1
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022; 61:e202117345. [PMID: 35038217 PMCID: PMC9305891 DOI: 10.1002/anie.202117345] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Enzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Zbasic2 strongly boosted the loading (2.5-fold; ≈500 mg enzyme gmaterial-1 ) and the specific activity (6.5-fold; 23 U mg-1 ). The DAAO@BioHOF-1 composites showed superior activity with respect to every reported carrier for the same enzyme and excellent stability during catalyst recycling. Further, extension to other enzymes, including cytochrome P450 BM3 (used in the production of high-value oxyfunctionalized compounds), points to the versatility of genetic engineering as a strategy for the preparation of biohybrid systems with unprecedented properties.
Collapse
Affiliation(s)
- Peter Wied
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| | - Christian J. Doonan
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia 5005Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| |
Collapse
|
2
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining Genetically Engineered Oxidase with Hydrogen Bonded Organic Framework (HOF) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Wied
- Graz University of Technology: Technische Universitat Graz Biotechnology and Biochemical Engineering AUSTRIA
| | - Francesco Carraro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Juan M. Bolivar
- Complutense University of Madrid: Universidad Complutense de Madrid Biochemical Engineering SPAIN
| | - Christian J. Doonan
- University of Adelaide Press: The University of Adelaide Chemistry AUSTRALIA
| | - Paolo Falcaro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Bernd Nidetzky
- Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12 8010 Graz AUSTRIA
| |
Collapse
|
3
|
Mikl M, Dennig A, Nidetzky B. Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 322:74-78. [PMID: 32687957 DOI: 10.1016/j.jbiotec.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 01/17/2023]
Abstract
Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes glycosyltransferases for the synthesis of the natural C-glycoside nothofagin. Adding Brij-35 detergent (1 %, w/v) during sonication of the E. coli BL21-Gold (DE3) expression strain, recovery of Oryza sativa C-glycosyltransferase was enhanced by ∼3-fold, partly due to the release of enzyme activity trapped in insoluble pellet. Freeze drying of the resulting cell-free extract (∼17 U ml-1) reduced the volume ∼20-fold and gave ∼55 mg solids ml-1 liquid processed, with 83 % retention of the original activity and a specific activity of 0.20 U mg-1 solids. The Glycine max sucrose synthase was processed analogously, giving a solid enzyme preparation of 0.28 U mg-1 in 63 % yield. Both enzyme formulations were stable for several weeks. The glycosyltransferase cascade reaction for 3'-β-C-glucosylation of phloretin (60 mM; as inclusion complex with hydroxypropyl-β-cyclodextrin) from UDP-glucose (generated in situ by sucrose synthase from 500 mM sucrose and 0.5 mM UDP) showed excellent performance metrics (≥ 98 % yield; 3.2 g l-1 h-1 space-time yield; ∼90 regeneration cycles for UDP). Collectively, our study demonstrates a facile procedure for solid glycosyltransferase formulations practically usable in glycoside synthesis.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
4
|
Mikl M, Dennig A, Nidetzky B. WITHDRAWN: Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 324S:100023. [PMID: 34154728 DOI: 10.1016/j.btecx.2020.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in BIOTEC, 322C (2020) 74-78, https://doi.org/10.1016/j.jbiotec.2020.06.023. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
5
|
Liu W, Tang D, Shi R, Lian J, Huang L, Cai J, Xu Z. Efficient production ofS‐adenosyl‐l‐methionine fromdl‐methionine in metabolic engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2019; 116:3312-3323. [DOI: 10.1002/bit.27157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Dandan Tang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- State Key Laboratory of Clean Energy Utilization, College of Energy EngineeringZhejiang University Hangzhou China
| | - Rui Shi
- Department of Food Science and TechnologyCollege of Light Industry and Food Engineering, Nanjing Forestry University Nanjing China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Jin Cai
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| |
Collapse
|
6
|
Zheng J, Yang T, Zhou J, Xu M, Zhang X, Rao Z, Yang S. Efficient production of d-amino acid oxidase in Escherichia coli by a trade-off between its expression and biomass using N-terminal modification. BIORESOURCE TECHNOLOGY 2017; 243:716-723. [PMID: 28711799 DOI: 10.1016/j.biortech.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Native d-amino acid oxidase (DAAO) that is expressed mostly as inclusion body and its toxicity for E. coli hamper efficient heterologous expression. In this study, the soluble expression of DAAO from Rhodosporidium toruloides (RtDAAO) was improved in E. coli through N-terminal modification, but the cell biomass was decreased. Then a trade-off between DAAO expression and biomass was achieved to obtain the highest volumetric activity of DAAO through regulated the number of N-terminus histidine residues. When variant 2H3G was fused with three N-terminus histidine residues, the volumetric activity was increased by 3.1 times and the biomass was not significant change compared with the wild type. Finally, the N-terminus disordered region of RtDAAO (HSQK) was replaced with HHHG and the variant enzyme activity reached 80.7U/mL (with a 40 percent of inactive DAAO reduced) in a 7.5L fermenter in 24h.
