1
|
Zhao Q, Liu Y, Li M, Zhao L, Wang T, Xiao Y, Wei S, Wu K, Yang J, Wang Y, Zhao Y, Du F, Chen Y, Deng S, Shen J, Xiao Z, Li Z, Wang S, Wu X. Hawthorn pectin mitigates high-fat diet induced hyperlipidemia in mice through promoting Dubosiella newyorkensis. Carbohydr Polym 2025; 359:123570. [PMID: 40306777 DOI: 10.1016/j.carbpol.2025.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Hawthorn fruit is rich in pectins; however, the gut microbiota-modulating effects of hawthorn pectin remain unclear. In this study, enzyme-extracted hawthorn pectin (Mw: 126.24 kDa; HG/RG-I ratio: 55.64 %/37.93 %; branching degree: 2.44) was fractionated into two distinct components: D1 (spherical, 345.76 kDa, HG/RG-I 57.48 %/37.25 %, branching degree 2.16) and D2 (flexible, 17.20 kDa, HG/RG-I 78.24 %/21.76 %, branching degree 1.33). Hawthorn pectin directly stimulated Dubosiella newyorkensis (D. newyorkensis) and Bifidobacterium bifidum (B. bifidum) growth in vitro. In hyperlipidemic mice, it alleviated dyslipidemia and enriched the abundance of Lactobacillus and Dubosiella. Parallel experiments confirmed that D. newyorkensis supplementation similarly alleviated dyslipidemia and increased Lactobacillus abundance, which was mediated by bacterial acetate production. Notably, only D1 emulated the pectin's prebiotic activity, promoting D. newyorkensis and B. bifidum growth. The high-RG-I D1, with elevated branching and larger Mw, was identified as the key driver of hawthorn pectin's prebiotic effect. These findings highlight that hawthorn pectin, particularly D1, specifically targets probiotic D. newyorkensis to synergize with Lactobacillus against hyperlipidemia.
Collapse
Affiliation(s)
- Qianyun Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Department of Pharmacy, Maternal and Child Health Care And Family Planning Service Center, 620000 Meishan, Sichuan, China
| | - Yubin Liu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yaqin Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macao, China
| | - Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yaqiu Wang
- Aulin College, Northeast Forestry University, 150040 Ha'erbin, China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; South Sichuan Institute of Translation Medicine, 646000 Luzhou, Sichuan, China; School of Pharmacy, Sichuan College of Traditional Chinese Medicine, 621000 Mianyang, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China; The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078 Macao, China.
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000 Luzhou, Sichuan, China; Department of Paediatrics, Luzhou People's Hospital, 646000 Luzhou, Sichuan, China; Department of Paediatric Care, Luzhou People's Hospital, 646000 Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Shin JW, Shin YJ, Lee DY, Kim DH. Alleviation of Helicobacter pylori- or aspirin-induced gastritis and neuroinflammation in mice by Lactococcus lactis and Bifidobacterium longum. Lett Appl Microbiol 2024; 77:ovae128. [PMID: 39668634 DOI: 10.1093/lambio/ovae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Helicobacter pylori (HP) causes gastritis and peptic ulcer. Therefore, we examined whether probiotics Lactococcus lactis P135 and Bifidobacterium longum P142, which inhibited HP growth by 37.9% and 35.3%, respectively, and HP-induced IL-8 expression in KATO III cells by 68.6% and 63.1%, respectively, compared to those of normal controls, could mitigate HP-induced gastritis and psychiatric disorder in mice. Oral administration of P135 and/or P142 alleviated HP- or aspirin-induced gastritis, colitis, neuroinflammation, and depression/cognitive impairment-like behavior. They also suppressed HP infection, neutrophil infiltration, and NF-κB activation in the stomach and TNF-α expression and NF-κB activation in the colon and hippocampus. of P135 and/or P142 alleviated HP- or aspirin-induced gut dysbiosis: they decreased Lachnospiracease, Helicobacteriaceae, and Akkermansiaceae populations and increased Bacteroidaceae and Muribaculaceae populations. These findings suggest that HP growth/inflammation-inhibitory P135 and/or P142 may alleviate gut inflammation (gastritis and colitis) and neuroinflammation through the suppression of neutrophil infiltration, NF-κB activation, and HP growth, thereby leading to the attenuation of systemic inflammation and psychiatric disorder.
Collapse
Affiliation(s)
- Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Zeng R, Gou H, Lau HCH, Yu J. Stomach microbiota in gastric cancer development and clinical implications. Gut 2024; 73:2062-2073. [PMID: 38886045 PMCID: PMC11672014 DOI: 10.1136/gutjnl-2024-332815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a prominent cause of cancer mortality worldwide. A distinctive characteristic of GC is its intimate association with commensal microbial community. Although Helicobacter pylori is widely recognised as an inciting factor of the onset of gastric carcinogenesis, increasing evidence has indicated the substantial involvement of microbes that reside in the gastric mucosa during disease progression. In particular, dysregulation in gastric microbiota could play pivotal roles throughout the whole carcinogenic processes, from the development of precancerous lesions to gastric malignancy. Here, current understanding of the gastric microbiota in GC development is summarised. Potential translational and clinical implications of using gastric microbes for GC diagnosis, prognosis and therapeutics are also evaluated, with further discussion on conceptual haziness and limitations at present. Finally, we highlight that modulating microbes is a novel and promising frontier for the prevention and management of GC, which necessitates future in-depth investigations.
Collapse
Affiliation(s)
- Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Xiao W, Liu G, Chen T, Zhang Y, Lu C. Bifidobacterium bifidum SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation. Biomolecules 2024; 14:742. [PMID: 39062457 PMCID: PMC11274715 DOI: 10.3390/biom14070742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Bifidobacterium bifidum SAM-VI riboswitch undergoes dynamic conformational changes that modulate downstream gene expression. Traditional structural methods such as crystallography capture the bound conformation at high resolution, and additional efforts would reveal details from the dynamic transition. Here, we revealed a transcription-dependent conformation model for Bifidobacterium bifidum SAM-VI riboswitch. In this study, we combine small-angle X-ray scattering, chemical probing, and isothermal titration calorimetry to unveil the ligand-binding properties and conformational changes of the Bifidobacterium bifidum SAM-VI riboswitch and its variants. Our results suggest that the SAM-VI riboswitch contains a pre-organized ligand-binding pocket and stabilizes into the bound conformation upon binding to SAM. Whether the P1 stem formed and variations in length critically influence the conformational dynamics of the SAM-VI riboswitch. Our study provides the basis for artificially engineering the riboswitch by manipulating its peripheral sequences without modifying the SAM-binding core.
Collapse
Affiliation(s)
- Wenwen Xiao
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Ting Chen
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Yunlong Zhang
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| | - Changrui Lu
- College of Biological and Medical Engineering, Donghua University, Shanghai 201620, China; (W.X.); (T.C.); (Y.Z.)
| |
Collapse
|
5
|
Say P, Nimitkul S, Bunnoy A, Na-Nakorn U, Srisapoome P. Effects of the combination of chitosan and Acinetobacter KU011TH on the growth and health performances and disease resistance of juvenile hybrid catfish (Clarias gariepinus × C. macrocephalus). FISH & SHELLFISH IMMUNOLOGY 2023; 142:109177. [PMID: 37863127 DOI: 10.1016/j.fsi.2023.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Aquatic animal health management has become a crucial component in the goal of increasing catfish aquaculture productivity. Additionally, hybrid catfish (Clarias gariepinus × C. macrocephalus) has been promoted as a highly profitable freshwater fish in Asia. Interestingly, the crucial diseases induced by Aeromonas hydrophila have been reported to greatly impede catfish production. To overcome this challenge, the aim was to investigate the effects of the oral administration of potentially synbiotic chitosan (CH) and Acinetobacter KU011TH (AK) on the growth performance, immunological responses, and disease resistance of hybrid catfish against A. hydrophila. The control group was fed a basal diet (A), the diet fed to treatment group B was supplemented with 20 mL of CH/kg diet (B), and the experimental feed fed to groups C-D was mixed with 1 × 108, 1 × 109 and 1 × 1010 CFU/mL AK coated with 20 mL of CH/kg diet. Five different groups of juvenile hybrid catfish were continuously fed the 5 formulated feeds for 4 weeks. The results revealed that all tested feeds did not significantly enhance the hybrid catfish's average daily gain, specific growth rate, feed conversion ratio, hematocrit and erythrocyte counts. Interestingly, the application of CH and AK significantly increased the leukocyte counts, respiratory burst, lysozyme activity, alternative complement pathway hemolytic activity, and bactericidal activity (P < 0.05). The expression levels of the immune-related genes in the whole blood, head kidney, and spleen were significantly increased after CH-AK application (P < 0.05), but this finding was not observed in the liver (P > 0.05). Additionally, after 14 days of A. hydrophila peritoneal injection, the fish in group C showed significantly higher survival rates of approximately 70.0 % compared with the control fish in groups B, D, and E (52.5 %, 40.0 %, 45.0 %, and 45.0 %, respectively) (P < 0.05). These results collectively suggest that short-term application of the diet fed to group C effectively boosted the immune responses and disease resistance of hybrid catfish against A. hydrophila.
