1
|
Agga GE, Amenu K. Editorial: Antimicrobial resistance in food-producing environments: a One Health approach. FRONTIERS IN ANTIBIOTICS 2024; 3:1436987. [PMID: 39816248 PMCID: PMC11731954 DOI: 10.3389/frabi.2024.1436987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, KY, United States
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Agga GE, Galloway HO. Dynamics of Extended-spectrum Beta-lactamase-producing, Third-generation Cephalosporin-resistant and Tetracycline-resistant Escherichia coli in Feedlot Cattle With or Without Tylosin Administration. J Food Prot 2023; 86:100144. [PMID: 37597606 DOI: 10.1016/j.jfp.2023.100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
The impact of in-feed use of tylosin in feedlot cattle on Gram-negative foodborne bacteria is unknown. We evaluated the effect of continuous in-feed tylosin use on the concentration and prevalence of tetracycline-resistant (TETr)-, third-generation cephalosporin-resistant (3GCr)-, and extended-spectrum β-lactamase-producing (ESBLs) E. coli in feedlot cattle. A cohort of weaned calves (10 animals/group) were randomized to receive a feed ration with or without tylosin. Fecal samples, regularly collected over the entire feeding period, and pen surface and feed samples, collected at the end of the feeding period, were cultured on selective media. Enumeration and binary outcomes were analyzed by mixed effects linear regression or logistic regression, respectively, using treatment and days on feed as fixed factors, and animal ID as a random variable. Tylosin supplementation did not affect the fecal concentrations of TETrE. coli or fecal prevalence of 3GCrE. coli. However, cattle in the tylosin group were 1.5 times more likely (Odds ratio = 1.5: 95% confidence interval: 1.1-2.0) to harbor ESBLs E. coli than the control cattle. Regardless of tylosin treatment, fecal concentrations of TETrE. coli and the prevalence of 3GCr- and ESBLs-E. coli increased over time. Tylosin-supplemented feed did not affect the prevalence of TETrE. coli; 3GCr and ESBLs-E. coli were not detected from the feed samples. Most of the 3GCr- and ESBLs-E. coli isolates carried the blaCTX-M-15 gene, widely detected among ESBLs-E. coli human isolates. In summary, although in-feed tylosin use in feedlot cattle did not select for TETr- and 3GCr-E. coli, it increased the likelihood of detecting ESBL-producing E. coli. Furthermore, the study indicated that the feedlot production setting gradually increases the levels of E. coli resistant to the critically and/or important antibiotics for public health, indicating an increased risk of their dissemination beyond the feedlot environment.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 2413 Nashville Road, B-5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY 42101, USA
| |
Collapse
|
3
|
Agga GE, Galloway HO, Appala K, Mahmoudi F, Kasumba J, Loughrin JH, Conte E. Effect of continuous in-feed administration of tylosin to feedlot cattle on macrolide and tetracycline resistant enterococci in a randomized field trial. Prev Vet Med 2023; 215:105930. [PMID: 37163775 DOI: 10.1016/j.prevetmed.2023.105930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Liver abscess causes substantial economic loss to the beef cattle industry through liver condemnation, reduced animal performance, and carcass yield. Continuous in-feed use of tylosin is the most effective and a commonly used practice in beef cattle production to prevent liver abscess. However, such mass medication can increase the level of antimicrobial resistant bacteria. We investigated the effect of continuous in-feed use of tylosin in feedlot cattle on (i) concentrations and prevalence of erythromycin-resistant (ERYr) and tetracycline-resistant (TETr) enterococci; (ii) associated antimicrobial resistance genes (ARGs) for resistance; (iii) species distribution; iv) macrolide and tetracycline resistance gene concentrations; and (v) tylosin concentration. A cohort of weaned calves were randomized to receive tylosin-medicated feed (Tylosin; n = 10) or nonmedicated feed (Control; n = 10) for a full feedlot cycle. Feces, feed and pen-surface samples were collected and processed by culture, droplet digital PCR, and liquid chromatography/mass spectroscopy for bacterial enumeration, detection and characterization, ARG quantification, and tylosin concentration, respectively. Data were analyzed by mixed effects linear- or binary-regression models depending on the outcomes. Tylosin administration significantly increased fecal concentration (P < 0.001) and prevalence (P = 0.021) of ERYr enterococci and erm(B) gene concentration (P < 0.001), compared to the control group. Interestingly, tylosin administration significantly reduced (P = 0.037) fecal TETr enterococci concentration compared to the control group, with no significant effect (P = 0.758) on fecal tet(M) concentration. In both treatment groups, enterococci concentrations increased over time, peaking on 174 days in feed before returning to the baseline. ERYr enterococci concentration was significantly (P = 0.012) higher in tylosin medicated feeds, with no significant effect (P = 0.321) on TETr enterococci concentration. Pen-surface concentration of ermB was significantly (P = 0.024) higher in the tylosin group, with no significant effect (P > 0.05) on bacterial concentrations. Increased diversity and a shift in the composition of enterococcal species and ARGs were observed over time, although tylosin use did not significantly affect (P > 0.05) their prevalence. Tylosin concentration was significantly higher in the feces of tylosin administered cattle (P < 0.001) and medicated feed (P = 0.027), with numerically higher pen-surface concentration (P = 0.065) in the tylosin group. In conclusion, continuous in-feed use of tylosin in feedlot cattle increases macrolide resistant enterococci and its fecal excretion, while decreasing tetracycline resistance. Two medically important species, E. faecium and E. faecalis, were predominant regardless of resistance status or sample source. Risk-based approaches including label changes to limit tylosin use such as withdrawal period, and development of effective manure treatments are potential areas of research to reduce environmental and public health impacts.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA.
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, KY, USA
| | - Keerthi Appala
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - Faranak Mahmoudi
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John Kasumba
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| | - John H Loughrin
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, US Department of Agriculture, 2413 Nashville Road Building 5, Bowling Green, KY 42101, USA
| | - Eric Conte
- Department of Chemistry, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
4
|
Alhaji NB, Odetokun IA, Adamu AM, Hassan A, Lawan MK, Fasina FO. Antimicrobial usage and associated residues and resistance emergence in smallholder beef cattle production systems in Nigeria: A One Health challenge. Vet Res Commun 2023; 47:233-245. [PMID: 35641718 DOI: 10.1007/s11259-022-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Livestock intensification has facilitated antimicrobial use (AMU) with consequent antimicrobial resistance (AMR) development. We assessed AMU in beef farms, pathways for residues and resistance dissemination to humans, risk status, residues identification, and drivers for antimicrobial residues and resistance emergence in beef cattle production systems. A cross-sectional survey was conducted in randomly selected beef farms of Northern Nigeria, between 2018 and 2019. Traffic Light model and Disc Diffusion Test were used to assess risk status and determined residues, respectively. Data was analyzed using descriptive statistics and logistic regression models at 95% confidence level. About 92% (n = 608) farmers participated. The majority of farmers managing intensive (78.9%) and semi-intensive (76.6%) farms did not follow antimicrobial dosage instructions. Also, 72.4% and 83.9% of the farmers on intensive and semi-intensive systems, respectively, did not observed withdrawal periods after AMU. Furthermore, 71.5% farmers in intensive and 53.2% in semi-intensive farms used antimicrobials as growth promoters. Antimicrobials frequently used include tetracyclines, sulfonamides and penicillin. Antimicrobial residues and resistance dissemination pathways from beef herds were: consumption of contaminated meat with residues (p = 0.007); contacts with contaminated cattle and fomites (p < 0.001); and contaminated manure and aerosols in farm environment (p = 0.003). Significant drivers of residues and resistance emergence were antimicrobial misuse and overuse (OR = 2.72; 95% CI:1.93-3.83), non-enforcement of laws (OR = 2.98; 95% CI:2.11-4.21), poor education and expertise (OR = 1.52; 95% CI:1.09-2.12), and husbandry management system (OR = 10.24; 95% CI:6.75-15.54). The majority of intensive (63.6%) and semi-intensive (57.63%) farm systems belonged to Class 3 (Red risk) status. Antimicrobial residues were detected in 48.4% intensively and 34.4% semi-intensively managed farms. The study revealed poor practices of AMU in beef cattle production. Many factors were found to influenced antimicrobial residues and resistance occurrence and dissemination. A 'One Health' approach mitigation with adequate sanitation, hygiene, and good biosecurity measures will assure food safety, public and environmental health.
