1
|
Osdaghi E, Abachi H, Jacques M. Clavibacter michiganensis Reframed: The Story of How the Genomics Era Made a New Face for an Old Enemy. MOLECULAR PLANT PATHOLOGY 2025; 26:e70093. [PMID: 40391582 PMCID: PMC12089995 DOI: 10.1111/mpp.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Bacterial wilt and canker of tomato caused by the gram-positive corynebacterial species Clavibacter michiganensis is an economically important disease threatening the tomato industry in both open-air and greenhouse productions around the world. The disease occurs in many countries, with a particular importance in regions characterised by high temperature and water scarcity. Management of bacterial canker has been a major problem since its original description in 1909. This is due in part to the seedborne nature of the pathogen, allowing the bacterium to be transmitted over long distances via infected seeds, as well as a lack of effective treatment to clean seeds. Detection of the pathogen from seeds is difficult due to high competition on culture media with diverse members of the seed-associated microbiota. Identification of the pathogen can also be difficult owing to the presence of different colony variants on culture media. In this review, we provide a historical perspective and an updated overview on the aetiology, epidemiology and management strategies of the bacterial canker disease. We also gathered recent molecular findings in the pathogenicity mechanisms and bioecology of C. michiganensis to boost management of the bacterial canker disease in the 21st century tomato industry. TAXONOMY Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter michiganensis. DISEASE SYMPTOMS Interveinal leaf chlorosis leading to necrotic areas. Canker on stems and lateral branches of the plant. Discolouration of vascular and pith tissues to dark yellow or brown. Small and early ripened fruits or discolouration of the placenta from white to yellow in the interior part of the ripening fruits. HOST RANGE Tomato (Solanum lycopersicum) is the main host of the pathogen while natural infection has also been reported on eggplant, pepper and wild nightshade plants. SYNONYMS (HISTORICAL/NON-PREFERRED SCIENTIFIC NAMES) Aplanobacter michiganensis; Pseudomonas michiganense; Pseudomonas michiganensis; Bacterium michiganense; Phytomonas michiganensis; Mycobacterium michiganense; Erwinia michiganensis (=michiganense); Corynebacterium michiganense; Corynebacterium michiganense pv. michiganense; Corynebacterium michiganense subsp. michiganense; Clavibacter michiganensis subsp. michiganensis. MICROBIOLOGICAL PROPERTIES The bacterium produces domed, round and shiny mucoid colonies on general culture media. Colonies are usually yellow-pigmented, while pink-pigmented strains are occasionally observed. Cells are gram-positive, aerobic, non-motile, non-spore-producing curved rods (coryneform). DISTRIBUTION Present in all continents. PHYTOSANITARY CATEGORIZATION EPPO A2 List no. 50, EU 2019/2072 RNQP Annex IV. See EPPO (https://gd.eppo.int/taxon/CORBMI/categorization) and CABI (https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.15338) databases for further country-specific categorisations. EPPO code: CORBMI.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Hamid Abachi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Marie‐Agnes Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM‐CFBPUniversité d'AngersAngersFrance
| |
Collapse
|
2
|
Haghverdi M, Taghavi SM, Zarei S, Mafakheri H, Abachi H, Briand M, Taghouti G, Portier P, Jacques MA, Osdaghi E. Pink-Pigmented Variant of Clavibacter michiganensis Expands Phenotypic Range of Tomato Bacterial Canker Pathogen. PHYTOPATHOLOGY 2025; 115:343-353. [PMID: 39656081 DOI: 10.1094/phyto-07-24-0236-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Bacterial canker of tomato caused by the gram-positive corynebacterial species Clavibacter michiganensis is one of the most destructive seedborne diseases in both open-air and greenhouse tomatoes. The pathogen is a regulated agent in all tomato-producing countries, as translocation of infected tomato materials transports the bacterium into new areas. C. michiganensis is generally known to have yellow-pigmented colonies on culture media, which is a key differentiative phenotypic feature in standard diagnostic guidelines. During 2020 and 2021, pink-pigmented corynebacterial strains were isolated from tomato seeds (cultivar Sun 6189F1) and plants showing severe canker symptoms in Southern Iran. The six pink-pigmented strains were pathogenic on tomato and pepper seedlings under greenhouse conditions and yielded positive results with C. michiganensis-specific primers pairs described in the literature. Phylogenomics and DNA similarity calculations showed that the pink-pigmented strains were highly similar to the authentic yellow-pigmented members of the pathogen. Thus, they were identified as a new phenotypic variant of tomato bacterial canker pathogen. Whole-genome screenings accomplished with PCR-based assays showed that the pink strains contain all pathogenicity-determinant genes described in C. michiganensis. Further, orthologous gene clusters in the pink-pigmented strains were more similar to the pathogenic members of C. michiganensis than to those of nonpathogenic tomato-associated Clavibacter species. The results obtained in this study demonstrate the emergence of a new pink-pigmented variant of C. michiganensis and highlight the importance of colony pigmentation/morphology in culture-based detection of the bacterium. The need for updating diagnostic guidelines on the colony variants of the pathogen is further discussed.
Collapse
Affiliation(s)
- Malihe Haghverdi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Sadegh Zarei
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hamzeh Mafakheri
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - Martial Briand
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000, Angers, France
| | - Geraldine Taghouti
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000, Angers, France
| | - Perrine Portier
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000, Angers, France
| | - Marie-Agnes Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| |
Collapse
|
3
|
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3069. [PMID: 39519984 PMCID: PMC11548230 DOI: 10.3390/plants13213069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Hydroponic greenhouses and vertical farms provide an alternative crop production strategy in regions that experience low temperatures, suboptimal sunlight, or inadequate soil quality. However, hydroponic systems are soilless and, therefore, have vastly different bacterial microbiota than plants grown in soil. This review highlights some of the most prevalent plant growth-promoting bacteria (PGPB) and destructive phytopathogenic bacteria that dominate hydroponic systems. A complete understanding of which bacteria increase hydroponic crop yields and ways to mitigate crop loss from disease are critical to advancing microbiome research. The section focussing on plant growth-promoting bacteria highlights putative biological pathways for growth promotion and evidence of increased crop productivity in hydroponic systems by these organisms. Seven genera are examined in detail, including Pseudomonas, Bacillus, Azospirillum, Azotobacter, Rhizobium, Paenibacillus, and Paraburkholderia. In contrast, the review of hydroponic phytopathogens explores the mechanisms of disease, studies of disease incidence in greenhouse crops, and disease control strategies. Economically relevant diseases caused by Xanthomonas, Erwinia, Agrobacterium, Ralstonia, Clavibacter, Pectobacterium, and Pseudomonas are discussed. The conditions that make Pseudomonas both a friend and a foe, depending on the species, environment, and gene expression, provide insights into the complexity of plant-bacterial interactions. By amalgamating information on both beneficial and pathogenic bacteria in hydroponics, researchers and greenhouse growers can be better informed on how bacteria impact modern crop production systems.
Collapse
Affiliation(s)
- Brianna O. Thomas
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Shelby L. Lechner
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | - Hannah C. Ross
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Benjamin R. Joris
- Ceragen Inc., 151 Charles St W, Suite 199, Kitchener, ON N2G 1H6, Canada (B.R.J.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada (B.R.G.)
| | | |
Collapse
|
4
|
Brochu AS, Dumonceaux TJ, Valenzuela M, Bélanger R, Pérez-López E. A New Multiplex TaqMan qPCR for Precise Detection and Quantification of Clavibacter michiganensis in Seeds and Plant Tissue. PLANT DISEASE 2024; 108:2272-2282. [PMID: 38381965 DOI: 10.1094/pdis-06-23-1194-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial canker of tomato caused by Clavibacter michiganensis (Cm) is one of the most devastating bacterial diseases affecting the tomato industry worldwide. As the result of Cm colonization of the xylem, the susceptible host shows typical symptoms of wilt, marginal leaf necrosis, stem cankers, and ultimately plant death. However, what makes Cm an even more dangerous pathogen is its ability to infect seeds and plants without causing symptoms. Unfortunately, there are no resistant cultivars or effective chemical or biological control methods available to growers against Cm. Its control relies heavily on prevention. The implementation of a rapid and accurate detection tool is imperative to monitor the presence of Cm and prevent its spread. In this study, we developed a specific and sensitive multiplex TaqMan qPCR assay to detect Cm and distinguish it from related bacterial species that affect tomato plants. Two Cm chromosomal virulence-related genes, rhuM and tomA, were used as specific targets. The plant internal control tubulin alpha-3 was included in each of the multiplexes to improve the reliability of the assay. Specificity was evaluated with 37 bacterial strains including other Clavibacter spp. and related and unrelated bacterial pathogens from different geographic locations affecting a wide variety of hosts. Results showed that the assay is able to discriminate Cm strains from other related bacteria. The assay was validated on tissue and seed samples following artificial infection, and all tested samples accurately detected the presence of Cm. The tool described here is highly specific, sensitive, and reliable for the detection of Cm and allows the quantification of Cm in seeds, roots, stems, and leaves. The diagnostic assay can also be adapted for multiple purposes such as seed certification programs, surveillance, biosafety, the effectiveness of control methods, border protection, and epidemiological studies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anne-Sophie Brochu
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
- L'Institute EDS, Université Laval, Québec City, Canada
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry & Center of Biotechnology Dr. Daniel Alkalay Lowitt, Universidad Tecnica Federico Santa Maria, Valparaiso 2390123, Chile
| | - Richard Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| | - Edel Pérez-López
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec City, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec City, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Canada
| |
Collapse
|
5
|
Verma RK, Roman-Reyna V, Raanan H, Coaker G, Jacobs JM, Teper D. Allelic variations in the chpG effector gene within Clavibacter michiganensis populations determine pathogen host range. PLoS Pathog 2024; 20:e1012380. [PMID: 39028765 PMCID: PMC11290698 DOI: 10.1371/journal.ppat.1012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 07/31/2024] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
Plant pathogenic bacteria often have a narrow host range, which can vary among different isolates within a population. Here, we investigated the host range of the tomato pathogen Clavibacter michiganensis (Cm). We determined the genome sequences of 40 tomato Cm isolates and screened them for pathogenicity on tomato and eggplant. Our screen revealed that out of the tested isolates, five were unable to cause disease on any of the hosts, 33 were exclusively pathogenic on tomato, and two were capable of infecting both tomato and eggplant. Through comparative genomic analyses, we identified that the five non-pathogenic isolates lacked the chp/tomA pathogenicity island, which has previously been associated with virulence in tomato. In addition, we found that the two eggplant-pathogenic isolates encode a unique allelic variant of the putative serine hydrolase chpG (chpGC), an effector that is recognized in eggplant. Introduction of chpGC into a chpG inactivation mutant in the eggplant-non-pathogenic strain Cm101, failed to complement the mutant, which retained its ability to cause disease in eggplant and failed to elicit hypersensitive response (HR). Conversely, introduction of the chpG variant from Cm101 into an eggplant pathogenic Cm isolate (C48), eliminated its pathogenicity on eggplant, and enabled C48 to elicit HR. Our study demonstrates that allelic variation in the chpG effector gene is a key determinant of host range plasticity within Cm populations.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| | - Veronica Roman-Reyna
- Dept. Of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hagai Raanan
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Gilat Research Center, Negev, Israel
| | - Gitta Coaker
- Dept. of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jonathan M. Jacobs
- Dept. of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Doron Teper
- Dept. of Plant Pathology and Weed Research, Agricultural Research Organization—Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
6
|
Osdaghi E, Taghavi SM, Hamidizade M, Kariminejhad M, Fazliarab A, Hajian Maleki H, Baeyen S, Taghouti G, Jacques MA, Van Vaerenbergh J, Portier P. Multiphasic investigations imply transfer of orange-/red-pigmented strains of the bean pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens to a new species as C. aurantiacum sp. nov., elevation of the poinsettia pathogen C. flaccumfaciens pv. poinsettiae to the species level as C. Poinsettiae sp. nov., and synonymy of C. albidum with C. citreum. Syst Appl Microbiol 2024; 47:126489. [PMID: 38325043 DOI: 10.1016/j.syapm.2024.126489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Curtobacterium flaccumfaciens (Microbacteriaceae), a plant-pathogenic coryneform species includes five pathovars with valid names and a number of proposed - but unvalidated - new members. In this study, phenotypic features and DNA similarity indexes were investigated among all C. flaccumfaciens members. Results showed that the C. flaccumfaciens pv. poinsettiae strains causing bacterial canker of Euphorbia pulcherrima in the USA as well as the orange-/red-pigmented strains of C. flaccumfaciens pv. flaccumfaciens pathogenic on dry beans in Iran are too distinct from each other and from the type strain of the species to be considered members of C. flaccumfaciens. Hence, the latter two groups were elevated at the species level as C. poinsettiae sp. nov. (ATCC 9682T = CFBP 2403T = ICMP 2566T = LMG 3715T = NCPPB 854T as type strain), and C. aurantiacum sp. nov. (50RT = CFBP 8819T = ICMP 22071T as type strain). Within the emended species C. flaccumfaciens comb. nov., yellow-pigmented strains causing bacterial wilt of dry beans and those causing bacterial canker of Euphorbia pulcherrima in Europe were retained as C. flaccumfaciens pv. flaccumfaciens and C. flaccumfaciens pv. poinsettiae, respectively; while taxonomic position of the sugar beet pathogen C. flaccumfaciens pv. beticola ATCC BAA144PT was confirmed. The newly described onion pathogen C. allii was also reclassified as C. flaccumfaciens pv. allii with the pathotype strain LMG 32517PT. Furthermore, C. flaccumfaciens pv. basellae causing bacterial leaf spot of malabar spinach (Basella rubra) was transferred to C. citreum pv. basellae with ATCC BAA143PT as pathotype.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran.
