1
|
Zeynudin A, Degefa T, Belay T, Mumicha JB, Husen A, Yasin J, Abamecha A, Wieser A, Abayneh M. Detections of antimicrobial resistance phenotypes and extended-spectrum beta-lactamase (ESBL)- producing Salmonella spps and Escherichia coli O157:H7 in raw vegetables and fruits from open markets in Jimma town, Ethiopia and evaluation of hygiene and handling practices of vendors. ONE HEALTH OUTLOOK 2025; 7:2. [PMID: 39891306 PMCID: PMC11786451 DOI: 10.1186/s42522-024-00125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 02/03/2025]
Abstract
OBJECTIVES Despite of the health benefits of consumption of fresh vegetables and fruits, this product could be associated with food-borne bacterial pathogens, including infections with antibiotic-resistant strains especially in developing countries due to limited in knowledge, and hygienic practices. This study was conducted to provide evidence data on the rates of Salmonella spp. and E. coli O157:H7 contamination, the antimicrobial resistance profile, and extended-spectrum β-lactamase (ESBL)-producing strains in fresh vegetables and fruits sold in open-air markets at Jimma town, southwest Ethiopia. In addition, this study provided data on the hygiene and handling practices of vendors, which can help as impute to improve food safety and safeguard public health. A total of 242 salad samples were collected from three different kebeles and examined for the presence of Salmonella spp. and E. coli O157:H7 in the microbiology laboratory of Jimma University by using conventional microbiological techniques. RESULTS Out of 242 samples tested, 12.8% (31/242) were contaminated with Salmonella spp. and E. coli O157. Of these, Salmonella spp. was detected in 10.7% (26/242) of the tested samples, whereas Escherichia coli O157:H7 was found in 2.1% (5/242) of samples. Fifty-three-point-8% of Salmonella spp. were resistant to ampicillin, 42.3% to co-trimoxazole, 46.2% to tetracycline, and 26.9% resistance was observed against each of ceftriaxone and cefotaxime. 40% of E. coli O157:H7 isolates were resistant against ampicillin, amoxicillin-clavulanic acid, and co-trimoxazole. Only one isolate was resistant to ceftriaxone and cefotaxime, and no resistance was observed against ceftazidime, gentamicin, ciprofloxacin, chloramphenicol, and meropenem. Four Salmonella spp. and one E. coli O157:H7 isolate with a total of 5/31 (16.1%) isolates were confirmed as the ESBL producers. Multidrug resistance (MDR) was detected in 23.1% of Salmonella and 20.0% of E. coli O157:H7. Hygienic and handling practices of vendors were poor, which could contribute to contamination of vegetables and fruits in the area. CONCLUSIONS Contamination of fresh salad vegetables with pathogenic bacteria could be a food safety concern in the study area. Hence, this finding suggests the need for attention by the concerned bodies to prevent the emergence and transmission of food-borne pathogens and antimicrobial-resistant strains through these food items in the study area.
Collapse
Affiliation(s)
- Ahmed Zeynudin
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tariku Belay
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | | | - Abdusemed Husen
- Department of Oncology, Institute of Health, Jimma University, Jimma, Ethiopia
| | | | - Abdulhakim Abamecha
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig- Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Bacteriology, Max von Pettenkofer-Institute (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Mengistu Abayneh
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
2
|
Ali MG, Abdelhamid AG, Yousef AE. How colonizing alfalfa sprouts modulates the virulence of Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2025; 428:110972. [PMID: 39608275 DOI: 10.1016/j.ijfoodmicro.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC), a significant cause of foodborne illnesses, is often associated with the consumption of fresh produce, including alfalfa sprouts. This study was executed to determine how quickly STEC grows, adapts, and colonizes alfalfa sprouts during production and storage, and whether the pathogen's virulence and infectious doses are affected by physiological adaptation to sprouts as an environment. A reporter STEC O157:H7 EDL933 strain was developed to track the transcription of eae, a virulence gene involved in colonizing human intestinal enterocytes. When the seeds were inoculated with 2.1 × 103 CFU/g of the reporter strain, the pathogen's population increased to 1.5 × 106 CFU/g sprouts within 1.38 days and then remained stable during the remainder of the 5-day sprouting, indicating physiological adaptation to this environment. Seeds were inoculated with ∼108 CFU/g and subsequently treated with 2000 ppm calcium hypochlorite solution, followed by a water-rinse (treated seeds), or just rinsed with water (untreated seeds). After 5 days of sprouting, the resulting fresh sprouts were refrigerated for three days at 4 °C. Sprout samples were collected and treated with 2000 ppm calcium hypochlorite solution and rinsed thoroughly with water before counting internalized STEC, or just water-washed before measuring total STEC. The transcription of eae (normalized to cell count) was the highest on the second day of sprouting, but the transcription