1
|
Yang T, Zhai J, Li C, Zeng L, Li Y, Liu W, Meng Y, Fan Y, Huang Z, Zhou Y, Jiang N. Immunological Responses and Protection in the Largemouth Bass ( Microterus salmoides) Immunized with Inactivated Vaccine Against Largemouth Bass Ranavirus (LMBRaV). Animals (Basel) 2025; 15:803. [PMID: 40150332 PMCID: PMC11939246 DOI: 10.3390/ani15060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The largemouth bass ranavirus (LMBRaV) caused significant mortality and economic loss in the largemouth bass aquaculture industry around the world, including China. Vaccination is an efficient method for virus defense. In this study, an inactivated LMBRaV vaccine was prepared, and the prevention effect as well as the immune responses were analyzed after the primary and the secondary immunization. Compared to the control group, the counts of leucocytes and erythrocytes increased and peaked at day 14 after the primary immunization, and the proportions of leucocytes, including lymphocytes, monocytes, and neutrophils, were also up-regulation after the primary immunization. Serum neutralizing antibody titers increased and peaked (1:128) at day 28 after the primary immunization. Following the secondary immunization, antibody titers were increased to a higher level (1:512) at 28 days after the secondary immunization. Quantitative real-time PCR analysis demonstrated varying degrees of up-regulation of mhc II, igM, il-1β, and cd8α transcriptions in the head kidney, which showed that innate and adaptive immune responses were both induced after the primary and the secondary immunization. After challenge with LMBRaV, the relative percent survival rates (RPS) for primary and secondary immunization with inactivated LMBRaV vaccine were determined to be 62.92% and 95.51%, respectively. Therefore, this study suggests that utilizing an inactivated LMBRaV vaccine could induce efficient immune responses and antibody, which might provide a potential efficient countermeasure for LMBRaV prevention.
Collapse
Affiliation(s)
- Tao Yang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (J.Z.)
- Tongwei Agricultural Development Co., Ltd., Tongwei Co., Ltd., Chengdu 610041, China
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jiale Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (J.Z.)
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenyang Li
- Tongwei Agricultural Development Co., Ltd., Tongwei Co., Ltd., Chengdu 610041, China
| | - Lingbing Zeng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (J.Z.)
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yiqun Li
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Wenzhi Liu
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhenyu Huang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yong Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (J.Z.)
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Division of Fish Disease, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
2
|
Yiping L, Chien T, Chiehhao W, Iwen C, Mingchu C. Emergence of Decapod iridescent virus 1 in cultured shrimp from Taiwan in 2020. Vet Med Sci 2023; 9:2336-2341. [PMID: 37471582 PMCID: PMC10508494 DOI: 10.1002/vms3.1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/26/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVES This study was to identify and characterize Decapod iridescent virus 1 (DIV1) in the outbreaks reported in two whiteleg shrimp farms and one black tiger shrimp farm located in northern Taiwan in 2020. METHODS The histopathology, electron microscopy and polymerase chain reaction (PCR) specific for the DIV1 were used to identify the virus, and the phylogenetic analysis was performed by comparing the major capsid protein gene fragment of DIV1s from Taiwan with reference sequences of the family Iridoviridae. RESULTS DIV1 was identified by diagnostic PCR and caused mild mortality (20%) in cultured Penaeus monodon and high mortality (100%) in cultured whiteleg shrimp. Cultured P. monodon was first found to be infected with DIV1 through natural route of infection. Histopathological examination showed dark-eosinophilic cytoplasmic inclusions in the degenerative cells of targeted hematopoietic tissues. For electron microscopy, a non-enveloped virus particle was observed from homogenates of mixed target organs through negative staining with a diameter of 112±2 nm. Nucleotide sequences of DIV1 isolates from the Taiwanese outbreak are 100% identical to those from the PRC. CONCLUSIONS Based on the clinical evidence, mortality rates, histopathology, electron microscopy examinations and phylogenetic analysis, it is believed that DIV1 is the causative agent of the outbreak. This is the first report of DIV1 in cultured shrimp in Taiwan. The emergence of DIV1 signals a warning to shrimp aquaculture farmers worldwide.