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mozhde Hamidizade
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran; Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mehdi Kariminejhad
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - Amal Fazliarab
- Iranian Sugarcane Research and Training Institute (ISCRTI), Ahvaz, Khuzestan, Iran
| | - Habibeh Hajian Maleki
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - Steve Baeyen
- Flanders' Research Institute for Agriculture, Fisheries and Food (ILVO), Unit Plant Sciences, EU Reference Laboratory for Plant Health - on bacteria, Burgemeester van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Geraldine Taghouti
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Marie-Agnes Jacques
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Johan Van Vaerenbergh
- Flanders' Research Institute for Agriculture, Fisheries and Food (ILVO), Unit Plant Sciences, EU Reference Laboratory for Plant Health - on bacteria, Burgemeester van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France.
| |
Collapse
|
7
|
Flores-López LF, Olalde-Portugal V, Vidaver AK, Morales-Galván Ó, Hernández-Rosales M, Huerta AI. Unlocking a Mystery: Characterizing the First Appearance of Clavibacter nebraskensis in Mexican Cornfields. PLANT DISEASE 2024; 108:1374-1381. [PMID: 38105456 DOI: 10.1094/pdis-08-23-1493-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The Goss's wilt and leaf blight is a disease of maize (Zea mays) caused by Clavibacter nebraskensis, which was widespread in the last several years throughout the Midwest in the United States, south in Texas, and north to Canada. The bacterium is included within the high-risk list of quarantine pathogens by many plant protection organizations and countries including Mexico. Severe blight symptoms on maize plants were found in different provinces from Coahuila and Tlaxcala, Mexico, in 2012 and 2021, respectively. Twenty bacterial isolates with morphology similar to C. nebraskensis were obtained from the diseased maize leaves. The isolates were confirmed by phenotypic tests and 16S rRNA and gyrB sequencing. Two strains were tested for pathogenicity tests on seven hybrid sweet corn cultivars available in Mexico, and the most sensitive cultivar was tested for all the strains to fulfill Koch's postulates. The phylogenetic reconstruction based on two single loci reveals a remarkable clustering of Mexican strains to American strains reported approximately 50 years ago. The presence of this pathogen represents a risk and a significant challenge for plant protection strategies in Mexico and maize diversity.
Collapse
Affiliation(s)
- Luis Fernando Flores-López
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Víctor Olalde-Portugal
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, México
| | - Anne K Vidaver
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Óscar Morales-Galván
- Departamento de Parasitología Agrícola, Universidad Autónoma Chapingo, Texcoco 56230, México
| | - Maribel Hernández-Rosales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV) Unidad Irapuato, Irapuato 368224, México
| | - Alejandra I Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| |
Collapse
|
8
|
Osdaghi E, Taghavi SM, Hamidizade M, Fazliarab A, Hajian Maleki H, Li X, Jacques MA, Portier P. Clavibacter lycopersici sp. nov.: a peach-colored actinobacterium isolated from symptomless tomato plant. Int J Syst Evol Microbiol 2023; 73. [PMID: 37737062 DOI: 10.1099/ijsem.0.006022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
In 2015, Gram-positive peach-coloured actinobacterial strains were isolated from symptomless tomato phyllosphere in Iran. Biochemical and physiological characteristics, as well as 16S rRNA phylogeny showed that the strains belong to Clavibacter sp., while they were non-pathogenic on the host of isolation, and morphologically distinct from the tomato pathogen C. michiganensis and other plant-associated bacteria. Multilocus sequence analysis of five housekeeping genes showed that the two peach-coloured strains CFBP 8615T (Tom532T) and CFBP 8616 (Tom495) were phylogenetically distinct from all validly described Clavibacter species. Whole genome sequence-based indices, i.e. average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH), showed that the two peach-colored strains share nearly 100 % orthoANI value with one another, while they differ from all validly described Clavibacter species with the orthoANI/dDDH values <93 % and <50 %, respectively. Thus, based on both phenotypic features and orthoANI/dDDH indices the peach-coloured strains could belong to a new species within Clavibacter. In this study, we provide a formal species description for the peach-coloured tomato-associated Clavibacter strains. Clavibacter lycopersici sp. nov. is proposed for the new species with Tom532T = CFBP 8615T = ICMP 22100T as type strain.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Mozhde Hamidizade
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Amal Fazliarab
- Iranian Sugarcane Research and Training Institute (ISCRTI), Ahvaz, Khuzestan, Iran
| | - Habibeh Hajian Maleki
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - Xiang Li
- Canadian Food Inspection Agency (CFIA), Charlottetown Laboratory, 93 Mount Edward Road, Charlottetown, PE C1A 5T1, Canada
| | - Marie-Agnes Jacques
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| |
Collapse
|
9
|
Osdaghi E, Robertson AE, Jackson-Ziems TA, Abachi H, Li X, Harveson RM. Clavibacter nebraskensis causing Goss's wilt of maize: Five decades of detaining the enemy in the New World. MOLECULAR PLANT PATHOLOGY 2023; 24:675-692. [PMID: 36116105 DOI: 10.1111/mpp.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/11/2023]
Abstract
Goss's bacterial wilt and leaf blight of maize (Zea mays) caused by the gram-positive coryneform bacterium Clavibacter nebraskensis is an economically important disease in North America. C. nebraskensis is included within the high-risk list of quarantine pathogens by several plant protection organizations (EPPO code: CORBMI), hence it is under strict quarantine control around the world. The causal agent was reported for the first time on maize in Nebraska (USA) in 1969. After an outbreak during the 1970s, prevalence of the disease decreased in the 1980s to the early 2000s, before the disease resurged causing a serious threat to maize production in North America. The re-emergence of Goss's wilt in the corn belt of the United States led to several novel achievements in understanding the pathogen biology and disease control. In this review, we provide an updated overview of the pathogen taxonomy, biology, and epidemiology as well as management strategies of Goss's wilt disease. First, a taxonomic history of the pathogen is provided followed by symptomology and host range, genetic diversity, and pathogenicity mechanisms of the bacterium. Then, utility of high-throughput molecular approaches in the precise detection and identification of the pathogen and the management strategies of the disease are explained. Finally, we highlight the role of integrated pest management strategies to combat the risk of Goss's wilt in the 21st century maize industry. DISEASE SYMPTOMS Large (2-15 cm) tan to grey elongated oval lesions with wavy, irregular water-soaked margins on the leaves. The lesions often start at the leaf tip or are associated with wounding caused by hail or wind damage. Small (1 mm in diameter), dark, discontinuous water-soaked spots, known as "freckles", can be observed in the periphery of lesions. When backlit, the freckles appear translucent. Early infection (prior to growth stage V6) may become systemic and cause seedlings to wilt, wither, and die. Coalescence of lesions results in leaf blighting. HOST RANGE Maize (Zea mays) is the only economic host of the pathogen. A number of Poaceae species are reported to act as secondary hosts for C. nebraskensis. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter nebraskensis. SYNONYMS Corynebacterium nebraskense (Schuster, 1970) Vidaver & Mandel 1974; Corynebacterium michiganense pv. nebraskense (Vidaver & Mandel 1974) Dye & Kemp 1977; Corynebacterium michiganense subsp. nebraskense (Vidaver & Mandel 1974) Carlson & Vidaver 1982; Clavibacter michiganense subsp. nebraskense (Vidaver & Mandel 1974) Davis et al. 1984; Clavibacter michiganensis subsp. nebraskensis (Vidaver & Mandel 1974) Davis et al. 1984. TYPE MATERIALS ATCC 27794T ; CFBP 2405T ; ICMP 3298T ; LMG 3700T ; NCPPB 2581T . MICROBIOLOGICAL PROPERTIES Cells are gram-positive, orange-pigmented, pleomorphic club- or rod-shaped, nonspore-forming, nonmotile, and without flagella, approximately 0.5 × 1-2.0 μm. DISTRIBUTION The pathogen is restricted to Canada and the United States. PHYTOSANITARY CATEGORIZATION EPPO code CORBNE.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Alison E Robertson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Tamra A Jackson-Ziems
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown Laboratory, Charlottetown, Prince Edward Island, Canada
| | - Robert M Harveson
- Panhandle Research & Extension Center, University of Nebraska, Scottsbluff, Nebraska, USA
| |
Collapse
|
10
|
Koseoglou E, Hanika K, Mohd Nadzir MM, Kohlen W, van der Wolf JM, Visser RGF, Bai Y. Inactivation of tomato WAT1 leads to reduced susceptibility to Clavibacter michiganensis through downregulation of bacterial virulence factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1082094. [PMID: 37324660 PMCID: PMC10264788 DOI: 10.3389/fpls.2023.1082094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Tomato bacterial canker caused by Clavibacter michiganensis (Cm) is considered to be one of the most destructive bacterial diseases of tomato. To date, no resistance to the pathogen has been identified. While several molecular studies have identified (Cm) bacterial factors involved in disease development, the plant genes and mechanisms associated with susceptibility of tomato to the bacterium remain largely unknown. Here, we show for the first time that tomato gene SlWAT1 is a susceptibility gene to Cm. We inactivated the gene SlWAT1 through RNAi and CRISPR/Cas9 to study changes in tomato susceptibility to Cm. Furthermore, we analysed the role of the gene in the molecular interaction with the pathogen. Our findings demonstrate that SlWAT1 functions as an S gene to genetically diverse Cm strains. Inactivation of SlWAT1 reduced free auxin contents and ethylene synthesis in tomato stems and suppressed the expression of specific bacterial virulence factors. However, CRISPR/Cas9 slwat1 mutants exhibited severe growth defects. The observed reduced susceptibility is possibly a result of downregulation of bacterial virulence factors and reduced auxin contents in transgenic plants. This shows that inactivation of an S gene may affect the expression of bacterial virulence factors.