of other virulence and stress-related genes varied, with sodA being upregulated in STEC cells. Lethal dose 50 (LD50) to Galleria mellonella, a STEC infection animal model, was lower (i.e., virulence was higher) in total STEC collected from fresh sprouts produced from treated seeds, compared to that from untreated seeds (1.9 × 100 and 6.0 × 101 CFU/larva, respectively). Compared to refrigerated sprouts, the LD50 of STEC from freshly produced sprouts was lower. Based on these findings, it can be concluded that (a) STEC quickly adapts physiologically to sprouts as an environment, (b) transcription of STEC virulence genes changed during sprouts production but generally decreased during refrigeration, and (c) STEC from fresh sprouts grown from sanitizer-treated seeds were more virulent in the animal model, but STEC from refrigerated sprouts were less virulent.
Collapse
Affiliation(s)
- Mostafa G Ali
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Hu X, Lee S, Manohar M, Chen J. The fate of enterohemorrhagic Escherichia coli on alfalfa and fenugreek seeds and sprouts as affected by ascaroside #18 treatments. FOOD BIOSCI 2024; 58:103633. [PMID: 38525271 PMCID: PMC10956886 DOI: 10.1016/j.fbio.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alfalfa and fenugreek sprouts are healthy foods, but they are occasionally contaminated with bacterial pathogens and serve as vehicles for transmitting foodborne illnesses. This study examined the efficacy of ascaroside (ascr)#18 treatment for the control of enterohemorrhagic E. coli (EHEC) growth on sprouts. Commercial alfalfa and fenugreek seeds were decontaminated with 20,000 ppm of NaClO, and residual chlorine was neutralized with Dey-Engley broth. Decontaminated seeds were treated with 1 mM or 1 μM ascr#18, a plant immunity modulator, before being dried and mixed with sandy soil inoculated with E. coli F4546 or BAA-2326 at 104-105 CFU/g. The inoculated seeds were sprouted on 1% water agar at 25ºC for 7 days in the dark. Seed or sprout samples were collected on days 0, 1, 3, 5, and 7 for enumeration of bacterial populations. Data was fit into the general linear model and analyzed using Fisher's least significant different test of the statistical analysis software. Treatment with ascr#18 significantly (P ≤ 0.05) reduced the cell population of EHEC on sprouts. The mean EHEC populations in the 1 mM or 1 μM treatment groups were 3.31 or 1.56 log CFU/g lower compared to the control groups. Besides treatment, sprout seed type and sprouting time were also significant independent variables influencing the growth of EHEC, according to the results of type III error analysis. However, EHEC strain type was not a significant independent variable. The study suggests that ascr#18 could be potentially used to control EHEC contamination and improve the microbial safety of sprouts.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | - Seulgi Lee
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| | | | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA, 30223-1797, USA
| |
Collapse
|
4
|
Thomas GA, Paradell Gil T, Müller CT, Rogers HJ, Berger CN. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol 2024; 117:104389. [PMID: 37919001 DOI: 10.1016/j.fm.2023.104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Gareth A Thomas
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teresa Paradell Gil
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cedric N Berger
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
5
|
Park YJ, Kim SY, Song WJ. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on buckwheat seeds through combination treatment with plasma, vacuum packaging, and hot water. J Appl Microbiol 2023; 134:lxad272. [PMID: 37974046 DOI: 10.1093/jambio/lxad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS The objectives of this study were to evaluate the effect of combination treatment with cold plasma (CP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on buckwheat seeds, and determined the germination rates of seeds and the quality of sprouts following combination treatment. METHODS AND RESULTS Buckwheat seeds inoculated with Salmonella Typhimurium and Listeria monocytogenes were treated with CP, HW, CP + HW, VP + HW, or CP + VP + HW. The germination rates of the HW-, CP + HW-, VP + HW-, and CP + VP + HW-treated seeds and the antioxidant activities and rutin contents of the CP + HW- and CP + VP + HW-treated sprouts were determined. HW, CP + HW, and CP + VP + HW were found to reduce the levels of the two pathogens to below the detection limit (1.0 log CFU g-1) at 70°C. However, HW and CP + HW significantly reduced the germination rate of buckwheat seeds. CP + VP + HW did not affect the germination rate of seeds nor the antioxidant activities and rutin content of buckwheat sprouts. CONCLUSIONS These results indicate that CP + VP + HW can be used as a novel control method to reduce foodborne pathogens in seeds without causing quality deterioration.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Su-Yeon Kim
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Won-Jae Song
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
6
|