Collapse
Affiliation(s)
- Lu Yiping
- Aquatic Medicine Laboratory, Biology DivisionAnimal Health Research InstituteCouncil of AgricultureNew Taipei CityTaiwanRepublic of China
- Department of Veterinary MedicineNational Pingtung University of Science and TechnologyPingtungTaiwanRepublic of China
| | - Tu Chien
- Aquatic Medicine Laboratory, Biology DivisionAnimal Health Research InstituteCouncil of AgricultureNew Taipei CityTaiwanRepublic of China
| | - Wu Chiehhao
- Aquatic Medicine Laboratory, Biology DivisionAnimal Health Research InstituteCouncil of AgricultureNew Taipei CityTaiwanRepublic of China
| | - Chen Iwen
- Aquatic Medicine Laboratory, Biology DivisionAnimal Health Research InstituteCouncil of AgricultureNew Taipei CityTaiwanRepublic of China
| | - Cheng Mingchu
- Department of Veterinary MedicineNational Pingtung University of Science and TechnologyPingtungTaiwanRepublic of China
| |
Collapse
|
3
|
Fu W, Li Y, Fu Y, Zhang W, Luo P, Sun Q, Yu F, Weng S, Li W, He J, Dong C. The Inactivated ISKNV-I Vaccine Confers Highly Effective Cross-Protection against Epidemic RSIV-I and RSIV-II from Cultured Spotted Sea Bass Lateolabrax maculatus. Microbiol Spectr 2023; 11:e0449522. [PMID: 37222626 PMCID: PMC10269448 DOI: 10.1128/spectrum.04495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The genus Megalocytivirus of the family Iridoviridae is composed of two distinct species, namely, infectious spleen and kidney necrosis virus (ISKNV) and scale drop disease virus (SDDV), and both are important causative agents in a variety of bony fish worldwide. Of them, the ISKNV species is subdivided into three genotypes, namely, red seabream iridovirus (RSIV), ISKNV, and turbot reddish body iridovirus (TRBIV), and a further six subgenotypes, RSIV-I, RSIV-II, ISKNV-I, ISKNV-II, TRBIV-I, and TRBIV-II. Commercial vaccines derived from RSIV-I , RSIV-II and ISKNV-I have been available to several fish species. However, studies regarding the cross-protection effect among different genotype or subgenotype isolates have not been fully elucidated. In this study, RSIV-I and RSIV-II were demonstrated as the causative agents in cultured spotted seabass, Lateolabrax maculatus, through serial robust evidence, including cell culture-based viral isolation, whole-genome determination and phylogeny analysis, artificial challenge, histopathology, immunohistochemistry, and immunofluorescence as well as transmission electron microscope observation. Thereafter, a formalin-killed cell (FKC) vaccine generated from an ISKNV-I isolate was prepared to evaluate the protective effects against two spotted seabass original RSIV-I and RSIV-II. The result showed that the ISKNV-I-based FKC vaccine conferred almost complete cross-protection against RSIV-I and RSIV-II as well as ISKNV-I itself. No serotype difference was observed among RSIV-I, RSIV-II, and ISKNV-I. Additionally, the mandarin fish Siniperca chuatsi is proposed as an ideal infection and vaccination fish species for the study of various megalocytiviral isolates. IMPORTANCE Red seabream iridovirus (RSIV) infects a wide mariculture bony fish and has resulted in significant annual economic loss worldwide. Previous studies showed that the phenotypic diversity of infectious RSIV isolates would lead to different virulence characteristics, viral antigenicity, and vaccine efficacy as well as host range. Importantly, it is still doubted whether a universal vaccine could confer the same highly protective effect against various genotypic isolates. Our study here presented enough experimental evidence that a water in oil (w/o) formation of inactivated ISKNV-I vaccine could confer almost complete protection against RSIV-I and RSIV-II as well as ISKNV-I itself. Our study provides valuable data for better understanding the differential infection and immunity among different genotypes of ISKNV and RSIV isolates in the genus Megalocytivirus.
Collapse
Affiliation(s)
- Weixuan Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Yuting Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wenfeng Zhang
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Panpan Luo
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Qianqian Sun
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wangdong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Fusianto CK, Becker JA, Subramaniam K, Whittington RJ, Koda SA, Waltzek TB, Murwantoko, Hick PM. Genotypic Characterization of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Southeast Asian Aquaculture. Transbound Emerg Dis 2023; 2023:6643006. [PMID: 40303689 PMCID: PMC12017167 DOI: 10.1155/2023/6643006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 05/02/2025]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is a species within the genus Megalocytivirus (family Iridoviridae), which causes high mortality disease in many freshwater and marine fish species. ISKNV was first reported in Asia and is an emerging threat to aquaculture with increasing global distribution, in part due to its presence in ornamental fish with clinical and subclinical infections. The species ISKNV includes three genotypes: red seabream iridovirus (RSIV), turbot reddish body iridovirus (TRBIV), and ISKNV. There is an increasing overlap in the recognized range of susceptible fish hosts and the geographic distribution of these distinct genotypes. To better understand the disease caused by ISKNV, a nucleic acid hybridization capture enrichment was used prior to sequencing to characterize whole genomes from archived clinical specimens of aquaculture and ornamental fish from Southeast Asia (n = 16). The method was suitable for tissue samples containing 2.50 × 104-4.58 × 109 ISKNV genome copies mg-1. Genome sequences determined using the hybridization capture method were identical to those obtained directly from tissues when there was sufficient viral DNA to sequence without enrichment (n = 2). ISKNV genomes from diverse locations, environments, and hosts had very high similarity and matched established genotype classifications (14 ISKNV genotype Clade 1 genomes with >98.81% nucleotide similarity). Conversely, two different genotypes were obtained at the same time and location (RSIV and ISKNV from grouper, Indonesia with 92.44% nucleotide similarity). Gene-by-gene analysis with representative ISKNV genomes identified 59 core genes within the species (>95% amino acid identity). The 14 Clade 1 ISKNV genomes in this study had 100% aa identity for 92-105 of 122 predicted genes. Despite high overall sequence similarity, phylogenetic analyses using single nucleotide polymorphisms differentiated isolates from different host species, country of origin, and time of collection. Whole genome studies of ISKNV and other megalocytiviruses enable genomic epidemiology and will provide information to enhance disease control in aquaculture.
Collapse
Affiliation(s)
- Cahya K. Fusianto
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Joy A. Becker
- School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Camden, NSW 2570, Australia
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Richard J. Whittington
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| | - Samantha A. Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas B. Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Murwantoko
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora 1, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia
| | - Paul M. Hick
- Sydney School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Fonseca AA, Laguardia-Nascimento M, Ferreira APS, Pinto CDA, da Silva Gonçalves VL, Barbosa AAS, Rivetti Junior AV, Camargos MF. Genetic differentiation of Megalocytivirus by real time PCR and sequencing. Mol Biol Rep 2023; 50:3439-3450. [PMID: 36757549 DOI: 10.1007/s11033-023-08282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Megalocytiviruses (MCV) are double-stranded DNA viruses that infect fish. Two species within the genus are epidemiologically important for fish farming: red sea bream iridovirus (RSIV) and infectious spleen and kidney necrosis virus (ISKNV). The objective of this work was to study regions that allow the differentiation and correct diagnosis of RSIV and ISKNV. METHODS The regions ORF450L, ORF342L, ORF077, and the intergenic region between ORF37 and ORF42R were sequenced and compared with samples from the database. RESULTS The tree constructed using the sequencing of the PCR product Megalocytivirus. ORF077 separated the three major clades of MCV. RISV genotypes were well divided, but not ISKNV. All qPCRs tests showed acceptable repeatability values, that is, less than 5%. CONCLUSION Two qPCRs for ISKNV detection and two for RSIV were considered suitable for use in the diagnosis and typing of MCV. The results of this study demonstrate the importance of an accurate evaluation of methodologies for the differentiation of MCV.
