1
|
Morohoshi T, Hirose K, Someya N. Identification and characterization of novel N-acylhomoserine lactonase from nonpathogenic Allorhizobium vitis, a candidate for biocontrol agent. J Biosci Bioeng 2024; 137:437-444. [PMID: 38575466 DOI: 10.1016/j.jbiosc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
Some strains of nonpathogenic Allorhizobium vitis can control crown gall disease in grapevines caused by pathogenic A. vitis and are considered candidates for biocontrol agents. Many plant pathogenic bacteria regulate the expression of their virulence genes via quorum sensing using N-acylhomoserine lactone (AHL) as a signaling compound. The eight nonpathogenic A. vitis strains used in this study showed AHL-degrading activity. The complete genome sequence of A. vitis MAFF 212306 contained three AHL lactonase gene homologs. When these genes were cloned and transformed into Escherichia coli DH5α, E. coli harboring the aiiV gene (RvVAR031_27660) showed AHL-degrading activity. The aiiV coding region was successfully amplified by polymerase chain reaction from the genomes of all eight strains of nonpathogenic A. vitis. Purified His-tagged AiiV exhibited AHL lactonase activity by hydrolyzing the lactone ring of AHL. AiiV had an optimal temperature of approximately 30 °C; however, its thermostability decreased above 40 °C. When the AiiV-expressing plasmid was transformed into Pectobacterium carotovorum subsp. carotovorum NBRC 3830, AHL production by NBRC 3830 decreased below the detection limit, and its maceration activity, which was controlled by quorum sensing, almost disappeared. These results suggest the potential use of AHL-degrading nonpathogenic A. vitis for the inhibition of crown gall disease in grapevines and other plant diseases controlled by quorum sensing.
Collapse
Affiliation(s)
- Tomohiro Morohoshi
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Koki Hirose
- Graduate School of Regional Development and Creativity, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Nobutaka Someya
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| |
Collapse
|
2
|
Zhu Q, Pan K, Liu H, Hu J, Li Q, Bai X, Zhang M, Qiu J, Hong Q. Cloning and expression of the phenazine-1-carboxamide hydrolysis gene pzcH and the identification of the key amino acids necessary for its activity. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131924. [PMID: 37379601 DOI: 10.1016/j.jhazmat.2023.131924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Phenazine-1-carboxamide (PCN), a phenazine derivative, can cause toxicity risks to non target organisms. In this study, the Gram-positive bacteria Rhodococcus equi WH99 was found to have the ability to degrade PCN. PzcH, a novel amidase belonging to amidase signature (AS) family, responsible for hydrolyzing PCN to PCA was identified from strain WH99. PzcH shared no similarity with amidase PcnH which can also hydrolyze PCN and belong to the isochorismatase superfamily from Gram-negative bacteria Sphingomonas histidinilytica DS-9. PzcH also showed low similarity (˂ 39%) with other reported amidases. The optimal catalysis temperature and pH of PzcH was 30 °C and 9.0, respectively. The Km and kcat values of PzcH for PCN were 43.52 ± 4.82 μM and 17.028 ± 0.57 s-1, respectively. The molecular docking and point mutation experiment demonstrated that catalytic triad Lys80-Ser155-Ser179 are essential for PzcH to hydrolyze PCN. Strain WH99 can degrade PCN and PCA to reduce their toxicity against the sensitive organisms. This study enhances our understanding of the molecular mechanism of PCN degradation, presents the first report on the key amino acids in PzcH from the Gram-positive bacteria and provides an effective strain in the bioremediation PCN and PCA contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xuekun Bai
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
3
|
Zhang L, Yao G, Mao Z, Song M, Zhao R, Zhang X, Chen C, Zhang H, Liu Y, Wang G, Li F, Wu X. Experimental and computational approaches to characterize a novel amidase that initiates the biodegradation of the herbicide propanil in Bosea sp. P5. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131155. [PMID: 36893600 DOI: 10.1016/j.jhazmat.2023.131155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The herbicide propanil and its major metabolite 3,4-dichloroaniline (3,4-DCA) are difficult to biodegrade and pose great health and environmental risks. However, studies on the sole or synergistic mineralization of propanil by pure cultured strains are limited. A two-strain consortium (Comamonas sp. SWP-3 and Alicycliphilus sp. PH-34), obtained from a swep-mineralizing enrichment culture that can synergistically mineralize propanil, has been previously reported. Here, another propanil degradation strain, Bosea sp. P5, was successfully isolated from the same enrichment culture. A novel amidase, PsaA, responsible for initial propanil degradation, was identified from strain P5. PsaA shared low sequence identity (24.0-39.7 %) with other biochemically characterized amidases. PsaA exhibited optimal activity at 30 °C and pH 7.5 and had kcat and Km values of 5.7 s-1 and 125 μM, respectively. PsaA could convert the herbicide propanil to 3,4-DCA but exhibited no activity toward other herbicide structural analogs. This catalytic specificity was explained by using propanil and swep as substrates and then analyzed by molecular docking, molecular dynamics simulation and thermodynamic calculations, which revealed that Tyr138 is the key residue that affects the substrate spectrum of PsaA. This is the first propanil amidase with a narrow substrate spectrum identified, providing new insights into the catalytic mechanism of amidase in propanil hydrolysis.