Collapse
Affiliation(s)
- Nma Bida Alhaji
- Department of Public Health and Epidemiology, Niger State Ministry of Livestock and Fisheries, Minna, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Abuja, Nigeria.
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health and Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Andrew Musa Adamu
- Department of Veterinary Public Health and Preventive Medicine, University of Abuja, Abuja, Nigeria
| | - Abubakar Hassan
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | - Mohammed Kabiru Lawan
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases-Food and Agriculture Organization of the United Nations (ECTAD-FAO), Dar es Salaam, Tanzania
| |
Collapse
|
5
|
Agga GE, Galloway HO, Netthisinghe AMP, Schmidt JW, Arthur TM. Tetracycline-Resistant, Third-Generation Cephalosporin-Resistant, and Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Beef Cow-Calf Production System. J Food Prot 2022; 85:1522-1530. [PMID: 35981257 DOI: 10.4315/jfp-22-178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/17/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Cow-calf production plays a significant role in the beef production chain. However, bacteria in these systems are not typically monitored for antimicrobial resistance (AMR). We determined the baseline level of AMR in fecal bacteria collected from preweaned calves prior to feedlot entry and evaluated the effects of type of graze and age on AMR occurrence. Two grazing experiments (16 cow-calf pairs each) were conducted on tall fescue or wheat. Fecal samples were cultured for the detection of tetracycline-resistant (TETr), third-generation cephalosporin-resistant (3GCr), and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Isolates were characterized for resistance to other antibiotics and resistance mechanisms. Concentrations (P < 0.001) and prevalence (P = 0.007) of TETrE. coli isolates were significantly higher in the calves (5.1 log CFU/g and 93%, respectively) than in the cows (4.4 log CFU/g and 80%, respectively). Wheat grazing did not affect TETr isolates phenotypically; however, it significantly expanded (P = 0.005) the resistant population carrying tet(A) over that carrying tet(B). Fecal prevalence of 3GCr and ESBL-producing isolates was 31.3 and 3.4%, respectively, with no significant effects of age (P = 0.340) or wheat grazing (P = 0.597). All 3GCr and ESBL-producing isolates were multidrug resistant (resistant to at least three antimicrobial classes). 3GCr isolates were positive for blaCMY-2 (73%) or blaCTX-M (27%), and blaCTX-M-15 was the most prevalent gene (94%, n = 17) among the CTX-M-positive isolates. Wheat grazing significantly expanded (P < 0.001) the 3GCr population carrying blaCTX-M and reduced the population carrying blaCMY-2. Five of the seven ESBL-producing isolates were positive for blaCTX-M. Our study revealed age-dependent occurrence of TETrE. coli and that wheat grazing expanded the resistant population carrying certain resistance genes. Cow-calf production is a significant reservoir for antibiotic-resistant bacteria of significant public health importance such as 3GCr and CTX-M ESBL-producing E. coli. HIGHLIGHTS
Collapse
Affiliation(s)
- Getahun E Agga
- U.S. Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, Bowling Green, Kentucky 42101
| | - Hunter O Galloway
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, Kentucky 42101
| | - Annesly M P Netthisinghe
- Department of Agriculture and Food Science, Western Kentucky University, Bowling Green, Kentucky 42101
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| |
Collapse
|
6
|
Egbule OS. Occurrence of Extended Spectrum Beta – Lactamases and Sul 1 in multi-drug resistant Escherichia coli and Salmonella isolated from poultry feeds. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Agga GE, Silva PJ, Martin RS. Tetracycline- and Macrolide-Resistant Enterococcus Species Isolated from a Mink Farm in the United States. Microb Drug Resist 2022; 28:734-743. [PMID: 35575717 DOI: 10.1089/mdr.2021.0438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enterococcus species are a normal flora of animals and humans. However, life-threatening opportunistic infections can be caused by antimicrobial resistant strains. Fecal (n = 42) and feed (n = 8) samples were obtained from a mink farm and cultured for the enumeration and detection of erythromycin-resistant (a macrolide; ERYr)- and tetracycline-resistant (TETr) enterococci. ERYr and TETr enterococci were detected from all fecal (mean concentrations = 6 and 7 logs, respectively) and feed (mean concentrations = 5 and 4 logs, respectively) samples. While Enterococcus faecalis and Enterococcus faecium were detected at equal proportions among the fecal TETr isolates, E. faecium predominated among ERYr fecal isolates. All ERYr and 90% of the TETr isolates (n = 50) were multidrug resistant (resistant to three or more antimicrobial classes). Among ERYr isolates, while 83% of E. faecalis (n = 12) were positive for erm(B), 58% of E. faecium (n = 38) isolates were positive for msr(C). Among ERYr isolates, tet(M) was detected from 92% of E. faecalis (n = 12) and 97% of E. faecium (n = 38) isolates. Conversely, however, erm(B) was detected in 18% of E. faecalis (n = 22) and 33% of E. faecium (n = 27) TETr isolates. Our study provides a baseline for future efforts to reduce antimicrobial resistance and improve antimicrobial stewardship in commercial mink production facilities.
Collapse
Affiliation(s)
- Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), Bowling Green, Kentucky, USA
| | - Philip J Silva
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), Bowling Green, Kentucky, USA
| | - Randal S Martin
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
8
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
9
|
Kimura J, Kudo H, Fukuda A, Yamada M, Makita K, Oka K, Takahashi M, Tamura Y, Usui M. Decreasing the abundance of tetracycline-resistant Escherichia coli in pig feces during nursery using flavophospholipol as a pig feed additive. Vet Anim Sci 2022; 15:100236. [PMID: 35146180 PMCID: PMC8818586 DOI: 10.1016/j.vas.2022.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from livestock. Flavophospholipol (FPL), used as a feed additive, has an inhibitory effect on the spread of plasmid-mediated antimicrobial resistance. The number of TC-resistant E. coli was determined in pigs administered TCs and/or FPL to clarify the effect of FPL on reducing the number of TC-resistant E. coli in pigs. TC-resistant E. coli and their plasmids were then analyzed. The pigs were divided into four groups: control, doxycycline (DOXY; a TC), FPL, and a DOXY-FPL combination. Their feces were collected from the nursing period to the day before being transported to the slaughterhouse, followed by estimation of TC-resistant E. coli (colony-forming units [CFU]/g). The number of TC-resistant E. coli increased with the use of DOXY, suggesting that DOXY administration provides a selective pressure for TC-resistant E. coli. Supplementation with FPL as a feed additive significantly suppressed the increase in the number of TC-resistant E. coli, especially during the DOXY administration period. Transfer and growth inhibition analyses were performed for TC-resistant isolates. FPL inhibited the conjugational transfer and growth of a few TC-resistant E. coli isolates. These results suggest that FPL is effective against the spread of TC-resistant E. coli.