Collapse
Affiliation(s)
- Junxian Zheng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Du K, Sun J, Song X, Song C, Feng W. Enhancement of the solubility and stability of D-amino acid oxidase by fusion to an elastin like polypeptide. J Biotechnol 2015. [PMID: 26216181 DOI: 10.1016/j.jbiotec.2015.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An elastin-like polypeptide (ELP) was fused to D-amino acid oxidases (DAAO). ELP-DAAO exhibited a better solubility in aqueous solutions than DAAO, and its enzymatic activity is about 1.6 times that of DAAO. The stability of the proteins was investigated by interacting with urea at various concentrations. The circular dichroism and fluorescence spectra were measured. The results demonstrated that that ELP-DAAO exhibited a much better stability than DAAO, and ELP-DAAO has retained the α-helix content with a high percentage even at a high urea concentration. The results of this work have demonstrated that the ELP tag can be utilized to purify DAAO, in the meantime the solubility and stability of the enzyme are improved.
Collapse
Affiliation(s)
- Kun Du
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Sun
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqiang Song
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cuidan Song
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Feng
- Department of Biochemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
High-level soluble and functional expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli. Bioprocess Biosyst Eng 2014; 37:1517-26. [PMID: 24425540 DOI: 10.1007/s00449-013-1123-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
D-Amino acid oxidase is an important biocatalyst used in a variety of fields, and its economically justified level recombinant expression in Escherichia coli has not been established. To accomplish this, after a single Phe54Tyr substitution, fusion proteins of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) with 6 × His-tags were constructed and expressed in E. coli. The effects of his-tags fusing position were revealed. Significant increase in holoenzyme percent and protein solubility made N-terminus tagged TvDAO (termed NHDAO) a suitable choice for TvDAO production. However, reduced cell growth and protein production rates were also observed for the NHDAO bearing strains. To optimize the performance of NHDAO production, changes of culture medium were tested. Finally, a production of 140 U/mL or 3.48 g active enzyme per liter which accounted for 41.4 % of the total protein, and a specific activity of 16.68 U/mg for the crude extract, were achieved in a 3.7 L fermenter in 28.5 h. This indicated a possibility for functional and economical TvDAO expression in E. coli to meet the industrial need.
Collapse
|
9
|
Oriented immobilization of the tobacco etch virus protease for the cleavage of fusion proteins. J Biotechnol 2012; 158:97-103. [PMID: 22300512 DOI: 10.1016/j.jbiotec.2012.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 12/23/2011] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
The tobacco etch virus (TEV) protease is a useful tool for the removal of fusion tags from recombinant proteins. The difficulty in obtaining this enzyme led us to look for an optimal method for its use. In this work, we produced both the wild-type and the S219V mutant TEV proteases fused to the Streptag II affinity sequence (Streptag II-TEV(WT), and Streptag II-TEV(S219V), respectively). The two enzymes were affinity immobilized on a streptavidin-agarose matrix and compared to their respective free forms. Both immobilized Streptag II-TEV(WT) and Streptag II-TEV(S219V) were active on the 74-kDa Streptag II substrate with a retained activity of 83.5% and 81%, respectively compared to their free corresponding forms. The slight enzyme activity decrease caused by the immobilization was balanced by the enhanced stability and the successful repetitive use of the proteolytic columns. Thus, the wild-type and the mutant immobilized proteases were used, during a period of 18 months, for nine batch reactions with retention of 38% and 51% of their initial activities, respectively. The present results demonstrate that immobilized TEV protease on streptavidin-agarose is an attractive and efficient tool for fusion protein cleavage, especially when the target protein is fused to a streptagged fusion partner. Using this strategy, the total process can be shortened by performing the cleavage and the recovery of the purified target protein in one step.
Collapse
|
10
|
Bolivar JM, Nidetzky B. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Zbasic2: Design of a heterogeneous D-amino acid oxidase catalyst on porous glass. Biotechnol Bioeng 2012; 109:1490-8. [DOI: 10.1002/bit.24423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 11/08/2022]
|
11
|
Wiesbauer J, Bolivar JM, Mueller M, Schiller M, Nidetzky B. Oriented Immobilization of Enzymes Made Fit for Applied Biocatalysis: Non-Covalent Attachment to Anionic Supports usingZbasic2Module. ChemCatChem 2011. [DOI: 10.1002/cctc.201100103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Abad S, Nahalka J, Winkler M, Bergler G, Speight R, Glieder A, Nidetzky B. High-level expression of Rhodotorula gracilis D-amino acid oxidase in Pichia pastoris. Biotechnol Lett 2010; 33:557-63. [PMID: 21053050 DOI: 10.1007/s10529-010-0456-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/22/2010] [Indexed: 12/01/2022]
Abstract
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.