Dolores Arista-Regalado A, Barba-León J, Humberto Bustamante V, Alberto Flores-Valdez M, Gaona J, Juliana Fajardo-Guerrero M. hilD is required for the active internalization of Salmonella Newport into cherry tomatoes. J Food Prot 2023; 86:100085. [PMID: 37003533 DOI: 10.1016/j.jfp.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Salmonella enterica is a foodborne pathogen that can be internalized into fresh produce. Most of the Salmonella virulence genes are clustered in regions denominated Salmonella Pathogenicity Islands (SPI). SPI-1 encodes a Type Three Secretion System (T3SS-1) and effector proteins that allow the internalization of Salmonella into animal cells. HilD is a transcriptional regulator that induces expression of SPI-1 genes and other related virulence genes located outside of this island. Here, we assessed the role of hilD in the internalization of Salmonella Newport and Typhimurium into cherry tomatoes, by evaluating either an isolate from an avocado orchard, S. Newport-45, and the laboratory strain S. Typhimurium SL1344 and their isogenic mutants in hilD. The internalization of these bacteria was carried out by using a temperature gradient of 12 °C. The transcription of hilD and invA was tested by qRT-PCR experiments. Our results show that S. Newport-45 hilD mutant viable cells obtained from the interior of the fruit were decreased (2.7-fold), compared with those observed for S. Typhimurium SL1344. Interestingly, at 3 days post-inoculation, the cells recovered from S. Newport-45 hilD mutant were similar to those recovered from all the strains evaluated, suggesting that hilD is required only for the initial internalization of S. Newport.
Collapse
|
7
|
Zhao X, Sun Y, Ma Y, Xu Y, Guan H, Wang D. Research advances on the contamination of vegetables by Enterohemorrhagic Escherichia coli: pathways, processes and interaction. Crit Rev Food Sci Nutr 2022; 64:4833-4847. [PMID: 36377729 DOI: 10.1080/10408398.2022.2146045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterohemorrhagic Escherichia coli is considered one of the primary bacterial pathogens that cause foodborne diseases because it can survive in meat, vegetables and so on. Understanding of the effect of vegetable characteristics on the adhesion and proliferation process of EHEC is necessary to develop control measures. In this review, the amount and methods of adhesion, the internalization pathway and proliferation process of EHEC have been described during the vegetable contamination. Types, cultivars, tissue characteristics, leaf age, and damage degree can affect EHEC adhesion on vegetables. EHEC cells contaminate the root surface of vegetables through soil and further internalize. It can also contaminate the stem scar tissue of vegetables by rain or irrigation water and internalize the vertical axis, as well as the stomata, necrotic lesions and damaged tissues of vegetable leaves. After EHEC adhered to the vegetables, they may further proliferate and form biofilms. Leaf and fruit tissues were more sensitive to biofilm formation, and shedding rate of biofilms on epidermis tissue was faster. Insights into the mechanisms of vegetable contamination by EHEC, including the role of exopolysaccharides and proteins responsible for movement, adhesion and oxidative stress response could reveal the molecular mechanism by which EHEC contaminates vegetables.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yeting Sun
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yujia Xu
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongyang Guan
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
8
|
Cold plasma effects on the nutrients and microbiological quality of sprouts. Food Res Int 2022; 159:111655. [DOI: 10.1016/j.foodres.2022.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
|
9
|
Fu Y, Bhunia AK, Yao Y. Alginate-based antimicrobial coating reduces pathogens on alfalfa seeds and sprouts. Food Microbiol 2022; 103:103954. [DOI: 10.1016/j.fm.2021.103954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/17/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
|
10
|
Miyahira RF, Antunes AEC. Bacteriological safety of sprouts: A brief review. Int J Food Microbiol 2021; 352:109266. [PMID: 34111728 DOI: 10.1016/j.ijfoodmicro.2021.109266] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/01/2022]
Abstract
The germination process causes changes in the chemical composition of seeds that improves the nutritional value of sprouts, while decreasing their microbiological safety, since the germination conditions are ideal for bacterial growth as well. This review explores the bacteriological safety of sprouts and their involvement in foodborne illness outbreaks, worldwide. Additionally, approaches to improve the shelf-life and microbiological safety of sprouts are discussed. According to the literature, sprout consumption is associated with more than 60 outbreaks of foodborne illness worldwide, since 1988. Alfalfa sprouts were most commonly involved in outbreaks and the most commonly implicated pathogens were Salmonella and pathogenic Escherichia coli (especially, Shiga toxin producing E. coli). In the pre-harvest stage, the implementation of good agricultural practices is an important tool for producing high-quality seeds. In the post-harvest stage, several methods of seed decontamination are used commercially, or have been investigated by researchers. After germination, seedlings should be kept under refrigeration and, if possible, cooked before consumption. Finally, microbiological analyses should be performed at all stages to monitor the hygiene of the sprout production process.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | | |
Collapse
|
11
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Machado-Moreira B, Tiwari BK, Richards KG, Abram F, Burgess CM. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol 2020; 96:103708. [PMID: 33494890 DOI: 10.1016/j.fm.2020.103708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Microbial contamination of fresh produce is a major public health concern, with the number of associated disease outbreaks increasing in recent years. The consumption of sprouted beans and seeds is of particular concern, as these foodstuffs are generally consumed raw, and are produced in conditions favourable for the growth of zoonotic pathogens, if present in seeds prior to sprouting or in irrigation water. This work aimed to evaluate the activity of plasma activated water (PAW) as a disinfecting agent for alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds, during seed soaking. Each seed type was inoculated with Escherichia coli O157, E. coli O104, Listeria monocytogenes or Salmonella Montevideo, and treated with PAW for different times. A combination of PAW and ultrasound treatment was also evaluated. The germination and growth rate of both seeds were assessed after PAW treatments. PAW was demonstrated to have disinfecting ability on sprouted seeds, with reductions of up to Log10 1.67 cfu/g in alfalfa seeds inoculated with E. coli O104, and a reduction of Log10 1.76 cfu/g for mung bean seeds inoculated with E. coli O157 observed. The germination and growth rate of alfalfa and mung bean sprouts were not affected by the PAW treatments. The combination of a PAW treatment and ultrasound resulted in increased antimicrobial activity, with a reduction of Log10 3.48 cfu/g of S. Montevideo in mung bean seeds observed. These results demonstrate the potential for PAW to be used for the inactivation of pathogenic microorganisms which may be present on sprouted seeds and beans, thereby providing greater assurance of produce safety.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | | - Karl G Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
13
|
S. van Overbeek L, Lombaers-van der Plas C, van der Zouwen P. The Role of Pea ( Pisum sativum) Seeds in Transmission of Entero-Aggregative Escherichia coli to Growing Plants. Microorganisms 2020; 8:microorganisms8091271. [PMID: 32825568 PMCID: PMC7565074 DOI: 10.3390/microorganisms8091271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Crop plants can become contaminated with human pathogenic bacteria in agro-production systems. Some of the transmission routes of human pathogens to growing plants are well explored such as water, manure and soil, whereas others are less explored such as seeds. Fenugreek seeds contaminated with the entero-hemorrhagic Escherichia coli O104:H4 were suspected to be the principle vectors for transmission of the pathogen to sprouts at the food-borne disease outbreak in Hamburg and surrounding area in 2011. In this study we raised the questions of whether cells of the entero-aggregative E. coli O104:H4 strain 55989 is capable of colonizing developing plants from seeds and if it would be possible that, via plant internalization, these cells can reach the developing embryonic tissue of the next generation of seeds. To address these questions, we followed the fate of strain 55989 and of two other E. coli strains from artificially contaminated seeds to growing plants, and from developing flower tissue to mature seeds upon proximate introductions to the plant reproductive organs. Escherichia coli strains differing in origin, adherence properties to epithelial cells, and virulence profile were used in our experimentation to relate eventual differences in seed and plant colonization to typical E. coli properties. Experiments were conducted under realistic growth circumstances in greenhouse and open field settings. Entero-aggregative E. coli strain 55989 and the two other E. coli strains were able to colonize the root compartment of pea plants from inoculated seeds. In roots and rhizosphere soil, the strains could persist until the senescent stage of plant growth, when seeds had ripened. Colonization of the above-soil parts was only temporary at the start of plant growth for all three E. coli strains and, therefore, the conclusion was drawn that translocation of E. coli cells via the vascular tissue of the stems to developing pea seeds seems unlikely under circumstances realistic for agricultural practices. Proximate introductions of cells of E. coli strains to developing flowers also did not result in internal seed contamination, indicating that internal seed contamination with E. coli is an unlikely event. The fact that all three E. coli strains showed stronger preference for the root-soil zones of growing pea plants than for the above soil plant compartments, in spite of their differences in clinical behaviour and origin, indicate that E. coli in general will colonize root compartments of crop plants in production systems.