Collapse
Affiliation(s)
- Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences Wageningen University & Research, Wageningen, Netherlands
| | - Katharina Hanika
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Mas M. Mohd Nadzir
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Wouter Kohlen
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan M. van der Wolf
- Biointeractions & Plant Health, Wageningen University & Research, Wageningen, Netherlands
| | | | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Benchlih S, Esmaeel Q, Aberkani K, Tahiri A, Belabess Z, Lahlali R, Barka EA. Modes of Action of Biocontrol Agents and Elicitors for sustainable Protection against Bacterial Canker of Tomato. Microorganisms 2023; 11:microorganisms11030726. [PMID: 36985299 PMCID: PMC10054590 DOI: 10.3390/microorganisms11030726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Tomato is one of the world’s most commonly grown and consumed vegetables. However, it can be attacked by the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm), which causes bacterial canker on tomato plants, resulting in significant financial losses in field production and greenhouses worldwide. The current management strategies rely principally on the application of various chemical pesticides and antibiotics, which represent a real danger to the environment and human safety. Plant growth-promoting rhizobacteria (PGPR) have emerged as an attractive alternative to agrochemical crop protection methods. PGPR act through several mechanisms to support plant growth and performance, while also preventing pathogen infection. This review highlights the importance of bacterial canker disease and the pathogenicity of Cmm. We emphasize the application of PGPR as an ecological and cost-effective approach to the biocontrol of Cmm, specifying the complex modes of biocontrol agents (BCAs), and presenting their direct/indirect mechanisms of action that enable them to effectively protect tomato crops. Pseudomonas and Bacillus are considered to be the most interesting PGPR species for the biological control of Cmm worldwide. Improving plants’ innate defense mechanisms is one of the main biocontrol mechanisms of PGPR to manage bacterial canker and to limit its occurrence and gravity. Herein, we further discuss elicitors as a new management strategy to control Cmm, which are found to be highly effective in stimulating the plant immune system, decreasing disease severity, and minimizing pesticide use.
Collapse
Affiliation(s)
- Salma Benchlih
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Kamal Aberkani
- Faculté Poly-Disciplinaire de Nador, University Mohammed Premier, Oujda 60000, Morocco
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Km 13, Route Haj Kaddour, BP.578, Meknes 50001, Morocco
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco
- Correspondence: (R.L.); (E.A.B.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence: (R.L.); (E.A.B.)
| |
Collapse
|
12
|
Frantsuzova E, Bogun A, Vetrova A, Delegan Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022; 11:pathogens11121496. [PMID: 36558832 PMCID: PMC9786905 DOI: 10.3390/pathogens11121496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gordonia spp. are members of the family Gordoniacea in the suborder Corynebacteriales; their habitat, in most cases, is soil. Many representatives of this genus are human or veterinary pathogens. The main cause of the lack of a standardized approach to dealing with infections caused by Gordonia is their erroneous identification and little information regarding their susceptibility to antimicrobial drugs. This review presents the most common methods for identifying Gordonia strains, including modern approaches for identifying a species. The main prospects and future directions of this field of knowledge are briefly presented.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
13
|
Pilik RI, Tesic S, Ignatov AN, Tarakanov RI, Dorofeeva LV, Lukianova AA, Evseev PV, Dzhalilov FSU, Miroshnikov KA. First Report of Curtobacterium flaccumfaciens pv. flaccumfaciens Causing Bacterial Wilt and Blight on Sunflower in Russia. PLANT DISEASE 2022; 107:1621. [PMID: 36281013 DOI: 10.1094/pdis-05-22-1203-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the summer of 2018, wilt and leaf spots were observed on sunflower (Helianthus annuus L.) plants in fields near Kursk (51.74°N, 36.02°E) in Russia. In the following years, incidence of this disease was 5 to 20% in the inspected fields. Marginal chlorosis on seedling leaves developed into wilt and necrosis about one week later (Fig. 1). Mature plants had leaves with blight and reduced height compared to symptomless plants. Pathogen isolation from seeds was done by the method of Tegli et al. (2002) with modifications. Bacteria from diseased plants were isolated by streaking inoculum from symptomatic tissues on nutrient dextrose agar (NDA) (Schaad et al. 1988). The plates were incubated at 30°C for 7 to 10 days. Isolates consistently formed slow-growing, yellow, circular, smooth colonies without soluble pigment. The isolated bacteria were aerobic, gram-positive, and rod-shaped. Eight strains, CF-20 to CF-26 from plants, and Curt1 and Curt3 from seeds, were identified by MALDI TOF MS analysis as Curtobacterium flaccumfaciens pv. flaccumfaciens or C. flaccumfaciens pv. poinsettiae. All strains had GENIII MicroPlate (BIOLOG) test results identical to C. flaccumfaciens pv. flaccumfaciens strain DSM20129T. Further analysis was done by specific PCR (Tegli et al. 2002) and 16S rDNA, gyrB, and atpD gene sequencing. For PCR amplification, DNA was extracted by the CitoSorb Kit (Syntol Co., Moscow). Primers 27F/1492R (16S rRNA) (Marchesi et al. 1998), 2F/6R (gyrB) (Richert et al. 2005), and aptD2F/aptD2R (Jacques et al. 2012) were used to amplify the target gene sequences. The PCR products were sequenced by Evrogen (Moscow). The 16S rRNA sequences (OL584192.1 to OL584199.1) were identical to that of C. flaccumfaciens pv. flaccumfaciens strain DSM20129T (AM410688.1; 1,477/1,477 bp). The phylogenetic tree of concatenated gyrB (560 bp) and atpD (716 bp) sequences (OL548915.1 to OL548922.1 and OL548923.1 to OL548930.1, respectively) clustered the strains from sunflower among C. flaccumfaciens pv. flaccumfaciens, C. flaccumfaciens pv. betae, and C. flaccumfaciens pv. oortii (Fig. 2) with high genetic similarity to other C. flaccumfaciens strains: 96.3 to 100% for atpD and 95 to 100% for gyrB. A pathogenicity test for each of the strains was performed by injecting 5 μl of a bacterial suspension (108 CFU/ml) grown for 72 h on NDA into the stems of five plantlets (four true leaf stage) of the sunflower cv. Tunka (Limagrain, France) and soybean cv. Kasatka (VIM, Russia). Strain DSM20129T was a positive control, while sterile water was a negative control. The plants were incubated at 24°C, 80% relative humidity, and 14-h light/day. Wilting and blight on sunflower (Fig. 3) and tan spots on soybean were observed in 15 to 20 days after inoculation for all sunflower strains and strain DSM20129T. The negative control plants were asymptomatic. The bacteria re-isolated from the inoculated plants exhibited the same morphological characteristics and 16S rDNA sequence as the original culture, thus fulfilling Koch's postulates. The presence of C. flaccumfaciens pv. flaccumfaciens in sunflower seeds indicated that the bacterium was transmitted via seed. Sunflower has been previously reported as a host for the pathogen (Harveson et al. 2015). The presence of C. flaccumfaciens pv. flaccumfaciens on beans in Russia was suggested from the disease symptoms (Nikitina and Korsakov 1978), but, to our knowledge, this is the first report of the pathogen affecting sunflower in Russia. Phytosanitary categorization placed C. flaccumfaciens pv. flaccumfaciens in the EPPO A2 list (EPPO 2011). Thus, sunflower seeds should be tested to protect pathogen-free areas from introduction of this pathogen.
Collapse
Affiliation(s)
- Roksana I Pilik
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian Academy of Sciences, Molecular bioengineering, Moscow, Russian Federation
- Russian University of Peoples Friendship, ATI, Moscow, Russian Federation;
| | - Svjetlana Tesic
- University of East Sarajevo, 186645, Lukavica, Bosnia and Herzegovina;
| | - Aleksandr N Ignatov
- Peoples' Friendship University of Russia Agrarian Technological Institute, 479030, ATI, Moscow, Russian Federation;
| | - Rashit I Tarakanov
- Russian State Agrarian University Moscow Timiryazev Agricultural Academy, 222434, Plant Protection, Moskva, Moskva, Russian Federation;
| | - Lubov V Dorofeeva
- G K Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, 111276, VKM, Pushchino, Russian Federation;
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian Academy of Sciences, Molecular bioengineering, Moscow, Russian Federation;
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian Academy of Sciences, Molecular bioengineering, Moscow, Russian Federation;
| | - Fevzi S-U Dzhalilov
- Russian State Agrarian University Moscow Timiryazev Agricultural Academy, 222434, Plant Protection, Moskva, Moskva, Russian Federation;
| | - Kostantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian Academy of Sciences, Molecular bioengineering, 16/10 Miklukho-Maklaya, Moscow, Russian Federation, 117997;
| |
Collapse
|
14
|
Arizala D, Dobhal S, Alvarez AM, Arif M. Elevation of Clavibacter michiganensis subsp. californiensis to species level as Clavibacter californiensis sp. nov., merging and re-classification of Clavibacter michiganensis subsp. chilensis and Clavibacter michiganensis subsp. phaseoli as Clavibacter phaseoli sp. nov. based on complete genome in silico analyses. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-positive genus
Clavibacter
is currently divided into seven species (
Clavibacter michiganensis
,
Clavibacter nebraskensis
,
Clavibacter capsici
,
Clavibacter sepedonicus
,
Clavibacter tessellarius
,
Clavibacter insidiosus
and
Clavibacter zhangzhiyongii
) and three subspecies (
C. michiganensis
subsp.
californiensis
,
C. michiganensis
subsp.
chilensis
and
C. michiganensis
subsp.
phaseoli
). Recent studies have indicated that the taxonomic rank of the subspecies must be re-evaluated. In this research, we assessed the taxonomic position of the three
C. michiganensis
subspecies and clarified the taxonomic nomenclature of other 75
Clavibacter
strains. The complete genomes of the type strains of the three
Clavibacter
subspecies, the type strain of
C. tessellarius
and
C. nebraskensis
A6096 were sequenced using PacBio RSII technology. Application of whole-genome-based computational approaches such as average nucleotide identity (ANI), digital DNA–DNA hybridization, multi-locus sequence analysis of seven housekeeping genes (acnA, atpD, bipA, icdA, mtlD, recA and rpoB), a phylogenomic tree reconstructed from 1 028 core genes, and ANI-based phylogeny provided sufficient justification for raising
C. michiganensis
subsp.
californiensis
to the species level. These results led us to propose the establishment of Clavibacter californiensis sp. nov. as a species with its type strain C55T (=CFBP 8216T=ATCC BAA-2691T). Moreover, the orthologous and in silico dot plot analyses, along with the above described bioinformatic strategies, revealed a high degree of similarity between
C. michiganensis
subsp.
chilensis
and
C. michiganensis
subsp.
phaseoli
. Based on these analyses, we propose that both subspecies be combined into a single taxon and elevated to the species level as Clavibacter phaseoli sp. nov., with LPPA 982T (= CECT 8144T= LMG 27667T) as the type strain.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
15
|
Osdaghi E, van der Wolf JM, Abachi H, Li X, De Boer S, Ishimaru CA. Bacterial ring rot of potato caused by Clavibacter sepedonicus: A successful example of defeating the enemy under international regulations. MOLECULAR PLANT PATHOLOGY 2022; 23:911-932. [PMID: 35142424 PMCID: PMC9190974 DOI: 10.1111/mpp.13191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacterial ring rot of potato (Solanum tuberosum) caused by the gram-positive coryneform bacterium Clavibacter sepedonicus is an important quarantine disease threatening the potato industry around the globe. Since its original description in 1906 in Germany, management of ring rot has been a major problem due to the seedborne nature (via seed tubers not true seeds) of the pathogen allowing the bacterium to be transmitted long distances via infected tubers. DISEASE SYMPTOMS On growing potato plants: interveinal chlorosis on leaflets leading to necrotic areas and systemic wilt. On infected tubers: vascular tissues become yellowish brown with a cheesy texture due to bacterial colonization and decay. HOST RANGE Potato is the main host of the pathogen, but natural infection also occurs on eggplant, tomato, and sugar beet. TAXONOMIC STATUS OF THE PATHOGEN Class: Actinobacteria; Order: Actinomycetales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter sepedonicus (Spieckermann and Kotthoff 1914) Li et al. 2018. SYNONYMS (NONPREFERRED SCIENTIFIC NAMES) Aplanobacter sepedonicus; Bacterium sepedonicum; Corynebacterium sepedonicum; Corynebacterium michiganense pv. sepedonicum; Clavibacter michiganensis subsp. sepedonicus. MICROBIOLOGICAL PROPERTIES Gram-positive, club-shaped cells with creamy to yellowish-cream colonies for which the optimal growth temperature is 20-23°C. DISTRIBUTION Asia (China, Japan, Kazakhstan, Nepal, North Korea, Pakistan, South Korea, Uzbekistan, the Asian part of Russia), Europe (Belarus, Bulgaria, Czech Republic, Estonia, Finland, Georgia, Germany, Greece, Hungary, Latvia, Lithuania, Norway, Poland, Romania, European part of Russia, Slovakia, Spain, Sweden, Turkey, Ukraine), and North America (Canada, Mexico, USA). PHYTOSANITARY CATEGORIZATION CORBSE: EPPO A2 list no. 51. EU; Annex designation I/A2.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Jan M. van der Wolf
- Business Unit Biointeractions and Plant HealthWageningen University and ResearchWageningenNetherlands
| | - Hamid Abachi
- Department of Plant ProtectionCollege of AgricultureUniversity of TehranKarajIran
| | - Xiang Li
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | - Solke H. De Boer
- Canadian Food Inspection Agency, Charlottetown LaboratoryCharlottetownPECanada
| | | |
Collapse
|
16
|
Wang J, Wu J, Tsutsumi K, Choi JH, Hirai H, Kobori H, Takikawa Y, Kawagishi H. A new lanostane triterpenoid from the mushroom Hypholoma fasciculare. Biosci Biotechnol Biochem 2022; 86:819-823. [PMID: 35388876 DOI: 10.1093/bbb/zbac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
A novel compound (1) and 3 known compounds (2-4) were isolated from the fruiting bodies of Hypholoma fasciculare. The structure of 1 was determined by the interpretation of spectroscopic data. Compounds 2-4 were identified by comparing the spectra data of known compounds. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, compounds 1, 2, and 4 showed inhibition effects on C. michiganensis only.