Collapse
Affiliation(s)
- Pisey Say
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Sukkrit Nimitkul
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand; Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok, Thailand.
| |
Collapse
|
6
|
Kumar S, Ahmad MF, Nath P, Roy R, Bhattacharjee R, Shama E, Gahatraj I, Sehrawat M, Dasriya V, Dhillon HS, Puniya M, Samtiya M, Dhewa T, Aluko RE, Khedkar GD, Raposo A, Puniya AK. Controlling Intestinal Infections and Digestive Disorders Using Probiotics. J Med Food 2023; 26:705-720. [PMID: 37646629 DOI: 10.1089/jmf.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Priyakshi Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, New Delhi, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
7
|
Sharma P, Phatak SM, Warikoo P, Mathur A, Mahant S, Das K, Das R. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-A systematic review. 3 Biotech 2023; 13:303. [PMID: 37588796 PMCID: PMC10425313 DOI: 10.1007/s13205-023-03734-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Gastroduodenal diseases have prevailed for a long time and more so due to dominance of gut bacteria Helicobacter pylori in most of the cases. But habitation by other gut microbiota in gastroduodenal diseases and the relationship between Helicobacter pylori and gastrointestinal microbiota in different gastroduodenal diseases is somewhat being unravelled in the current times. For this systematic review, we did a literature search of various gastroduodenal diseases and the effect on gut microbiota pertaining to it. A search of the online bibliographic databases PUBMED and PUBMED CENTRAL was carried out to identify articles published between 1977 and May 2022. The analysis of these selected studies highlighted the inhabitation of other gut microbiota such as Fusobacteria, Bacteroidetes, Streptococcaceae, Prevotellaceae, Fusobacteriaceae, and many others. Interplay between these microbiota and H. pylori have also been noted which suggested that gastroduodenal diseases and gut microbiota are intertwined by a symbiotic association regardless of the H. pylori status. The relationship between the gut microbiota and many gastroduodenal diseases, such as gastritis, gastric cancer, lymphomas, and ulcers, demonstrates the dysbiosis of the gut microbiota in both the presence and absence of H. pylori. The evolving ways for eliminating H. pylori are provided along with inhibiting qualities of other species on H. pylori. Most significant member of our gut system is Helicobacter pylori which has been associated with numerous diseases like gastric cancer, gastritis, duodenal ulcer.
Collapse
Affiliation(s)
- Prateek Sharma
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shravani M. Phatak
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Prisha Warikoo
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Akshita Mathur
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Shweta Mahant
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| | - Kunal Das
- Department of Gastroenterology, Yashoda Super Speciality Hospital, Kaushambi, Ghaziabad, Uttar Pradesh India
| | - Rajashree Das
- Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, U.P. India
| |
Collapse
|
8
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Ahn JS, Choi YJ, Kim HB, Chung HJ, Hong ST. Identification of the Intestinal Microbes Associated with Locomotion. Int J Mol Sci 2023; 24:11392. [PMID: 37511151 PMCID: PMC10380270 DOI: 10.3390/ijms241411392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Given the impact of the gut microbiome on human physiology and aging, it is possible that the gut microbiome may affect locomotion in the same way as the host's own genes. There is not yet any direct evidence linking the gut microbiome to locomotion, though there are some potential connections, such as regular physical activity and the immune system. In this study, we demonstrate that the gut microbiome can contribute differently to locomotion. We remodeled the original gut microbiome of mice through fecal microbiota transplantation (FMT) using human feces and compared the changes in locomotion of the same mice before and three months after FMT. We found that FMT affected locomotion in three different ways: positive, none (the same), and negative. Analysis of the phylogenesis, α-diversities, and β-diversities of the gut microbiome in the three groups showed that a more diverse group of intestinal microbes was established after FMT in each of the three groups, indicating that the human gut microbiome is more diverse than that of mice. The FMT-remodeled gut microbiome in each group was also different from each other. Fold change and linear correlation analyses identified Lacrimispora indolis, Pseudoflavonifractor phocaeensis, and Alistipes senegalensis in the gut microbiome as positive contributors to locomotion, while Sphingobacterium cibi, Prevotellamassilia timonensis, Parasutterella excrementihominis, Faecalibaculum rodentium, and Muribaculum intestinale were found to have negative effects. This study not only confirms the presence of gut microbiomes that contribute differently to locomotion, but also explains the mixed results in research on the association between the gut microbiome and locomotion.
Collapse
Affiliation(s)
- Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Han-Byeol Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
10
|
Toquet M, Bataller E, Gomis J, Sánchez A, Toledo-Perona R, De la Fe C, Corrales JC, Gómez-Martín Á. Antibacterial potential of commercial and wild lactic acid bacteria strains isolated from ovine and caprine raw milk against Mycoplasma agalactiae. Front Vet Sci 2023; 10:1197701. [PMID: 37426075 PMCID: PMC10324661 DOI: 10.3389/fvets.2023.1197701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction The complexity of fighting contagious agalactia (CA) has raised the necessity of alternative antimicrobial therapies, such as probiotics. Lactic acid bacteria (LAB) are present in the mammary gland of small ruminants and their antimicrobial effect have been previously described against species like Mycoplasma bovis but never against Mycoplasma agalactiae (Ma). This in vitro study aims to evaluate the antimicrobial activity against Ma of ovine and caprine LAB strains and a human commercial probiotic (L2) of Lactobacillus spp. Methods A total of 63 possible LAB strains were isolated from nine ovine and caprine farms in Spain, three isolates (33B, 248D, and 120B) from the 63 strains were selected, based on their capacity to grow in a specific medium in vitro, for an in vitro experiment to assess their antimicrobial activity against Ma in Ultra High Temperature (UHT) processed goat milk (GM). A women commercial vaginal probiotic was also included in the study. The inoculum of L2 was prepared at a concentration of 3.24 × 108 CFU/mL and the average concentration of the inoculum of the wild LAB varied from 7.9 × 107 to 8.4 × 108 CFU/mL. Results The commercial probiotic L2 significantly reduced the concentration of Ma to 0.000 log CFU/mL (p < 0.001), strain 33B reduced it from 7.185 to 1.279 log CFU/mL (p < 0.001), and 120B from 6.825 to 6.466 log CFU/mL (p < 0.05). Strain 248D presented a bacteriostatic effect in GM. Moreover, the three wild strains and the commercial probiotic produced a significative reduction of the pH (p < 0.001). Discussion This is the first in vivo report of the antimicrobial potential of LAB strains against Ma and its interaction. Our results support possible future alternative strategies to antibiotic therapy, previously not contemplated, to fight CA in small ruminants. Further studies are necessary to elucidate the action mechanisms through which these LAB are able to inhibit Ma and to assess the safety of using these strains in possible in vivo studies.
Collapse
Affiliation(s)
- Marion Toquet
- Microbiological Agents Associated With Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Esther Bataller
- Microbiological Agents Associated With Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Jesús Gomis
- Microbiological Agents Associated With Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Antonio Sánchez
- Ruminant Health Research Group, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Raquel Toledo-Perona
- Microbiological Agents Associated With Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Christian De la Fe
- Ruminant Health Research Group, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Juan Carlos Corrales
- Ruminant Health Research Group, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | - Ángel Gómez-Martín
- Microbiological Agents Associated With Animal Reproduction (ProVaginBIO) Research Group, Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
11
|
Hasna B, Houari H, Koula D, Marina S, Emilia U, Assia B. In Vitro and In Vivo Study of Combined Effect of Some Algerian Medicinal Plants and Probiotics against Helicobacter pylori. Microorganisms 2023; 11:1242. [PMID: 37317215 DOI: 10.3390/microorganisms11051242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Helicobacter pylori causes gastritis, peptic ulcers and gastric cancer and affects more than half of the world's population. Although this infection can have serious consequences, no novel cure or remedy have been discovered, the present therapy still relies on a variety of known antibiotics and anti-secretory agents. In the present study, the potential effect of combinations between methanolic extracts of four Algerian medicinal plants, garlic (Allium sativum), red onion (Allium cepa), cumin (Cuminum cyminum L.) and fenugreek (T. foenum-graecum L.), with different strains of lactic acid bacteria against H. pylori, was investigated. Similarly, the in vivo antibacterial effect of fenugreek extract combined with Bifidobacterium breve on H. pylori colonization potential to confirm the enhanced effect of the mixture was explored. Helicobacter pylori was inhibited by all combined mixtures of extracts and probiotics with varying results. The highest anti-H. pylori activities were found in fenugreek/B. breve, cumin/B. breve, garlic/B. breve and onion/B. breve combinations with inhibition diameters of 29, 26, 23 and 25 mm, respectively. Preliminary studies on the effect of probiotics against H. pylori revealed that the inhibition was due to lactic acid and bacteriocins and it was also related to the presence of phenolic compounds in the studied plants, such as gallic acid, caffeic acid, quercetin and vanillic acid. Fenugreek extract was found to inhibit the growth of H. pylori in a concentration-dependent manner. When H. pylori-infected rats were administered B. breve, the infection rate of H. pylori was significantly reduced, while the combination of B. breve and fenugreek extract effectively inhibited H. pylori. In addition, the B. breve and fenugreek extract mixture significantly reduced gastritis in H. pylori-infected rats. These results suggest that this complex mixture may be an alternative to treating diseases caused by H. pylori infection.