Collapse
|
14
|
Cui Y, Liu DA, Chen J. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli on Vegetable Seeds Contaminated by Direct Contact with Artificially Inoculated Soil during Germination. J Food Prot 2020; 83:1218-1226. [PMID: 32221551 DOI: 10.4315/jfp-20-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/17/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Contaminated vegetable seeds have been identified as a potential source of foodborne bacterial pathogens. This study was undertaken to observe the behavior of Salmonella and enterohemorrhagic Escherichia coli (EHEC) on vegetable seeds, contaminated by direct contact with artificially inoculated soil, during germination. Sterile sandy soil inoculated with lyophilized cells of four individual strains of Salmonella or EHEC (three O157:H7 strains and one O104:H4 strain) was mixed with sanitized seeds (2 g) of alfalfa, fenugreek, lettuce, and tomato at 20°C for 1 h. The contaminated seeds were germinated on 1% water agar at 25°C for 9 days in the dark. Populations of Salmonella and EHEC on various tissues (seed coat, root, cotyledon, and stem, etc.) of sprouts and seedlings were determined every other day over the germination period. Overall, 70.4 and 72.4% of collected tissue samples (n = 544) tested positive for Salmonella and EHEC, respectively. In general, the mean populations of Salmonella and EHEC on sprout and seedling tissues increased with the prolongation of germination time. Seed coats had the highest bacterial counts (4.00 to 4.06 log CFU/0.01 g), followed by the root (3.36 to 3.38 log CFU/0.01 g), cotyledon (3.13 to 3.38 log CFU/0.01 g), and stem tissues (2.67 to 2.84 log CFU/0.01 g). On average, tissue sections of fenugreek sprouts and lettuce seedlings had significantly higher (P < 0.05) numbers of Salmonella and EHEC cells than that of alfalfa sprouts and tomato seedlings. Data suggest that the growth and dissemination of Salmonella and EHEC cells on alfalfa, fenugreek, lettuce, and tomato sprout and seedling tissues are influenced by the type of vegetable seeds and sprout and seedling tissues involved. The study provides useful information on the fate of two important foodborne bacterial pathogens on selected vegetable seeds, contaminated by direct contact with inoculated soil, during the germination process. HIGHLIGHTS
Collapse
Affiliation(s)
- Yue Cui
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia 30223-1797, USA.,College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050081, People's Republic of China
| | - D A Liu
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia 30223-1797, USA
| | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, Georgia 30223-1797, USA
| |
Collapse
|
15
|
van Overbeek LS, Wichers JH, van Amerongen A, van Roermund HJW, van der Zouwen P, Willemsen PTJ. Circulation of Shiga Toxin-Producing Escherichia coli Phylogenetic Group B1 Strains Between Calve Stable Manure and Pasture Land With Grazing Heifers. Front Microbiol 2020; 11:1355. [PMID: 32714297 PMCID: PMC7340143 DOI: 10.3389/fmicb.2020.01355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli strains carrying Shiga toxins 1 and 2 (stx1 and stx2), intimin (eae), and hemolysin (ehxA) production genes were found in grass shoot, rhizosphere soil, and stable manure samples from a small-scale cattle farm located at the center of Netherlands, using cultivation-dependent and -independent microbiological detection techniques. Pasture land with grazing heifers in the first year of sampling in 2014 and without grazing cattle in 2015 was physically separated from the stable that housed rose calves during both years. Manure from the stable was applied to pasture via injection into soil once per year in early spring. Among a variety of 35 phylogenetic distinctly related E. coli strains, one large group consisting of 21 closely resembling E. coli O150:H2 (18), O98:H21 (2), and O84:H2 (1) strains, all belonging to phylogenetic group B1 and carrying all screened virulence traits, was found present on grass shoots (10), rhizosphere soil (3), and stable manure (8) in 2014, but not anymore in 2015 when grazing heifers were