Collapse
Affiliation(s)
- Junhong Wang
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kenta Tsutsumi
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Jae-Hoon Choi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., Tsu-shi, Mie, Japan
| | - Yuichi Takikawa
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
17
|
Park IW, Hwang IS, Oh EJ, Kwon CT, Oh CS. Nicotiana benthamiana, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, Clavibacter michiganensis, and C. capsici in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:876971. [PMID: 35620684 PMCID: PMC9127732 DOI: 10.3389/fpls.2022.876971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 06/11/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes bacterial canker and wilting in host plants like tomato. Two major virulence genes encoding a cellulase (celA) and a putative serine protease (pat-1) have been reported. Here we show that Nicotiana benthamiana, a commonly used model plant for studying molecular plant-pathogen interactions, is a surrogate host of C. michiganensis and C. capsici. When a low concentration of two Clavibacter species, C. michiganensis and C. capsici, were infiltrated into N. benthamiana leaves, they caused blister-like lesions closely associated with cell death and the generation of reactive oxygen species and proliferated significantly like a pathogenic bacterium. By contrast, they did not cause any disease symptoms in N. tabacum leaves. The celA and pat-1 mutants of C. michiganensis still caused blister-like lesions and cankers like the wild-type strain. When a high concentration of two Clavibacter species and two mutant strains were infiltrated into N. benthamiana leaves, all of them caused strong and rapid necrosis. However, only C. michiganensis strains, including the celA and pat-1 mutants, caused wilting symptoms when it was injected into stems. When two Clavibacter species and two mutants were infiltrated into N. tabacum leaves at the high concentration, they (except for the pat-1 mutant) caused a strong hypersensitive response. These results indicate that C. michiganensis causes blister-like lesions, canker, and wilting in N. benthamiana, and celA and pat-1 genes are not necessary for the development of these symptoms. Overall, N. benthamiana is a surrogate host of Clavibacter species, and their novel virulence factors are responsible for disease development in this plant.
Collapse
Affiliation(s)
- In Woong Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Choon-Tak Kwon
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
18
|
Osdaghi E, Taghouti G, Dutrieux C, Taghavi SM, Fazliarab A, Briand M, Le Saux MF, Portier P, Jacques MA. Whole Genome Resources of 17 Curtobacterium flaccumfaciens Strains Including Pathotypes of C. flaccumfaciens pv. betae, C. flaccumfaciens pv. oortii, and C. flaccumfaciens pv. poinsettiae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:352-356. [PMID: 35021852 DOI: 10.1094/mpmi-11-21-0282-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj 31587-77871, Iran
| | - Geraldine Taghouti
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Cecile Dutrieux
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Amal Fazliarab
- Iranian Sugarcane Research and Training Institute (ISCRTI), Ahvaz, Khuzestan, Iran
| | - Martial Briand
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Marion Fischer Le Saux
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Perrine Portier
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| | - Marie-Agnes Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, F-49000 Angers, France
| |
Collapse
|
19
|
Tambong JT, Xu R, Gerdis S, Daniels GC, Chabot D, Hubbard K, Harding MW. Molecular Analysis of Bacterial Isolates From Necrotic Wheat Leaf Lesions Caused by Xanthomonas translucens, and Description of Three Putative Novel Species, Sphingomonas albertensis sp. nov., Pseudomonas triticumensis sp. nov. and Pseudomonas foliumensis sp. nov. Front Microbiol 2021; 12:666689. [PMID: 34093484 PMCID: PMC8170138 DOI: 10.3389/fmicb.2021.666689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas translucens is the etiological agent of the wheat bacterial leaf streak (BLS) disease. The isolation of this pathogen is usually based on the Wilbrink's-boric acid-cephalexin semi-selective medium which eliminates 90% of other bacteria, some of which might be novel species. In our study, a general purpose nutrient agar was used to isolate 49 bacterial strains including X. translucens from necrotic wheat leaf tissues. Maximum likelihood cluster analysis of 16S rRNA sequences grouped the strains into 10 distinct genera. Pseudomonas (32.7%) and Pantoea (28.6%) were the dominant genera while Xanthomonas, Clavibacter and Curtobacterium had 8.2%, each. Erwinia and Sphingomonas had two strains, each. BLAST and phylogenetic analyses of multilocus sequence analysis (MLSA) of specific housekeeping genes taxonomically assigned all the strains to validly described bacterial species, except three strains (10L4B, 12L4D and 32L3A) of Pseudomonas and two (23L3C and 15L3B) of Sphingomonas. Strains 10L4B and12L4D had Pseudomonas caspiana as their closest known type strain while strain 32L3A was closest to Pseudomonas asturiensis. Sphingomonas sp. strains 23L3C and 15L3B were closest to S. faeni based on MLSA analysis. Our data on MLSA, whole genome-based cluster analysis, DNA-DNA hybridization and average nucleotide identity, matrix-assisted laser desorption/ionization-time-of-flight, chemotaxonomy and phenotype affirmed that these 5 strains constitute three novel lineages and are taxonomically described in this study. We propose the names, Sphingomonas albertensis sp. nov. (type strain 23L3CT = DOAB 1063T = CECT 30248T = LMG 32139T), Pseudomonas triticumensis sp. nov. (type strain 32L3AT = DOAB 1067T = CECT 30249T = LMG 32140T) and Pseudomonas foliumensis sp. nov. (type strain 10L4BT = DOAB 1069T = CECT 30250T = LMG 32142T). Comparative genomics of these novel species, relative to their closest type strains, revealed unique repertoires of core secretion systems and secondary metabolites/antibiotics. Also, the detection of CRISPR-Cas systems in the genomes of these novel species suggests an acquired mechanism for resistance against foreign mobile genetic elements. The results presented here revealed a cohabitation, within the BLS lesions, of diverse bacterial species, including novel lineages.
Collapse
Affiliation(s)
- James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Greg C Daniels
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB, Canada
| | - Denise Chabot
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Keith Hubbard
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Michael W Harding
- Crop Diversification Centre South, Alberta Agriculture and Forestry, Brooks, AB, Canada
| |
Collapse
|
20
|
Tian Q, Chuan J, Sun X, Zhou A, Wang L, Zou J, Zhao W, Li X. Description of Clavibacter zhangzhiyongii sp. nov., a phytopathogenic actinobacterium isolated from barley seeds, causing leaf brown spot and decline. Int J Syst Evol Microbiol 2021; 71:004786. [PMID: 33983875 PMCID: PMC8289203 DOI: 10.1099/ijsem.0.004786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/21/2021] [Indexed: 11/18/2022] Open
Abstract
Clavibacter michiganensis is a Gram-stain-positive bacterium with eight subspecies, five of which have been redefined as different species on the basis of their genome sequence data. On the basis of the results of phylogenetic analysis of dnaA gene sequences, strains of members of the genus Clavibacter isolated from barley have been grouped in a separate clade from other species and subspecies of the genus Clavibacter. In this study, the biochemical, physiological, fatty acids and genetic characteristics of strains DM1T and DM3, which represented the barley isolates, were examined. On the basis of results from multi-locus sequence typing and other biochemical and physiological features, including colony colour, carbon source utilisation and enzyme activities, DM1T and DM3 are categorically differentiated from the aforementioned eight species and subspecies of the genus Clavibacter. Moreover, the results of genomic analysis reveal that the DNA G+C contents of DM1T and DM3 are 73.7 and 73.5 %, respectively, and the average nucleotide identity (ANI) values between DM1T and DM3 and other species and subspecies range from 90.4 to 92.0 %. The ANI value between DM1T and DM3 is 98.0 %. These results indicate that DM1T and DM3 are distinct from other known species and subspecies of the genus Clavibacter. Therefore, we propose a novel species, C. zhangzhiyongii, with DM1T (=CFCC 16553 T=LMG 31970T) as the type strain.
Collapse
Affiliation(s)
- Qian Tian
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Jiacheng Chuan
- Canadian Food Inspection Agency (CFIA), Charlottetown Laboratory, Charlottetown, PE C1A 5T1, Canada
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Aiguo Zhou
- Canadian Food Inspection Agency (CFIA), Charlottetown Laboratory, Charlottetown, PE C1A 5T1, Canada
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Li Wang
- College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenjun Zhao
- Institute of Plant Quarantine Research, Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Xiang Li
- Canadian Food Inspection Agency (CFIA), Charlottetown Laboratory, Charlottetown, PE C1A 5T1, Canada
| |
Collapse
|
21
|
Xu R, Adam L, Chapados J, Soliman A, Daayf F, Tambong JT. MinION Nanopore-based detection of Clavibacter nebraskensis, the corn Goss's wilt pathogen, and bacteriomic profiling of necrotic lesions of naturally-infected leaf samples. PLoS One 2021; 16:e0245333. [PMID: 33481876 PMCID: PMC7822522 DOI: 10.1371/journal.pone.0245333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
The Goss’s bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss’s bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.
Collapse
Affiliation(s)
- Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Lorne Adam
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James T. Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
22
|
Soliman A, Rampitsch C, Tambong JT, Daayf F. Secretome Analysis of Clavibacter nebraskensis Strains Treated with Natural Xylem Sap In Vitro Predicts Involvement of Glycosyl Hydrolases and Proteases in Bacterial Aggressiveness. Proteomes 2021; 9:1. [PMID: 33435483 PMCID: PMC7839047 DOI: 10.3390/proteomes9010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
The Gram-positive bacterium Clavibacter nebraskensis (Cn) causes Goss's wilt and leaf blight on corn in the North American Central Plains with yield losses as high as 30%. Cn strains vary in aggressiveness on corn, with highly aggressive strains causing much more serious symptoms and damage to crops. Since Cn inhabits the host xylem, we investigated differences in the secreted proteomes of Cn strains to determine whether these could account for phenotypic differences in aggressiveness. Highly and a weakly aggressive Cn strains (Cn14-15-1 and DOAB232, respectively) were cultured, in vitro, in the xylem sap of corn (CXS; host) and tomato (TXS; non-host). The secretome of the Cn strains were extracted and processed, and a comparative bottom-up proteomics approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine their identities and concentration. Relative quantitation of peptides was based on precursor ion intensities to measure protein abundances. In total, 745 proteins were identified in xylem sap media. In CXS, a total of 658 and 396 proteins were identified in strains Cn14-5-1 and DOAB232, respectively. The unique and the differentially abundant proteins in the secretome of strain Cn14-5-1 were higher in either sap medium compared to DOAB232. These proteins were sorted using BLAST2GO and assigned to 12 cellular functional processes. Virulence factors, e.g., cellulase, β-glucosidase, β-galactosidase, chitinase, β-1,4-xylanase, and proteases were generally higher in abundance in the aggressive Cn isolate. This was corroborated by enzymatic activity assays of cellulase and protease in CXS. These proteins were either not detected or detected at significantly lower abundance levels in Cn strains grown in non-host xylem sap (tomato), suggesting potential factors involved in Cn-host (corn) interactions.