Collapse
Affiliation(s)
- Junichiro Kimura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hayami Kudo
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kohei Makita
- Laboratory of Veterinary Epidemiology, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kentaro Oka
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Motomichi Takahashi
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Corresponding author: Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
10
|
Tetracycline residues induce carbonylation of milk proteins and alter their solubility and digestibility. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Effect of Protracted Free-Choice Chlortetracycline-Medicated Mineral for Anaplasmosis Control on Escherichia coli Chlortetracycline Resistance Profile from Pastured Beef Cattle. Microorganisms 2021; 9:microorganisms9122495. [PMID: 34946097 PMCID: PMC8704331 DOI: 10.3390/microorganisms9122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Anaplasmosis is an economically-significant, hemolytic, tick-borne disease of cattle caused by Anaplasma marginale which can cause clinical anemia and death. Current control options are limited, and FDA-approved antimicrobial control options do not have a defined duration of use. A practical and routinely used anaplasmosis control method involves feeding free-choice chlortetracycline (CTC)-medicated mineral to pastured cattle for several months. Constant antimicrobial use poses the risk of expediting the development and dissemination of antimicrobial resistance in off-target commensal bacteria in the bovine gastrointestinal tract. The objective of this study was to determine the CTC-susceptibility of Escherichia coli isolated from anaplasmosis endemic beef cattle herds provided different FDA-approved free-choice CTC-medicated mineral formulations, all intended to provide cattle a dosage of 0.5 to 2.0 mg CTC/lb bodyweight per day. A closed-herd, comprised of Hereford-Angus cows, naturally endemic for anaplasmosis, were grazed in five different pastures with one herd serving as an untreated control group. The other cattle herds were randomly assigned one of four FDA-approved CTC-medicated mineral formulations (700, 5000, 6000, and 8000 g CTC/ton) labeled for “the control of active anaplasmosis” and provided their respective CTC-medicated mineral formulation for five consecutive months. Fecal samples were collected monthly from a subset of cows (n = 6 or 10) per pasture. Fecal samples were cultured for E. coli isolates and the minimal inhibitory concentration of CTC was determined. Baseline CTC-susceptibility of E. coli was variable among all treatment and control groups. The susceptibility of E. coli isolates was significantly different between study herds over the treatment period (p = 0.0037 across time and 0.009 at the final sampling time). The interaction between study herds and treatment period was not significant (p = 0.075).
Collapse
|
12
|
Nobrega D, Andres-Lasheras S, Zaheer R, McAllister T, Homerosky E, Anholt RM, Dorin C. Prevalence, Risk Factors, and Antimicrobial Resistance Profile of Respiratory Pathogens Isolated From Suckling Beef Calves to Reprocessing at the Feedlot: A Longitudinal Study. Front Vet Sci 2021; 8:764701. [PMID: 34805342 PMCID: PMC8596561 DOI: 10.3389/fvets.2021.764701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Here, we investigated the prevalence and risk factors for the presence of Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida in the respiratory tract of calves from the spring processing to the reprocessing at feedlots. Additionally, we characterized, phenotypically and genotypically, the antimicrobial resistance (AMR) profile of the four species. Calves from 22 cow-calf operations were enrolled in the study (n = 30 calves per operation) and sampled by deep nasopharyngeal swabs at three time points: spring processing, weaning, or induction into feedlots, and at reprocessing at the feedlot. Isolates were tested for susceptibility using the minimum inhibitory concentration (MIC) test against commonly administered antimicrobials. Additionally, a subset of isolates underwent whole-genome sequencing to infer presence of AMR genes and resistance determinants. Among studied pathogens, P. multocida was the most prevalent species, regardless of time point, followed by M. haemolytica, M. bovis, and H. somni. For M. bovis, a sharp increase in prevalence was detected at the reprocessing sampling, whereas for P. multocida, an increase in prevalence was observed at the weaning/induction sampling. Comingling and co-location of feedlots were not associated with prevalence of any respiratory pathogen. In terms of AMR, resistance against macrolides was prevalent in M. bovis, with most isolates resistant against tildipirosin, tilmicosin, and tylosin. In general, there was limited evidence to support an increase in resistance rates of respiratory bacteria from the spring processing to reprocessing at feedlots, with the exception of florfenicol resistance in M. bovis, which increased at reprocessing. Metaphylactic administration of tetracyclines at feedlot induction was not associated with the MIC of tetracyclines in any respiratory bacteria. Conversely, there were clear associations between the parenteral use of macrolides as metaphylaxis at the feedlot induction, and increased MIC against macrolides in P. multocida, M. haemolytica, and H. somni. Overall, the AMR phenotypes were corroborated by presence of AMR genes. We hypothesize that the administration of macrolides such as tulathromycin at feedlot induction contributes to historical changes in macrolides MIC data of respiratory bacteria of beef cattle.
Collapse
Affiliation(s)
- Diego Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sara Andres-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - R Michele Anholt
- One Health at UCalgary, University of Calgary, Calgary, AB, Canada
| | - Craig Dorin
- Veterinary Agri-Health Services, Rocky View County, AB, Canada
| |
Collapse
|
13
|
Loayza-Villa F, Torres A, Zhang L, Trueba G. Removal of antimicrobial prophylaxis and its effect on swine carriage of antimicrobial-resistant coliforms. Sci Prog 2021; 104:368504211050279. [PMID: 34872396 PMCID: PMC10466387 DOI: 10.1177/00368504211050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of antimicrobials in the food animal industry has caused an increased prevalence of antimicrobial-resistant bacteria and antimicrobial resistance genes, which can be transferred to the microbiota of humans through the food chain or the environment. To reduce the development and spread of antimicrobial resistance, restrictions on antimicrobial use in food animals have been implemented in different countries. We investigated the impact of an antimicrobial restriction intervention during two generations of pigs. Fecal samples were collected in five growth phases. The frequency of antimicrobial-resistant coliforms and antimicrobial-resistant bacteria or antimicrobial resistance genes was analyzed. No differences in the richness or abundance of antimicrobial-resistant coliforms or antimicrobial resistance genes were found when animals fed with or without prophylactic antimicrobials were compared. Withholding antimicrobial supplementation did not negatively affect weight gain in pigs. Withdrawal of prophylactic antimicrobial consumption during two generations of pigs was not enough to reduce the prevalence of antimicrobial resistance genes, as measured by richness and abundance markers. This study indicates that the fitness costs associated with bacterial carriage of some antimicrobial resistance genes are low.
Collapse
Affiliation(s)
- Fernanda Loayza-Villa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Alejandro Torres
- Escuela de Veterinaria, Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, Michigan, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| |
Collapse
|
14
|
Stockpiling versus Composting: Effectiveness in Reducing Antibiotic-Resistant Bacteria and Resistance Genes in Beef Cattle Manure. Appl Environ Microbiol 2021; 87:e0075021. [PMID: 34085860 DOI: 10.1128/aem.00750-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manure storage methods can affect the concentration and prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in cattle manure prior to land application. The objective of this study was to compare stockpiling and composting with respect to their effectiveness in reducing ARB and ARGs in beef cattle manure in a field-scale study. Field experiments were conducted in different seasons with different bulking agents for composting. For both the winter-spring cycle and the summer-fall cycle, ARB concentrations declined below the limit of quantification rapidly in both composting piles and stockpiles; however, ARB prevalence was significantly greater in the composting piles than in the stockpiles. This was likely due to the introduction of ARB from bulking agents. There was no significant change in ARG concentrations between initial and final concentrations for either manure storage treatment during the winter-spring cycle, but a significant reduction of the ARGs erm(B), tet(O), and tet(Q) over time was observed for both the composting pile and stockpile during the summer-fall cycle. Results from this study suggest that (i) bulking agent may be an important source of ARB and ARGs for composting; (ii) during cold months, the heterogeneity of the temperature profile in composting piles could result in poor ARG reduction; and (iii) during warm months, both stockpiling and composting can be effective in reducing ARG abundance. IMPORTANCE Proper treatment of manure is essential to reduce the spread of antibiotic resistance and protect human health. Stockpiling and composting are two manure storage methods which can reduce antibiotic-resistant bacteria and resistance genes, although few field-scale studies have examined the relative efficiency of each method. This study examined the ability of both methods in both winter-spring and summer-fall cycles, while also accounting for heterogeneity within field-scale manure piles. This study determined that bulking agents used in composting could contribute antibiotic-resistant bacteria and resistance genes. Additionally, seasonal variation could hinder the efficacy of composting in colder months due to heterogeneity in temperature within the pile; however, in warmer months, either method of manure storage could be effective in reducing the spread of antibiotic resistance.