Collapse
Affiliation(s)
- Antônio Augusto Fonseca
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Brazil. .,UNIFEMM - Centro Universitário, Sete Lagoas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Isolation, Characterization, and Transcriptome Analysis of an ISKNV-Like Virus from Largemouth Bass. Viruses 2023; 15:v15020398. [PMID: 36851612 PMCID: PMC9959643 DOI: 10.3390/v15020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Largemouth bass (Micropterus salmoides) is an important commercial fish farmed in China. Challenges related to diseases caused by pathogens, such as iridovirus, have become increasingly serious. In 2017, we detected iridovirus-infected diseased largemouth bass in Zunyi, Guizhou Province. The isolated virus was identified as an infectious spleen and kidney necrosis virus (ISKNV)-like virus (ISKNV-ZY). ISKNV-ZY induces a cytopathic effect after infecting mandarin fish brain (MFB) cells. Abundant hexagonal virus particles were observed in the cytoplasm of ISKNV-ZY-infected MFB cells, using electron microscopy. The whole genome of ISKNV-ZY contained 112,248 bp and 122 open reading frames. Phylogenetic tree analysis showed that ISKNV-ZY was most closely related to BCIV, indicating that it is an ISKNV-like megalocytivirus. ISKNV-ZY-infected largemouth bass started to die on day six and reached a death peak on days 7-8. Cumulative mortality reached 100% on day 10. Using RNA sequencing-based transcriptome analysis after ISKNV-ZY infection, 6254 differentially expressed unigenes (DEGs) were identified, of which 3518 were upregulated and 2673 downregulated. The DEGs were associated with endocytosis, thermogenesis, oxidative phosphorylation, the JAK-STAT signaling pathway, the MAPK signaling pathway, etc. These results contribute to understanding the molecular regulation mechanism of ISKNV infection and provide a basis for ISKNV prevention.
Collapse
|
7
|
Fonseca AA, Laguardia-Nascimento M, Scotá Ferreira AP, Pinto CA, Pereira Freitas TR, Rivetti Júnior AV, Ferreira Homem VS, Camargos MF. Detection of megalocytivirus in Oreochromis niloticus and Pseudoplatystoma corruscans in Brazil. DISEASES OF AQUATIC ORGANISMS 2022; 149:25-32. [PMID: 35510818 DOI: 10.3354/dao03657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The infectious spleen and kidney necrosis virus (ISKNV) belongs to the genus Megalocytivirus (MCV), a group of double-stranded DNA genome viruses. The aim of this study was to retrospectively analyze samples from suspected foci of MCV infection in freshwater fish in Brazil. Samples were collected from infected fish between 2017 and 2021. Phylogenetic analysis revealed 2 groups of MCV circulating in the country. A genetically homogeneous group formed a clade with ISKNV samples from different parts of the world. Only 2 of the sequences from the state of Goiás showed a small genetic distance when compared to the larger group in the same clade. This study describes the validation of 3 qPCR methods and the presence of MCV in Brazil since 2017, including a genotype not previously described.
Collapse
Affiliation(s)
- Antônio Augusto Fonseca
- Ministério da Agricultura, Pecuária e Abastecimento, LFDA-MG/MAPA, 33600-000 Pedro Leopoldo, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo X, Zheng Q, Pan Z, Huang Y, Huang X, Qin Q. Singapore Grouper Iridovirus Induces Glucose Metabolism in Infected Cells by Activation of Mammalian Target of Rapamycin Signaling. Front Microbiol 2022; 13:827818. [PMID: 35432224 PMCID: PMC9006996 DOI: 10.3389/fmicb.2022.827818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Singapore grouper iridovirus (SGIV), a member of the Iridoviridae family, is an important marine cultured fish pathogen worldwide. Our previous studies have demonstrated that lipid metabolism was essential for SGIV entry and replication, but the roles of glucose metabolism during SGIV infection still remains largely unknown. In this study, we found that the transcription levels of key enzymes involved in glycolysis were regulated in varying degrees during SGIV infection based on the transcriptomic analysis. Quantitative PCR and western blot analysis also indicated that the expression of both glucose transporters (GLUT1 and GLUT2) and the enzymes of glucose metabolism (hexokinase 2, HK2 and pyruvate dehydrogenase complex, PDHX) were upregulated during SGIV infection in vivo or in vitro, suggesting that glycolysis might be involved in SGIV infection. Exogenous glucose supplementation promoted the expression of viral genes and infectious virion production, while glutamine had no effect on SGIV infection, indicating that glucose was required for SGIV replication. Consistently, pharmacological inhibition of glycolysis dramatically reduced the protein synthesis of SGIV major capsid protein (MCP) and infectious virion production, and promotion of glycolysis significantly increased SGIV infection. Furthermore, knockdown of HK2, PDHX, or GLUT1 by siRNA decreased the transcription and protein synthesis of SGIV MCP and suppressed viral replication, indicating that those enzymes exerted essential roles in SGIV replication. In addition, inhibition of mTOR activity in SGIV-infected cells effectively reduced the expression of glycolysis key enzymes, including HK2, PDHX, GLUT1, and GLUT2, and finally inhibited SGIV replication, suggesting that mTOR was involved in SGIV-induced glycolysis. Thus, our results not only provided new insights into the mechanism of how SGIV infection affects host cell glycolysis, but also contributed to further understanding of the iridovirus pathogenesis.
