective cohort study was performed. Aeromonas strains were identified at species level by housekeeping gene gyrB. Virulence and drug resistance-associated genes were screened by polymerase chain reaction (PCR) and antimicrobial susceptibility testing (AST) was performed by the VITEK 2 Compact system. Results A total of 58 Aeromonas isolated from patients with bacteremia were collected during 6 years (2013–2018). 58 isolates were identified to five different species, where Aeromonas dhakensis appeared to be the predominant species (26/58), followed by Aeromonas veronii (13/58), Aeromonas caviae (10/58), Aeromonas hydrophila (7/58) and Aeromonas jandaei (2/58). 16 of 58 patients had poor prognosis. Poor prognosis was significantly associated with liver cirrhosis and inappropriate empirical antimicrobials therapy. The progression of bacteremia caused by Aeromonas was extremely fast, especially in A. dhakensis infections. Virulence genes aer, lip, hlyA, alt, ast, and act, were detected at ratios of 24.1% (14/58), 62.1% (36/58), 65.5% (38/58), 58.6% (34/58), 15.5% (9/58) and 65.5% (38/58), respectively. Antimicrobial susceptibility testing exhibited that 9 out of 58 isolates were identified as multi-drug resistant (MDR) organism. The blaTEM gene was identified in all 9 MDR isolates. blaSHV, blaAQU-1, blaMOX, blaCepH, blaCphA and aac(6′)-Ib-cr were detected in 4 isolates, 2 isolates, 1 isolate, 3 isolates, 8 isolates, and 3 isolates, respectively. The majority of Aeromonas strains maintained susceptible to 3rd generation cephalosporins, aminoglycosides, fluoroquinolones and furantoin. Conclusions The prevalence and dangerousness of Aeromonas infections, especially A. dhakensis, are underestimated in clinic. Continuous monitoring is essential to keep track of MDR Aeromonas due to the increasing prevalence recently and a more effective measure is required to control the spread of resistance determinants.
Collapse
Affiliation(s)
- Yao Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenya Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Wu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haokuang He
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chunquan Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Cui Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lijiang Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Yi C, Lv X, Chen D, Sun B, Guo L, Wang S, Ru Y, Wang H, Zeng Q. Transcriptome analysis of the Macrobrachium nipponense hepatopancreas provides insights into immunoregulation under Aeromonas veronii infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111503. [PMID: 33120268 DOI: 10.1016/j.ecoenv.2020.111503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The oriental river prawn Macrobrachium nipponense is a commercially important freshwater shrimp that is widely farmed in China. Aeromonas veronii is a conditional pathogen of farmed shrimp, which has caused huge economic losses to the industry. Therefore, there is urgency to study the host-pathogen interactions between M. nipponense and A. veronii to screen individuals with antimicrobial resistance. In this study, we examined the hepatopancreas of moribund M. nipponense infected with A. veronii and healthy individuals at both the histopathological and transcriptomic levels. We showed that A. veronii infection resulted in tubular necrosis of the M. nipponense hepatopancreas. Such changes likely affect assimilation, storage, and excretion by the hepatopancreas, which could ultimately affect the survival and growth of infected individuals. Among the 61,345 unigenes obtained through RNA sequencing and de novo transcriptome assembly, 232 were differentially expressed between the two groups. KEGG and GO analyses revealed that these differentially expressed genes were implicated in pathways, including PPAR, PI3K/AKT, and AMPK signaling. The results of this study will contribute to an analysis of the immune response of M. nipponense to A. veronii infection at the transcriptomic level. Furthermore, the RNA-seq data generated here provide an important genomic resource for research on M. nipponense in the absence of a reference genome.
Collapse
Affiliation(s)
- Cao Yi
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Xiaoting Lv
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Duanduan Chen
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Bing Sun
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Leifeng Guo
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Shouquan Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Yuanyuan Ru
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China
| | - Hui Wang
- Department of Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, Shandong, China.
| | - Qifan Zeng
- Ministry of Education, Key Laboratory of Marine Genetics and Breeding, College of Marine Science, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
30
|
Li T, Wang Z, Han H, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Dual Antibacterial Activities and Biofilm Eradication of a Marine Peptide-N6NH 2 and Its Analogs against Multidrug-Resistant Aeromonas veronii. Int J Mol Sci 2020; 21:E9637. [PMID: 33348848 PMCID: PMC7767178 DOI: 10.3390/ijms21249637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Aeromonas veronii is one of the main pathogens causing various diseases in humans and animals. It is currently difficult to eradicate drug-resistant A. veronii due to the biofilm formation by conventional antibiotic treatments. In this study, a marine peptide-N6NH2 and its analogs were generated by introducing Orn or replacing with D-amino acids, Val and Pro; their enzymic stability and antibacterial/antibiofilm ability against multi-drug resistant (MDR) A. veronii ACCC61732 were detected in vitro and in vivo, respectively. The results showed that DN6NH2 more rapidly killed A. veronii ACCC61732 and had higher stability in trypsin, simulated gastric/intestinal fluid, proteinase K, and mouse serum than the parent peptide-N6NH2. DN6NH2 and other analogs significantly improved the ability of N6NH2 to penetrate the outer membrane of A. veronii ACCC61732. DN6NH2, N6PNH2 and V112N6NH2 protected mice from catheter-associated biofilm infection with MDR A. veronii ACCC61732, superior to N6NH2 and CIP. DN6NH2 had more potent efficacy at a dose of 5 μmol/kg (100% survival) in a mouse peritonitis model than other analogs (50-66.67%) and CIP (83.33%), and it inhibited the bacterial translocation, downregulated pro-inflammatory cytokines, upregulated the anti-inflammatory cytokine, and ameliorated multiple-organ injuries (including the liver, spleen, lung, and kidney). These data suggest that the analogs of N6NH2 may be a candidate for novel antimicrobial and antibiofilm agents against MDR A. veronii infections.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Chinese Herbal Medicine Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (Z.W.); (H.H.); (D.T.); (R.M.); (Y.H.); (N.Y.)