Collapse
Affiliation(s)
- Atta Soliman
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Genetics, Faculty of Agriculture, University of Tanta, Tanta, Gharbiya 31111, Egypt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Christof Rampitsch
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada;
| | | | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
23
|
Méndez V, Valenzuela M, Salvà-Serra F, Jaén-Luchoro D, Besoain X, Moore ERB, Seeger M. Comparative Genomics of Pathogenic Clavibacter michiganensis subsp. michiganensis Strains from Chile Reveals Potential Virulence Features for Tomato Plants. Microorganisms 2020; 8:microorganisms8111679. [PMID: 33137950 PMCID: PMC7692107 DOI: 10.3390/microorganisms8111679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Clavibacter has been associated largely with plant diseases. The aims of this study were to characterize the genomes and the virulence factors of Chilean C. michiganensis subsp. michiganensis strains VL527, MSF322 and OP3, and to define their phylogenomic positions within the species, Clavibacter michiganensis. VL527 and MSF322 genomes possess 3,396,632 and 3,399,199 bp, respectively, with a pCM2-like plasmid in strain VL527, with pCM1- and pCM2-like plasmids in strain MSF322. OP3 genome is composed of a chromosome and three plasmids (including pCM1- and pCM2-like plasmids) of 3,466,104 bp. Genomic analyses confirmed the phylogenetic relationships of the Chilean strains among C.michiganensis subsp. michiganensis and showed their low genomic diversity. Different virulence levels in tomato plants were observable. Phylogenetic analyses of the virulence factors revealed that the pelA1 gene (chp/tomA region)—that grouped Chilean strains in three distinct clusters—and proteases and hydrolases encoding genes, exclusive for each of the Chilean strains, may be involved in these observed virulence levels. Based on genomic similarity (ANIm) analyses, a proposal to combine and reclassify C. michiganensis subsp. phaseoli and subsp. chilensis at the species level, as C. phaseoli sp. nov., as well as to reclassify C. michiganensis subsp. californiensis as the species C. californiensis sp. nov. may be justified.
Collapse
Affiliation(s)
- Valentina Méndez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ximena Besoain
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile;
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (F.S.-S.); (D.J.-L.); (E.R.B.M.)
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile;
- Correspondence: (V.M.); (M.S.)
| |
Collapse
|
24
|
Hwang IS, Lee HM, Oh E, Lee S, Heu S, Oh C. Plasmid composition and the chpG gene determine the virulence level of Clavibacter capsici natural isolates in pepper. MOLECULAR PLANT PATHOLOGY 2020; 21:808-819. [PMID: 32196887 PMCID: PMC7214350 DOI: 10.1111/mpp.12932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/23/2023]
Abstract
The gram-positive bacterial species Clavibacter capsici causes necrosis and canker in pepper plants. Genomic and functional analyses of C. capsici type strain PF008 have shown that multiple virulence genes exist in its two plasmids. We aimed to identify the key determinants that control the virulence of C. capsici. Pepper leaves inoculated with 54 natural isolates exhibited significant variation in the necrosis. Six isolates showed very low virulence, but their population titres in plants were not significantly different from those of the highly virulent isolates. All six isolates lacked the pCM1Cc plasmid that carries chpG, which has been shown to be required for virulence and encodes a putative serine protease, but two of them, isolates 1,106 and 1,207, had the intact chpG elsewhere in the genome. Genomic analysis of these two isolates revealed that chpG was located in the pCM2Cc plasmid, and two highly homologous regions were present next to the chpG locus. The chpG expression in isolate 1,106 was not induced in plants. Introduction of chpG of the PF008 strain into the six low-virulence isolates restored their virulence to that of PF008. Our findings indicate that there are at least three different variant groups of C. capsici and that the plasmid composition and the chpG gene are critical for determining the virulence level. Moreover, our findings also indicate that the virulence level of C. capsici does not directly correlate with bacterial titres in plants.
Collapse
Affiliation(s)
- In Sun Hwang
- Department of Horticultural BiotechnologyCollege of Life SciencesKyung Hee UniversityYonginSouth Korea
| | - Hyo Min Lee
- Department of Horticultural BiotechnologyCollege of Life SciencesKyung Hee UniversityYonginSouth Korea
| | - Eom‐Ji Oh
- Department of Horticultural BiotechnologyCollege of Life SciencesKyung Hee UniversityYonginSouth Korea
| | - Seungdon Lee
- Planning and Coordination DivisionNational Institute of Agricultural SciencesRural Development AdministrationWanjuSouth Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research DivisionNational Institute of Crop ScienceRural Development AdministrationSuwonSouth Korea
| | - Chang‐Sik Oh
- Department of Horticultural BiotechnologyCollege of Life SciencesKyung Hee UniversityYonginSouth Korea
| |
Collapse
|
25
|
Hamidizade M, Taghavi SM, Martins SJ, Herschlag RA, Hockett KL, Bull CT, Osdaghi E. Bacterial Brown Pit, a New Disease of Edible Mushrooms Caused by Mycetocola sp. PLANT DISEASE 2020; 104:1445-1454. [PMID: 32181723 DOI: 10.1094/pdis-10-19-2176-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From September to December 2018, commercial button mushroom (Agaricus bisporus) farms in central Iran were surveyed to monitor the causal agent(s) of browning and blotch symptoms on mushroom caps. In addition to dozens of pseudomonads (i.e., Pseudomonas tolaasii and Pseudomonas reactans), six slow-growing gram-positive bacterial strains were isolated from blotched mushroom caps. These bacteria presented as creamy white, circular, smooth, nonfluorescent, and shiny colonies with whole margins resembling members of Microbacteriaceae (Actinobacteria). All of the actinobacterial strains were aggressively pathogenic on cut cap surface of two edible mushrooms (i.e., A. bisporus and Pleurotus eryngii), inducing brown pit symptoms 48 h postinoculation. The strains did not induce symptoms on the vegetables tested (i.e., carrot, cucumber, and potato), and they did not affect the growth of mycelium of tested plant-pathogenic fungi (i.e., Acremonium sp., Fusarium spp., and Phytopythium sp.). Phylogeny of 16S ribosomal RNA and multilocus sequence analysis of six housekeeping genes (i.e., atpD, dnaK, gyrB, ppK, recA, and rpoB) revealed that the bacterial strains belong to the actinobacterial genus Mycetocola spp., whereas the species status of the strains remains undetermined. Mushroom-associated Mycetocola species were previously reported to be capable of detoxifying tolaasin, a toxin produced by P. tolaasii, whereas the strains isolated in this study did not show tolaasin detoxification activities. Altogether, this is the first report of a mushroom disease caused by an actinobacterial species, and "bacterial brown pit" was assigned as the common name of the disease.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samuel J Martins
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rachel A Herschlag
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Kevin L Hockett
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Carolee T Bull
- Plant Pathology & Environmental Microbiology Department, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| |
Collapse
|
26
|
Lacault C, Briand M, Jacques MA, Darrasse A. Zucchini Vein Clearing Disease Is Caused by Several Lineages Within Pseudomonas syringae Species Complex. PHYTOPATHOLOGY 2020; 110:744-757. [PMID: 31909688 DOI: 10.1094/phyto-07-19-0266-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zucchini (Cucurbita pepo) is worldwide affected by Pseudomonas syringae, inducing vein clearing, stunting, and necroses during plantlet development. A collection of 58 P. syringae strains isolated from diseased zucchini plantlets was characterized by multilocus sequence analysis (MLSA). A subset of 23 strains responsible for vein clearing of zucchini (VCZ) was evaluated for pathogenicity on zucchini, and their genomes were sequenced. The host range of six VCZ strains was evaluated on 11 cucurbit species. Most VCZ strains belong to clades 2a and 2b-a within phylogroup 2 of P. syringae species complex and are closely related to other strains previously isolated from cucurbits. Genome analyses revealed diversity among VCZ strains within each clade. One main cluster, once referred to by the invalid pathovar name (peponis), gathers VCZ strains presenting a narrow host range including zucchini and squashes. Other VCZ strains present a large host range including zucchini, squashes, cucumber, melons, and in some cases watermelon. The VCZ strain pathogenic features are strongly associated with type III effector repertoires. The presence of avrRpt2 and absence of hopZ5 are associated with a narrow host range, whereas the presence of hopZ5 and absence of avrRpt2 are most generally associated with a large host range. To better detect the different clusters identified with whole genome sequence and pathogenicity analyses, we used a specific-k-mers approach to refine the MLSA scheme. Using this novel MLSA scheme to type P. syringae isolates from diseased cucurbits would give insight into distribution of worldwide strains and origin of epidemics.
Collapse
Affiliation(s)
- Caroline Lacault
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Martial Briand
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Armelle Darrasse
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| |
Collapse
|
27
|
Yasuhara-Bell J, Arif M, Busot GY, Mann R, Rodoni B, Stack JP. Comparative Genomic Analysis Confirms Five Genetic Populations of the Select Agent, Rathayibacter toxicus. Microorganisms 2020; 8:E366. [PMID: 32150860 PMCID: PMC7143919 DOI: 10.3390/microorganisms8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Rathayibacter toxicus is a Gram-positive, nematode-vectored bacterium that infects several grass species in the family Poaceae. Unique in its genus, R. toxicus has the smallest genome, possesses a complete CRISPR-Cas system, a vancomycin-resistance cassette, produces tunicamycin, a corynetoxin responsible for livestock deaths in Australia, and is designated a Select Agent in the United States. In-depth, genome-wide analyses performed in this study support the previously designated five genetic populations, with a core genome comprising approximately 80% of the genome for all populations. Results varied as a function of the type of analysis and when using different bioinformatics tools for the same analysis; e.g., some programs failed to identify specific genomic regions that were actually present. The software variance highlights the need to verify bioinformatics results by additional methods; e.g., PCR, mapping genes to genomes, use of multiple algorithms). These analyses suggest the following relationships among populations: RT-IV ↔ RT-I ↔ RT-II ↔ RT-III ↔ RT-V, with RT-IV and RT-V being the most unrelated. This is the most comprehensive analysis of R. toxicus that included populations RT-I and RT-V. Future studies require underrepresented populations and more recent isolates from varied hosts and geographic locations.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Mohammad Arif
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Plant and Environmental Protection Sciences, University of Hawai`i at Mānoa, Honolulu, HI 96822, USA
| | - Grethel Y. Busot
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| | - Rachel Mann
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - Brendan Rodoni
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
- Department of Jobs, Precincts and Regions, Microbial Sciences, Pests & Diseases, Agriculture Victoria, AgriBio Centre, La Trobe University, 5 Ring Rd, Bundoora, Victoria 3083, Australia
| | - James P. Stack
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, 4024 Throckmorton Plant Science Center, Manhattan, KS 66506, USA; (J.Y.-B.); (G.Y.B.)