Collapse
Affiliation(s)
- Xixi Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zanbin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
Ahn G, Cha JY, Lee JW, Park G, Shin GI, Song SJ, Ryu G, Hwang I, Kim MG, Kim WY. Production of a Bacteria-like Particle Vaccine Targeting Rock Bream ( Oplegnathus fasciatus) Iridovirus Using Nicotiana benthamiana. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2021; 65:21-28. [PMID: 34602836 PMCID: PMC8477727 DOI: 10.1007/s12374-021-09328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.
Collapse
Affiliation(s)
- Gyeongik Ahn
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Jeong Won Lee
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Gyeongran Park
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Shi-Jian Song
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Gyeongryul Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673 Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828 Republic of Korea
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
10
|
Sakseepipad C, Nozaki R, Yoshii K, Fukuda Y, Mizuno K, Kawakami H, Hirono I, Kondo H. Development of single nucleotide polymorphism (SNP) application for detection and genotyping of RSIV-type megalocytiviruses. JOURNAL OF FISH DISEASES 2021; 44:1337-1342. [PMID: 33966277 DOI: 10.1111/jfd.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Red sea bream iridovirus (RSIV) belonging to the genus Megalocytivirus of the family Iridoviridae is the cause of serious mass mortality of cultured marine fishes. RSIV-type megalocytiviruses show extremely high nucleotide sequence identities. Thus, epidemiological studies on this virus are limited. This study developed two primer sets amplifying the regions possessing single nucleotide polymorphism (SNP) to determine the relationships and divergence of RSIV-type megalocytiviruses isolated from cultured marine fishes in Japan. The two regions were designed according to the genome sequences of the representative RSIV genotype II of megalocytivirus members in GenBank. The SNP 1 and 2 regions have sequences homologous to hypothetical protein ORF 24 and ORF 31, respectively, of RSIV (accession no. AP017456.1). By sequencing the regions, 53 polymorphic sites were identified. The phylogenetic analysis of 25 RSIV-type megalocytivirus isolates, classified into RSIV cluster, was clustered into eight haplotypes (seven haplotypes from Oita, two haplotypes from Ehime, and one haplotype shared between Oita and Ehime). These findings suggested that SNP in the RSIV genome is a powerful application for the detection and identification of RSIV-type megalocytiviruses.
Collapse
Affiliation(s)
- Channapha Sakseepipad
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries, Aquatic Animal Health Research and Development Division, Bangkok, Thailand
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keisuke Yoshii
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Yutaka Fukuda
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Kaori Mizuno
- Ehime Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, Japan
| | - Hidemasa Kawakami
- Ehime Fisheries Research Center, Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Lopez-Porras A, Morales JA, Alvarado G, Koda SA, Camus A, Subramaniam K, Waltzek TB, Soto E. Red seabream iridovirus associated with cultured Florida pompano Trachinotus carolinus mortality in Central America. DISEASES OF AQUATIC ORGANISMS 2018; 130:109-115. [PMID: 30198486 DOI: 10.3354/dao03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mariculture of Florida pompano Trachinotus carolinus in Central America has increased over the last few decades and it is now a highly valued food fish. High feed costs and infectious diseases are significant impediments to the expansion of mariculture. Members of the genus Megalocytivirus (MCV), subfamily Alphairidovirinae, within the family Iridoviridae, are emerging pathogens that negatively impact Asian mariculture. A significant mortality event in Florida pompano fingerlings cultured in Central America occurred in October 2014. Affected fish presented with abdominal distension, darkening of the skin, and periocular hemorrhages. Microscopic lesions included cytomegalic 'inclusion body-bearing cells' characterized by basophilic granular cytoplasmic inclusions in multiple organs. Transmission electron microscopy revealed arrays of hexagonal virions (155-180 nm in diameter) with electron-dense cores within the cytoplasm of cytomegalic cells. Pathological findings were suggestive of an MCV infection, and the diagnosis was later confirmed by partial PCR amplification and sequencing of the viral gene encoding the myristylated membrane protein. The viral sequence revealed that the fingerlings were infected with an MCV genotype, red seabream iridovirus (RSIV), previously reported only from epizootics in Asian mariculture. This case underscores the threat RSIV poses to global mariculture, including the production of Florida pompano in Central America.
Collapse
Affiliation(s)
- Adrian Lopez-Porras
- Servicio de Patologia Veterinaria, Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Koda SA, Subramaniam K, Francis-Floyd R, Yanong RP, Frasca S, Groff JM, Popov VL, Fraser WA, Yan A, Mohan S, Waltzek TB. Phylogenomic characterization of two novel members of the genus Megalocytivirus from archived ornamental fish samples. DISEASES OF AQUATIC ORGANISMS 2018; 130:11-24. [PMID: 30154268 DOI: 10.3354/dao03250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The genus Megalocytivirus is the most recently described member of the family Iridoviridae; as such, little is known about the genetic diversity of this genus of globally emerging viral fish pathogens. We sequenced the genomes of 2 megalocytiviruses (MCVs) isolated from epizootics involving South American cichlids (oscar Astronotus ocellatus and keyhole cichlid Cleithracara maronii) and three spot gourami Trichopodus trichopterus sourced through the ornamental fish trade during the early 1990s. Phylogenomic analyses revealed the South American cichlid iridovirus (SACIV) and three spot gourami iridovirus (TSGIV) possess 116 open reading frames each, and form a novel clade within the turbot reddish body iridovirus genotype (TRBIV Clade 2). Both genomes displayed a unique truncated paralog of the major capsid protein gene located immediately upstream of the full-length parent gene. Histopathological examination of archived oscar tissue sections that were PCR-positive for SACIV revealed numerous cytomegalic cells characterized by basophilic intracytoplasmic inclusions within various organs, particularly the anterior kidney, spleen, intestinal lamina propria and submucosa. TSGIV-infected grunt fin (GF) cells grown in vitro displayed cytopathic effects (e.g. cytomegaly, rounding, and refractility) as early as 96 h post-infection. Ultrastructural examination of infected GF cells revealed unenveloped viral particles possessing hexagonal nucleocapsids (120 to 144 nm in diameter) and electron-dense cores within the cytoplasm, consistent with the ultrastructural morphology of a MCV. Sequencing of SACIV and TSGIV provides the first complete TRBIV Clade 2 genome sequences and expands the known host and geographic range of the TRBIV genotype to include freshwater ornamental fishes traded in North America.