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
31
|
Main bacterial species causing clinical disease in ornamental freshwater fish in Brazil. Folia Microbiol (Praha) 2020; 66:231-239. [PMID: 33185813 DOI: 10.1007/s12223-020-00837-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Bacterial diseases are common in ornamental fish, more frequently associated with ubiquitous bacteria from the aquarium environment. The disease can lead to fish mortality and cause high economic losses if not rapidly controlled. The aim of this study was to identify the main causative bacterial agents of infection in ornamental fish with different clinical signs. A total of 126 freshwater fish, from 12 families and 38 species, with clinical signs were collected in a wholesaler in São Paulo, SP, Brazil. Samples were taken from the eye, skin ulcers, kidneys, and gills, plated on MacConkey, CHROMagar Orientation, and blood agar and incubated under aerobic and anaerobic conditions. Bacterial identification was performed by MALDI-TOF mass spectrometry. From the 126 studied animals, 112 were positive for bacterial isolation. Among the positive animals, 32.1% presented infection caused by a single bacterial species, while in the remaining 67.9%, two to six different bacterial species were identified. A total of 259 bacterial strains were obtained and classified among 46 bacterial species. The species of higher frequency were Aeromonas veronii (26.3%), Aeromonas hydrophilla (16.2%), Shewanella putrefaciens (7.3%), Citrobacter freundii (8.1%), Vibrio albensis (5.8%), and Klebsiella pneumoniae (4.2%). MALDI-TOF MS showed to be a rapid method for diagnosis of bacterial disease outbreaks in ornamental fish establishments.
Collapse
|
32
|
Sheng L, Wang L. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr Rev Food Sci Food Saf 2020; 20:738-786. [PMID: 33325100 DOI: 10.1111/1541-4337.12671] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms play a crucial and unique role in fish and fish product safety. The presence of human pathogens and the formation of histamine caused by spoilage bacteria make the control of both pathogenic and spoilage microorganisms critical for fish product safety. To provide a comprehensive and updated overview of the involvement of microorganisms in fish and fish product safety, this paper reviewed outbreak and recall surveillance data obtained from government agencies from 1998 to 2018 and identified major safety concerns associated with both domestic and imported fish products. The review also summarized all available literature about the prevalence of major and emerging microbial safety concerns, including Salmonella spp., Listeria monocytogenes, and Aeromonas hydrophila, in different fish and fish products and the survival of these pathogens under different storage conditions. The prevalence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs), two emerging food safety concerns, is also reviewed. Pathogenic and spoilage microorganisms as well as ARB and ARGs can be introduced into fish and fish products in both preharvest and postharvest stages. Many novel intervention strategies have been proposed and tested for the control of different microorganisms on fish and fish products. One key question that needs to be considered when developing and implementing novel control measures is how to ensure that the measures are cost and environment friendly as well as sustainable. Over the years, regulations have been established to provide guidance documents for good farming and processing practices. To be more prepared for the globalization of the food chain, harmonization of regulations is still needed.
Collapse
Affiliation(s)
- Lina Sheng
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| |
Collapse
|
33
|
de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, Mano SB, Conte-Junior CA. Antimicrobial resistance genes in bacteria from animal-based foods. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:143-183. [PMID: 32762867 DOI: 10.1016/bs.aambs.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.
Collapse
Affiliation(s)
- Isadora de Alcântara Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sergio Borges Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Abstract
β-Lactam antibiotics have been widely used as therapeutic agents for the past 70 years, resulting in emergence of an abundance of β-lactam-inactivating β-lactamases. Although penicillinases in Staphylococcus aureus challenged the initial uses of penicillin, β-lactamases are most important in Gram-negative bacteria, particularly in enteric and nonfermentative pathogens, where collectively they confer resistance to all β-lactam-containing antibiotics. Critical β-lactamases are those enzymes whose genes are encoded on mobile elements that are transferable among species. Major β-lactamase families include plasmid-mediated extended-spectrum β-lactamases (ESBLs), AmpC cephalosporinases, and carbapenemases now appearing globally, with geographic preferences for specific variants. CTX-M enzymes include the most common ESBLs that are prevalent in all areas of the world. In contrast, KPC serine carbapenemases are present more frequently in the Americas, the Mediterranean countries, and China, whereas NDM metallo-β-lactamases are more prevalent in the Indian subcontinent and Eastern Europe. As selective pressure from β-lactam use continues, multiple β-lactamases per organism are increasingly common, including pathogens carrying three different carbapenemase genes. These organisms may be spread throughout health care facilities as well as in the community, warranting close attention to increased infection control measures and stewardship of the β-lactam-containing drugs in an effort to control selection of even more deleterious pathogens.
Collapse
|
35
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|