- Plant Biosecurity Cooperative Research Centre, CRC for National Plant Biosecurity, Level 2, Building 22, Innovation Centre, University Drive, University of Canberra, Bruce, Australian Capital Territory, Canberra 2617, Australia; (M.A.); (R.M.); (B.R.)
| |
Collapse
|
28
|
Comparative Genomics and Phylogenetic Analyses Suggest Several Novel Species within the Genus Clavibacter, Including Nonpathogenic Tomato-Associated Strains. Appl Environ Microbiol 2020; 86:AEM.02873-19. [PMID: 31924620 DOI: 10.1128/aem.02873-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Members of the genus Clavibacter are economically important bacterial plant pathogens infecting a set of diverse agricultural crops (e.g., alfalfa, corn, potato, tomato, and wheat). Tomato-associated Clavibacter sp. strains account for a great portion of the genetic diversity of the genus, and C. michiganensis sensu stricto (formerly C. michiganensis subsp. michiganensis), causing bacterial canker disease, is considered one of the most destructive seed-borne agents for the crop worldwide. However, current taxonomic descriptions of the genus do not reflect the existing diversity of the strains, resulting in unsatisfactory results in quarantine surveys for the pathogens. In this study, we used all the available genome sequences of Clavibacter sp. strains, including the type strains of newly described subspecies, to provide precise insight into the diversity of tomato-associated members of the genus and further clarify the taxonomic status of the strains using genotypic and phenotypic features. The results of phylogenetic analyses revealed the existence of nine hypothetical new species among the investigated strains. None of the three new subspecies (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) is included within the tomato-pathogenic C. michiganensis sensu stricto lineage. Although comparative genomics revealed the lack of chp and tomA pathogenicity determinant gene clusters in the nonpathogenic strains, a number of pathogenicity-related genes were noted to be present in all the strains regardless of their pathogenicity characteristics. Altogether, our results indicate a need for a formal taxonomic reconsideration of tomato-associated Clavibacter sp. strains to facilitate differentiation of the lineages in quarantine inspections.IMPORTANCE Clavibacter spp. are economically important bacterial plant pathogens infecting a set of diverse agricultural crops, such as alfalfa, corn, pepper, potato, tomato, and wheat. A number of plant-pathogenic members of the genus (e.g., C. michiganensis sensu stricto and C. sepedonicus, infecting tomato and potato plants, respectively) are included in the A2 (high-risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Although tomato-associated members of Clavibacter spp. account for a significant portion of the genetic diversity in the genus, only the strains belonging to C. michiganensis sensu stricto (formerly C. michiganensis subsp. michiganensis) cause bacterial canker disease of tomato and are subjected to the quarantine inspections. Hence, discrimination between the pathogenic and nonpathogenic Clavibacter sp. strains associated with tomato seeds and transplants plays a pivotal role in the accurate detection and cost-efficient management of the disease. On the other hand, detailed information on the genetic contents of different lineages of the genus would lead to the development of genome-informed specific detection techniques. In this study, we have provided an overview of the phylogenetic and genomic differences between the pathogenic and nonpathogenic tomato-associated Clavibacter sp. strains. We also noted that the taxonomic status of newly introduced subspecies of C. michiganensis (i.e., C. michiganensis subsp. californiensis, C. michiganensis subsp. chilensis, and C. michiganensis subsp. phaseoli) should be reconsidered.
Collapse
|
29
|
Thapa SP, O'Leary M, Jacques MA, Gilbertson RL, Coaker G. Comparative Genomics to Develop a Specific Multiplex PCR Assay for Detection of Clavibacter michiganensis. PHYTOPATHOLOGY 2020; 110:556-566. [PMID: 31799900 DOI: 10.1094/phyto-10-19-0405-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial wilt and canker symptoms. Accurate detection is a crucial step in confirming outbreaks of bacterial canker and developing management strategies. A major problem with existing detection methods are false-positive and -negative results. Here, we report the use of comparative genomics of 37 diverse Clavibacter strains, including 21 strains sequenced in this study, to identify specific sequences that are C. michiganensis detection targets. Genome-wide phylogenic analyses revealed additional diversity within the genus Clavibacter. Pathogenic C. michiganensis strains varied in plasmid composition, highlighting the need for detection methods based on chromosomal targets. We utilized sequences of C. michiganensis-specific loci to develop a multiplex PCR-based diagnostic platform using two C. michiganensis chromosomal genes (rhuM and tomA) and an internal control amplifying both bacterial and plant DNA (16s ribosomal RNA). The multiplex PCR assay specifically detected C. michiganensis strains from a panel of 110 additional bacteria, including other Clavibacter spp. and bacterial pathogens of tomato. The assay was adapted to detect the presence of C. michiganensis in seed and tomato plant materials with high sensitivity and specificity. In conclusion, the described method represents a robust, specific tool for detection of C. michiganensis in tomato seed and infected plants.
Collapse
Affiliation(s)
- Shree P Thapa
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Michael O'Leary
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 Quasav, Beaucouzé, France
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, U.S.A
| |
Collapse
|
30
|
Curland RD, Gao L, Hirsch CD, Ishimaru CA. Localized Genetic and Phenotypic Diversity of Xanthomonas translucens Associated With Bacterial Leaf Streak on Wheat and Barley in Minnesota. PHYTOPATHOLOGY 2020; 110:257-266. [PMID: 31448998 DOI: 10.1094/phyto-04-19-0134-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial leaf streak (BLS) of wheat and barley has been a disease of increasing concern in the Upper Midwest over the past decade. In this study, intra- and interfield genetic and pathogenic diversity of bacteria causing BLS in Minnesota was evaluated. In 2015, 89 strains were isolated from 100 leaf samples collected from two wheat and two barley fields naturally infected with BLS. Virulence assays and multilocus sequence alignments of four housekeeping genes supported pathovar identifications. All wheat strains were pathogenic on wheat and barley and belonged to the same lineage as the Xanthomonas translucens pv. undulosa-type strain. All barley strains were pathogenic on barley but not on wheat. Three lineages of barley strains were detected. The frequency and number of sequence types of each pathovar varied within and between fields. A significant population variance was detected between populations of X. translucens pv. undulosa collected from different wheat fields. Population stratification of X. translucens pv. translucens was not detected. Significant differences in virulence were detected among three dominant sequence types of X. translucens pv. undulosa but not those of X. translucens pv. translucens. Field trials with wheat and barley plants inoculated with strains of known sequence type and virulence did not detect significant race structures within either pathovar. Knowledge of virulence, sequence types, and population structures of X. translucens on wheat and barley can support studies on plant-bacterial interactions and breeding for BLS disease resistance.
Collapse
Affiliation(s)
- Rebecca D Curland
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Liangliang Gao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
| | - Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Carol A Ishimaru
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
31
|
Multiple Introductions of Tomato Pathogen Clavibacter michiganensis subsp. michiganensis into Iran as Revealed by a Global-Scale Phylogeographic Analysis. Appl Environ Microbiol 2019; 85:AEM.02098-19. [PMID: 31604763 DOI: 10.1128/aem.02098-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
Tomato bacterial canker caused by Clavibacter michiganensis subsp. michiganensis is one of the most important seed-borne tomato diseases around the globe. The disease was initially reported in 1993 in Iran, and it became a rising threat for the multibillion dollar tomato industry of the country during the last decade. In this study, using phylogeographic analyses, we determined genetic diversity and geographic distribution of C. michiganensis subsp. michiganensis in Iran. Our field surveys showed that the pathogen is expanding into the southern and eastern areas of the country. Furthermore, multilocus sequence analysis and typing (MLSA/MLST) using the sequences of five housekeeping genes (atpD, gyrB, ppk, recA, and rpoB) revealed that 37 C. michiganensis subsp. michiganensis strains isolated in Iran had high genetic diversity and placed in 15 sequence types (STs), while all the available 184 worldwide C. michiganensis subsp. michiganensis sequences were placed in 43 STs. MLSA divided the worldwide C. michiganensis subsp. michiganensis strains into two phylogroups (I and II). Among the 37 strains isolated in Iran, 30 strains clustered in phylogroup I, while 7 strains clustered in phylogroup II. Phylogeographic data inferred from the allelic profile of the five housekeeping genes suggested multiple introductions of C. michiganensis subsp. michiganensis inoculum into Iran, while the geographic origin of the Iranian C. michiganensis subsp. michiganensis strains remains undetermined. Further analyses using higher numbers of strains are warranted to decipher the evolutionary history of C. michiganensis subsp. michiganensis in Iran. Additionally, stricter seed/transplant inspections are recommended to reduce the risk of pathogen expansion to areas with no history of the disease.IMPORTANCE Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker disease, is one of the economically important pathogens of solanaceous crops (e.g., eggplant, pepper, and tomato) around the world. The disease occurs in many countries, with a particular importance in regions characterized by high precipitation and humid environmental conditions. As a seed-borne pathogen, C. michiganensis subsp. michiganensis is included in the A2 (high risk) list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Bacterial canker disease was reported for the first time in 1993 in Iran, while the geographic distribution, genetic diversity, and phylogenetic position of the causal agent remain undetermined. In this study, using the multilocus sequence analysis and typing (MLSA/MLST) approach, we provided a phylogeographic scheme for the C. michiganensis subsp. michiganensis strains isolated in Iran. Furthermore, global-scale phylogenetic analyses led to determination of phylogenetic position of Iranian C. michiganensis subsp. michiganensis strains among worldwide population of the pathogen. Based on diversity parameters and population structure, we suggest relatively higher genetic diversity of the bacterial canker pathogen in Iran than has so far been observed in the other areas of the world. Results obtained in this study provide a novel insight into the genetic diversity and population structure of the bacterial canker pathogen on a global scale.
Collapse
|
32
|
Sun T, Cao P, Sun K, Li C, Jiang M, Jia W, Wang X, Zhao J, Xiang W. Agromyces tardus sp. nov., an actinobacterium isolated from the rhizosphere soil of wheat ( Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:3268-3275. [PMID: 31355738 DOI: 10.1099/ijsem.0.003621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, heterotrophic, non-spore-forming and rod-shaped strain, designated SJ-23T, was isolated from rhizosphere soil of wheat (Triticum aestivum L.) collected from Langfang, Hebei Province, central PR China and characterized using a polyphasic approach. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Agromyces. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, glycolipid and three unidentified lipids. The predominant menaquinones detected were MK-12, MK-11 and MK-10. Major fatty acids were identified as anteiso-C17 : 0, anteiso-C15 : 0 and iso-C16 : 0. The 16S rRNA gene sequence analysis showed that strain SJ-23T belongs to the genus Agromyces with high sequence similarities to Agromyces ramosus DSM 43045T (99.2 %), Agromycescerinussubsp. cerinus DSM 8595T (98.8 %) and Agromyces cerinussubsp. nitratus DSM 8596T (98.6 %). Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a separate branch in the genus Agromyces. Furthermore, the combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain SJ-23T could be distinguished from its closest relatives. Therefore, it is proposed that strain SJ-23T represents a novel species of the genus Agromyces, for which the name Agromycestardus sp. nov. is proposed. The type strain is SJ-23T (=CGMCC 4.7419T=DSM 105049T).
Collapse
Affiliation(s)
- Tianyu Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Peng Cao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Kexin Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxu Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Mengqi Jiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Weiqi Jia
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, PR China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
33
|
Shoubao Y, Xiangsong C, Jiaquan G. Bacterial and fungal diversity in the traditional Chinese strong flavour liquor Daqu. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Shoubao
- School of Life Science; Huainan Normal University; Huainan Anhui 232001 People's Republic of China
- Liquor Making Biological Technology and Application of key laboratory of Sichuan Province; Zigong Sichuan Province 643000 People's Republic of China
- Anhui Yingjia Group Co., Ltd.; Luan Anhui Province 237271 People's Republic of China
- Key Laboratory of Ion Beam Bio-engineering of Institute of Plasma Physics; Chinese Academy of Sciences; Hefei 230031 People's Republic of China
- Key laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes; Huainan Normal University; Huainan Anhui 232001 People's Republic of China
| | - Chen Xiangsong
- Key Laboratory of Ion Beam Bio-engineering of Institute of Plasma Physics; Chinese Academy of Sciences; Hefei 230031 People's Republic of China
| | - Guang Jiaquan
- Anhui Yingjia Group Co., Ltd.; Luan Anhui Province 237271 People's Republic of China
| |
Collapse
|
34
|
Analysis of Bacterial Communities in White Clover Seeds via High-Throughput Sequencing of 16S rRNA Gene. Curr Microbiol 2018; 76:187-193. [DOI: 10.1007/s00284-018-1607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/24/2018] [Indexed: 01/16/2023]
|
35
|
Draft Genome Sequences of the Type Strains of Three Clavibacter Subspecies and Atypical Peach-Colored Strains Isolated from Tomato. Microbiol Resour Announc 2018; 7:MRA01357-18. [PMID: 30533783 PMCID: PMC6256548 DOI: 10.1128/mra.01357-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we present the draft genome sequences of 10 Clavibacter sp. strains, including the type strains of different subspecies of Clavibacter michiganensis and a potentially novel species within the genus. Here, we present the draft genome sequences of 10 Clavibacter sp. strains, including the type strains of different subspecies of Clavibacter michiganensis and a potentially novel species within the genus. Genome lengths of the strains varied between 2,982,864 and 3,288,331 bp, with G+C contents of 72.23 to 73.50%.