Collapse
Affiliation(s)
- Samantha A Koda
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mishra A, Nam GH, Gim JA, Lee HE, Jo A, Yoon D, Oh S, Kim S, Kim A, Kim DH, Kim YC, Jeong HD, Cha HJ, Choi YH, Kim HS. Comparative evaluation of MCP gene in worldwide strains of Megalocytivirus (Iridoviridae family) for early diagnostic marker. JOURNAL OF FISH DISEASES 2018; 41:105-116. [PMID: 28914452 DOI: 10.1111/jfd.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Members of the Iridoviridae family have been considered as aetiological agents of iridovirus diseases, causing fish mortalities and economic losses all over the world. Virus identification based on candidate gene sequencing is faster, more accurate and more reliable than other traditional phenotype methodologies. Iridoviridae viruses are covered by a protein shell (capsid) encoded by the important candidate gene, major capsid protein (MCP). In this study, we investigated the potential of the MCP gene for use in the diagnosis and identification of infections caused Megalocytivirus of the Iridoviridae family. We selected data of 66 Iridoviridae family isolates (53 strains of Megalocytivirus, eight strains of iridoviruses and five strains of Ranavirus) infecting various species of fish distributed all over the world. A total of 53 strains of Megalocytivirus were used for designing the complete primer sets for identifying the most hypervariable region of the MCP gene. Further, our in silico analysis of 102 sequences of related and unrelated viruses reconfirms that primer sets could identify strains more specifically and offers a useful and fast alternative for routine clinical laboratory testing. Our findings suggest that phenotype observation along with diagnosis using universal primer sets can help detect infection or carriers at an early stage.
Collapse
Affiliation(s)
- A Mishra
- Genetic Engineering Institute, Pusan National University, Busan, Korea
| | - G-H Nam
- Genetic Engineering Institute, Pusan National University, Busan, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | - J-A Gim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | - H-E Lee
- Genetic Engineering Institute, Pusan National University, Busan, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | - A Jo
- Genetic Engineering Institute, Pusan National University, Busan, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | - D Yoon
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Korea
| | - S Oh
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Korea
| | - S Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, Korea
| | - A Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - D-H Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Y C Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - H D Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - H-J Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan, Korea
| | - Y H Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Korea
| | - H-S Kim
- Genetic Engineering Institute, Pusan National University, Busan, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
14
|
Jin JW, Kim YC, Hong S, Kim MS, Jeong JB, Jeong HD. Cloning and expression analysis of innate immune genes from red sea bream to assess different susceptibility to megalocytivirus infection. JOURNAL OF FISH DISEASES 2017; 40:583-595. [PMID: 27523084 DOI: 10.1111/jfd.12537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species.
Collapse
Affiliation(s)
- J W Jin
- Namhae Fisheries Hatchery Station, Korea Fisheries Resources Agency, Wando, South Korea
| | - Y C Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - S Hong
- Department of Marine Biotechnology, Gangneung -Wonju National University, Gangneung, South Korea
| | - M S Kim
- Pathology Division, National Fisheries Research & Development Institute, Busan, South Korea
| | - J B Jeong
- Department of Aquatic Biomedical Science, Jeju National University, Jeju, South Korea
| | - H D Jeong
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| |
Collapse
|
15
|
Munang'andu HM. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control. Front Microbiol 2016; 7:1986. [PMID: 28018317 PMCID: PMC5155513 DOI: 10.3389/fmicb.2016.01986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
Studies on the epidemiology of viral diseases in aquaculture have for a long time depended on isolation of viruses from infected aquatic organisms. The role of aquatic environments in the epidemiology of viral diseases in aquaculture has not been extensively expounded mainly because of the lack of appropriate tools for environmental studies on aquatic viruses. However, the upcoming of metagenomics analyses opens great avenues in which environmental samples can be used to study the epidemiology of viral diseases outside their host species. Hence, in this review I have shown that epidemiological factors that influence the composition of viruses in different aquatic environments include ecological factors, anthropogenic activities and stocking densities of cultured organisms based on environmental metagenomics studies carried out this far. Ballast water transportation and global trade of aquatic organisms are the most common virus dispersal process identified this far. In terms of disease control for outdoor aquaculture systems, baseline data on viruses found in different environments intended for aquaculture use can be obtained to enable the design of effective disease control strategies. And as such, high-risk areas having a high specter of pathogenic viruses can be identified as an early warning system. As for the control of viral diseases for indoor recirculation aquaculture systems (RAS), the most effective disinfection methods able to eliminate pathogenic viruses from water used in RAS can be identified. Overall, the synopsis I have put forth in this review shows that environmental samples can be used to study the epidemiology of viral diseases in aquaculture using viral metagenomics analysis as an overture for the design of rational disease control strategies.