Collapse
Affiliation(s)
- Bouhenni Hasna
- Faculty of Nature and Life Sciences, University of Tiaret, Tiaret 14000, Algeria
| | - Hemida Houari
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria
| | - Doukani Koula
- Faculty of Nature and Life Sciences, University of Tiaret, Tiaret 14000, Algeria
| | - Spinu Marina
- Department of Infectious Diseases, Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ungureanu Emilia
- Department of Infectious Diseases, Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Boumezrag Assia
- Institute of Veterinary Sciences, University of Tiaret, Tiaret 14000, Algeria
| |
Collapse
|
12
|
Cao M, Xue T, Huo H, Zhang X, Wang NN, Yan X, Li C. Spatial transcriptomes and microbiota reveal immune mechanism that respond to pathogen infection in the posterior intestine of Sebastes schlegelii. Open Biol 2023; 13:220302. [PMID: 36974664 PMCID: PMC9944294 DOI: 10.1098/rsob.220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The intestine is a site of immune cell priming at birth. Therefore, spatial transcriptomes were performed to define how the transcriptomic landscape was spatially organized in the posterior intestine of Sebastes schlegelii following Edwardsiella piscicida infection. In the healthy condition, we identified a previously unappreciated molecular regionalization of the posterior intestine. Following bacterial infection, most immune-related genes were identified in mucosa layer. Moreover, investigation of immune-related genes and genes in immune-related KEGG pathways based on spatial transcriptomes shed light on which sections of these genes are in the posterior intestine. Meanwhile, the high expression of genes related to regeneration also indicated that the posterior intestine was responding to the invasion of pathogens by constantly proliferating new cells. In addition, the increasing microbiota communities indicated that these bacteria maintained posterior intestine integrity and shaped the mucosal immune system. Taken together, spatial transcriptomes and microbiota compositions have significant implications for understanding the immune mechanism that responds to E. piscicida infection in the posterior intestine of S. schlegelii, which also provides a theoretical basis for the spatial distribution of immune genes and changes in bacterial flora in other teleosts in the process of resisting pathogens.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Huijun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Ning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
13
|
Mahmood Atiyea Q, wadullah younus R, S .Abdulkareem H, Mahdi Hamad A. Efficacy of zinc oxide nanoparticles and Bifidobacterium bifidum Extraction on anaerobic bacteria isolated from patients with diarrhea. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Infectious acute diarrhea may be prevented with probiotics; because they make up the majority of the colonic flora in breastfed newborns and are likely to contribute to the lower incidence of diarrhea in this population, Bifidobacteria are particularly appealing as probiotics agents. The present study was designed to identify anaerobic bacteria, especially C. difficile the main reason for dysentery associated with antibiotics. Detect the ability of each ZnoNPs and B. bifidum to inhibit bacterial growth. During the period from March to October 2019, (100) children and adults who came to Salah al-deen hospital in Tikrit city participated in the study under the supervision of a physician. All samples were transported using a carry Blair if late one or two hours after collection and culturing. The collected models were also cultured on Xylose Lysine Deoxycholate agar, Salmonella Shigella agar, Eosin methylene blue agar, and MacConkey agar. For initiated diagnoses of the Enterobacteriaceae, Blood agar is used to detect beta-hemolytic isolates, recover enteric bacteria other than Enterobacteriaceae, and evaluate the results of oxidase tests. To diagnose bacterium kinds, biochemical reactions and motility tests were used. Impact of ZnoNPs, and B. bifidum antibiotic In vitro. The results of 100 dysentery feces samples were obtained into (60%) samples for males and (40%) for females. Eighty-two positively impacted anaerobically on growth media like Clostridium complicate agar and MacConkey agar (18%) other than bacteria.
In contrast, negative samples revealed 10 (55.56 percent) samples for males and 8 (44.44 percent) samples for females. The same stool samples were taken and cultured on Clostridium difficile agar and MacConkey agar under anaerobic and ideal incubation conditions. 15% and 67% of isolates appeared on MacConkey agar of the total number of samples, while 18% showed negative growth. Finally, Zn NPs showed their ability to inhibit Clostridium complicated segregate lean on the condensation 5 mg/ml, and it caused the inhibitory effect on Clostridium to complicate by 10-22 of the diameter of inhibition. The Inhibition Zone Dimeter ranged from 8 to 25 mm for isolates when condensation was utilized at 2.5 mg/ml. According to the findings, the widths of the inhibitory zones for isolates of C. difficile containing B. bifidum supernatant mg/ml ranged from 9 to 24 mm.
Keywords: Zinc oxide nanoparticles, Probiotic, Bifidobacterium bifidum, Clostridium difficile
Collapse
Affiliation(s)
- Qanat Mahmood Atiyea
- Department of Biology, College of Science, Tikrit University, Salah al-Din –Iraq
| | | | | | - Arshad Mahdi Hamad
- Department of Biology, College of Science, Tikrit University, Salah al-Din –Iraq
| |
Collapse
|
14
|
Wang Z, Li L, Wang S, Wei J, Qu L, Pan L, Xu K. The role of the gut microbiota and probiotics associated with microbial metabolisms in cancer prevention and therapy. Front Pharmacol 2022; 13:1025860. [PMID: 36452234 PMCID: PMC9702994 DOI: 10.3389/fphar.2022.1025860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Cancer is the second leading cause of elevated mortality worldwide. Thus, the development of drugs and treatments is needed to enhance the survival rate of the cancer-affected population. Recently, gut microbiota research in the healthy development of the human body has garnered widespread attention. Many reports indicate that changes in the gut microbiota are strongly associated with chronic inflammation-related diseases, including colitis, liver disease, and cancer within the intestine and the extraintestinal tract. Different gut bacteria are vital in the occurrence and development of tumors within the gut and extraintestinal tract. The human gut microbiome has significant implications for human physiology, including metabolism, nutrient absorption, and immune function. Moreover, diet and lifestyle habits are involved in the evolution of the human microbiome throughout the lifetime of the host and are involved in drug metabolism. Probiotics are a functional food with a protective role in cancer development in animal models. Probiotics alter the gut microbiota in the host; thus, beneficial bacterial activity is stimulated, and detrimental activity is inhibited. Clinical applications have revealed that some probiotic strains could reduce the occurrence of postoperative inflammation among cancer patients. An association network was constructed by analyzing the previous literature to explore the role of probiotics from the anti-tumor perspective. Therefore, it provides direction and insights for research on tumor treatment.
Collapse
Affiliation(s)
- Zijun Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shunshun Wang
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Wei
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
15
|
Lee D, Lee VMY, Hur SK. Manipulation of the diet-microbiota-brain axis in Alzheimer's disease. Front Neurosci 2022; 16:1042865. [PMID: 36408394 PMCID: PMC9672822 DOI: 10.3389/fnins.2022.1042865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Several studies investigating the pathogenesis of Alzheimer's disease have identified various interdependent constituents contributing to the exacerbation of the disease, including Aβ plaque formation, tau protein hyperphosphorylation, neurofibrillary tangle accumulation, glial inflammation, and the eventual loss of proper neural plasticity. Recently, using various models and human patients, another key factor has been established as an influential determinant in brain homeostasis: the gut-brain axis. The implications of a rapidly aging population and the absence of a definitive cure for Alzheimer's disease have prompted a search for non-pharmaceutical tools, of which gut-modulatory therapies targeting the gut-brain axis have shown promise. Yet multiple recent studies examining changes in human gut flora in response to various probiotics and environmental factors are limited and difficult to generalize; whether the state of the gut microbiota in Alzheimer's disease is a cause of the disease, a result of the disease, or both through numerous feedback loops in the gut-brain axis, remains unclear. However, preliminary findings of longitudinal studies conducted over the past decades have highlighted dietary interventions, especially Mediterranean diets, as preventative measures for Alzheimer's disease by reversing neuroinflammation, modifying the intestinal and blood-brain barrier (BBB), and addressing gut dysbiosis. Conversely, the consumption of Western diets intensifies the progression of Alzheimer's disease through genetic alterations, impaired barrier function, and chronic inflammation. This review aims to support the growing body of experimental and clinical data highlighting specific probiotic strains and particular dietary components in preventing Alzheimer's disease via the gut-brain axis.