Collapse
|
36
|
Osdaghi E, Taghavi SM, Calamai S, Biancalani C, Cerboneschi M, Tegli S, Harveson RM. Phenotypic and Molecular-Phylogenetic Analysis Provide Novel Insights into the Diversity of Curtobacterium flaccumfaciens. PHYTOPATHOLOGY 2018; 108:1154-1164. [PMID: 29714091 DOI: 10.1094/phyto-12-17-0420-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A multiphasic approach was used to decipher the phenotypic features, genetic diversity, and phylogenetic position of 46 Curtobacterium spp. strains isolated from dry beans and other annual crops in Iran and Spain. Pathogenicity tests, resistance to arsenic compounds, plasmid profiling and BOX-PCR were performed on the strains. Multilocus sequence analysis (MLSA) was also performed on five housekeeping genes (i.e., atpD, gyrB, ppk, recA, and rpoB) of all the strains, as well as five pathotype strains of the species. Pathogenicity test showed that six out of 42 strains isolated in Iran were nonpathogenic on common bean. Despite no differences found between pathogenic and nonpathogenic strains in their plasmid profiling, the former were resistant to different concentrations of arsenic, while the latter were sensitive to the same concentrations. Strains pathogenic on common bean were polyphyletic with at least two evolutionary lineages (i.e., yellow-pigmented strains versus red/orange-pigmented strains). Nonpathogenic strains isolated from solanaceous vegetables were clustered within either the strains of C. flaccumfaciens pv. flaccumfaciens or different pathovars of the species. The results of MLSA and BOX-PCR analysis were similar to each other and both methods were able to discriminate the yellow-pigmented strains from the red/orange-pigmented strains. A comprehensive study of a worldwide collection representing all five pathovars as well as nonpathogenic strains of C. flaccumfaciens is warranted for a better understanding of the diversity within this phytopathogenic bacterium.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - S Mohsen Taghavi
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - Silvia Calamai
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - Carola Biancalani
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - Matteo Cerboneschi
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - Stefania Tegli
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| | - Robert M Harveson
- First and second authors: Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; third, fourth, fifth, and sixth authors: Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Laboratorio di Patologia Vegetale Molecolare, Università degli Studi di Firenze, Via della Lastruccia 10, 50019 Sesto Fiorentino, Firenze, Italy; and seventh author: University of Nebraska, Panhandle Research & Extension Center, 4502 Ave. I., Scottsbluff 69361
| |
Collapse
|
37
|
Nandi M, Macdonald J, Liu P, Weselowski B, Yuan Z. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. MOLECULAR PLANT PATHOLOGY 2018; 19:2036-2050. [PMID: 29528201 PMCID: PMC6638088 DOI: 10.1111/mpp.12678] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 05/11/2023]
Abstract
Bacterial canker disease is considered to be one of the most destructive diseases of tomato (Solanum lycopersicum), and is caused by the seed-borne Gram-positive bacterium Clavibacter michiganensis ssp. michiganensis (Cmm). This vascular pathogen generally invades and proliferates in the xylem through natural openings or wounds, causing wilt and canker symptoms. The incidence of symptomless latent infections and the invasion of tomato seeds by Cmm are widespread. Pathogenicity is mediated by virulence factors and transcriptional regulators encoded by the chromosome and two natural plasmids. The virulence factors include serine proteases, cell wall-degrading enzymes (cellulases, xylanases, pectinases) and others. Mutational analyses of these genes and gene expression profiling (via quantitative reverse transcription-polymerase chain reaction, transcriptomics and proteomics) have begun to shed light on their roles in colonization and virulence, whereas the expression of tomato genes in response to Cmm infection suggests plant factors involved in the defence response. These findings may aid in the generation of target-specific bactericides or new resistant varieties of tomato. Meanwhile, various chemical and biological controls have been researched to control Cmm. This review presents a detailed investigation regarding the pathogen Cmm, bacterial canker infection, molecular interactions between Cmm and tomato, and current perspectives on improved disease management.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Jacqueline Macdonald
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Peng Liu
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| | - Ze‐Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & DentistryUniversity of Western OntarioLondonONCanada, N6A 5C1
- London Research and Development Centre, Agriculture & Agri‐Food CanadaLondonONCanada, N5V 4T3
| |
Collapse
|
38
|
Sen Y, Aysan Y, Mirik M, Ozdemir D, Meijer-Dekens F, van der Wolf JM, Visser RGF, van Heusden S. Genetic Characterization of Clavibacter michiganensis subsp. michiganensis Population in Turkey. PLANT DISEASE 2018; 102:300-308. [PMID: 30673530 DOI: 10.1094/pdis-02-17-0276-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pathogenic gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. is the most harmful bacterium to tomatoes in many countries with a cooler climate. Multilocus sequence analysis was performed on five housekeeping genes (bipA, gyrB, kdpA, ligA, and sdhA) and three virulence-related genes (ppaA, chpC, and tomA) to determine evolutionary relationships and population structure of 108 C. michiganensis subsp. michiganensis strains collected from Turkey between 1996 and 2012. Based on these analyses, we concluded that C. michiganensis subsp. michiganensis in Turkey is highly uniform. However, at least four novel C. michiganensis subsp. michiganensis strains were recently introduced, possibly at the beginning of the 1990s. The singletons might point to additional sources or to strains that have evolved locally in Turkey.
Collapse
Affiliation(s)
- Yusuf Sen
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Yesim Aysan
- Cukurova University, Faculty of Agriculture, Department of Plant Protection, 01330 Adana, Turkey
| | - Mustafa Mirik
- Namik Kemal University, Department of Plant Protection, TR-59030 Tekirdag, Turkey
| | - Duygu Ozdemir
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Fien Meijer-Dekens
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Jan M van der Wolf
- Wageningen University and Research, Bio-interactions and Plant Health, 6700 AB, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| | - Sjaak van Heusden
- Wageningen University and Research, Plant Breeding, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
39
|
Yahiaoui N, Chéron JJ, Ravelomanantsoa S, Hamza AA, Petrousse B, Jeetah R, Jaufeerally-Fakim Y, Félicité J, Fillâtre J, Hostachy B, Guérin F, Cellier G, Prior P, Poussier S. Genetic Diversity of the Ralstonia solanacearum Species Complex in the Southwest Indian Ocean Islands. FRONTIERS IN PLANT SCIENCE 2017; 8:2139. [PMID: 29312394 PMCID: PMC5742265 DOI: 10.3389/fpls.2017.02139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Epidemiological surveillance of plant pathogens based on genotyping methods is mandatory to improve disease management strategies. In the Southwest Indian Ocean (SWIO) islands, bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is hampering the production of many sustainable and cash crops. To thoroughly analyze the genetic diversity of the RSSC in the SWIO, we performed a wide sampling survey (in Comoros, Mauritius, Reunion, Rodrigues, and Seychelles) that yielded 1,704 isolates from 129 plots, mainly from solanaceous crops. Classification of the isolates to the four major RSSC phylogenetic groups, named phylotypes, showed that 87% were phylotype I, representing the most prevalent strain in each of the SWIO islands. Additionally, 9.7% were phylotype II, and 3.3% were phylotype III; however, these isolates were found only in Reunion. Phylotype IV (2 isolates), known to be restricted to Indonesia-Australia-Japan, was reported in Mauritius, representing the first report of this group in the SWIO. Partial endoglucanase (egl) sequencing, based on the selection of 145 isolates covering the geographic and host diversity in the SWIO (also including strains from Mayotte and Madagascar), revealed 14 sequevars with Reunion and Mauritius displaying the highest sequevar diversity. Through a multilocus sequence analysis (MLSA) scheme based on the partial sequencing of 6 housekeeping genes (gdhA, gyrB, rplB, leuS, adk, and mutS) and 1 virulence-associated gene (egl), we inferred the phylogenetic relationships between these 145 SWIO isolates and 90 worldwide RSSC reference strains. Phylotype I was the most recombinogenic, although recombination events were detected among all phylotypes. A multilocus sequence typing (MLST) scheme identified 29 sequence types (STs) with variable geographic distributions in the SWIO. The outstanding epidemiologic feature was STI-13 (sequevar I-31), which was overrepresented in the SWIO and obviously reflected a lineage strongly adapted to the SWIO environment. A goeBURST analysis identified eight clonal complexes (CCs) including SWIO isolates, four CCs being geographically restricted to the SWIO, and four CCs being widespread beyond the SWIO. This work, which highlights notable genetic links between African and SWIO strains, provides a basis for the epidemiological surveillance of RSSC and will contribute to BW management in the SWIO.
Collapse
Affiliation(s)
- Noura Yahiaoui
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Jean-Jacques Chéron
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | | | - Azali A. Hamza
- Institut National de Recherche pour l'Agriculture, la Pêche et l'Environnement, Moroni, Comoros
| | | | - Rajan Jeetah
- Food and Agricultural Research and Extension Institute, Curepipe, Mauritius
| | | | | | - Jacques Fillâtre
- Association Réunionnaise pour la Modernisation de l'Economie Fruitière, Légumière et HORticole, Saint-Pierre, France
| | - Bruno Hostachy
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
| | - Fabien Guérin
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Gilles Cellier
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
| | - Philippe Prior
- Institut National de la Recherche Agronomique, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Stéphane Poussier
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| |
Collapse
|
40
|
Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL, Coaker G. Genomic Analysis of Clavibacter michiganensis Reveals Insight Into Virulence Strategies and Genetic Diversity of a Gram-Positive Bacterial Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:786-802. [PMID: 28677494 DOI: 10.1094/mpmi-06-17-0146-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterial pathogen that proliferates in the xylem vessels of tomato, causing bacterial canker disease. In this study, we sequenced and assembled genomes of 11 C. michiganensis subsp. michiganensis strains isolated from infected tomato fields in California as well as five Clavibacter strains that colonize tomato endophytically but are not pathogenic in this host. The analysis of the C. michiganensis subsp. michiganensis genomes supported the monophyletic nature of this pathogen but revealed genetic diversity among strains, consistent with multiple introduction events. Two tomato endophytes that clustered phylogenetically with C. michiganensis strains capable of infecting wheat and pepper and were also able to cause disease in these plants. Plasmid profiles of the California strains were variable and supported the essential role of the pCM1-like plasmid and the CelA cellulase in virulence, whereas the absence of the pCM2-like plasmid in some pathogenic C. michiganensis subsp. michiganensis strains revealed it is not essential. A large number of secreted C. michiganensis subsp. michiganensis proteins were carbohydrate-active enzymes (CAZymes). Glycome profiling revealed that C. michiganensis subsp. michiganensis but not endophytic Clavibacter strains is able to extensively alter tomato cell-wall composition. Two secreted CAZymes found in all C. michiganensis subsp. michiganensis strains, CelA and PelA1, enhanced pathogenicity on tomato. Collectively, these results provide a deeper understanding of C. michiganensis subsp. michiganensis diversity and virulence strategies.