Collapse
Affiliation(s)
- Hetron M Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
16
|
Li Q, Wang Y, Zhang M, Li R, Ye S, Li H. Production and characterization of monoclonal antibodies against recombinant ORF 049L of rock bream iridovirus. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Jung MH, Lee J, Jung SJ. Low pathogenicity of flounder iridovirus (FLIV) and the absence of cross-protection between FLIV and rock bream iridovirus. JOURNAL OF FISH DISEASES 2016; 39:1325-1333. [PMID: 27009694 DOI: 10.1111/jfd.12459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/02/2016] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
The genus Megalocytivirus is known to infect a wide range of cultured marine fish. In this study, we examined the pathogenicity of FLIV (Megalocytivirus from olive flounder, genotype III) and RBIV (Megalocytivirus from rock bream, genotype I) to their homologous and heterologous host species. Olive flounder (7.5 ± 1.3 cm) injected with FLIV [major capsid protein (MCP) gene copies, 6.8 × 103 -6.5 × 106 /fish] at 24 °C did not die until 90 days post-infection (dpi). The average virus replication in the spleen peaked (1.27 × 106 /fish) at 20 dpi. Rock bream (6.5 ± 1.5 cm) injected with FLIV (8.8 × 105 and 6.5 × 106 /fish of MCP copies) showed no mortality until 50 dpi. The rock bream that survived after FLIV infection were rechallenged with RBIV at 50 dpi had 100% mortality, showing that there is no cross-protection between FLIV and RBIV. Temperature shifting (26 °C and 20 °C at 12 h intervals) did not cause FLIV-specific mortality into olive flounder, but higher virus copies were observed in the fish exposed to higher stocking density. This study demonstrates that FLIV and RBIV have different antigenic and pathogenic characteristics and that FLIV has low pathogenicity to olive flounder.
Collapse
Affiliation(s)
- M H Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Chonnam, Republic of Korea
| | - J Lee
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - S J Jung
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Chonnam, Republic of Korea.
| |
Collapse
|
18
|
Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed Platy (Xiphophorus maculatus). Prev Vet Med 2015; 122:181-94. [PMID: 26452601 DOI: 10.1016/j.prevetmed.2015.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 11/27/2022]
Abstract
The movement of ornamental fish through international trade is a major factor for the transboundary spread of pathogens. In Australia, ornamental fish which may carry dwarf gourami iridovirus (DGIV), a strain of Infectious spleen and kidney necrosis virus (ISKNV), have been identified as a biosecurity risk despite relatively stringent import quarantine measures being applied. In order to gain knowledge of the potential for DGIV to enter Australia, imported ornamental fish were sampled prior to entering quarantine, during quarantine, and post quarantine from wholesalers and aquatic retail outlets in Australia. Samples were tested by quantitative polymerase chain reaction (qPCR) for the presence of megalocytivirus. Farmed and wild ornamental fish were also tested. Megalocytivirus was detected in ten of fourteen species or varieties of ornamental fish. Out of the 2086 imported gourami tested prior to entering quarantine, megalocytivirus was detected in 18.7% of fish and out of the 51 moribund/dead ornamental fish tested during the quarantine period, 68.6% were positive for megalocytivirus. Of fish from Australian wholesalers and aquatic retail outlets 14.5% and 21.9%, respectively, were positive. Out of 365 farmed ornamental fish, ISKNV-like megalocytivirus was detected in 1.1%; these were Platy (Xiphophorus maculatus). Megalocytivirus was not detected in free-living breeding populations of Blue gourami (Trichopodus trichopterus) caught in Queensland. This study showed that imported ornamental fish are vectors for DGIV and it was used to support an import risk analysis completed by the Australian Department of Agriculture. Subsequently, the national biosecurity policy was revised and from 1 March 2016, a health certification is required for susceptible families of fish to be free of this virus prior to importation.
Collapse
|
19
|
Zhang J, Zhang BC, Sun L. P247 and p523: two in vivo-expressed megalocytivirus proteins that induce protective immunity and are essential to viral infection. PLoS One 2015; 10:e0121282. [PMID: 25815484 PMCID: PMC4376877 DOI: 10.1371/journal.pone.0121282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Megalocytivirus is a DNA virus with a broad host range among teleost fish. Although the complete genome sequences of a number of megalocytivirus isolates have been reported, the functions of most of the genes of this virus are unknown. In this study, we selected two megalocytivirus immunogens, P247 and P523, which were expressed during host infection and, when in the form of DNA vaccines (pCN247 and pCN523 respectively), elicited strong protectivity against lethal megalocytivirus challenge in a turbot (Scophthalmus maximus) model. Compared to control fish, fish vaccinated with pCN247 and pCN523 exhibited drastically reduced viral loads in tissues and high levels of survival rates. Immune response analysis showed that pCN247 and pCN523 (i) induced production of specific serum antibodies, (ii) caused generation of cytotoxic immune cells and specific memory immune cells that responded to secondary antigen stimulation, and (iii) upregulated the expression of genes involved in innate and adaptive immunity. To examine the potential role of P247 and P523 in viral infection, the expression of P247 and P523 was knocked down by siRNA. Subsequent in vivo infection study showed that P247 and P523 knockdown significantly impaired viral replication. Furthermore, whole-genome transcriptome analysis revealed that P247 and P523 knockdown altered the expression profiles of 26 and 41 viral genes, respectively, putatively participating in diverse aspects of viral infection. Taken together, these results indicate that P247 and P523 induce protective immunity in teleost and play fundamental roles essential to viral replication. These observations provide the first evidence that suggests a likely link between the protectivity of viral immunogens and their biological significance in viral replication.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| |
Collapse
|
20
|
Nolan D, Stephens F, Crockford M, Jones JB, Snow M. Detection and characterization of viruses of the genus Megalocytivirus in ornamental fish imported into an Australian border quarantine premises: an emerging risk to national biosecurity. JOURNAL OF FISH DISEASES 2015; 38:187-195. [PMID: 24475941 DOI: 10.1111/jfd.12222] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
This report documents an emerging trend of identification of Megalocytivirus-like inclusions in a range of ornamental fish species intercepted during quarantine detention at the Australian border. From September 2012 to February 2013, 5 species of fish that had suffered mortality levels in excess of 25% whilst in the post-entry quarantine and had Megalocytivirus-like inclusion bodies in histological sections were examined by PCR. The fish had been imported from Singapore, Malaysia and Sri Lanka. Ninety-seven of 111 individual fish from affected tanks of fish tested were positive for the presence of Megalocytivirus by PCR. Sequence analysis of representative PCR products revealed an identical sequence of 621 bp in all cases which was identical to a previously characterized Megalocytivirus (Sabah/RAA1/2012 strain BMGIV48). Phylogenetic analysis of available Megalocytivirus major capsid protein (MCP) sequences confirmed the existence of 3 major clades of Megalocytivirus. The virus detected in this study was identified as a member of Genotype II. The broad host range and pathogenicity of megalocytiviruses, coupled to the documented spread of ornamental fish into the environment, render this a significant and emerging biosecurity threat to Australia.