Collapse
Affiliation(s)
- Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Zhenbo Mao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Man Song
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Ruiqi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaochun Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou, 510632, PR China
| | - Huijun Zhang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Yuan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
4
|
Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol 2022; 106:6365-6381. [DOI: 10.1007/s00253-022-12150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
|
5
|
Wang H, Lin Q, Dong L, Wu W, Liang Z, Dong Z, Ye H, Liao L, Zhang LH. A Bacterial Isolate Capable of Quenching Both Diffusible Signal Factor- and N-Acylhomoserine Lactone-Family Quorum Sensing Signals Shows Much Enhanced Biocontrol Potencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7716-7726. [PMID: 35708354 PMCID: PMC9248010 DOI: 10.1021/acs.jafc.2c01299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
N-Acylhomoserine lactone (AHL) and diffusible signal factor (DSF) molecules are two families of widely conserved quorum sensing (QS) signals. Quorum quenching (QQ) via enzymatic inactivation of QS signals is a promising strategy of biocontrol. In the search for biocontrol agent quenching both AHL and DSF signals, it has been recently identified that DSF-quenching biocontrol agent Pseudomonas sp. HS-18 contains at least three genes (aigA, aigB, and aigC) encoding AHL-acylases displaying strong AHL-acylase activities on various AHLs. Among them, AigA and AigC presented broad-spectrum enzyme activity against AHLs, while AigB preferred longer AHLs. Interestingly, transcriptional expression of aigC could be significantly induced by AHL signals. Heterologous expression of aigA-C in Burkholderia cenocepacia and Pseudomonas aeruginosa resulted in drastically decreased AHL accumulation, virulence factor production, biofilm formation, motility, and virulence on plants. Significantly, the two types of QQ mechanisms in HS-18 showed a strong and much desired synergistic effect for enhanced biocontrol potency against AHL- and DSF-dependent pathogens.
Collapse
Affiliation(s)
- Huishan Wang
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Lin
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Dong
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Wenting Wu
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhibing Liang
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Dong
- Institute
of Plant Health, Zhongkai University of
Agriculture and Engineering, Guangzhou 510225, China
| | - Huijuan Ye
- Zhaoqing
Food Inspection Institute, Zhaoqing, Guangdong Province 526000, China
| | - Lisheng Liao
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong
Province Key Laboratory of Microbial Signals and Disease Control,
Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong
Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Institute
of Plant Health, Zhongkai University of
Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
6
|
Reina JC, Pérez P, Llamas I. Quorum Quenching Strains Isolated from the Microbiota of Sea Anemones and Holothurians Attenuate Vibriocorallilyticus Virulence Factors and Reduce Mortality in Artemiasalina. Microorganisms 2022; 10:microorganisms10030631. [PMID: 35336206 PMCID: PMC8950658 DOI: 10.3390/microorganisms10030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Interference with quorum-sensing (QS) intercellular communication systems by the enzymatic disruption of N-acylhomoserine lactones (AHLs) in Gram-negative bacteria has become a promising strategy to fight bacterial infections. In this study, seven strains previously isolated from marine invertebrates and selected for their ability to degrade C6 and C10-HSL, were identified as Acinetobacter junii, Ruegeria atlantica, Microbulbifer echini, Reinheimera aquimaris, and Pseudomonas sihuiensis. AHL-degrading activity against a wide range of synthetic AHLs were identified by using an agar well diffusion assay and Agrobacterium tumefaciens NTL4 and Chromobacterium violaceum CV026 and VIR07 as biosensors. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis indicated that this activity was not due to an AHL lactonase. All the strains degraded Vibrio coralliilyticus AHLs in coculture experiments, while some strains reduced or abolished the production of virulence factors. In vivo assays showed that strains M3-111 and M3-127 reduced this pathogen’s virulence and increased the survival rate of Artemia salina up to 3-fold, indicating its potential use for biotechnological purposes. To our knowledge, this is the first study to describe AHL-degrading activities in some of these marine species. These findings highlight that the microbiota associated with marine invertebrates constitute an important underexplored source of biological valuable compounds.
Collapse
Affiliation(s)
- José Carlos Reina
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
| | - Pedro Pérez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (J.C.R.); (P.P.)
- Biomedical Research Center (CIBM), Institute of Biotechnology, University of Granada, 18100 Granada, Spain
- Correspondence:
| |
Collapse
|
7
|
Waheed H, Mehmood CT, Li Y, Yang Y, Xiao Y. Genetic insights unraveling quorum quenching potential of indigenous isolates from an anaerobic membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152349. [PMID: 34914989 DOI: 10.1016/j.scitotenv.2021.152349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Despite a few reports of quorum quenching (QQ) in anaerobic membrane bioreactors (AnMBRs), the sensing, regulation and degradation mechanism for quorum sensing (QS) signals by indigenous QQ isolates have been barely studied. This study employed isolation and screening of indigenous QQ strains from anaerobic sludge for acyl-homoserine lactones (AHLs) degradation and membrane biofouling control. High-quality whole genome sequences of Micrococcus luteus anQ-m1, Bacillus pacificus anQ-h4, and Lysinibacillus capsici anQ-h6 were obtained, with a genome size of 2.5, 5.6, and 4.7 Mbp, respectively. Amidase-encoding amiE was the only QQ gene in anQ-m1, while anQ-h6 carries both amiE and lactonase-encoding aiiB genes. Genes responsible for QS autoinducer synthesis were not identified in anQ-m1 and anQ-h6, suggesting low potential of biofilm promotion via QS. Despite a peptidic QS system responsible for biofilm formation, anQ-h4 bears the most comprehensive QQ system, including amiE-amidase, aiiA-lactonase, CYP102A5-cytochrome oxidoreductase, and lsrK-autoinducer-2 kinase. This study elucidates QS and QQ mechanisms of potential anaerobes and provides fundamentals for designing QQ consortia to effectively control biofouling in AnMBRs.