Collapse
|
15
|
Andrés-Lasheras S, Ha R, Zaheer R, Lee C, Booker CW, Dorin C, Van Donkersgoed J, Deardon R, Gow S, Hannon SJ, Hendrick S, Anholt M, McAllister TA. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease-A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021; 8:692646. [PMID: 34277758 PMCID: PMC8280473 DOI: 10.3389/fvets.2021.692646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
A broad, cross-sectional study of beef cattle at entry into Canadian feedlots investigated the prevalence and epidemiology of antimicrobial resistance (AMR) in Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, bacterial members of the bovine respiratory disease (BRD) complex. Upon feedlot arrival and before antimicrobials were administered at the feedlot, deep nasopharyngeal swabs were collected from 2,824 feedlot cattle in southern and central Alberta, Canada. Data on the date of feedlot arrival, cattle type (beef, dairy), sex (heifer, bull, steer), weight (kg), age class (calf, yearling), source (ranch direct, auction barn, backgrounding operations), risk of developing BRD (high, low), and weather conditions at arrival (temperature, precipitation, and estimated wind speed) were obtained. Mannheimia haemolytica, P. multocida, and H. somni isolates with multidrug-resistant (MDR) profiles associated with the presence of integrative and conjugative elements were isolated more often from dairy-type than from beef-type cattle. Our results showed that beef-type cattle from backgrounding operations presented higher odds of AMR bacteria as compared to auction-derived calves. Oxytetracycline resistance was the most frequently observed resistance across all Pasteurellaceae species and cattle types. Mycoplasma bovis exhibited high macrolide minimum inhibitory concentrations in both cattle types. Whether these MDR isolates establish and persist within the feedlot environment, requires further evaluation.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Reuben Ha
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Craig Dorin
- Veterinary Agri-Health Systems, Airdrie, AB, Canada
| | | | - Rob Deardon
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Department of Mathematics and Statistics, University of Calgary, Calgary, AB, Canada
| | - Sheryl Gow
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Public Health Agency of Canada, Saskatoon, SK, Canada
| | | | | | - Michele Anholt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,POV Inc., Airdrie, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
16
|
Dungan RS, Bjorneberg DL. Antimicrobial Resistance in Escherichia coli and Enterococcal Isolates From Irrigation Return Flows in a High-Desert Watershed. Front Microbiol 2021; 12:660697. [PMID: 34054760 PMCID: PMC8149595 DOI: 10.3389/fmicb.2021.660697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Irrigation return flows (IRFs) collect surface runoff and subsurface drainage, causing them to have elevated contaminant and bacterial levels, and making them a potential source of pollutants. The purpose of this study was to determine antimicrobial susceptibility among Escherichia coli and enterococcal isolates that were collected from IRFs in a south-central Idaho watershed. Environmental isolates can be a potentially important source of antimicrobial resistance (AMR) and IRFs may be one way resistance genes are transported out of agroecosystems. Water samples were collected from nine IRFs and one background site (canal water from Snake River) on a biweekly basis during 2018. Escherichia coli and enterococci were enumerated via a most probable number (MPN) technique, then subsamples were plated on selective media to obtain isolates. Isolates of E. coli (187) or enterococci (185) were tested for antimicrobial susceptibility using Sensititre broth microdilution plates. For E. coli, 13% (25/187) of isolates were resistant to tetracycline, with fewer numbers being resistant to 13 other antimicrobials, with none resistant to gentamicin. While 75% (141/187) of the E. coli isolates were pan-susceptible, 12 multidrug resistance (MDR) patterns with 17 isolates exhibiting resistance to up to seven drug classes (10 antimicrobials). For the enterococcal species, only 9% (16/185) of isolates were pan-susceptible and the single highest resistance was to lincomycin (138/185; 75%) followed by nitrofurantoin (56/185; 30%) and quinupristin/dalfopristin (34/185; 18%). In addition, 13 enterococcal isolates belonging to Enterococcus faecalis, Enterococcus faecium, Enterococcus casseliflavus, and Enterococcus thailandicus, were determined to be MDR to up to six different antimicrobial drug classes. None of the enterococcal isolates were resistant to gentamycin, linezolid, tigecycline, and vancomycin.
Collapse
Affiliation(s)
- Robert S Dungan
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| | - David L Bjorneberg
- Northwest Irrigation and Soils Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Kimberly, ID, United States
| |
Collapse
|
17
|
Staley ZR, Tuan CY, Eskridge KM, Li X. Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144220. [PMID: 33736325 DOI: 10.1016/j.scitotenv.2020.144220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Proper treatment is necessary to reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in livestock manure before land application. Conventional stockpiling suffers unreliable removal efficiency, while composting can be complicated and expensive. The objective of this study was to test the feasibility of a novel heat-based technology, i.e., stockpiling manure on conductive concrete slabs, to inactivate ARB and ARGs in beef cattle manure. In this study, two independent bench-scale trials were conducted. In both trials, samples were taken from manure piles on conductive concrete slabs and regular slabs (i.e., heated and unheated piles). In the heated pile of the first trial, 25.9% and 83.5% of the pile volume met the EPA Class A and Class B biosolids standards, respectively. For the heated pile of the second trial, the two values were 43.9% and 74.2%. In both trials, nearly all forms of the total and resistant Escherichia coli and enterococci were significantly lower in the heated piles than in the unheated piles. Besides, significant reduction of ARGs in heated piles was observed in the first trial. Through this proof-of-concept study, the new technology based on conductive concrete slabs offers an alternative manure storage method to conventional stockpiling and composting with respect to reduce ARB and ARGs in manure.
Collapse
Affiliation(s)
- Zachery R Staley
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Christopher Y Tuan
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Kent M Eskridge
- Department of Statistics, University of Nebraska - Lincoln, Lincoln, NE 68583, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
18
|
Schmidt JW, Vikram A, Doster E, Thomas K, Weinroth MD, Parker J, Hanes A, Geornaras I, Morley PS, Belk KE, Wheeler TL, Arthur TM. Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. J Food Prot 2021; 84:827-842. [PMID: 33302298 DOI: 10.4315/jfp-20-376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
ABSTRACT Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0003-0494-2436 [J.W.S.]
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933
| | - Enrique Doster
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0002-3820-8988 [E.D.]
| | - Kevin Thomas
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0001-8351-395X [M.D.W.]
| | - Jennifer Parker
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Ayanna Hanes
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Ifigenia Geornaras
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0002-2384-2628 [I.G.]
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University and West Texas A&M University, Canyon, Texas 79016, USA (ORCID: https://orcid.org/0000-0001-8138-2714 [P.S.M.])
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0002-6571-9097 [T.L.W.]
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-9035-0474 [T.M.A.]
| |
Collapse
|
19
|
Agga GE, Silva PJ, Martin RS. Third-Generation Cephalosporin- and Tetracycline-Resistant Escherichia coli and Antimicrobial Resistance Genes from Metagenomes of Mink Feces and Feed. Foodborne Pathog Dis 2021; 18:169-178. [DOI: 10.1089/fpd.2020.2851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Bowling Green, Kentucky, USA
| | - Philip J. Silva
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Bowling Green, Kentucky, USA
| | - Randal S. Martin
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
20
|
Schmidt JW, Vikram A, Arthur TM, Belk KE, Morley PS, Weinroth MD, Wheeler TL. Antimicrobial Resistance at Two U.S. Cull Cow Processing Establishments. J Food Prot 2020; 83:2216-2228. [PMID: 32730612 DOI: 10.4315/jfp-20-201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella, and 3GCrSalmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETrE. coli (P < 0.01), 3GCrE. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,ORCID: https://orcid.org/0000-0003-0494-2436 [J.W.S.]
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-5064-8356 [A.V.]
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-9035-0474 [T.M.A.]
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,ORCID: https://orcid.org/0000-0002-7171-8824 [K.E.B.]
| | - Paul S Morley
- Veterinary Education, Research, and Outreach (VERO) Program, Texas A&M University and West Texas A&M University, Canyon, Texas 79016, USA (ORCID: https://orcid.org/0000-0001-8138-2714 [P.S.M.])
| | - Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0001-8351-395X [M.D.W.]