Collapse
Affiliation(s)
- Daniel Lee
- Middleton High School, Middleton, WI, United States
| | - Virginia M-Y. Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Seong Kwon Hur
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
16
|
Kononova AG, Kolbasnikov SV, Beldiev SN. The role of probiotics in <i>Helicobacter pylori</i> eradication therapy regimens: current evidence of eff ectiveness. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2022:160-168. [DOI: 10.31146/1682-8658-ecg-200-4-160-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C. Role of the Gut-Brain Axis, Gut Microbial Composition, Diet, and Probiotic Intervention in Parkinson's Disease. Microorganisms 2022; 10:1544. [PMID: 36013962 PMCID: PMC9412530 DOI: 10.3390/microorganisms10081544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative or neuropsychiatric disease, affecting 1% of seniors worldwide. The gut microbiota (GM) is one of the key access controls for most diseases and disorders. Disturbance in the GM creates an imbalance in the function and circulation of metabolites, resulting in unhealthy conditions. Any dysbiosis could affect the function of the gut, consequently disturbing the equilibrium in the intestine, and provoking pro-inflammatory conditions in the gut lumen, which send signals to the central nervous system (CNS) through the vagus enteric nervous system, possibly disturbing the blood-brain barrier. The neuroinflammatory conditions in the brain cause accumulation of α-syn, and progressively develop PD. An important aspect of understanding and treating the disease is access to broad knowledge about the influence of dietary supplements on GM. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Probiotic supplementation improves the function of the CNS, and improves the motor and non-motor symptoms of PD. Probiotic supplementation could be an adjuvant therapeutic method to manage PD. This review summarizes the role of GM in health, the GM-brain axis, the pathogenesis of PD, the role of GM and diet in PD, and the influence of probiotic supplementation on PD. The study encourages further detailed clinical trials in PD patients with probiotics, which aids in determining the involvement of GM, intestinal mediators, and neurological mediators in the treatment or management of PD.
Collapse
Affiliation(s)
- Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | | | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (S.T.); (P.K.); (M.B.)
| |
Collapse
|
18
|
Cruz N, Abernathy GA, Dichosa AEK, Kumar A. The Age of Next-Generation Therapeutic-Microbe Discovery: Exploiting Microbe-Microbe and Host-Microbe Interactions for Disease Prevention. Infect Immun 2022; 90:e0058921. [PMID: 35384688 PMCID: PMC9119102 DOI: 10.1128/iai.00589-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humans are considered "superorganisms," harboring a diverse microbial collective that outnumbers human cells 10 to 1. Complex and gravely understudied host- and microbe-microbe interactions-the product of millions of years of host-microbe coevolution-govern the superorganism in almost every aspect of life functions and overall well-being. Abruptly disrupting these interactions via extrinsic factors has undesirable consequences for the host. On the other hand, supplementing commensal or beneficial microbes may mitigate perturbed interactions or enhance the interactive relationships that ultimately benefit all parties. Hence, immense efforts have focused on dissecting the innumerable host- and microbe-microbe relationships to characterize if a "positive" or "negative" interaction is at play and to exploit such behavior for broader implications. For example, microbiome research has worked to identify and isolate naturally antipathogenic microbes that may offer therapeutic potential either in a direct, one-on-one application or by leveraging its unique metabolic properties. However, the discovery and isolation of such desired therapeutic microbes from complex microbiota have proven challenging. Currently, there is no conventional technique to universally and functionally screen for these microbes. With this said, we first describe in this review the historical (probiotics) and current (fecal microbiota or defined consortia) perspectives on therapeutic microbes, present the discoveries of therapeutic microbes through exploiting microbe-microbe and host-microbe interactions, and detail our team's efforts in discovering therapeutic microbes via our novel microbiome screening platform. We conclude this minireview by briefly discussing challenges and possible solutions with therapeutic microbes' applications and paths ahead for discovery.
Collapse
Affiliation(s)
- Nathan Cruz
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - George A. Abernathy
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Armand E. K. Dichosa
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Anand Kumar
- B-10: Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
19
|
Ma X, Pan Y, Zhao W, Sun P, Zhao J, Yan S, Wang R, Han Y, Liu WH, Tan S, Hung WL. Bifidobacterium infantis strain YLGB-1496 possesses excellent antioxidant and skin barrier-enhancing efficacy in vitro. Exp Dermatol 2022; 31:1089-1094. [PMID: 35483970 DOI: 10.1111/exd.14583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Atopic dermatitis (AD) is a recurring allergic skin disease that has a high incidence. Orally applied Bifidobacteria ameliorate signs of irritated skin and enhance the skin barrier. The present study investigated the safety and efficacy of a topically used cell-free culture supernatant (CFS) from a Bifidobacterium infantis strain using in vitro evaluation methods. The results showed that CFS had strong free radical scavenging activity on DPPH, ABTS, ·OH and O2 -radicals. CFS treatment fundamentally reduced the intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) contents and improved the activities of antioxidant enzymes (CAT, SOD and GSH-Px) in H2 O2 -treated HaCaT cells. Notably, the upregulation of skin physical barrier gene (FLG, LOR, IVL, AQP3 and TGM1) expression and skin antimicrobial peptide gene (CAMP, hBD-2 and hBD-3) expression by CFS might contribute to skin barrier resistance. CFS was non-irritating to the skin and eyes. CFS from the Bifidobacterium infantis strain had strong antioxidant properties on the skin and strengthened skin barrier function, and it was safe for topical use.
Collapse
Affiliation(s)
- Xue Ma
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yao Pan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Peiwen Sun
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinfeng Zhao
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Shiyu Yan
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Rui Wang
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Yuqing Han
- Department of Cosmetics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Key Laboratory of Plant Research and Development, Beijing, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Shengjie Tan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| |
Collapse
|
20
|
Stefańska B, Katzer F, Golińska B, Sobolewska P, Smulski S, Frankiewicz A, Nowak W. Different methods of eubiotic feed additive provision affect the health, performance, fermentation, and metabolic status of dairy calves during the preweaning period. BMC Vet Res 2022; 18:138. [PMID: 35413974 PMCID: PMC9003169 DOI: 10.1186/s12917-022-03239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to evaluate whether different methods of providing eubiotic feed additives to neonatal calves, during the preweaning period, can improve the calves’ health, performance, ruminal fermentation, and metabolic status. Forty-four (3-day-old) Holstein–Friesian dairy calves (22 female and 22 male) were divided into four treatment groups for the duration of the 8-week trial. The eubiotic feed additive consisted of a combination of probiotic Lactobacillus spp. (multiple-strains at a dose of 250 mg/calf/day) and phytobiotics containing rosmarinic acid, as the main bioactive compound (at a dose of 50 mg/calf/day). The groups were named: CON (control, without eubiotic in either the milk replacer or the starter feed), MR (eubiotic in the milk replacer), SF (eubiotic in the starter feed), MRS (eubiotic in both the milk replacer and the starter feed). The individual intake of starter feed and the fecal scores were measured daily, and body weight and biometric measurements were taken weekly until calves were 56 days of age. Blood samples were collected on day 3 and then every 14 days to determine concentrations of insulin-like-growth-factor-I, β-hydroxybutyrate, non-esterified fatty acids, and blood urea nitrogen. Ruminal fluid was collected on days 28 and 56 for short-chain fatty acids, NH3-N, and pH measurements. Results The body weight of the calves of the MR treatment group was higher compared to all other groups on days 28 and 56. Including the eubiotic feed additive in the milk replacer increased average daily gain, starter intake, and total dry matter intake from day 29 to day 56 and the overall experimental period compared to the CON group. The calves with MR treatment had lower fecal scores from days 3 to 28, a number of parasite oocysts/cysts per gram of feces on day 28, and the occurrences of fecal consistency scores of 3 (mild diarrhea) and 4 (severe diarrhea) were 3.2 and 3.0 times lower, respectively, compared with the CON group. The MR group had higher ruminal concentrations of short-chain-fatty-acids, propionate, and butyrate on day 56 than the CON group. Adding eubiotics into milk replacer resulted in the highest concentrations of blood insulin-like-growth-factor-I and β-hydroxybutyrate from days 29 to 56 and the overall experimental period. Conclusion The addition of eubiotic feed additives into the milk replacer can improve health, performance, ruminal fermentation, and biochemical blood indices in dairy calves during the preweaning period.