Collapse
Affiliation(s)
- D Nolan
- Department of Fisheries, Government of Western Australia, Perth, WA, Australia
| | | | | | | | | |
Collapse
|
21
|
Oh SY, Oh MJ, Nishizawa T. Potential for a live red seabream iridovirus (RSIV) vaccine in rock bream Oplegnathus fasciatus at a low rearing temperature. Vaccine 2014; 32:363-8. [DOI: 10.1016/j.vaccine.2013.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
22
|
Dong Y, Weng S, He J, Dong C. Field trial tests of FKC vaccines against RSIV genotype Megalocytivirus in cage-cultured mandarin fish (Siniperca chuatsi) in an inland reservoir. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1598-1603. [PMID: 24035751 DOI: 10.1016/j.fsi.2013.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 06/02/2023]
Abstract
Megalocytiviruses are one of the most important causative agents in finfish industry in China, Japan and South East Asia. The viruses are mainly composed of ISKNV, RSIV and TRBIV genotypes. Among them, ISKNV genotype isolate is the most important causative agent in mandarin fish industry in South China. Since its first occurrence in mid-1990s in China, no effective drug has been developed to prevent and control this virus until our recent work. In this study, unusual RSIV genotype Megalocytivirus was validated as the causative agent in natural mass mortality of cage-cultured mandarin fish in an inland reservoir. One isolate was obtained using MFF-1 cells from natural mass mortality of mandarin fish and designated as Megalocyti-LJ2012. Based on two previous megalocytiviral isolates, formalin-killed cell (FKC) vaccines were prepared to immunize 2000 and 9000 cage-cultured mandarin in October 2011 and August 2012, respectively. As results, greater than 70% protective effects were observed in vaccination group in both individual field tests. Adjuvant-emulsified FKC vaccine provided even greater than 99% protective effect (N = 1000). In contrast, almost all fish died in non-vaccination group (N = 1000). Immuno-protection test under laboratory condition showed that 100% relative percent survival was obtained in surviving fish from vaccination group after challenge with Megalocyti-LJ2012 at 4 months post vaccination. Taken together, the present study shows that FKC vaccine is also efficient in preventing RSIV genotype Megalocytivirus in cage-cultured mandarin fish in two field tests.
Collapse
Affiliation(s)
- Youyong Dong
- MOE Key Laboratory of Aquatic Food Safety/State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Zhang J, Hu YH, Xiao ZZ, Sun L. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential. J Proteomics 2013; 91:430-43. [PMID: 23933595 DOI: 10.1016/j.jprot.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Megalocytivirus is an important fish pathogen with a broad host range that includes turbot. In this study, proteomic analysis was conducted to examine turbot proteins modulated in expression by megalocytivirus infection. Thirty five proteins from spleen were identified to be differentially expressed at 2days post-viral infection (dpi) and 7dpi. Three upregulated proteins, i.e. heat shock protein 70 (Hsp70), Mx protein, and natural killer enhancing factor (NKEF), were further analyzed for potential antiviral effect. For this purpose, turbot were administered separately with the plasmids pHsp70, pMx, and pNKEF, which express Hsp70, Mx, and NKEF respectively, before megalocytivirus infection. Viral dissemination and propagation in spleen were subsequently determined. The results showed that the viral loads in fish administered with pNKEF were significantly reduced. To examine the potential of Hsp70, Mx, and NKEF as immunological adjuvant, turbot were immunized with a DNA vaccine in the presence of pHsp70, pMx, or pNKEF. Subsequent analysis showed that the presence of pNKEF and pHsp70, but not pMx, significantly reduced viral infection and enhanced fish survival. Taken together, these results indicate that NKEF exhibits antiviral property against megalocytivirus, and that both NKEF and Hsp70 may be used in DNA vaccine-based control of megalocytivirus infection. BIOLOGICAL SIGNIFICANCE This study provides the first proteomic picture of turbot in response to megalocytivirus infection. We demonstrated that megalocytivirus infection modulates the expression of turbot proteins associated with various cellular functions, and that one of the upregulated proteins, NKEF, exhibits antiviral effect when overexpressed in vivo, while another upregulated protein, Hsp70, exhibits adjuvant effect when co-immunized with a DNA vaccine. These results add molecular insights into turbot immune response induced by megalocytivirus and provide candidate proteins with application potentials in the control of megalocytivirus-associated disease.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
24
|
Zhang BC, Zhang M, Sun BG, Fang Y, Xiao ZZ, Sun L. Complete genome sequence and transcription profiles of the rock bream iridovirus RBIV-C1. DISEASES OF AQUATIC ORGANISMS 2013; 104:203-214. [PMID: 23759558 DOI: 10.3354/dao02587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The family Iridoviridae consists of 5 genera of double-stranded DNA viruses, including the genus Megalocytivirus, which contains species that are important fish pathogens. In a previous study, we isolated the first rock bream iridovirus from China (RBIV-C1) and identified it as a member of the genus Megalocytivirus. In this report, we determined the complete genomic sequence of RBIV-C1 and examined its in vivo expression profiles. The genome of RBIV-C1 is 112333 bp in length, with a GC content of 55% and a coding density of 92%. RBIV-C1 contains 4584 simple sequence repeats, 89.8% of which are distributed among coding regions. A total of 119 potential open reading frames (ORFs) were identified in RBIV-C1, including the 26 core iridovirus genes; 41 ORFs encode proteins that are predicted to be associated with essential biological functions. RBIV-C1 exhibits the highest degree of sequence conservation and colinear arrangement of genes with orange-spotted grouper iridovirus (OSGIV) and rock bream iridovirus (RBIV). The pairwise nucleotide identities are 99.49% between RBIV-C1 and OSGIV and 98.69% between RBIV-C1 and RBIV. Compared to OSGIV, RBIV-C1 contains 11 insertions, 13 deletions, and 103 single nucleotide mutations. Whole-genome transcription analysis showed that following experimental infection of rock bream with RBIV-C1, all but 1 of the 119 ORFs were expressed at different time points and clustered into 3 hierarchical groups based on their expression patterns. These results provide new insights into the genetic nature and gene expression features of megalocytiviruses.