Collapse
Affiliation(s)
- Hira Waheed
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Ch Tahir Mehmood
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China; Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yiwei Li
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yongyu Yang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
8
|
Abstract
Pseudomonas aeruginosa is an opportunistic and nosocomial pathogen of humans with hundreds of its virulence factors regulated by quorum sensing (QS) system. Small noncoding RNAs (sRNAs) are also key regulators of bacterial virulence. However, the QS regulatory sRNAs (Qrrs) that have been characterized in P. aeruginosa are still largely unknown. Here, sRNA AmiL (PA3366.1) in the amiEBCRS operon of PAO1 was identified as a novel Qrr by transcriptome sequencing (RNA-Seq). The expression of AmiL was negatively regulated by the las or rhl system, of which RhlR probably inhibited its transcription. AmiL deletion mutant and overexpressing strains were constructed in PAO1. Broad phenotypic changes were found, including reduced pyocyanin synthesis, elastase activity, biofilm formation, hemolytic activity, and cytotoxicity, as well as increased rhamnolipid production and swarming motility. AmiL appears to be a new regulator that influences diverse QS-mediated virulence. Furthermore, AmiL directly targeted PhzC, a key member of pyocyanin synthesis. AmiL also negatively regulated lasI expression in the early growth of PAO1, but predominantly increased rhlI expression and C4-HSL production in the middle and late stages. Therefore, a novel QS-sRNA signaling cascade of las/rhl (RhlR)-AmiL-PhzC/las/rhl was demonstrated, and it will help to shed new light on the virulence regulatory network of P. aeruginosa PAO1. IMPORTANCEP. aeruginosa is a common nosocomial pathogen that causes diverse opportunistic infections in humans. The virulence crucial for infection is mainly regulated by QS. Small noncoding RNAs (sRNAs) involved in virulence regulation have also been identified in many bacteria. Recently, there is a growing interest in the new sRNA species, QS regulatory sRNAs (Qrrs). Understanding Qrrs-mediated regulation in P. aeruginosa virulence is therefore important to combat infection. In this study, a previously uncharacterized sRNA AmiL in PAO1 has been identified as a novel Qrr. It has been found to influence diverse QS-mediated virulence factors including pyocyanin, elastase, rhamnolipid, and hemolysin, as well as biofilm formation, swarming motility, and cytotoxicity. Furthermore, PhzC essential for pyocyanin synthesis was a direct target of AmiL. QS gene expression and C4-HSL production were also regulated by AmiL. This study provides insights into the roles of Qrr AmiL in modulating P. aeruginosa virulence.
Collapse
|
9
|
Wang X, Yu D, Chen G, Liu C, Xu A, Tang Z. Effects of interactions between quorum sensing and quorum quenching on microbial aggregation characteristics in wastewater treatment: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2883-2902. [PMID: 34719836 DOI: 10.1002/wer.1657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Due to the increasingly urgent demand for effective wastewater denitrification and dephosphorization systems, there is a need to improve the performance of existing biological treatment technologies. As a bacteria-level communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. On this basis, the QS-based bacterial communication mechanism and environmental factors affecting QS are discussed. This paper reviews the influence of QS on sludge granulation, biofilm formation, emerging contaminants (ECs) removal, and horizontal gene transfer in sewage treatment system. Furthermore, the QS inhibition strategies are compared. Based on the coexistence and balance of QQ and QS in the long-term operation system, QQ, as an effective tool to regulate the growth density of microorganisms, provides a promising exogenous regulation strategy for residual sludge reduction and biofilm pollution control. This paper reviews the potential of improving wastewater treatment efficiency based on QS theory and points out the feasibility and prospect of exogenous regulation strategy. PRACTITIONER POINTS: The mechanism of bacterial communication based on QS and the environmental factors affecting QS were discussed. The application of QS and QQ in improving the sludge performance of biological treatment systems was described. The significance of QS and QQ coexistence in sewage treatment process was described.
Collapse
Affiliation(s)
- Xueping Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, China
| | - Chengju Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Ao Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| | - Zhihao Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Hu H, Luo F, Liu Y, Zeng X. Function of quorum sensing and cell signaling in wastewater treatment systems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:515-531. [PMID: 33600358 DOI: 10.2166/wst.2020.601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) is a communication mode between microorganisms to regulate bacteria ecological relations and physiological behaviors, thus achieve the physiological function that single bacteria cannot complete. This phenomenon plays important roles in the formation of biofilm and granular sludge, and may be related to enhancement of some functional bacteria activity in wastewater treatment systems. There is a need to better understand bacterial QS in engineered reactors, and to assess how designs and operations might improve the removal efficiency. This article reviewed the recent advances of QS in several environmental systems and mainly analyzed the regulation mechanism of QS-based strategies for biofilm, granular sludge, functional bacteria, and biofouling control. The co-existences of multiple signal molecules in wastewater treatment (WWT) processes were also summarized, which provide basis for the future research on the QS mechanism of multiple signal molecules' interaction in WWT. This review would present some prospects and suggestions which are of practical significance for further application.