Collapse
Affiliation(s)
- Sandra Abad
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, Graz, 8010, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
The role of Cys108 in Trigonopsis variabilis d-amino acid oxidase examined through chemical oxidation studies and point mutations C108S and C108D. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1483-91. [DOI: 10.1016/j.bbapap.2010.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/19/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
14
|
Abad S, Nahalka J, Bergler G, Arnold SA, Speight R, Fotheringham I, Nidetzky B, Glieder A. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microb Cell Fact 2010; 9:24. [PMID: 20420682 PMCID: PMC2873405 DOI: 10.1186/1475-2859-9-24] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. RESULTS As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. CONCLUSIONS Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Collapse
Affiliation(s)
- Sandra Abad
- Austrian Centre of Industrial Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Dib I, Nidetzky B. The stabilizing effects of immobilization in D-amino acid oxidase from Trigonopsis variabilis. BMC Biotechnol 2008; 8:72. [PMID: 18798979 PMCID: PMC2557008 DOI: 10.1186/1472-6750-8-72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022] Open
Abstract
Background Immobilization of Trigonopsis variabilis D-amino acid oxidase (TvDAO) on solid support is the key to a reasonably stable performance of this enzyme in the industrial process for the conversion of cephalosporin C as well as in other biocatalytic applications. Results To provide a mechanistic basis for the stabilization of the carrier-bound oxidase we analyzed the stabilizing effects of immobilization in TvDAO exposed to the stress of elevated temperature and operational conditions. Two different strategies of immobilization were used: multi-point covalent binding to epoxy-activated Sepabeads EC-EP; and non-covalent oriented immobilization of the enzyme through affinity of its N-terminal Strep-tag to Strep-Tactin coated on insoluble particles. At 50°C, the oriented immobilizate was not stabilized as compared to the free enzyme. The structure of TvDAO was stabilized via covalent attachment to Sepabeads EC-EP but concomitantly, binding of the FAD cofactor was weakened. FAD release from the enzyme into solution markedly reduced the positive effect of immobilization on the overall stability of TvDAO. Under conditions of substrate conversion in a bubble-aerated stirred tank reactor, both immobilization techniques as well as the addition of the surfactant Pluronic F-68 stabilized TvDAO by protecting the enzyme from the deleterious effect of gas-liquid interfaces. Immobilization of TvDAO on Sepabeads EC-EP however stabilized the enzyme beyond this effect and led to a biocatalyst that could be re-used in multiple cycles of substrate conversion. Conclusion Multi-point covalent attachment of TvDAO on an isoluble porous carrier provides stabilization against the denaturing effects of high temperature and exposure to a gas-liquid interface. Improvement of binding of the FAD cofactor, probably by using methods of protein engineering, would further enhance the stability of the immobilized enzyme.
Collapse
Affiliation(s)
- Iskandar Dib
- Research Centre Applied Biocatalysis, Petersgasse 14, A-8010 Graz, Austria.
| | | |
Collapse
|
17
|
Stabilization of native and double D-amino acid oxidases from Rhodosporidium toruloides and Trigonopsis variabilis by immobilization on streptavidin-coated magnetic beads. Biotechnol Lett 2008; 30:1973-81. [PMID: 18594772 DOI: 10.1007/s10529-008-9782-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Double D: -amino acid oxidases (dRtDAO and dTvDAO) were previously genetically constructed by linking the C-terminus of one subunit of their corresponding native DAOs from Rhodosporidium toruloides and Trigonopsis variabilis (RtDAO and TvDAO) to the N-terminus of the other identical subunit. We have now immobilized these double DAOs and their native counterparts onto streptavidin-coated magnetic beads through the interaction between biotin and streptavidin. The catalytic efficiencies (k(cat)/K(M)) of immobilized DAOs toward D: -alanine and cepharosporin C remained similar to those of their soluble forms, except the catalytic efficiency of immobilized TvDAO toward D: -alanine was decreased by 56%. After immobilization, the T(m) value for RtDAO was shifted 15 degrees C higher to 60 degrees C, while those for dRtDAO, TvDAO and dTvDAO were increased by 5-8 degrees C to 56, 60 and 60 degrees C, respectively. In the presence of 10 mM H(2)O(2), immobilized RtDAO, dRtDAO, TvDAO and dTvDAO exhibited half-lives of about 8, 10, 3 and 5 h, respectively, giving 16-, 10-, 6- and 7-fold greater stability than their soluble forms, respectively. Therefore, immobilization through biotin-streptavidin affinity binding enhances the thermal and oxidative stability of native and double DAOs studied, especially RtDAO. The additive stabilizing effect of subunit fusion and immobilization was more pronounced in the case of RtDAO than TvDAO.