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0002-6571-9097 [T.L.W.]
| |
Collapse
|
21
|
|
22
|
Schmidt JW. SMART Antimicrobial Resistance Goals to Drive Meat Safety Improvement. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.11218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Concerns that food-animal production significantly contributes to antibiotic-resistant human infections have persisted for more than 20 years. Most antibiotic resistance concerns are generalized, not specific. By their nature, non- specific concerns are unfalsifiable and can never be scientifically alleviated or remediated. Therefore, antibiotic resistance meat safety improvement begins with defining SMART (Specific, Measurable, Attainable, Relevant, and Time bound) antibiotic resistance goals. Two SMART goals related to high-priority antibiotic resistance in beef production are described as an example to facilitate scientific goal attainment
Collapse
Affiliation(s)
- John William Schmidt
- U.S. Meat Animal Research Center, U.S. Dept. of Agriculture Meat Safety and Quality Research Unit
| |
Collapse
|
23
|
Staley ZR, Schmidt AM, Woodbury B, Eskridge KM, Durso L, Li X. Corn stalk residue may add antibiotic-resistant bacteria to manure composting piles. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:745-753. [PMID: 33016408 DOI: 10.1002/jeq2.20017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 06/11/2023]
Abstract
Manure is commonly used as a fertilizer or soil conditioner; however, land application of untreated manure may introduce pathogens and antibiotic-resistant bacteria (ARB) into the soil, with harmful implications for public health. Composting is a manure management practice wherein a carbon-rich bulking agent, such as corn (Zea mays L.) stalk residue, is added to manure to achieve desirable carbon/nitrogen ratios to facilitate microbial activities and generate enough heat to inactivate pathogens, including antibiotic-resistant pathogens. However, when comparing compost piles and stockpiles for ARB reduction, we noticed that bulking agents added ARB to composting piles and compromised the performance of composting in reducing ARB. We hypothesized that ARB could be prevalent in corn stalk residues, a commonly used bulking agent for composting. To test this hypothesis, corn stalk residue samples throughout Nebraska were surveyed for the presence of ARB. Of the samples tested, 54% were positive for antibiotic-resistant Escherichia coli or enterococci using direct plating or after enrichment. Although not statistically significant, there was a trend wherein the use of pesticides tended to result in a greater prevalence of some ARB. Results from this study suggest that bulking agents can be a source of ARB in manure composting piles and highlight the importance of screening bulking agents for effective ARB reduction in livestock manure during composting.
Collapse
Affiliation(s)
- Zachery R Staley
- Dep. of Civil and Environmental Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amy Millmier Schmidt
- Dep. of Biological Systems Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Dep. of Animal Science, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Bryan Woodbury
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Kent M Eskridge
- Dep. of Statistics, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lisa Durso
- USDA-ARS, Lincoln, Lincoln, NE, 68583, USA
| | - Xu Li
- Dep. of Civil and Environmental Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
24
|
Schmidt JW, Vikram A, Miller E, Jones SA, Arthur TM. In-Feed Tylosin Phosphate Administration to Feedlot Cattle Minimally Affects Antimicrobial Resistance. J Food Prot 2020; 83:350-364. [PMID: 31971461 DOI: 10.4315/0362-028x.jfp-19-342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT The macrolide class antimicrobial tylosin (trade name Tylan) is approved by the U.S. Food and Drug Administration for continuous inclusion in feed for liver abscess prevention. To address concerns that this antimicrobial application may threaten human health, a population of feedlot steers was split into a control treatment (n = 42) and a tylosin treatment (n = 42). Feed rations were identical except for the inclusion of tylosin at 60 to 90 mg per head per day. Fecal swab (n = 335), pen surface material (n = 256), feed (n = 56), and water trough (n = 32) samples were obtained over four sample occasions: November (1 day before the start of tylosin inclusion in feed), January (80 days of tylosin in feed), April (167 days), and June (253 days). These samples were cultured for Escherichia coli, tetracycline-resistant E. coli, third-generation cephalosporin-resistant E. coli, Enterococcus, tetracycline-resistant Enterococcus, and erythromycin-resistant Enterococcus. Metagenomic DNA was isolated from each June fecal swab and pen surface material sample. Metagenomic DNA samples were pooled by pen for 14 fecal and 14 pen surface material samples. Quantitative PCR was employed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). Nasal swab samples (n = 335) were obtained from each steer during each sample period and cultured for the presence of Staphylococcus aureus and methicillin-resistant S. aureus. Of these measurements, only January and June mean fecal swab erythromycin-resistant Enterococcus colony counts for tylosin-treated cattle were significantly higher (P ≤ 0.05) than the range of mean values for control treatments. These results suggest that in-feed tylosin through the end of finishing has a narrow and minimal antimicrobial resistance impact. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.])
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.])
| | - Eric Miller
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.])
| | - Shuna A Jones
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.])
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.])
| |
Collapse
|
25
|
Loayza-Villa F, Salinas L, Tijet N, Villavicencio F, Tamayo R, Salas S, Rivera R, Villacis J, Satan C, Ushiña L, Muñoz O, Zurita J, Melano R, Reyes J, Trueba GA. Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household. J Glob Antimicrob Resist 2019; 22:63-67. [PMID: 31841712 DOI: 10.1016/j.jgar.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The aim of this study was to detect potential animal reservoirs of Escherichia coli carrying the mcr-1 gene in an Ecuadorian household. METHODS The mobile colistin-resistance gene, mcr-1, was first detected in Ecuador in a commensal E. coli isolate from a boy. A cross-sectional study was performed to detect the possible source of colistin-resistant E. coli in the boy's household. Faecal swabs and soil faecal samples were collected from companion animals. Samples were plated on selective media to isolate colistin-resistant E. coli and isolates were submitted to PCR detection of mcr-1, pulsed field gel electrophoresis (PFGE), and multi-locus sequences typing (MLST). Moreover, the genomes of all the isolates were sequenced. RESULTS Three different colistin-resistant E. coli sequence types (ST3941, 1630 and 2170), corresponding to three PFGE patterns, were obtained from a chicken and two dogs; these isolates were different from the human isolate (ST609). By whole-genome sequencing, the mcr-1.1 gene was found on IncI2 plasmids with very high nucleotide identity. CONCLUSIONS Our results indicate a polyclonal dissemination of mcr-1.1 in the environment surrounding the first MCR-producing E. coli strain reported in Ecuador. Our findings support the idea of lateral dissemination of mcr-1.1 gene between unrelated E. coli isolates.