Collapse
Affiliation(s)
- Huizhi Hu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Wuhan 430062, China
| | - Feng Luo
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yirong Liu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Xiangguo Zeng
- Wuhan planning and design co., LTD, Wuhan 430010, China E-mail:
| |
Collapse
|
11
|
Mayer C, Muras A, Parga A, Romero M, Rumbo-Feal S, Poza M, Ramos-Vivas J, Otero A. Quorum Sensing as a Target for Controlling Surface Associated Motility and Biofilm Formation in Acinetobacter baumannii ATCC ® 17978 TM. Front Microbiol 2020; 11:565548. [PMID: 33101239 PMCID: PMC7554515 DOI: 10.3389/fmicb.2020.565548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Soraya Rumbo-Feal
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - Margarita Poza
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla, Santander, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Structural and enzymatic analysis of a dimeric cholylglycine hydrolase like acylase active on N-acyl homoserine lactones. Biochimie 2020; 177:108-116. [PMID: 32835734 DOI: 10.1016/j.biochi.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 01/17/2023]
Abstract
The prevalence of substrate cross-reactivity between AHL acylases and β-lactam acylases provides a glimpse of probable links between quorum sensing and antibiotic resistance in bacteria. Both these enzyme classes belong to the N-terminal nucleophile (Ntn)-hydrolase superfamily. Penicillin V acylases alongside bile salt hydrolases constitute the cholylglycine hydrolase (CGH) group of the Ntn-hydrolase superfamily. Here we report the ability of two acylases, Slac1 and Slac2, from the marine bacterium Shewanella loihica-PV4 to hydrolyze AHLs. Three-dimensional structure of Slac1reveals the conservation of the Ntn hydrolase fold and CGH active site, making it a unique CGH exclusively active on AHLs. Slac1homologs phylogenetically cluster separate from reported CGHs and AHL acylases, thereby representing a functionally distinct sub-class of CGH that might have evolved as an adaptation to the marine environment. We hypothesize that Slac1 could provide the structural framework for understanding this subclass, and further our understanding of the evolutionary link between AHL acylases and β-lactam acylases.
Collapse
|
13
|
Identification and Characterization of Quorum-Quenching Activity of N-Acylhomoserine Lactonase from Coagulase-Negative Staphylococci. Antibiotics (Basel) 2020; 9:antibiotics9080483. [PMID: 32764492 PMCID: PMC7459623 DOI: 10.3390/antibiotics9080483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signals in Gram-negative bacteria. Many genes encoding AHL-degrading enzymes have been cloned and characterized in various microorganisms. Coagulase-negative staphylococci (CNS) are present on the skin of animals and are considered low-virulent species. The AHL-lactonase gene homologue, ahlS, was present in the genomes of the CNS strains Staphylococcus carnosus, Staphylococcus haemolyticus, Staphylococcus saprophyticus, and Staphylococcus sciuri. We cloned the candidate ahlS homologue from six CNS strains into the pBBR1MCS5 vector. AhlS from the CNS strains showed a higher degrading activity against AHLs with short acyl chains compared to those with long acyl chains. AhlS from S. sciuri was expressed and purified as a maltose-binding protein (MBP) fusion. Pseudomonas aeruginosa is an opportunistic pathogen that regulates several virulence factors such as elastase and pyocyanin by quorum-sensing systems. When MBP-AhlS was added to the culture of P. aeruginosa PAO1, pyocyanin production and elastase activity were substantially reduced compared to those in untreated PAO1. These results demonstrate that the AHL-degrading activity of AhlS from the CNS strains can inhibit quorum sensing in P. aeruginosa PAO1.
Collapse
|
14
|
Penicillin Acylase from Streptomyces lavendulae and Aculeacin A Acylase from Actinoplanes utahensis: Two Versatile Enzymes as Useful Tools for Quorum Quenching Processes. Catalysts 2020. [DOI: 10.3390/catal10070730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many Gram-negative bacteria produce N-acyl-homoserine lactones (AHLs), quorum sensing (QS) molecules that can be enzymatically inactivated by quorum quenching (QQ) processes; this approach is considered an emerging antimicrobial alternative. In this study, kinetic parameters of several AHLs hydrolyzed by penicillin acylase from Streptomyces lavendulae (SlPA) and aculeacin A acylase from Actinoplanes utahensis (AuAAC) have been determined. Both enzymes catalyze efficiently the amide bond hydrolysis in AHLs with different acyl chain moieties (with or without 3-oxo modification) and exhibit a clear preference for AHLs with long acyl chains (C12-HSL > C14-HSL > C10-HSL > C8-HSL for SlPA, whereas C14-HSL > C12-HSL > C10-HSL > C8-HSL for AuAAC). Involvement of SlPA and AuAAC in QQ processes was demonstrated by Chromobacterium violaceum CV026-based bioassays and inhibition of biofilm formation by Pseudomonas aeruginosa, a process controlled by QS molecules, suggesting the application of these multifunctional enzymes as quorum quenching agents, this being the first time that quorum quenching activity was shown by an aculeacin A acylase. In addition, a phylogenetic study suggests that SlPA and AuAAC could be part of a new family of actinomycete acylases, with a preference for substrates with long aliphatic acyl chains, and likely involved in QQ processes.
Collapse
|
15
|
Shin B, Park C, Park W. Stress responses linked to antimicrobial resistance in Acinetobacter species. Appl Microbiol Biotechnol 2020; 104:1423-1435. [DOI: 10.1007/s00253-019-10317-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 11/25/2022]
|
16
|
Pan Y, Wang Y, Yan X, Liu C, Wu B, He X, Liang Y. Quorum Quenching Enzyme APTM01, an Acylhomoserine-Lactone Acylase from Marine Bacterium of Pseudoalteromonas tetraodonis Strain MQS005. Curr Microbiol 2019; 76:1387-1397. [PMID: 31292680 DOI: 10.1007/s00284-019-01739-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Quorum sensing is a system of stimuli and response correlated to population density and involves in pathogen infection, colonization, and pathogenesis. Quorum quenching enzymes as quorum sensing inhibitors have been identified in a number of bacteria and been used to control by triggering the pathogenic phenotype. The marine bacteria of Pseudoalteromonas had wide activity of degrading AHLs as a type of signal molecule associated with quorum sensing. We screened many Pseudoalteromonas strains in large scale to explore genes of quorum quenching enzymes from the China seas by whole-genome sequencing rather than genomic library construction. Nine target strains were obtained and an acylases gene APTM01 from the strain MQS005 belonging to PvdQ type on sub-branch in phylogenetic tree. And the heterogenous host containing the vector with target gene could degrade C10-HSL, C12-HSL and OC12-HSL. The obtained AHL acylase gene would be a candidate quorum quenching gene to apply in some fields. We identified that the strains of Pseudoalteromonas have wide AHL-degrading ability depending on quorum quenching. The strains would be a resource to explore new quorum quenching enzymes.