Collapse
Affiliation(s)
- Shree P Thapa
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Sivakumar Pattathil
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | - Michael G Hahn
- 2 Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, U.S.A.; and
| | | | - Robert L Gilbertson
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| | - Gitta Coaker
- 1 Department of Plant Pathology, University of California, Davis, California, U.S.A
| |
Collapse
|
41
|
Tambong JT. Comparative genomics of Clavibacter michiganensis subspecies, pathogens of important agricultural crops. PLoS One 2017; 12:e0172295. [PMID: 28319117 PMCID: PMC5358740 DOI: 10.1371/journal.pone.0172295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
Subspecies of Clavibacter michiganensis are important phytobacterial pathogens causing devastating diseases in several agricultural crops. The genome organizations of these pathogens are poorly understood. Here, the complete genomes of 5 subspecies (C. michiganensis subsp. michiganensis, Cmi; C. michiganensis subsp. sepedonicus, Cms; C. michiganensis subsp. nebraskensis, Cmn; C. michiganensis subsp. insidiosus, Cmi and C. michiganensis subsp. capsici, Cmc) were analyzed. This study assessed the taxonomic position of the subspecies based on 16S rRNA and genome-based DNA homology and concludes that there is ample evidence to elevate some of the subspecies to species-level. Comparative genomics analysis indicated distinct genomic features evident on the DNA structural atlases and annotation features. Based on orthologous gene analysis, about 2300 CDSs are shared across all the subspecies; and Cms showed the highest number of subspecies-specific CDS, most of which are mobile elements suggesting that Cms could be more prone to translocation of foreign genes. Cms and Cmi had the highest number of pseudogenes, an indication of potential degenerating genomes. The stress response factors that may be involved in cold/heat shock, detoxification, oxidative stress, osmoregulation, and carbon utilization are outlined. For example, the wco-cluster encoding for extracellular polysaccharide II is highly conserved while the sucrose-6-phosphate hydrolase that catalyzes the hydrolysis of sucrose-6-phosphate yielding glucose-6-phosphate and fructose is highly divergent. A unique second form of the enzyme is only present in Cmn NCPPB 2581. Also, twenty-eight plasmid-borne CDSs in the other subspecies were found to have homologues in the chromosomal genome of Cmn which is known not to carry plasmids. These CDSs include pathogenesis-related factors such as Endocellulases E1 and Beta-glucosidase. The results presented here provide an insight of the functional organization of the genomes of five core C. michiganensis subspecies, enabling a better understanding of these phytobacteria.
Collapse
Affiliation(s)
- James T. Tambong
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
42
|
Tambong JT, Xu R, Daayf F, Brière S, Bilodeau GJ, Tropiano R, Hartke A, Reid LM, Cott M, Cote T, Agarkova I. Genome Analysis and Development of a Multiplex TaqMan Real-Time PCR for Specific Identification and Detection of Clavibacter michiganensis subsp. nebraskensis. PHYTOPATHOLOGY 2016; 106:1473-1485. [PMID: 27452898 DOI: 10.1094/phyto-05-16-0188-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The reemergence of the Goss's bacterial wilt and blight disease in corn in the United States and Canada has prompted investigative research to better understand the genome organization. In this study, we generated a draft genome sequence of Clavibacter michiganensis subsp. nebraskensis strain DOAB 395 and performed genome and proteome analysis of C. michiganensis subsp. nebraskensis strains isolated in 2014 (DOAB 397 and DOAB 395) compared with the type strain, NCPPB 2581 (isolated over 40 years ago). The proteomes of strains DOAB 395 and DOAB 397 exhibited a 99.2% homology but had 92.1 and 91.8% homology, respectively, with strain NCPPB 2581. The majority (99.9%) of the protein sequences had a 99.6 to 100% homology between C. michiganensis subsp. nebraskensis strains DOAB 395 and DOAB 397, with only four protein sequences (0.1%) exhibiting a similarity <70%. In contrast, 3.0% of the protein sequences of strain DOAB 395 or DOAB 397 showed low homologies (<70%) with the type strain NCPPB 2581. The genome data were exploited for the development of a multiplex TaqMan real-time polymerase chain reaction (PCR) tool for rapid detection of C. michiganensis subsp. nebraskensis. The specificity of the assay was validated using 122 strains of Clavibacter and non-Clavibacter spp. A blind test and naturally infected leaf samples were used to confirm specificity. The sensitivity (0.1 to 1.0 pg) compared favorably with previously reported real-time PCR assays. This tool should fill the current gap for a reliable diagnostic technique.
Collapse
Affiliation(s)
- James T Tambong
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Renlin Xu
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Fouad Daayf
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Stephan Brière
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Guillaume J Bilodeau
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Raymond Tropiano
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Allison Hartke
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Lana M Reid
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Morgan Cott
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Tammy Cote
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| | - Irina Agarkova
- First, second, and eighth authors: Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada; third author: Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada; fourth, fifth, sixth, and seventh authors: Canadian Food Inspection Agency, Ottawa, Ontario, Canada; ninth and tenth authors: Manitoba Corn Growers Association, Carman, Manitoba, Canada; and eleventh author: Department of Plant Pathology, University of Nebraska, Lincoln
| |
Collapse
|
43
|
Clavibacter michiganensis subsp. capsici subsp. nov., causing bacterial canker disease in pepper. Int J Syst Evol Microbiol 2016; 66:4065-4070. [DOI: 10.1099/ijsem.0.001311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Merda D, Bonneau S, Guimbaud JF, Durand K, Brin C, Boureau T, Lemaire C, Jacques MA, Fischer-Le Saux M. Recombination-prone bacterial strains form a reservoir from which epidemic clones emerge in agroecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:572-581. [PMID: 27059897 DOI: 10.1111/1758-2229.12397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acquisition of virulence-related genes through horizontal gene transfer can modify the pathogenic profiles of strains and lead to the emergence of new diseases. Xanthomonas arboricola is a bacterial species largely known for the damage it causes to stone and nut fruit trees worldwide. In addition to these host-specific populations called pathovars, many nonpathogenic strains have been identified in this species. Their evolutionary significance in the context of pathogen emergence is unknown. We looked at seven housekeeping genes amplified from 187 pathogenic and nonpathogenic strains isolated from various plants worldwide to analyze population genetics and recombination dynamics. We also examined the dynamics of the gains and losses of genes associated with life history traits (LHTs) during X. arboricola evolution. We discovered that X. arboricola presents an epidemic population structure. Successful pathovars of trees (i.e. pruni, corylina and juglandis) are epidemic clones whose emergence appears to be linked to the acquisition of eight genes coding for Type III effectors. The other strains of this species are part of a recombinant network, within which LHT-associated genes might have been lost. We suggest that nonpathogenic strains, because of their high genetic diversity and propensity for recombination, may promote the emergence of pathogenic strains.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Jean-François Guimbaud
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Karine Durand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Chrystelle Brin
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Tristan Boureau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Christophe Lemaire
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marion Fischer-Le Saux
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
45
|
Davis II EW, Weisberg AJ, Tabima JF, Grunwald NJ, Chang JH. Gall-ID: tools for genotyping gall-causing phytopathogenic bacteria. PeerJ 2016; 4:e2222. [PMID: 27547538 PMCID: PMC4958008 DOI: 10.7717/peerj.2222] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
Understanding the population structure and genetic diversity of plant pathogens, as well as the effect of agricultural practices on pathogen evolution, is important for disease management. Developments in molecular methods have contributed to increase the resolution for accurate pathogen identification, but those based on analysis of DNA sequences can be less straightforward to use. To address this, we developed Gall-ID, a web-based platform that uses DNA sequence information from 16S rDNA, multilocus sequence analysis and whole genome sequences to group disease-associated bacteria to their taxonomic units. Gall-ID was developed with a particular focus on gall-forming bacteria belonging to Agrobacterium, Pseudomonas savastanoi, Pantoea agglomerans, and Rhodococcus. Members of these groups of bacteria cause growth deformation of plants, and some are capable of infecting many species of field, orchard, and nursery crops. Gall-ID also enables the use of high-throughput sequencing reads to search for evidence for homologs of characterized virulence genes, and provides downloadable software pipelines for automating multilocus sequence analysis, analyzing genome sequences for average nucleotide identity, and constructing core genome phylogenies. Lastly, additional databases were included in Gall-ID to help determine the identity of other plant pathogenic bacteria that may be in microbial communities associated with galls or causative agents in other diseased tissues of plants. The URL for Gall-ID is http://gall-id.cgrb.oregonstate.edu/.
Collapse
Affiliation(s)
- Edward W. Davis II
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Javier F. Tabima
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Niklaus J. Grunwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
46
|
Jacques MA, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, Durand K, Olivier V, Portier P, Poliakoff F, Crouzillat D. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination. Appl Environ Microbiol 2015; 82:1556-68. [PMID: 26712553 PMCID: PMC4771316 DOI: 10.1128/aem.03299-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Nicolas Denancé
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France
| | - Bruno Legendre
- Anses Laboratoire de la Santé des Végétaux, Angers, France
| | | | - Martial Briand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Stelly Mississipi
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France Nestlé R&D Tours, Tours, France
| | - Karine Durand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | - Perrine Portier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | | |
Collapse
|
47
|
Kuzmanović N, Biondi E, Bertaccini A, Obradović A. Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe. J Appl Microbiol 2015; 119:786-96. [PMID: 26032990 DOI: 10.1111/jam.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/27/2022]
Abstract
AIMS To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. METHODS AND RESULTS By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. CONCLUSIONS The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis.
Collapse
Affiliation(s)
- N Kuzmanović
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| | - E Biondi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - A Bertaccini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - A Obradović
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| |
Collapse
|
48
|
Tancos MA, Lange HW, Smart CD. Characterizing the Genetic Diversity of the Clavibacter michiganensis subsp. michiganensis Population in New York. PHYTOPATHOLOGY 2015; 105:169-179. [PMID: 25208240 DOI: 10.1094/phyto-06-14-0178-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New York Clavibacter michiganensis subsp. michiganensis isolates, collected from disparate bacterial canker of tomato outbreaks over the past 11 years, were characterized with a multilocus sequence analysis (MLSA) scheme that differentiated the 51 isolates into 21 haplotypes with a discriminatory power of 0.944. The MLSA scheme consisted of five housekeeping genes (kdpA, sdhA, dnaA, ligA, and gyrB) and three putative pathogenicity genes (celA, tomA, and nagA). Repetitive polymerase chain reaction (PCR), with the BOX-A1R primer, confirmed the high diversity of C. michiganensis subsp. michiganensis isolates in New York by demonstrating that all six PCR patterns (A, B, 13C, 65C, 81C, and D) were present, with PCR patterns C and A being the most common. The MLSA scheme provided higher resolving power than the current repetitive-PCR approach. The plasmid profiles of New York isolates were diverse and differed from reference strain NCPPB382. PCR analysis indicated that the presence of putative pathogenicity genes varied between isolates and highlighted the ephemeral nature of pathogenicity genes in field populations of C. michiganensis subsp. michiganensis. Analysis of molecular variance between Serbian and New York C. michiganensis subsp. michiganensis isolates demonstrated that the two populations were not significantly different, with 98% genetic variation within each population and only 2% genetic variation between populations.
Collapse
|
49
|
Sen Y, van der Wolf J, Visser RGF, van Heusden S. Bacterial Canker of Tomato: Current Knowledge of Detection, Management, Resistance, and Interactions. PLANT DISEASE 2015; 99:4-13. [PMID: 30699746 DOI: 10.1094/pdis-05-14-0499-fe] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clavibacter michiganensis subsp. michiganensis is the causal agent of bacterial canker of tomato. The disease was first described in 1910 in Michigan, USA. C. michiganensis subsp. michiganensis (from now on called clavibacter) was initially thought to be a phloem parasite, but was later found to be a xylem-invading bacterium. The host range comprises mainly solanaceous crops such as tomato, pepper, and eggplant. Strains show great variability in virulence and are usually described as being hypervirulent, hypovirulent, or nonvirulent. Clavibacter lacks a type III secretion system, and only a few virulence factors have been experimentally determined from the many putative virulence factors. As the molecular mode of infection by clavibacter is unknown, researchers have avoided intensive work on this organism. Genetic plant mechanisms conferring resistance to clavibacter are apparently complex, and breeders have yet to develop disease-resistant cultivars.
Collapse
Affiliation(s)
- Yusuf Sen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands, and Graduate School Experimental Plant Sciences, Wageningen, The Netherlands
| | - Jan van der Wolf
- Plant Research International Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sjaak van Heusden
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
50
|
Yasuhara-Bell J, Alvarez AM. Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis. Int J Syst Evol Microbiol 2014; 65:811-826. [PMID: 25481293 DOI: 10.1099/ijs.0.000022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T)), respectively. Recognition of separate subspecies is essential for improved international seed testing operations.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- Departments of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, St. John Room 315, Honolulu, HI 96822, USA
| | - Anne M Alvarez
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, St. John Room 315, Honolulu, HI 96822, USA
| |
Collapse
|