Collapse
Affiliation(s)
- Barbara Stefańska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, Poznań, Poland.
| | - Frank Katzer
- Department of Disease Control, Moredun Research Institute, Penicuik, UK
| | - Barbara Golińska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, Poznań, Poland
| | - Patrycja Sobolewska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, Poznań, Poland
| | - Sebastian Smulski
- Department of Internal Diseases and Diagnostics, Poznań University of Life Sciences, Poznań, Poland
| | - Andrzej Frankiewicz
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| | - Włodzimierz Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
21
|
Rana D, Salave S, Perla A, Nadkarni A, Kohle S, Jindal AB, Mandoli A, Dwivedi P, Benival D. Bugs as Drugs: Understanding the Linkage between Gut Microbiota and Cancer Treatment Microbiome in Cancer Therapy. Curr Drug Targets 2022; 23:869-888. [PMID: 35264088 DOI: 10.2174/1389450123666220309101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The commensal microbiota is known to regulate host physiology. Dysbiosis or compromised Resilience in the microbial ecology is related to the impending risk of cancer. A potential link between cancer and microbiota is indicated by a lot of evidence. OBJECTIVE The current review explores in detail the various links leading to and /or facilitating oncogenesis, providing sound reasoning or a basis for its utilization as potential therapeutic targets. The present review emphasizes the existing knowledge of the microbiome in cancer and further elaborates on the factors like genetic modifications, effects of dietary components, and environmental agents that are considered to assess the direct and indirect effect of microbes in the process of oncogenesis and on the host's health. Strategies modulating the microbiome and novel biotherapeutics are also discussed. Pharmacomicrobiomics is one such niche accounting for the interplay between the microbiome, xenobiotic, and host responses is also looked upon. METHODS The literature search strategy for this review was conducted by following the methodology of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The method includes the collection of data from different search engines like PubMed, ScienceDirect, SciFinder etc. to get coverage of relevant literature for accumulating appropriate information regarding microbiome, cancer, and their linkages. RESULTS These considerations are made to expand the existing literature on the role of gut microbiota on the host's health, the interaction between host and microbiota, and the reciprocal relationship between the microbiome and modified neoplastic cells. CONCLUSION Potential therapeutic implications of cancer microbiomes that are yet unexplored and have rich therapeutic dividends improving human health are discussed in detail in this review.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Akanksha Nadkarni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Shital Kohle
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Rajasthan, 333031, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences- Jodhpur (AIIMS), 342005, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), 382355, India
| |
Collapse
|
22
|
Guo Y, Li Z, Deng M, Li Y, Liu G, Liu D, Liu Q, Liu Q, Sun B. Effects of a multi-strain probiotic on growth, health, and fecal bacterial flora of neonatal dairy calves. Anim Biosci 2022; 35:204-216. [PMID: 34445849 PMCID: PMC8738947 DOI: 10.5713/ab.21.0084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/29/2021] [Accepted: 07/04/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the effects of dietary supplementation with a multi-strain probiotic (MSP) product containing of Bifidobacterium animalis, Lactobacillus casei, Streptococcus faecalis, and Bacillus cerevisiae on growth, health, and fecal bacterial composition of dairy calves during the first month of life. METHODS Forty Holstein calves (24 female and 16 male) at 2 d of age were grouped by sex and date of birth then randomly assigned to 1 of 4 treatments: milk replacer supplementation with 0 g (0MSP), 2 g (2MSP), 4 g (4MSP), and 6 g (6MSP) MSP per calf per day. RESULTS Supplementation of MSP did not result in any significant differences in parameters of body measurements of calves during the 30 d period. As the dosage of MSP increased, the average daily gain (p = 0.025) and total dry matter intake (p = 0.020) of calves showed a linear increase. The fecal consistency index of the 2MSP, 4MSP, and 6MSP group calves were lower than that of the 0MSP group calves (p = 0.003). As the dosage of MSP increased, the concentrations of lactate dehydrogenase (p = 0.068) and aspartate aminotransferase (p = 0.081) in serum tended to decrease, whereas the concentration of total cholesterol increased quadratically (p = 0.021). The relative abundance of Dorea in feces was lower (p = 0.011) in the 2MSP, 4MSP, and 6MSP group calves than that in the 0MSP group calves. The relative abundance of Dorea (p = 0.001), Faecalibacterium (p = 0.050), and Mitsuokella (p = 0.030) decreased linearly, whereas the relative abundance of Prevotella tended to increase linearly as the dosage of MSP increased (p = 0.058). CONCLUSION The MSP product can be used to reduce the diarrhea, improve the performance, and alter the composition of the fecal bacteria in neonatal dairy calves under the commercial conditions.
Collapse
Affiliation(s)
- Yongqing Guo
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Zheng Li
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Ming Deng
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Yaokun Li
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Guangbin Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Dewu Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Qihong Liu
- Jiangsu Hengfengqiang Biotechnology Co., Ltd, Nantong 226121,
China
| | - Qingshen Liu
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| | - Baoli Sun
- Guangdong Laboratory of Modern Agricultural Science and Technology in Lingnan, South China Agricultural University, Guangzhou 510642,
China
- College of Animal Science, South China Agricultural University, Guangzhou 510642,
China
| |
Collapse
|
23
|
Nikmaram A. Intestinal Side Effects of Improper Antibiotic Use. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2022; 11:12-17. [DOI: 10.4103/jrptps.jrptps_108_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
When antibiotics emerged, they gained lots of interest on the basis that they could protect and help human beings against a variety of bacterial diseases. These include urinary tract infections, pneumonia, sinus infections, etc. However, they have the potential to cause undeniable side effects including the drastic alter of gut microbiota. Antibiotic-associated diarrhea, nausea, vomiting, and other gastrointestinal side effects could also result from these alterations in gut microbiota. To diminish these side effects, the use of probiotics was proposed. Probiotics are defined as live microorganisms that have health benefits for the host by countervailing the bacteria which were lost in the gut, and they can be gained through different resources such as supplemented capsules and foods (especially dairy products). In this review, we discussed the antibiotic-associated side effects which can be treated or prevented by consuming probiotic foods.
Collapse
|
24
|
Keikha M, Karbalaei M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol 2021; 21:388. [PMID: 34670526 PMCID: PMC8527827 DOI: 10.1186/s12876-021-01977-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the causative agent of stomach diseases such as duodenal ulcer and gastric cancer, in this regard incomplete eradication of this bacterium has become to a serious concern. Probiotics are a group of the beneficial bacteria which increase the cure rate of H. pylori infections through various mechanisms such as competitive inhibition, co-aggregation ability, enhancing mucus production, production of bacteriocins, and modulating immune response. RESULT In this study, according to the received articles, the anti-H. pylori activities of probiotics were reviewed. Based on studies, administration of standard antibiotic therapy combined with probiotics plays an important role in the effective treatment of H. pylori infection. According to the literature, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus rhamnosus GG, and Saccharomyces boulardii can effectively eradicate H. pylori infection. Our results showed that in addition to decrease gastrointestinal symptoms, probiotics can reduce the side effects of antibiotics (especially diarrhea) by altering the intestinal microbiome. CONCLUSION Nevertheless, antagonist activities of probiotics are H. pylori strain-specific. In general, these bacteria can be used for therapeutic purposes such as adjuvant therapy, drug-delivery system, as well as enhancing immune system against H. pylori infection.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
25
|
Khan S, Sharaf M, Ahmed I, Khan TU, Shabana S, Arif M, Kazmi SSUH, Liu C. Potential utility of nano-based treatment approaches to address the risk of Helicobacter pylori. Expert Rev Anti Infect Ther 2021; 20:407-424. [PMID: 34658307 DOI: 10.1080/14787210.2022.1990041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) has occupied a significant place among infectious pathogens and it has been documented as a leading challenge due to its higher resistance to the commonly used drugs, higher adaptability, and lower targeting specificity of the available drugs. AREAS COVERED New treatment strategies are urgently needed in order to improve the current advancement in modern medicine. Nanocarriers have gained an advantage of drug encapsulation and high retention time in the stomach with a prolonged drug release rate at the targeted site. This article aims to highlight the recent advances in nanotechnology with special emphasis on metallic, polymeric, lipid, membrane coated, and target-specific nanoparticles (NPs), as well as, natural products for treating H. pylori infection. We discussed a comprehensive approach to understand H. pylori infection and elicits to rethink about the increasing threat posed by H. pylori and its treatment strategies. EXPERT OPINION To address these issues, nanotechnology has got huge potential to combat H. pylori infection and has made great progress in the field of biomedicine. Moreover, combinatory studies of natural products and probiotics in conjugation with NPs have proven efficiency against H. pylori infection, with an advantage of lower cytotoxicity, minimal side effects, and stronger antibacterial potential.[Figure: see text].