Collapse
Affiliation(s)
- Yonglong Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanbo Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Life Sciences, Jilin University, Changchun, 130012, Jilin, People's Republic of China
| | - Xiaoqing Yan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunhua Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xinping He
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yan Liang
- University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China. .,Zhejiang Normal University, Jinhua, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Liu J, Eng CY, Ho JS, Chong TH, Wang L, Zhang P, Zhou Y. Quorum quenching in anaerobic membrane bioreactor for fouling control. WATER RESEARCH 2019; 156:159-167. [PMID: 30913419 DOI: 10.1016/j.watres.2019.03.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Quorum quenching (QQ) is an effective method to control membrane biofouling in aerobic membrane bioreactors (AeMBRs). However, it is not clear if QQ is feasible in an anaerobic membrane bioreactor (AnMBR). In this study, Microbacterium. sp that has QQ capability was embedded in alginate beads, known as QQ beads (QQB), and applied in a lab-scale AnMBR to investigate their potential in fouling control. With the addition of QQB, the operating period of AnMBR-QQB reactor was prolonged by about 8-10 times at constant flux operation before reaching the pre-set maximum transmembrane pressure (TMP). The concentration of Acyl-homoserine lactones (AHLs) in the bulk liquid was significantly higher during the 'TMP jump' period compared to QQB and control phases, while AHLs in the membrane foulants were remarkably lower in QQB phase compared to control phase. Furthermore, a much lower level of soluble microbial production (SMP) was observed in QQB phases. Extracellular polymeric substance (EPS), protein in particular, was reduced by 39.73-80.58% in the cake layer of the membrane from QQB phases. Significant changes of organic functional groups were observed in cake layer from QQB membrane as compared with that from control membrane. At the end of operation, bio-polymer (BP), building blocks (BB) and low molecular weight (LMW) organic matters increased in the foulant from control phases but such increase was not observed in QQB phase. After long-term operation, revival of QQB is required due to the declined activity for AHLs degradation.
Collapse
Affiliation(s)
- Jianbo Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chin Yee Eng
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Panyue Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
18
|
Gualpa J, Lopez G, Nievas S, Coniglio A, Halliday N, Cámara M, Cassán F. Azospirillum brasilense Az39, a model rhizobacterium with AHL quorum-quenching capacity. J Appl Microbiol 2019; 126:1850-1860. [PMID: 30924989 DOI: 10.1111/jam.14269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of this research was to analyse the quorum-sensing (QS) and quorum-quenching (QQ) mechanisms based on N-acyl-l-homoserine lactones (AHLs) in Azospirillum brasilense Az39, a strain with remarkable capacity to benefit a wide range of crops under agronomic conditions. METHODS AND RESULTS We performed an in silico and in vitro analysis of the quorum mechanisms in A. brasilense Az39. The results obtained in vitro using the reporter strains Chromobacterium violaceum and Agrobacterium tumefaciens and liquid chromatography coupled with mass-mass spectrometry analysis showed that although Az39 does not produce AHL molecules, it is capable of degrading them by at least two hypothetical enzymes identified by bioinformatics approach, associated with the bacterial cell. In Az39 cultures supplemented with 500 nmol l-1 of the C3 unsubstituted AHLs (C4, C6, C8, C10, C12, C14), AHL levels were lower than in noninoculated LB media controls. Similar results were observed upon the addition of AHLs with hydroxy (OH-) and keto (oxo-) substitutions in C3. These results not only demonstrate the ability of Az39 to degrade AHLs. They also show the wide spectrum of molecules that can be degraded by this bacterium. CONCLUSIONS Although A. brasilense Az39 is a silent bacterium unable to produce AHL signals, it is able to interrupt the communications between other bacteria and/or plants by a QQ activity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report confirming by unequivocal methodology the ability of A. brasilense, one of the most agriculturally used benefic bacteria around the world, to degrade AHLs by a QQ mechanism.
Collapse
Affiliation(s)
- J Gualpa
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - G Lopez
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - S Nievas
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - A Coniglio
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - N Halliday
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - M Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - F Cassán
- Laboratorio de Fisiología Vegetal y de la Interacción Planta-Microorganismo, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
19
|
Distribution and characterization of N-acylhomoserine lactone (AHL)-degrading activity and AHL lactonase gene (qsdS) in Sphingopyxis. J Biosci Bioeng 2019; 127:411-417. [DOI: 10.1016/j.jbiosc.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
|
20
|
Maddela NR, Sheng B, Yuan S, Zhou Z, Villamar-Torres R, Meng F. Roles of quorum sensing in biological wastewater treatment: A critical review. CHEMOSPHERE 2019; 221:616-629. [PMID: 30665091 DOI: 10.1016/j.chemosphere.2019.01.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are increasingly reported in biological wastewater treatment processes because of their inherent roles in biofilm development, bacterial aggregation, granulation, colonization, and biotransformation of pollutants. As such, the fundamentals and ubiquitous nature of QS bacteria are critical for fully understanding the process of the wastewater treatment system. In this article, the details of QS-based strategies related to community behaviors and phenotypes in wastewater treatment systems were reviewed. The molecular aspects and coexistence of QS and QQ bacteria were also mentioned, which provide evidence that future wastewater treatment will indispensably rely on QS-based strategies. In addition, recent attempts focusing on the use of QQ for biofilm or biofouling control were also summarized. Nevertheless, there are still several challenges and knowledge gaps that warrant future targeted research on the ecological niche, abundance, and community of QS- and QQ-bacteria in environmental settings or engineered systems.