Collapse
Affiliation(s)
| | - Liseth Salinas
- Universidad San Franscisco de Quito, Av. Diego de Robles y Pampite, Quito, Ecuador
| | | | - Fernando Villavicencio
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Rafael Tamayo
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Stephanie Salas
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Ruth Rivera
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Jose Villacis
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador; Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Carolina Satan
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Liliana Ushiña
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Olga Muñoz
- Instituto Nacional de Investigación en Salud Pública 'Dr. Leopoldo Izquieta Perez', Quito, Ecuador
| | - Jeannette Zurita
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Roberto Melano
- Public Health Ontario, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jorge Reyes
- Universidad Central del Ecuador, Facultad de Ciencias Químicas, Ciudadela Universitaria - Avenida América, Quito, Ecuador
| | - Gabriel A Trueba
- Universidad San Franscisco de Quito, Av. Diego de Robles y Pampite, Quito, Ecuador
| |
Collapse
|
26
|
Ohta N, Norby B, Loneragan GH, Vinasco J, den Bakker HC, Lawhon SD, Norman KN, Scott HM. Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline. PLoS One 2019; 14:e0225697. [PMID: 31791047 PMCID: PMC6887520 DOI: 10.1371/journal.pone.0225697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
Antibiotic use in beef cattle is a risk factor for the expansion of antimicrobial-resistant Salmonella populations. However, actual changes in the quantity of Salmonella in cattle feces following antibiotic use have not been investigated. Previously, we observed an overall reduction in Salmonella prevalence in cattle feces associated with both ceftiofur crystalline-free acid (CCFA) and chlortetracycline (CTC) use; however, during the same time frame the prevalence of multidrug-resistant Salmonella increased. The purpose of this analysis was to quantify the dynamics of Salmonella using colony counting (via a spiral-plating method) and hydrolysis probe-based qPCR (TaqMan® qPCR). Additionally, we quantified antibiotic-resistant Salmonella by plating to agar containing antibiotics at Clinical & Laboratory Standards Institute breakpoint concentrations. Cattle were randomly assigned to 4 treatment groups across 16 pens in 2 replicates consisting of 88 cattle each. Fecal samples from Days 0, 4, 8, 14, 20, and 26 were subjected to quantification assays. Duplicate qPCR assays targeting the Salmonella invA gene were performed on total community DNA for 1,040 samples. Diluted fecal samples were spiral plated on plain Brilliant Green Agar (BGA) and BGA with ceftriaxone (4 μg/ml) or tetracycline (16 μg/ml). For comparison purposes, indicator non-type-specific (NTS) E. coli were also quantified by direct spiral plating. Quantity of NTS E. coli and Salmonella significantly decreased immediately following CCFA treatment. CTC treatment further decreased the quantity of Salmonella but not NTS E. coli. Effects of antibiotics on the imputed log10 quantity of Salmonella were analyzed via a multi-level mixed linear regression model. The invA gene copies decreased with CCFA treatment by approximately 2 log10 gene copies/g feces and remained low following additional CTC treatment. The quantities of tetracycline or ceftriaxone-resistant Salmonella were approximately 4 log10 CFU/g feces; however, most of the samples were under the quantification limit. The results of this study demonstrate that antibiotic use decreases the overall quantity of Salmonella in cattle feces in the short term; however, the overall quantities of antimicrobial-resistant NTS E. coli and Salmonella tend to remain at a constant level throughout.
Collapse
Affiliation(s)
- Naomi Ohta
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Bo Norby
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Guy H. Loneragan
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, United States of America
| | - Javier Vinasco
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Henk C. den Bakker
- Center for Food Safety, University of Georgia, Griffin, Georgia, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Harvey M. Scott
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
27
|
Brown EEF, Cooper A, Carrillo C, Blais B. Selection of Multidrug-Resistant Bacteria in Medicated Animal Feeds. Front Microbiol 2019; 10:456. [PMID: 30894847 PMCID: PMC6414793 DOI: 10.3389/fmicb.2019.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Exposure to antimicrobial resistant (AMR) bacteria is a major public health issue which may, in part, have roots in food production practices that are conducive to the selection of AMR bacteria ultimately impacting the human microbiome through food consumption. Of particular concern is the prophylactic use of antibiotics in animal husbandry, such as the medication of feeds with sulfonamides and other antibiotics not considered clinically relevant, but which may nonetheless co-select for multi-drug resistant (MDR) bacteria harboring resistance to medically important antibiotics. Using a MDR Klebsiella pneumoniae strain exhibiting resistance to sulfonamides and beta-lactams (including carbapenem) as a model, we examined the ability of non-medicated and commercially medicated (sulfonamide) animal feeds to select for the model strain when inoculated at low levels by measuring its recovery along with key AMR markers, sul1(sulfonamide) and blaKPC-3 (meropenem), under different incubation conditions. When non-medicated feeds were supplemented with defined amounts of sulfadiazine the model strain was significantly enriched after incubation in Mueller Hinton Broth at 37°C overnight, or in same at room temperature for a week, with consistent detection of both the sul1 and blaKPC-3 markers as determined by polymerase chain reaction (PCR) techniques to screen colony isolates recovered on plating media. Significant recoveries of the inoculated strain and the sul1 and blaKPC-3 markers were observed with one of three commercially medicated (sulfamethazine) feeds tested under various incubation conditions. These results demonstrate that under certain conditions the prophylactic use of so-called non-priority antibiotics in feeds can potentially lead to co-selection of environmental AMR bacteria with resistance to medically important antibiotics, which may have far-reaching implications for human health.
Collapse
Affiliation(s)
- Emily E F Brown
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Ashley Cooper
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Catherine Carrillo
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Burton Blais
- Research and Development Section, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
28
|
Agga GE, Cook KL, Netthisinghe AMP, Gilfillen RA, Woosley PB, Sistani KR. Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS One 2019; 14:e0212510. [PMID: 30768641 PMCID: PMC6377141 DOI: 10.1371/journal.pone.0212510] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 11/18/2022] Open
Abstract
Confined animal feeding operations can facilitate the spread of genes associated with antibiotic resistance. It is not known how cattle removal from beef cattle backgrounding operation affects the persistence of antibiotic resistance genes (ARGs) in the environment. We investigated the effect of cessation of beef cattle backgrounding operation on the persistence and distribution of ARGs in the beef cattle backgrounding environment. The study was conducted at a pasture-feedlot type beef cattle backgrounding operation which consisted of feeding and grazing areas that were separated by a fence with an access gate. Backgrounding occurred for seven years before cattle were removed from the facility. Soil samples (n = 78) from 26 georeferenced locations were collected at the baseline before cattle were removed, and then one year and two years after cattle were removed. Metagenomic DNA was extracted from the soil samples and total bacterial population (16S rRNA), total Enterococcus species and class 1 integrons (intI1), and erythromycin (ermB and ermF), sulfonamide (sul1 and sul2) and tetracycline (tetO, tetW and tetQ) resistance genes were quantified. Concentrations of total bacteria, Enterococcus spp., class 1 integrons, and ARGs were higher in the feeding area and its immediate vicinity (around the fence and the gate) followed by a gradient decline along the grazing area. Although the concentrations of total bacteria, Enterococcus spp., class 1 integrons and ARGs in the feeding area significantly decreased two years after cattle removal, their concentrations were still higher than that observed in the grazing area. Higher concentrations over two years in the feeding area when compared to the grazing area suggest a lasting effect of confined beef cattle production system on the persistence of bacteria and ARGs in the soil.
Collapse
Affiliation(s)
- Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
- * E-mail:
| | - Kimberly L. Cook
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| | - Annesly M. P. Netthisinghe
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Rebecca A. Gilfillen
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Paul B. Woosley
- Department of Agriculture, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Karamat R. Sistani
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, United States of America
| |
Collapse
|
29
|
Couch M, Agga GE, Kasumba J, Parekh RR, Loughrin JH, Conte ED. Abundances of Tetracycline Resistance Genes and Tetracycline Antibiotics during Anaerobic Digestion of Swine Waste. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:171-178. [PMID: 30640349 DOI: 10.2134/jeq2018.09.0331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The impact of anaerobic digestion of animal waste on the persistence of antibiotic resistance genes (ARGs) and antibiotics is not widely studied. Two identical, 800-L digesters seeded with swine slurry were followed up to 100 d in three separate trials. The trials received varying amounts of antibiotic-free corn ( L.) mixed with water to maintain the digestion process. Biogas production, seven tetracycline resistance () genes, and three tetracyclines and their transformation products were measured. Biogas production proportionally increased as the feeding loads increased between trials. In Trial 1, log gene copies showed small but statistically significant ( < 0.01) increases during digestion. In Trial 2, anaerobic digestion did not have a significant ( > 0.05) effect except for significant reductions in B ( < 0.0001) and G ( = 0.0335) log gene copies. In Trial 3, which received the highest amount of corn mix, log copies of the 16S ribosomal RNA and the genes significantly ( < 0.0001) reduced over time during digestion. Up to 36 μg L tetracycline, 112 μg L chlortetracycline, 11.9 mg L isochlortetracycline, and 30 μg L 4-epitetracycline were detected both in the liquid and solid digestates. Results of this study revealed that although anaerobic digestion of swine waste can produce useful biogas, it does not result in complete removal of bacteria, ARGs, and antibiotics regardless of differences in the feeding loads between trials. Further effluent and sludge treatments are required prior to their downstream use in crop production to minimize emergence and environmental dissemination of antimicrobial-resistant bacteria through animal manure.