Collapse
Affiliation(s)
- Sohaib Khan
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Egypt
| | | | | | - Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Muhammad Arif
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
26
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Belkina TV, Averina OV, Savenkova EV, Danilenko VN. Human Intestinal Microbiome and the Immune System: The Role of Probiotics in Shaping an Immune System Unsusceptible to COVID-19 Infection. BIOLOGY BULLETIN REVIEWS 2021. [PMCID: PMC8365270 DOI: 10.1134/s2079086421040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- T. V. Belkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - O. V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - E. V. Savenkova
- International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- International Institute for Strategic Development of Sectoral Economics, Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
| |
Collapse
|
28
|
Al-Yassir F, Khoder G, Sugathan S, Saseedharan P, Al Menhali A, Karam SM. Modulation of Stem Cell Progeny by Probiotics during Regeneration of Gastric Mucosal Erosions. BIOLOGY 2021; 10:596. [PMID: 34203400 PMCID: PMC8301058 DOI: 10.3390/biology10070596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Patients with gastric mucosal erosions are predisposed to chronic gastritis, ulcer or even cancer. The repair of mucosal erosions involves several events including proliferation of gastric epithelial stem cells. The aim of this study was to investigate the effects of the probiotic mixture of De Simone Formulation on gastric epithelial stem cell lineages in mouse models of gastric mucosal erosions. Gastric erosions were induced by a single oral gavage of 80% ethanol containing 15 mg/mL acetylsalicylic acid (5 mL/kg) following a daily dose of probiotic mixture (5 mg/day/mouse) for 10 days. In another protocol, erosions were induced by a daily gavage of acetylsalicylic acid (400 mg/kg/day/mouse) for 5 days before or after daily administration of probiotic mixture for 5 days. Control mice received water gavage for 10 days. All mice were injected with bromodeoxyuridine two hours before sacrifice to label S-phase cells. The stomachs of all mice were processed for histological examination, lectin binding, and immunohistochemical analysis. The results reveal that mice that received probiotics before or after the induction of erosion showed a decrease in erosion index with an increase in gastric epithelial stem/progenitor cell proliferation and enhanced production of mucus, trefoil factors, and ghrelin by mucous and enteroendocrine cell lineages. These mice also showed restoration of the amount of H+,K+-ATPase and pepsinogen involved in the production of the harsh acidic environment by parietal and chief cell lineages. In conclusion, this study demonstrates the beneficial effects of probiotics against gastric mucosal erosion and highlights the involvement and modulation of proliferative stem cells and their multiple glandular epithelial cell lineages.
Collapse
Affiliation(s)
- Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Department of Biological Sciences, Faculty of Science, Debbieh Campus, Beirut Arab University, P.O. Box 11-50-20 Riad El Solh 11072809, Beirut, Lebanon
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| |
Collapse
|
29
|
Chidzwondo F, Mutapi F. Challenge of diagnosing acute infections in poor resource settings in Africa. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent disease outbreaks and acute infections occur in rural and low-income urban areas of Africa, with many health systems unprepared to diagnose and control diseases that are recurrent, endemic or have extended their geographic zone. In this review, we focus on acute infections that can be characterized by sudden onset, rapid progression, severe symptoms and poor prognosis. Consequently, these infections require early diagnosis and intervention. While effective vaccines have been developed against some of these diseases, lack of compliance and accessibility, and the need for repeated or multiple vaccinations mean large populations can remain vulnerable to infection. It follows that there is a need for enhancement of national surveillance and diagnostic capacity to avert morbidity and mortality from acute infections. We discuss the limitations of traditional diagnostic methods and explore the relative merits and applicability of protein-, carbohydrate- and nucleic acid-based rapid diagnostic tests that have been trialled for some infectious diseases. We also discuss the utility and limitations of antibody-based serological diagnostics and explore how systems biology approaches can better inform diagnosis. Lastly, given the complexity and high cost associated with after-service support of emerging technologies, we propose that, for resource-limited settings in Africa, multiplex point-of-care diagnostic tools be tailor-made to detect both recurrent acute infections and endemic infections.
Collapse
|
30
|
Valdivieso-Ugarte M, Plaza-Diaz J, Gomez-Llorente C, Lucas Gómez E, Sabés-Alsina M, Gil Á. In vitro examination of antibacterial and immunomodulatory activities of cinnamon, white thyme, and clove essential oils. J Funct Foods 2021; 81:104436. [DOI: 10.1016/j.jff.2021.104436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Gastrointestinal dysfunction in Parkinson's disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol 2021; 269:1154-1163. [PMID: 33881598 DOI: 10.1007/s00415-021-10567-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Gastrointestinal symptoms and gut dysbiosis may occur before the onset of motor symptoms in Parkinson's disease (PD). Prediagnostic and prodromal features, such as constipation and α-synuclein pathology, can be detected several years before the clinical diagnosis of PD and have the potential to develop as early PD biomarkers. Environmental toxins and gut dysbiosis may trigger oxidative stress and mucosal inflammation, and initiate α-synuclein accumulation in the enteric nervous system, early in PD. Chronic gut inflammation can lead to a leaky gut and systemic inflammation, neuro inflammation, and neuro degeneration via gut-vagus-brain signaling or through blood-brain barrier permeability. Concepts regarding the gut-brain signaling in PD pathogenesis are changing rapidly and more investigation is required. The gut microbiota interacts with the human body by modulating the enteric and central nervous systems, and immune activity. Understanding the immune responses between gut microbiota and human body might help in elucidating the PD pathogenesis. As changes in gut microbiota composition might be associated with different clinical phenotypes of PD, gut microbiota-modulating interventions, such as probiotics and fecal microbiota transplantation (FMT), have the potential to restore the gut dysbiosis, reduce inflammation, and possibly modulate the clinical PD phenotype.
Collapse
|
32
|
Compare D, Sgamato C, Nardone OM, Rocco A, Coccoli P, Laurenza C, Nardone G. Probiotics in Gastrointestinal Diseases: All that Glitters Is Not Gold. Dig Dis 2021; 40:123-132. [PMID: 33752212 DOI: 10.1159/000516023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Multiple lines of evidence now support the notion that gut microbiota can contribute to digestive and extra-digestive diseases. The emergence of these observations enabled to postulate a bacteria-centric paradigm to rethink the treatment of many diseases. The goal of therapy should not be to eradicate the flora but to modify it in a way that leads to symptomatic improvement; thus, the interest in the use of probiotics to modulate microbiota composition has increased worldwide in both community and healthcare settings. SUMMARY The results of published studies are conflicting for most probiotic strains and formulations, and clinicians and consumers need a better understanding of probiotic risks and benefits. Currently, clear guidelines on when to use probiotics and the most effective probiotic for different gastrointestinal conditions are still lacking. Here, we reviewed the studies on the use of probiotics in some diseases of relevant interest to gastroenterologists, such as Helicobacter pylori infection, irritable bowel syndrome, and inflammatory bowel disease. Key Message: Although the evidence is relevant and promising for probiotics in general, and for specific strains and combinations of strains, it is not yet sufficient to draw unequivocal conclusions and clear recommendations.
Collapse
Affiliation(s)
- Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Costantino Sgamato
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Olga Maria Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Carmen Laurenza
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| | - Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology, University Federico II of Naples, Naples, Italy
| |
Collapse
|
33
|
Stefańska B, Sroka J, Katzer F, Goliński P, Nowak W. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Deng Z, Luo XM, Liu J, Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 2020; 10:538077. [PMID: 33102249 PMCID: PMC7546212 DOI: 10.3389/fcimb.2020.538077] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The intestine is a particularly dynamic environment in which the host constantly interacts with trillions of symbiotic bacteria called the microbiota. Using quorum sensing (QS) communication, bacteria can coordinate their social behavior and influence host cell activities in a non-invasive manner. Nowadays, a large amount of research has greatly spurred the understanding of how bacterial QS communication regulates bacterial cooperative behaviors due to coexistence and host-microbe interactions. In this review, we discuss bacterial QS in the gut and its role in biofilm formation. As a biological barrier, the mucosal immune system can effectively prevent pathogenic microorganisms and other immunogenic components from entering the internal environment of the host. We focus on the relationship between biofilm and intestinal mucosal immunity, and how probiotic bacteria may regulate them. This review is to provide a theoretical basis for the development of new techniques including probiotics targeting the intestinal barrier function, thereby improving gut health.
Collapse
Affiliation(s)
- Zhaoxi Deng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Haifeng Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Haifeng Wang
| |
Collapse
|
35
|
Liu D, Zeng L, Yan Z, Jia J, Gao J, Wei Y. The mechanisms and safety of probiotics against toxigenic clostridium difficile. Expert Rev Anti Infect Ther 2020; 18:967-975. [PMID: 32520637 DOI: 10.1080/14787210.2020.1778464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Toxigenic Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea and can induce pseudomembranous colitis and infrequent toxic megacolon, which are potentially fatal. The standard antibiotic therapy for C. difficile infection (CDI) is limited by antibiotics' broad spectrum and further disruptive effects on indigenous microbiota. Probiotics may offer a prospective and alternative strategy for the prevention and treatment of CDI. AREAS COVERED In this article, the mechanisms implying the probiotic effect against C. difficile and the safety profile highlighting the patient groups with inappropriate application of probiotics were reviewed from 2015 to 2020. EXPERT OPINION Although many strains with ability against C. difficile have been reported, the usage of probiotics for CDI prevention and/or treatment is scarce since the number of clinical trials is not sufficient to prove probiotics' efficacy and safety in CDI treatment, especially for premature infant and immunocompromised patient. Especially, there are few well-defined clinical studies supporting safety of probiotics for CDI. A few strains from Lactobacillus and Saccharomyces genus have been studied more extensively than other probiotic strains through clinical trials for CDI. Thus, more clinical intervention studies regarding the benefit and the comprehensive safety assessments of probiotics for CDI are needed.