Collapse
Affiliation(s)
- Naga Raju Maddela
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China; Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Binbin Sheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Ronald Villamar-Torres
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier 34090, France; Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental "La Teodomira", Santa Ana 131301, Ecuador
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China.
| |
Collapse
|
21
|
An Amidase Gene, ipaH, Is Responsible for the Initial Step in the Iprodione Degradation Pathway of Paenarthrobacter sp. Strain YJN-5. Appl Environ Microbiol 2018; 84:AEM.01150-18. [PMID: 30054359 DOI: 10.1128/aem.01150-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/20/2018] [Indexed: 11/20/2022] Open
Abstract
Iprodione [3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide] is a highly effective broad-spectrum dicarboxamide fungicide. Several bacteria with iprodione-degrading capabilities have been reported; however, the enzymes and genes involved in this process have not been characterized. In this study, an iprodione-degrading strain, Paenarthrobacter sp. strain YJN-5, was isolated and characterized. Strain YJN-5 degraded iprodione through the typical pathway, with hydrolysis of its N-1 amide bond to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine as the initial step. The ipaH gene, encoding a novel amidase responsible for this step, was cloned from strain YJN-5 by the shotgun method. IpaH shares the highest similarity (40%) with an indoleacetamide hydrolase (IAHH) from Bradyrhizobium diazoefficiens USDA 110. IpaH displayed maximal enzymatic activity at 35°C and pH 7.5, and it was not a metalloamidase. The kcat and Km of IpaH against iprodione were 22.42 s-1 and 7.33 μM, respectively, and the catalytic efficiency value (kcat/Km ) was 3.09 μM-1 s-1 IpaH has a Ser-Ser-Lys motif, which is conserved among members of the amidase signature family. The replacement of Lys82, Ser157, and Ser181 with alanine in IpaH led to the complete loss of enzymatic activity. Furthermore, strain YJN-5M lost the ability to degrade iprodione, suggesting that ipaH is the only gene responsible for the initial iprodione degradation step. The ipaH gene could also be amplified from another previously reported iprodione-degrading strain, Microbacterium sp. strain YJN-G. The sequence similarity between the two IpaHs at the amino acid level was 98%, indicating that conservation of IpaH exists in different strains.IMPORTANCE Iprodione is a widely used dicarboxamide fungicide, and its residue has been frequently detected in the environment. The U.S. Environmental Protection Agency has classified iprodione as moderately toxic to small animals and a probable carcinogen to humans. Bacterial degradation of iprodione has been widely investigated. Previous studies demonstrate that hydrolysis of its N-1 amide bond is the initial step in the typical bacterial degradation pathway of iprodione; however, enzymes or genes involved in iprodione degradation have yet to be reported. In this study, a novel ipaH gene encoding an amidase responsible for the initial degradation step of iprodione in Paenarthrobacter sp. strain YJN-5 was cloned. In addition, the characteristics and key amino acid sites of IpaH were investigated. These findings enhance our understanding of the microbial degradation mechanism of iprodione.
Collapse
|
22
|
Mayer C, Muras A, Romero M, López M, Tomás M, Otero A. Multiple Quorum Quenching Enzymes Are Active in the Nosocomial Pathogen Acinetobacter baumannii ATCC17978. Front Cell Infect Microbiol 2018; 8:310. [PMID: 30271754 PMCID: PMC6146095 DOI: 10.3389/fcimb.2018.00310] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii presents a typical luxI/luxR quorum sensing (QS) system (abaI/abaR) but the acyl-homoserine lactone (AHL) signal profile and factors controlling the production of QS signals in this species have not been determined yet. A very complex AHL profile was identified for A. baumannii ATCC17978 as well as for A. nosocomialis M2, but only when cultivated under static conditions, suggesting that surface or cell-to-cell contact is involved in the activation of the QS genes. The analysis of A. baumanni clinical isolates revealed a strain-specific AHL profile that was also affected by nutrient availability. The concentration of OHC12-HSL, the major AHL found in A. baumannii ATCC17978, peaked upon stationary-phase establishment and decreases steeply afterwards. Quorum quenching (QQ) activity was found in the cell extracts of A. baumannii ATCC17978, correlating with the disappearance of the AHLs from the culture media, indicating that AHL concentration may be self-regulated in this pathogen. Since QQ activity was observed in strains in which AidA, a novel α/β-hydrolase recently identified in A. baumannii, is not present, we have searched for additional QQ enzymes in A. baumannii ATCC17978. Seven putative AHL-lactonase sequences could be identified in the genome and the QQ activity of 3 of them could be confirmed. At least six of these lactonase sequences are also present in all clinical isolates as well as in A. nosocomialis M2. Surface-associated motility and biofilm formation could be blocked by the exogenous addition of the wide spectrum QQ enzyme Aii20J. The differential regulation of the QQ enzymes in A. baumannii ATCC17978 and the full dependence of important virulence factors on the QS system provides a strong evidence of the importance of the AHL-mediated QS/QQ network in this species.