absent. Presence and absence of these strains, obtained via enrichments, were confirmed via molecular detection using PCR-NALFIA in all ecosystems in both years. We propose that this group of Shiga toxin-producing E. coli phylogenetic group B1 strains was originally introduced via stable manure injection into the pasture. Upon grazing, these potential pathogens proliferated in the intestinal track systems of the heifers resulting in defecation with higher loads of the STEC strain onto the grass cover. The STEC strain was further smeared over the field via the hooves of the heifers resulting in augmentation of the potential pathogen in the pasture in 2014, whereas in 2015, in the absence of heifers, no augmentation occurred and only a more diverse group of potentially mild virulent E. coli phylogenetic group A and B1 strains, indigenous to pasture plants, remained present. Via this model, it was postulated that human pathogens can circulate between plants and farm animals, using the plant as an alternative ecosystem. These data indicate that grazed pasture must be considered as a potential carrier of human pathogenic E. coli strains and possibly also of other pathogens.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Jan H Wichers
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | - Aart van Amerongen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| | | | | | - Peter T J Willemsen
- Wageningen University and Research (WUR), Wageningen Research (WR), Wageningen, Netherlands
| |
Collapse
|
16
|
Yin H, Boomer A, Chen C, Patel J. Efficacy of benzyl isothiocyanate for controlling
Salmonella
on alfalfa seeds and sprouts. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hsin‐Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service Beltsville MD 20705 USA
| | - Ashley Boomer
- U.S. Department of Agriculture, Agricultural Research Service Beltsville MD 20705 USA
| | - Chi‐Hung Chen
- U.S. Department of Agriculture, Agricultural Research Service Beltsville MD 20705 USA
| | - Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service Beltsville MD 20705 USA
| |
Collapse
|
17
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
18
|
Matyjaszczyk E, Śmiechowska M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Budryn G, Klewicka E, Grzelczyk J, Gałązka-Czarnecka I, Mostowski R. Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination. Food Chem 2019; 285:478-484. [PMID: 30797373 DOI: 10.1016/j.foodchem.2019.01.178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
Legume seeds and sprouts are a rich source of phytoestrogens in the form of isoflavonoids. For the first time, lactic acid fermentation of four types of legume sprouts was used to increase the content of isoflavonoids and microbiological safety. After germination, the highest content of isoflavonoids was observed in the clover and chickpea sprouts, which amounted to 1.1 g/100 g dw., whereas the lactic acid fermentation allowed the increase to as much as 5.5 g/100 g dw. The most beneficial properties were shown by fermented chickpea sprouts germinated in blue light. During fermentation the number of lactic acid bacteria increased by 2 Log10 CFU/mL (LU), whereas mold decreased by 1 LU, E. coli and Klebsiella sp. by 2 LU, Salmonella sp. and Shigella sp. did not occur after fermentation, similar to Staphylococcus epidermidis, while S. aureus and S. saprophyticus decreased by 3 LU and in some trials were not detected.
Collapse
Affiliation(s)
- Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Radosław Mostowski
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| |
Collapse
|
20
|
de Oliveira Elias S, Tombini Decol L, Tondo EC. Foodborne outbreaks in Brazil associated with fruits and vegetables: 2008 through 2014. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Susana de Oliveira Elias
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| | - Luana Tombini Decol
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| | - Eduardo Cesar Tondo
- Departamento de Ciências dos Alimentos – Universidade Federal do Rio Grande do Sul, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre – RS – Brasil
| |
Collapse
|