Collapse
Affiliation(s)
- Dianbin Liu
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Lingbing Zeng
- Department of clinical microbiology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi Province, China
| | - Zhihan Yan
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Junqi Jia
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Jing Gao
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Yanxia Wei
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| |
Collapse
|
36
|
Sharma B, Shukla G. Isolation, Identification, and Characterization of Phytase Producing Probiotic Lactic Acid Bacteria from Neonatal Fecal Samples Having Dephytinization Activity. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1746332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
37
|
Jäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr 2019; 16:62. [PMID: 31864419 PMCID: PMC6925426 DOI: 10.1186/s12970-019-0329-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population.
Collapse
Affiliation(s)
| | - Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
| | | | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | | | - Adel Moussa
- University of Münster, Department of Physics Education, Münster, Germany
| | - Jeremy R. Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN USA
| | - Manfred Lamprecht
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicholas P. West
- School of Medical Science and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B. Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617 Australia
| | | | - Shawn M. Arent
- UofSC Sport Science Lab, Department of Exercise Science, University of South Carolina, Columbia, SC USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | | | | | | | | | - Douglas S. Kalman
- Scientific Affairs. Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario Canada
| | - Jamie N. Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, UK
| | | | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
38
|
Turroni F, Duranti S, Milani C, Lugli GA, van Sinderen D, Ventura M. Bifidobacterium bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms 2019; 7:microorganisms7110544. [PMID: 31717486 PMCID: PMC6920858 DOI: 10.3390/microorganisms7110544] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
Bifidobacteria typically represent the most abundant bacteria of the human gut microbiota in healthy breast-fed infants. Members of the Bifidobacterium bifidum species constitute one of the dominant taxa amongst these bifidobacterial communities and have been shown to display notable physiological and genetic features encompassing adhesion to epithelia as well as metabolism of host-derived glycans. In the current review, we discuss current knowledge concerning particular biological characteristics of the B. bifidum species that support its specific adaptation to the human gut and their implications in terms of supporting host health.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
- Correspondence:
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
- APC Microbiome Institute, University College Cork, T12 YT20 Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.D.); (C.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
39
|
Din AU, Hassan A, Zhu Y, Yin T, Gregersen H, Wang G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol 2019; 103:9217-9228. [PMID: 31655880 DOI: 10.1007/s00253-019-10142-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a major cause of mortalities and morbidities worldwide. It is associated with hyperlipidemia and inflammation, and become chronic by triggering metabolites in different metabolic pathways. Disturbance in the human gut microbiota is now considered a critical factor in the atherosclerosis. Trimethylamine-N-oxide (TMAO) attracts attention and is regarded as a vital contributor in the development of atherosclerosis. TMAO is generated from its dietary precursors choline, carnitine, and phosphatidylcholine by gut microbiota into an intermediate compound known as trimethylamine (TMA), which is then oxidized into TMAO by hepatic flavin monooxygenases. The present review focus on advances in TMAO preventing strategies through probiotics, including, modulation of gut microbiome, metabolomics profile, miRNA, or probiotic antagonistic abilities. Furthermore, possible recommendations based on relevant literature have been presented, which could be applied in probiotics and atherosclerosis-preventing strategies.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yuan Zhu
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tieying Yin
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Hans Gregersen
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
40
|
Bifidobacterium sp as Probiotic Agent - Roles and Applications. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
41
|
Brandi J, Di Carlo C, Manfredi M, Federici F, Bazaj A, Rizzi E, Cornaglia G, Manna L, Marengo E, Cecconi D. Investigating the Proteomic Profile of HT-29 Colon Cancer Cells After Lactobacillus kefiri SGL 13 Exposure Using the SWATH Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1690-1699. [PMID: 31309410 DOI: 10.1007/s13361-019-02268-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Despite some studies revealed that kefir acts on different cancers, such as colorectal cancer, the proteomic changes that occur in the colon cancer cells remain to be explored. In this study, the proteomic analysis was combined with determination of kefir characteristics (e.g., adhesion capacity, gastrointestinal and antibiotic resistances), in order to confirm its use as a probiotic. Therefore, a label-free strategy based on SWATH-MS was applied to investigate the proteomic profile of HT-29 cells after exposure for 24 h to a specific strain of Lactobacillus kefiri named SGL 13. We identified a total of 60 differentially expressed proteins in HT-29 cells, among which most are located into the extracellular exosome, playing important/crucial roles in translation and cell adhesion, as indicated by the enrichment analysis. The eIF2 and retinoid X receptor activation pathways appeared to be correlated with the anti-tumoral effect of SGL 13. Immunoblot analysis showed an increase in Bax and a decrease in caspase 3 and mutant p53, and ELISA assay revealed inhibition of IL-8 secretion from HT-29 cells stimulated with LPS upon SGL 13 treatment, suggesting pro-apoptotic and anti-inflammatory properties of kefir. In conclusion, the results of this study, the first of its kind using co-culture of kefir and colon cancer cells, demonstrate that L. kefiri SGL 13 possesses probiotic potency and contribute to elucidate the molecular mechanisms involved in the L. kefiri-colon cancer cell interactions.
Collapse
Affiliation(s)
- Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Marcello Manfredi
- ISALIT s.r.l., Novara, Italy
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Alda Bazaj
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Eleonora Rizzi
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Giuseppe Cornaglia
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Laura Manna
- Sintal Dietetics s.r.l., Castelnuovo Vomano, Teramo, Italy
| | - Emilio Marengo
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, Novara, Italy
- Department of Sciences and Technological Innovation, University of Eastern Piedmont, Alessandria, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
42
|
Gazerani P. Probiotics for Parkinson's Disease. Int J Mol Sci 2019; 20:E4121. [PMID: 31450864 PMCID: PMC6747430 DOI: 10.3390/ijms20174121] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurological disorder classically characterized by impairments in motor system function associated with loss of dopaminergic neurons in the substantia nigra. After almost 200 years since the first description of PD by James Parkinson, unraveling the complexity of PD continues to evolve. It is now recognized that an interplay between genetic and environmental factors influences a diverse range of cellular processes, reflecting on other clinical features including non-motor symptoms. This has consequently highlighted the extensive value of early clinical diagnosis to reduce difficulties of later stage management of PD. Advancement in understanding of PD has made remarkable progress in introducing new tools and strategies such as stem cell therapy and deep brain stimulation. A link between alterations in gut microbiota and PD has also opened a new line. Evidence exists of a bidirectional pathway between the gastrointestinal tract and the central nervous system. Probiotics, prebiotics and synbiotics are being examined that might influence gut-brain axis by altering gut microbiota composition, enteric nervous system, and CNS. This review provides status on use of probiotics for PD. Limitations and future directions will also be addressed to promote further research considering use of probiotics for PD.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine: Department of Health Science and Technology, Faculty of Medicine, Aalborg University,Frederik Bajers Vej 3B, 9220 Aalborg East, Denmark.
| |
Collapse
|
43
|
Santacroce L, Charitos IA, Bottalico L. A successful history: probiotics and their potential as antimicrobials. Expert Rev Anti Infect Ther 2019; 17:635-645. [PMID: 31318576 DOI: 10.1080/14787210.2019.1645597] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Probiotics are living, non-pathogenic microorganisms (bacteria) that enter through diet in the human body, live during their passage through the gastrointestinal (GI) tract and are beneficial to health. They have become popular in recent years as a way of improving human health through nutrition. This review aims to discuss the efficacy of probiotics for the supportive therapy of certain clinical conditions, especially infectious diseases, as reported in a number of studies, even though some concerns about their safety still remain. Areas covered: This paper will review the history of probiotics, from ancient ages to date, and the evolution of their use in clinical practice. The study is based on both personal professional experience of the authors and a comprehensive literature analysis, including old documents from libraries, searching the related biological and clinical data on Scopus, Web of Science, PubMed, EMBASE, also using the 'cited by' and 'similar articles' options available in PubMed. Expert opinion: Not all researchers agree about the safety and real efficacy of probiotics in common conditions, especially infective diseases. However, the use of probiotics for clinical conditions that may be improved by consumption of these dietary supplements should be considered as a possible supportive therapy in select patients.
Collapse
Affiliation(s)
- Luigi Santacroce
- a Ionian Department (DJSGEM), Microbiology and Virology Laboratory, University of Bari , Bari , Italy
| | | | | |
Collapse
|
44
|
Eslami M, Yousefi B, Kokhaei P, Jazayeri Moghadas A, Sadighi Moghadam B, Arabkari V, Niazi Z. Are probiotics useful for therapy of Helicobacter pylori diseases? Comp Immunol Microbiol Infect Dis 2019; 64:99-108. [PMID: 31174707 DOI: 10.1016/j.cimid.2019.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
|
45
|
Zhang S, Shi D, Li M, Li Y, Wang X, Li W. The relationship between gastric microbiota and gastric disease. Scand J Gastroenterol 2019; 54:391-396. [PMID: 30945954 DOI: 10.1080/00365521.2019.1591499] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditionally, the stomach was believed to be a sterile organ unsuitable for microbiota growth. However, the discovery of H. pylori subverted this conception. With the development of molecular techniques, an abundance of microbiota of great diversity was found in the stomach. In addition, various lines of evidence suggest that the gastric microbiota plays a critical role in the development and progression of the gastric disease.The gastrointestinal microbiome plays an important role in various physiologic and pathologic processes.