Collapse
Affiliation(s)
- Celia Mayer
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María López
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña Spain
| | - María Tomás
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Oh HS, Lee CH. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Evolution of the Quorum network and the mobilome (plasmids and bacteriophages) in clinical strains of Acinetobacter baumannii during a decade. Sci Rep 2018; 8:2523. [PMID: 29410443 PMCID: PMC5802823 DOI: 10.1038/s41598-018-20847-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/25/2018] [Indexed: 01/14/2023] Open
Abstract
In this study, we compared eighteen clinical strains of A. baumannii belonging to the ST-2 clone and isolated from patients in the same intensive care unit (ICU) in 2000 (9 strains referred to collectively as Ab_GEIH-2000) and 2010 (9 strains referred to collectively as Ab_GEIH-2010), during the GEIH-REIPI project (Umbrella BioProject PRJNA422585). We observed two main molecular differences between the Ab_GEIH-2010 and the Ab_GEIH-2000 collections, acquired over the course of the decade long sampling interval and involving the mobilome: i) a plasmid harbouring genes for blaOXA 24/40 ß-lactamase and abKA/abkB proteins of a toxin-antitoxin system; and ii) two temperate bacteriophages, Ab105-1ϕ (63 proteins) and Ab105-2ϕ (93 proteins), containing important viral defence proteins. Moreover, all Ab_GEIH-2010 strains contained a Quorum functional network of Quorum Sensing (QS) and Quorum Quenching (QQ) mechanisms, including a new QQ enzyme, AidA, which acts as a bacterial defence mechanism against the exogenous 3-oxo-C12-HSL. Interestingly, the infective capacity of the bacteriophages isolated in this study (Ab105-1ϕ and Ab105-2ϕ) was higher in the Ab_GEIH-2010 strains (carrying a functional Quorum network) than in the Ab_GEIH-2000 strains (carrying a deficient Quorum network), in which the bacteriophages showed little or no infectivity. This is the first study about the evolution of the Quorum network and the mobilome in clinical strains of Acinetobacter baumannii during a decade.
Collapse
|
25
|
Liu N, Yu M, Zhao Y, Cheng J, An K, Zhang XH. PfmA, a novel quorum-quenching N-acylhomoserine lactone acylase from Pseudoalteromonas flavipulchra. MICROBIOLOGY-SGM 2017; 163:1389-1398. [PMID: 28920855 DOI: 10.1099/mic.0.000535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacteria, such as Proteobacteria, Cyanobacteria and Bacteroidetes, use N-acylhomoserine lactones (AHLs) as quorum-sensing (QS) signal molecules for communication. Enzymatic degradation of AHLs, such as AHL acylase and AHL lactonase, can degrade AHLs (quorum quenching, QQ) to attenuate or disarm the virulence of pathogens. QQ is confirmed to be common in marine bacterial communities. Many genes encoding AHL acylases are found in marine bacteria and metagenomic collections, but only a few of these have been characterized in detail. We have reported that the marine bacterium Pseudoalteromonas flavipulchra JG1 can degrade AHLs. In the present study, a novel AHL acylase PfmA, which can degrade AHLs with acyl chains longer than 10 carbons, was identified from strain JG1. Ultra-performance liquid chromatography (UPLC) and electrospray ionization mass spectrometry (ESI-MS) analysis demonstrated that PfmA functions as an AHL acylase, which hydrolysed the amide bond of AHL. The purified PfmA of P. flavipulchra JG1 showed optimum activity at 30 °C and pH 7.0. PfmA belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily and showed homology to a member of penicillin amidases, but PfmA can degrade ampicillin but not penicillin G. The residue Ser256 in PfmA is the active site according to site-directed mutagenesis. Furthermore, PfmA reduced AHL accumulation and the production of virulence factors in Vibrio anguillarum VIB72 and Pseudomonas aeruginosa PAO1, and attenuated the virulence of P. aeruginosa to increase Artemia survival, which suggested that PfmA can be considered as a therapeutic agent to control AHL-mediated pathogenicity.
Collapse
Affiliation(s)
- Na Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Youbin Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jingguang Cheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ke An
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| |
Collapse
|
26
|
Utari PD, Vogel J, Quax WJ. Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Front Microbiol 2017; 8:1123. [PMID: 28674525 PMCID: PMC5474475 DOI: 10.3389/fmicb.2017.01123] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
N-Acylhomoserine lactone (AHL)-acylase (also known as amidase or amidohydrolase) is a class of enzyme that belongs to the Ntn-hydrolase superfamily. As the name implies, AHL-acylases are capable of hydrolysing AHLs, the most studied signaling molecules for quorum sensing in Gram-negative bacteria. Enzymatic degradation of AHLs can be beneficial in attenuating bacterial virulence, which can be exploited as a novel approach to fight infection of human pathogens, phytopathogens or aquaculture-related contaminations. Numerous acylases from both prokaryotic and eukaryotic sources have been characterized and tested for the interference of quorum sensing-regulated functions. The existence of AHL-acylases in a multitude of organisms from various ecological niches, raises the question of what the physiological roles of AHL-acylases actually are. In this review, we attempt to bring together recent studies to extend our understanding of the biological functions of these enzymes in nature.