Collapse
|
30
|
Szasz JI, McMurphy CP, Bryant TC, Luque J, Barcelo C, Sepulveda G, Blood KS, Bernhard BC, Hughes HD. Influence of therapeutic use of feedgrade tetracyclines in combination with tulathromycin metaphylaxis on animal health and performance of Holstein steer calves. Transl Anim Sci 2018; 3:185-194. [PMID: 32704790 PMCID: PMC7200451 DOI: 10.1093/tas/txy135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/14/2022] Open
Abstract
Feedgrade chlortetracycline (CTC) and oxytetracycline (OTC) are approved for use in beef cattle diets for the control of bovine respiratory disease (BRD). The objectives of this experiment were to compare CTC and OTC, administered according to label, for the treatment of BRD in Holstein calves and to characterize the influence of tulathromycin metaphylaxis in combination with tetracycline treatment. Summer-placed Holstein steer calves (n = 6,800) were randomly assigned to one of four treatments (11 blocks; initial BW = 140 ± 18 kg) as they passed through the squeeze chute at initial processing in a commercial feedlot. Treatments consisted of: (i) CTC and tulathromycin metaphylaxis (CTC+TUL), (ii) OTC and tulathromycin metaphylaxis (OTC+TUL), (iii) tulathromycin metaphylaxis only (TUL), or (iv) CTC only (CTC). Cattle were fed for an average of 118 d. Tetracycline feeding was instituted based on visual assessment of the attending veterinarian in accordance with the veterinary feed directive. When applicable, CTC was fed as a top-dress at a rate of 4 g CTC·steer-1·d-1 for 5 consecutive days, beginning on 6 d on feed (DOF). Three 5-d pulses were delivered to CTC+TUL and CTC cattle, with a 48-h time lapse between pulses. Cattle on OTC+TUL were administered 4 g OTC·steer-1·d-1 as part of a complete diet for 14 consecutive days beginning on 10 DOF. Within the first 30 d of the feeding period, BRD first pulls were reduced (P = 0.001) for CTC+TUL, OTC+TUL, and TUL relative to CTC alone. Percentage of BRD first pulls and total morbidity were lowest (P = 0.001) for CTC+TUL across the feeding period, with OTC+TUL and TUL being intermediate, and CTC alone exhibiting the highest percentage. Death loss and railers were not influenced (P ≥ 0.58) by treatment. Dry matter intake was greater (P = 0.001) for CTC+TUL than all other treatments. Final BW and ADG were greatest for CTC+TUL, lowest for TUL alone, and intermediate for the remaining treatments (P < 0.05) on a deads-and-railers-out basis. Deads-and-railers-in ADG was greatest (P < 0.05) for CTC+TUL compared to all other treatments. Feed conversion was not influenced (P ≥ 0.22) by treatment. In the current study, supplementation of OTC in combination with tulathromycin metaphylaxis did not benefit health over tulathromycin alone. Results suggest that CTC in combination with tulathromycin metaphylaxis reduces morbidity in Holstein steers calves, which may lead to improved performance.
Collapse
Affiliation(s)
| | | | | | - Job Luque
- Five Rivers Cattle Feeding, Greeley, CO
| | | | | | | | | | | |
Collapse
|
31
|
Vikram A, Miller E, Arthur TM, Bosilevac JM, Wheeler TL, Schmidt JW. Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. J Food Prot 2018; 81:2007-2018. [PMID: 30476443 DOI: 10.4315/0362-028x.jfp-18-299] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella enterica, TETr S. enterica, 3GCr S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TETr Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TETr E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log2-fold change, P = 0.04) and tet(B) (5.6-log2-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef.
Collapse
Affiliation(s)
- Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Eric Miller
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| |
Collapse
|
32
|
Müller HC, Van Bibber-Krueger CL, Ogunrinu OJ, Amachawadi RG, Scott HM, Drouillard JS. Effects of intermittent feeding of tylosin phosphate during the finishing period on feedlot performance, carcass characteristics, antimicrobial resistance, and incidence and severity of liver abscesses in steers. J Anim Sci 2018; 96:2877-2885. [PMID: 29718254 DOI: 10.1093/jas/sky166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 01/29/2023] Open
Abstract
Liver abscesses (LA) are a source of economic loss for feedlot cattle feedlots, and the 2017 veterinary feed directive has restricted further use of tylosin phosphate to prevention and control of LA. Our objective was to evaluate effects of intermittent tylosin phosphate feeding on incidence and severity of LA in feedlot cattle and presence of total antimicrobial-resistant Enterococcus spp. Steers (n = 312, 411.4 ± 6.71 kg) were blocked by initial BW and randomly assigned to a treatment group. Treatments included a negative control group (no tylosin phosphate throughout the finishing period), a positive control group (tylosin phosphate fed continuously throughout the finishing period), and a group that received tylosin phosphate off-label by feeding the drug on a repeated intermittent basis (1 wk on, 2 wk off). Steers were housed in 24 soil-surfaced pens with 13 steers per pen. Body weights of cattle were obtained every 28 d and at the end of 119 d the steers were weighed and harvested at a commercial abattoir. Fecal samples were collected on days 0, 21, and 118 to characterize antimicrobial-resistant Enterococcus spp. Total LA percentage was greater (P = 0.012) for the no tylosin phosphate treatment compared with the other treatments, but did not differ between the continuous tylosin phosphate treatment and the intermittently fed tylosin phosphate treatment (P = 0.716). No difference was observed among treatments for ADG (P = 0.21), DMI (P = 0.28), or G:F (P = 0.75). Marbling score was lower (P = 0.022) for tylosin phosphate treatment when compared with both intermittent treatment and continuous tylosin phosphate treatment. Enterococcus spp. bacterial counts did not differ by treatment group over time (P > 0.05); however, there was a strong period effect for macrolide resistance among all groups (P < 0.01), suggesting an important environmental component as cattle were first placed in pens and then progressed through the feeding period. We conclude that feeding tylosin phosphate intermittently during the finishing phase decreases the total percentage of LA and maintains feedlot performance and carcass characteristics to the same extent as feeding tylosin phosphate throughout the finishing phase; furthermore, we hypothesize that enteric antimicrobial resistance is a result of longer term antibiotic usage in a particular environment rather than a direct short-term result of the treatment during any given feeding period.
Collapse
Affiliation(s)
| | | | | | | | - H Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - James S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
| |
Collapse
|
33
|
Miller E, Vikram A, Agga GE, Arthur TM, Schmidt JW. Effects of In-Feed Chlortetracycline Prophylaxis in Beef Cattle on Antimicrobial Resistance Genes. Foodborne Pathog Dis 2018; 15:689-697. [PMID: 30109957 DOI: 10.1089/fpd.2018.2475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Approximately 20% of U.S. beef cattle receive prophylactic in-feed administration of chlortetracycline (CTC) to reduce bovine respiratory disease (BRD) incidence during the transition into feedlots. To determine the impact of prophylaxis on selected antimicrobial resistance genes (ARGs), 300 beef cattle were placed into 10 pens (30 head/pen). Five "CTC group" pens received in-feed CTC (10 mg/lb of body weight/d) from the fifth to ninth day after feedlot arrival, whereas the five "Control group" pens received no CTC. Fecal swabs and pen surface materials were collected for metagenomic DNA isolation on five sample occasions: arrival at the feedlot, 5 d posttreatment (dpt), and 27, 75, and 117 dpt. For each sample occasion, fecal samples and pen surface material samples were pooled by pen. Quantitative polymerase chain reaction was used to determine the abundances of 10 ARGs. Due to low detection percentages (%D) and quantification percentages (%Q), the abundances of five ARGs were not analyzed: aac(6')-Ie-aph(2'') (%D = 43%, %Q = 4%), blaCMY-2 (%D = 41%, %Q = 0%), blaCTX-M (%D = 0%, %Q = 0%), blaKPC-2 (%D = 21%, %Q = 16%), and mecA (%D = 4%, %Q = 0%). The %D and %Q for the ARGs aadA1, erm(B), tet(A), tet(B), and tet(M) were ≥98% and ≥90%, respectively. The abundances of aadA1, erm(B), tet(A), tet(B), and tet(M) resistance genes did not differ (p > 0.05) between the CTC and control groups at any sampling time for feces or pen surface material. Although only 10 ARGs were examined in this study, the results suggest that a single 5-d in-feed CTC prophylaxis of beef cattle to prevent BRD has a negligible impact on the abundances of ARGs.