Collapse
|
18
|
Optimization of culture condition for the production of D-amino acid oxidase in a recombinant Escherichia coli. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0005-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Kuan I, Liao R, Hsieh H, Chen K, Yu C. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through his-tag. J Biosci Bioeng 2008; 105:110-5. [PMID: 18343336 DOI: 10.1263/jbb.105.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/05/2007] [Indexed: 11/17/2022]
Abstract
D-amino acid oxidase catalyzes one of the key steps in the production of semisynthetic cephalosporins. We expressed and purified recombinant Rhodotorula gracilis D-amino acid oxidase with C-terminal his-tags. This engineered enzyme was immobilized onto Ni(2+)-chelated nitrilotriacetic acid magnetic beads through the interaction between his-tag and Ni(2+). The kinetic constants, storage properties, and the reusability of the immobilized d-amino acid oxidase were determined. The effects of temperature, pH, and hydrogen peroxide on the activity of immobilized d-amino acid oxidase were also studied. The highest activity recovery was 75%. Thermal stability was improved after immobilization; the relative activity of the immobilized enzyme was 56% whereas the free enzyme was completely inactivated after incubation at 50 degrees C for 1 h. In the presence of 10 mM hydrogen peroxide, the immobilized enzyme did not show a rapid loss of activity during the first 2 h of incubation, which was observed in the case of the free enzyme; the residual activity of the immobilized enzyme after 9 h was 72% compared with 22% of the free form. The long-term storage stability was improved; the residual activity of the immobilized enzyme was 74% compared with 20% of the free enzyme when stored at room temperature for 10 d. The immobilized form retained 37% of its initial activity after 20 consecutive reaction cycles.
Collapse
Affiliation(s)
- Iching Kuan
- Department of Bioengineering, Tatung University, 40 Chungshan N. Rd. Sec. 3, Taipei 10452, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 2008; 78:1-16. [DOI: 10.1007/s00253-007-1282-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
21
|
Nahalka J, Dib I, Nidetzky B. Encapsulation of Trigonopsis variabilis D-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme. Biotechnol Bioeng 2008; 99:251-60. [PMID: 17680679 DOI: 10.1002/bit.21579] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A one-step procedure of immobilizing soluble and aggregated preparations of D-amino acid oxidase from Trigonopsis variabilis (TvDAO) is reported where carrier-free enzyme was entrapped in semipermeable microcapsules produced from the polycation poly(methylene-co-guanidine) in combination with CaCl2 and the polyanions alginate and cellulose sulfate. The yield of immobilization, expressed as the fraction of original activity present in microcapsules, was approximately 52 +/- 5%. The effectiveness of the entrapped oxidase for O2-dependent conversion of D-methionine at 25 degrees C was 85 +/- 10% of the free enzyme preparation. Because continuous spectrophotometric assays are generally not well compatible with insoluble enzymes, we employed a dynamic method for the rapid in situ estimation of activity and relatedly, stability of free and encapsulated oxidases using on-line measurements of the concentration of dissolved O2. Integral and differential modes of data acquisition were utilized to examine cases of fast and slow inactivation of the enzyme, respectively. With a half-life of 60 h, encapsulated TvDAO was approximately 720-fold more stable than the free enzyme under conditions of bubble aeration at 25 degrees C. The soluble oxidase was stabilized by added FAD only at temperatures of 35 degrees C or greater.
Collapse
Affiliation(s)
- Jozef Nahalka
- Research Centre Applied Biocatalysis, Petersgasse 14, A-8010 Graz, Austria
| | | | | |
Collapse
|
22
|
Stability and stabilization of D-amino acid oxidase from the yeast Trigonopsis variabilis. Biochem Soc Trans 2007; 35:1588-92. [DOI: 10.1042/bst0351588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The use of DAO (D-amino acid oxidase) for the conversion of cephalosporin C has provided a significant case for the successful implementation of an O2-dependent biocatalyst on an industrial scale. Improvement of the operational stability of the immobilized oxidase is, however, an important goal of ongoing process optimization. We have examined DAO from the yeast Trigonopsis variabilis with the aim of developing a rational basis for the stabilization of the enzyme activity at elevated temperature and under conditions of substrate turnover. Loss of activity in the resting enzyme can occur via different paths of denaturation. Partial thermal unfolding and release of the FAD cofactor, kinetically coupled with aggregation, contribute to the overall inactivation rate of the oxidase at 50°C. Oxidation of Cys108 into a stable cysteine sulfinic acid causes both decreased activity and stability of the enzyme. Strategies to counteract each of the denaturation steps in DAO are discussed. Fusion to a pull-down domain is a novel approach to produce DAO as protein-based insoluble particles that display high enzymatic activity per unit mass of catalyst.
Collapse
|