Collapse
Affiliation(s)
- Putri D Utari
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| | - Jan Vogel
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| | - Wim J Quax
- Chemical and Pharmaceutical Biology Department, University of GroningenGroningen, Netherlands
| |
Collapse
|
27
|
López M, Mayer C, Fernández-García L, Blasco L, Muras A, Ruiz FM, Bou G, Otero A, Tomás M. Quorum sensing network in clinical strains of A. baumannii: AidA is a new quorum quenching enzyme. PLoS One 2017; 12:e0174454. [PMID: 28328989 PMCID: PMC5362224 DOI: 10.1371/journal.pone.0174454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an important pathogen that causes nosocomial infections generally associated with high mortality and morbidity in Intensive Care Units (ICUs). Currently, little is known about the Quorum Sensing (QS)/Quorum Quenching (QQ) systems of this pathogen. We analyzed these mechanisms in seven clinical isolates of A. baumannii. Microarray analysis of one of these clinical isolates, Ab1 (A. baumannii ST-2_clon_2010), previously cultured in the presence of 3-oxo-C12-HSL (a QS signalling molecule) revealed a putative QQ enzyme (α/ß hydrolase gene, AidA). This QQ enzyme was present in all non-motile clinical isolates (67% of which were isolated from the respiratory tract) cultured in nutrient depleted LB medium. Interestingly, this gene was not located in the genome of the only motile clinical strain growing in this medium (A. baumannii strain Ab421_GEIH-2010 [Ab7], isolated from a blood sample). The AidA protein expressed in E. coli showed QQ activity. Finally, we observed downregulation of the AidA protein (QQ system attenuation) in the presence of H2O2 (ROS stress). In conclusion, most of the A. baumannii clinical strains were not surface motile (84%) and were of respiratory origin (67%). Only the pilT gene was involved in surface motility and related to the QS system. Finally, a new QQ enzyme (α/ß hydrolase gene, AidA protein) was detected in these strains.
Collapse
Affiliation(s)
- María López
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
| | - Celia Mayer
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Fernández-García
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
| | - Lucía Blasco
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
| | - Andrea Muras
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - German Bou
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
| | - Ana Otero
- Department of Microbiology, Faculty of Biology-CIBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Tomás
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña (CHUAC)-INIBIC, A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Virgen Macarena, Seville, Spain
- * E-mail:
| | | |
Collapse
|
28
|
Clamens T, Rosay T, Crépin A, Grandjean T, Kentache T, Hardouin J, Bortolotti P, Neidig A, Mooij M, Hillion M, Vieillard J, Cosette P, Overhage J, O’Gara F, Bouffartigues E, Dufour A, Chevalier S, Guery B, Cornelis P, Feuilloley MGJ, Lesouhaitier O. The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci Rep 2017; 7:41178. [PMID: 28117457 PMCID: PMC5259723 DOI: 10.1038/srep41178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that the eukaryotic C-type natriuretic peptide hormone (CNP) regulates Pseudomonas aeruginosa virulence and biofilm formation after binding on the AmiC sensor, triggering the amiE transcription. Herein, the involvement of the aliphatic amidase AmiE in P. aeruginosa virulence regulation has been investigated. The proteome analysis of an AmiE over-producing strain (AmiE+) revealed an expression change for 138 proteins, including some that are involved in motility, synthesis of quorum sensing compounds and virulence regulation. We observed that the AmiE+ strain produced less biofilm compared to the wild type, and over-produced rhamnolipids. In the same line, AmiE is involved in P. aeruginosa motilities (swarming and twitching) and production of the quorum sensing molecules N-acyl homoserine lactones and Pseudomonas Quinolone Signal (PQS). We observed that AmiE overproduction reduced levels of HCN and pyocyanin causing a decreased virulence in different hosts (i.e. Dictyostelium discoideum and Caenorhabditis elegans). This phenotype was further confirmed in a mouse model of acute lung infection, in which AmiE overproduction resulted in an almost fully virulence decrease. Taken together, our data suggest that, in addition to its role in bacterial secondary metabolism, AmiE is involved in P. aeruginosa virulence regulation by modulating pilus synthesis and cell-to-cell communication.
Collapse
Affiliation(s)
- Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | | | - Teddy Grandjean
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Takfarinas Kentache
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Perrine Bortolotti
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Anke Neidig
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, Germany
| | - Marlies Mooij
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | - Mélanie Hillion
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Julien Vieillard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Evreux, France
| | - Pascal Cosette
- Laboratory « Polymères, Biopolymères, Surfaces » (UMR 6270 CNRS), Proteomic Platform PISSARO, Normandie Univ, UNIROUEN, Mont-Saint-Aignan, France
| | - Joerg Overhage
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, Germany
| | - Fergal O’Gara
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Alain Dufour
- Univ. Bretagne-Sud, EA 3884, LBCM, IUEM, Lorient, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Benoit Guery
- Univ. Lille, CHU Lille, EA 7366 - Recherche Translationnelle: relations hôte pathogènes, Lille, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Univ, UNIROUEN, Evreux, France
| |
Collapse
|
29
|
Sunder AV, Utari PD, Ramasamy S, van Merkerk R, Quax W, Pundle A. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2016; 101:2383-2395. [DOI: 10.1007/s00253-016-8031-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022]
|
30
|
Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. CHEMOSPHERE 2016; 157:137-151. [PMID: 27213243 DOI: 10.1016/j.chemosphere.2016.05.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/21/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Quorum sensing (QS) is a communication process between cells, in which bacteria secrete and sense the specific chemicals, and regulate gene expression in response to population density. Quorum quenching (QQ) blocks QS system, and inhibits gene expression mediating bacterial behaviors. Given the extensive research of acyl-homoserine lactone (AHL) signals, existences and effects of AHL-based QS and QQ in biological wastewater treatments are being subject to high concern. This review summarizes AHL structure, synthesis mode, degradation mechanisms, analytical methods, environmental factors, AHL-based QS and QQ mechanisms. The existences and roles of AHL-based QS and QQ in biomembrane processes, activated sludge processes and membrane bioreactors are summarized and discussed, and corresponding exogenous regulation strategy by selective enhancement of AHL-based QS or QQ coexisting in biological wastewater treatments is suggested. Such strategies including the addition of AHL signals, AHL-producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve wastewater treatment performance without killing or limiting bacterial survival and growth. This review will present the theoretical and practical cognition for bacterial AHL-based QS and QQ, suggest the feasibility of exogenous regulation strategies in biological wastewater treatments, and provide useful information to scientists and engineers who work in this field.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guiqiu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|