Collapse
Affiliation(s)
- Eric Miller
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska United States Meat Animal Research Center, Clay Center , Nebraska
| | - Amit Vikram
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska United States Meat Animal Research Center, Clay Center , Nebraska
| | - Getahun E Agga
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska United States Meat Animal Research Center, Clay Center , Nebraska
| | - Terrance M Arthur
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska United States Meat Animal Research Center, Clay Center , Nebraska
| | - John W Schmidt
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska United States Meat Animal Research Center, Clay Center , Nebraska
| |
Collapse
|
34
|
Impact of "Raised without Antibiotics" Beef Cattle Production Practices on Occurrences of Antimicrobial Resistance. Appl Environ Microbiol 2017; 83:AEM.01682-17. [PMID: 28887421 DOI: 10.1128/aem.01682-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 01/04/2023] Open
Abstract
The specific antimicrobial resistance (AMR) decreases that can be expected from reducing antimicrobial (AM) use in U.S. beef production have not been defined. To address this data gap, feces were recovered from 36 lots of "raised without antibiotics" (RWA) and 36 lots of "conventional" (CONV) beef cattle. Samples (n = 719) were collected during harvest and distributed over a year. AMR was assessed by (i) the culture of six AM-resistant bacteria (ARB), (ii) quantitative PCR (qPCR) for 10 AMR genes (ARGs), (iii) a qPCR array of 84 ARGs, and (iv) metagenomic sequencing. Generally, AMR levels were similar, but some were higher in CONV beef cattle. The prevalence of third-generation cephalosporin-resistant (3GCr) Escherichia coli was marginally different between production systems (CONV, 47.5%; RWA, 34.8%; P = 0.04), but the seasonal effect (summer, 92.8%; winter, 48.3%; P < 0.01) was greater. Erythromycin-resistant (ERYr) Enterococcus sp. concentrations significantly differed between production systems (CONV, 1.91 log10 CFU/g; RWA, 0.73 log10 CFU/g; P < 0.01). Levels of aadA1, ant(6)-I, bla ACI, erm(A), erm(B), erm(C), erm(F), erm(Q), tet(A), tet(B), tet(M), and tet(X) ARGs were higher (P < 0.05) in the CONV system. Aggregate abundances of all 43 ARGs detected by metagenomic sequencing and the aggregate abundances of ARGs in the aminoglycoside, β-lactam, macrolide-lincosamide-streptogramin B (MLS), and tetracycline AM classes did not differ (log2 fold change < 1.0) between CONV and RWA systems. These results suggest that further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance.IMPORTANCE The majority of antimicrobial (AM) use in the United States is for food-animal production, leading to concerns that typical AM use patterns during "conventional" (CONV) beef cattle production in the United States contribute broadly to antimicrobial resistance (AMR) occurrence. In the present study, levels of AMR were generally similar between CONV and "raised without antibiotics" (RWA) cattle. Only a limited number of modest AMR increases was observed in CONV cattle, primarily involving macrolide-lincosamide-streptogramin B (MLS) and tetracycline resistance. Macrolides (tylosin) and tetracyclines (chlortetracycline) are administered in-feed for relatively long durations to reduce liver abscesses. To ensure judicious AM use, the animal health, economic, and AMR impacts of shorter duration in-feed administration of these AMs should be examined. However, given the modest AMR reductions observed, further reductions of AM use in U.S. beef cattle production may not yield significant AMR reductions beyond MLS and tetracycline resistance.
Collapse
|
35
|
Population dynamics of enteric Salmonella in response to antimicrobial use in beef feedlot cattle. Sci Rep 2017; 7:14310. [PMID: 29085049 PMCID: PMC5662634 DOI: 10.1038/s41598-017-14751-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
A randomized controlled longitudinal field trial was undertaken to assess the effects of injectable ceftiofur crystalline-free acid (CCFA) versus in-feed chlortetracycline on the temporal dynamics of Salmonella enterica spp. enterica in feedlot cattle. Two replicates of 8 pens (total 176 steers) received one of 4 different regimens. All, or one, out of 11 steers were treated with CCFA on day 0 in 8 pens, with half of the pens later receiving three 5-day regimens of chlortetracycline from day 4 to day 20. Salmonella was isolated from faecal samples and antimicrobial susceptibility was analysed via microbroth dilution. Serotype was determined by whole-genome sequencing. On day 0, mean Salmonella prevalence was 75.0% and the vast majority of isolates were pansusceptible. Both antimicrobials reduced overall prevalence of Salmonella; however, these treatments increased the proportion of multi-drug resistant (MDR) Salmonella from day 4 through day 26, which was the last day of faecal collection. Only six Salmonella serotypes were detected. Salmonella serotype Reading isolates were extensively MDR, suggesting a strong association between serotype and resistance. Our study demonstrates that the selection pressures of a 3rd generation cephalosporin and chlortetracycline during the feeding period contribute to dynamic population shifts between antimicrobial susceptible and resistant Salmonella.
Collapse
|
36
|
Cazer CL, Ducrot L, Volkova VV, Gröhn YT. Monte Carlo Simulations Suggest Current Chlortetracycline Drug-Residue Based Withdrawal Periods Would Not Control Antimicrobial Resistance Dissemination from Feedlot to Slaughterhouse. Front Microbiol 2017; 8:1753. [PMID: 29033901 PMCID: PMC5627025 DOI: 10.3389/fmicb.2017.01753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial use in beef cattle can increase antimicrobial resistance prevalence in their enteric bacteria, including potential pathogens such as Escherichia coli. These bacteria can contaminate animal products at slaughterhouses and cause food-borne illness, which can be difficult to treat if it is due to antimicrobial resistant bacteria. One potential intervention to reduce the dissemination of resistant bacteria from feedlot to consumer is to impose a withdrawal period after antimicrobial use, similar to the current withdrawal period designed to prevent drug residues in edible animal meat. We investigated tetracycline resistance in generic E. coli in the bovine large intestine during and after antimicrobial treatment by building a mathematical model of oral chlortetracycline pharmacokinetics-pharmacodynamics and E. coli population dynamics. We tracked three E. coli subpopulations (susceptible, intermediate, and resistant) during and after treatment with each of three United States chlortetracycline indications (liver abscess reduction, disease control, disease treatment). We compared the proportion of resistant E. coli before antimicrobial use to that at several time points after treatment and found a greater proportion of resistant enteric E. coli after the current withdrawal periods than prior to treatment. In order for the proportion of resistant E. coli in the median beef steer to return to the pre-treatment level, withdrawal periods of 15 days after liver abscess reduction dosing (70 mg daily), 31 days after disease control dosing (350 mg daily), and 36 days after disease treatment dosing (22 mg/kg bodyweight for 5 days) are required in this model. These antimicrobial resistance withdrawal periods would be substantially longer than the current U.S. withdrawals of 0–2 days or Canadian withdrawals of 5–10 days. One published field study found similar time periods necessary to reduce the proportion of resistant E. coli following chlortetracycline disease treatment to those suggested by this model, but additional carefully designed field studies are necessary to confirm the model results. This model is limited to biological processes within the cattle and does not include resistance selection in the feedlot environment or co-selection of chlortetracycline resistance following other antimicrobial use.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| | - Lucas Ducrot
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| | - Victoriya V Volkova
- Department of Diagnostic Medicine/Pathobiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell UniversityIthaca, NY, United States
| |
Collapse
|