Collapse
Affiliation(s)
- Shuyi Zhang
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Dan Shi
- b Tianjin Medical University Graduate School , Tianjin , China
| | - Muran Li
- c Department of gastroenterology , Tianjin Union Medical Center , Tianjin , China
| | - Yanru Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China
| | - Ximo Wang
- d Tianjin Clinical Medicine Research Centre for ITCWM Acute abdomen Tianjin Hospital of ITCWM Nankai Hospital , Tianjin , China
| | - Wen Li
- a Endoscopy Center, Tianjin Union Medical Center , Tianjin , China.,b Tianjin Medical University Graduate School , Tianjin , China
| |
Collapse
|
46
|
Adhikari P, Lee CH, Cosby DE, Cox NA, Kim WK. Effect of probiotics on fecal excretion, colonization in internal organs and immune gene expression in the ileum of laying hens challenged with Salmonella Enteritidis. Poult Sci 2019; 98:1235-1242. [PMID: 30265331 DOI: 10.3382/ps/pey443] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/31/2018] [Indexed: 01/27/2023] Open
Abstract
A study was conducted to evaluate the supplementation of probiotics on Salmonella colonization in the ceca and various internal organs as well as immune response in laying hens challenged with Salmonella enterica serovar Enteritidis (SE). Thirty-two 46-wk-old White Leghorns (W-36) were housed individually in wired laying cages under 16L:8D lighting schedule. Hens were challenged individually with nalidixic acid resistant Salmonella Enteritidis (SENAR) after which time they were grouped into four treatments: T1 = SENAR unchallenged control, T2 = SENAR challenged control, T3 = SENAR challenged + 0.05% probiotics (Lactobacillus plantarum), and T4 = SENAR challenged + 0.1% probiotics. All hens, including T1, were euthanized and sampled for the liver with gall bladder (L/GB), ileum, ovary, spleen, and ceca on 7-days post-infection (dpi). Fecal screening was performed on individual hens at both 3 and 6 dpi. No difference was detected between the treatments in cecal SENAR enumeration, and the mean log 10 cfu/gm of SENAR in the ceca was 3.7 for all three treatments. The prevalence of SENAR was lowest for ovary in all treatments and was highest in the spleen. However, there were no significant differences among the treatments in the internal organs. There was no significant difference in the fecal shedding among the treatments on either 3 or 6 dpi, with incidence of positive feces higher at 3 dpi compared to 6 dpi (100 vs. 70% to 80%). SENAR challenge resulted in significant upregulation (P < 0.05) of interleukin (IL)-1β, 6, 10, interferon gamma (IFN-γ), and toll-like receptor (TLR)-4 mRNA expression. Highest level of probiotics resulted in a significant decrease in IFN-γ and elevation of IL-6 and IL-10 gene expression in the ileum. However, IL-1B and TLR-4 gene expression were not different from the SENAR challenge control. This study reveals that there was important regulation of immune genes by probiotics supplementation.
Collapse
Affiliation(s)
- P Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, United States of America
| | - C H Lee
- Genebiotech Co., Ltd., Seoul, Republic of Korea
| | - D E Cosby
- USDA, ARS, The U.S. National Poultry Research Center, Athens, Georgia 30605, United States of America
| | - N A Cox
- USDA, ARS, The U.S. National Poultry Research Center, Athens, Georgia 30605, United States of America
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, Georgia 30602, United States of America
| |
Collapse
|
47
|
Raabis S, Li W, Cersosimo L. Effects and immune responses of probiotic treatment in ruminants. Vet Immunol Immunopathol 2019; 208:58-66. [PMID: 30712793 PMCID: PMC6526955 DOI: 10.1016/j.vetimm.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/25/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Gut microbial colonization and establishment are vital to ruminant health and production. This review article focuses on current knowledge and methods used to understand and manipulate the gut microbial community in ruminant animals, with a special focus on probiotics treatment. This review highlights the most promising of studies in this area, including gut microbial colonization and establishment, effect of gastrointestinal tract microbial community on host mucosal innate immune function, impact of feeding strategies on gut microbial community, current probiotic treatments in ruminants, methods to manipulate the gut microbiota and associated antimicrobial compounds, and models and cell lines used in understanding the host immune response to probiotic treatments. As a lot of work in this area was done in humans and mice, this review article also includes up-to-date knowledge from relevant studies in human and mouse models. This review is a useful resource for scientists working in the areas of ruminant nutrition and health, and to researchers investigating the microbial ecology and its relation to animal health.
Collapse
Affiliation(s)
- Sarah Raabis
- School of Veterinary Medicine, University of Wisconsin-Madison, United States
| | - Wenli Li
- Dairy Forage Research Center, Agricultural Research Service, USDA, 1925 Linden Drive, Madison, WI, 53706, United States.
| | - Laura Cersosimo
- University of Florida, Department of Animal Sciences, Gainesville, FL, United States
| |
Collapse
|
48
|
Probiotics: How Effective Are They in the Fight against Obesity? Nutrients 2019; 11:nu11020258. [PMID: 30678355 PMCID: PMC6412733 DOI: 10.3390/nu11020258] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023] Open
Abstract
Obesity has been associated with structural and functional changes in the gut microbiota. The abundance in, and diversity of, certain bacteria may favor energy harvest and metabolic pathways leading to obesity. Therefore, gut microbiota has become a potential target that can be manipulated to obtain optimal health. Probiotics have been shown to influence the composition of the gut microbiota, improve gut integrity, and restore the microbial shifts characteristic of obesity. Based on physical and biochemical parameters, metabolic and inflammatory markers, and alterations in gut microbe diversity, animal studies revealed beneficial results in obese models whereas the results in humans are sparse and inconsistent. Thus, the purpose of this review is to present evidence from animal studies and human clinical trials demonstrating the effects of various probiotic strains and their potential efficacy in improving obesity and associated metabolic dysfunctions. Furthermore, the review discusses current gaps in our understanding of how probiotics modulate gut microflora to protect against obesity. Finally, we propose future studies and methodological approaches that may shed light on the challenges facing the scientific community in deciphering the host–bacteria interaction in obesity.
Collapse
|
49
|
Thinbanmai T, Lulitanond V, Mayo B, Lulitanond A, Panya M. Cloning and expression of enterovirus 71 capsid protein 1 in a probiotic Bifidobacterium pseudocatenulatum. Lett Appl Microbiol 2018; 68:9-16. [PMID: 30357884 DOI: 10.1111/lam.13089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
This study investigated cloning and expression of enterovirus 71 viral capsid protein 1 (EV71-VP1) in Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) M115. To achieve this, a codon-optimized gene coding for EV71-VP1 was analysed, designed, synthesized and cloned into a plasmid vector flanked by a transcriptional promoter and terminator sequences. The promoter was based on that of P919, a constitutive promoter of the gene encoding the large ribosomal protein of B. bifidum BGN4, while the terminator was based on that of the peptidase N gene of Lactococcus lactis. The construct was amplified in Escherichia coli XL1-blue and then transferred into B. pseudocatenulatum M115 by electrotransformation. Western blot analysis revealed that the EV71-VP1 was intracellularly expressed in B. pseudocatenulatum M115 under the control of the selected heterologous promoter. In addition, plasmid stability analysis showed the construct was maintained stably for more than 160 generations, enough for most future applications. The results derived from this study open the possibility to utilize the bacterium carrying a specific expression plasmid as cell factory for the production of proteins with high commercial and health-promoting value. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the first successful expression of a codon-optimized gene coding for enterovirus 71 viral capsid protein 1 (EV71-VP1) in Bifidobacterium pseudocatenulatum M115, a novel probiotic strain isolated from human intestines. The EV71-VP1 was constitutively expressed under the control of P919 promoter derived from B. bifidum BGN4 in the cytoplasm of bacterial cells supporting the use of heterologous promoter and terminator sequences for viral gene expression in Bifidobacterium species.
Collapse
Affiliation(s)
- T Thinbanmai
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - V Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - B Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - A Lulitanond
- Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - M Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
50
|
Fang X. Microbial treatment: the potential application for Parkinson's disease. Neurol Sci 2018; 40:51-58. [PMID: 30415447 DOI: 10.1007/s10072-018-3641-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the composition of the intestinal flora are associated with the pathophysiology of Parkinson's disease (PD). More importantly, the possible cause-effect links between gut flora and PD pathogenesis have been identified using PD animal models. Recent studies have found that probiotics improve the symptoms associated with constipation in PD patients. In addition, fecal microbiota transplantation (FMT) was recently shown to provide a protective effect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. Effective microbial therapy for PD includes probiotics and FMT. Therefore, microbial therapy may be a useful and novel approach for treatment of PD. In this review, I discuss the use of microbial treatment in PD.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|