Collapse
Affiliation(s)
- Bao-Cun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Dong C, Xiong X, Luo Y, Weng S, Wang Q, He J. Efficacy of a formalin-killed cell vaccine against infectious spleen and kidney necrosis virus (ISKNV) and immunoproteomic analysis of its major immunogenic proteins. Vet Microbiol 2013. [DOI: 10.1016/j.vetmic.2012.10.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Zhang M, Hu YH, Xiao ZZ, Sun Y, Sun L. Construction and analysis of experimental DNA vaccines against megalocytivirus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1192-8. [PMID: 22986024 DOI: 10.1016/j.fsi.2012.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 05/12/2023]
Abstract
Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
27
|
Abstract
The genus Megalocytivirus, represented by red sea bream iridovirus (RSIV), the first identified and one of the best characterized megalocytiviruses, Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus, and numerous other isolates, is the newest genus within the family Iridoviridae. Viruses within this genus are causative agents of severe disease accompanied by high mortality in multiple species of marine and freshwater fish. To date outbreaks of megalocytivirus-induced disease have occurred primarily in south-east Asia and Japan, but infections have been detected in Australia and North America following the importation of infected ornamental fish. The first outbreak of megalocytiviral disease was recorded in cultured red sea bream (Pagrus major) in Japan in 1990 and was designated red sea bream iridovirus disease (RSIVD). Following infection fish became lethargic and exhibited severe anemia, petechiae of the gills, and enlargement of the spleen. Although RSIV was identified as an iridovirus, sequence analyses of RSIV genes revealed that the virus did not belong to any of the four known genera within the family Iridoviridae. Thus a new, fifth genus was established and designated Megalocytivirus to reflect the characteristic presence of enlarged basophilic cells within infected organs. Indirect immunofluorescence tests employing recently generated monoclonal antibodies and PCR assays are currently used in the rapid diagnosis of RSIVD. For disease control, a formalin-killed vaccine was developed and is now commercially available in Japan for several fish species. Following the identification of RSIV, markedly similar viruses such as infectious spleen and kidney necrosis virus (ISKNV), dwarf gourami iridovirus (DGIV), turbot reddish body iridovirus (TRBIV), Taiwan grouper iridovirus (TGIV), and rock bream iridovirus (RBIV) were isolated in East and Southeast Asia. Phylogenetic analyses of the major capsid protein (MCP) and ATPase genes indicated that although these viruses shared considerable sequence identity, they could be divided into three tentative species, represented by RSIV, ISKNV and TRBIV, respectively. Whole genome analyses have been reported for several of these viruses. Sequence analysis detected a characteristic difference in the genetic composition of megalocytiviruses and other members of the family in reference to the large and small subunits of ribonucleotide reductase (RR-1, RR‑2). Megalocytiviruses contain only the RR-2 gene, which is of eukaryotic origin; whereas the other genera encode both the RR-1 and RR-2 genes which are thought to originate from Rickettsia-like α-proteobacteria.
Collapse
|
28
|
Waltzek TB, Marty GD, Alfaro ME, Bennett WR, Garver KA, Haulena M, Weber ES, Hedrick RP. Systemic iridovirus from threespine stickleback Gasterosteus aculeatus represents a new megalocytivirus species (family Iridoviridae). DISEASES OF AQUATIC ORGANISMS 2012; 98:41-56. [PMID: 22422128 DOI: 10.3354/dao02415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Megalocytiviruses have been associated with epizootics resulting in significant economic losses in public aquaria and food-fish and ornamental fish industries, as well as threatening wild fish stocks. The present report describes characteristics of the first megalocytivirus from a wild temperate North American fish, the threespine stickleback Gasterosteus aculeatus. Moribund and dead fish sampled after transfer to quarantine for an aquarium exhibit had amphophilic to basophilic intracytoplasmic inclusions (histopathology) and icosahedral virions (transmission electron microscopy) consistent with an iridovirus infection. Phylogenetic analyses of the major capsid, ATPase, and DNA polymerase genes confirmed the virus as the first known member of the genus Megalocytivirus (family Iridoviridae) from a gasterosteid fish. The unique biologic and genetic properties of this virus are sufficient to establish a new Megalocytivirus species to be formally known as the threespine stickleback iridovirus (TSIV). The threespine stickleback is widely distributed throughout the northern hemisphere in both freshwater and estuarine environments. The presence of megalocytiviruses with broad host specificity and detrimental economic and ecologic impacts among such a widely dispersed fish species indicates the need for sampling of other stickleback populations as well as other North American sympatric marine and freshwater ichthyofauna.
Collapse
Affiliation(s)
- Thomas B Waltzek
- Department of Medicine and Epidemiology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kwon SR, Nishizawa T, Park JW, Oh MJ. Shift of phylogenic position in megalocytiviruses based on three different genes. J Microbiol 2011; 49:981-6. [DOI: 10.1007/s12275-011-1500-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
|
30
|
Xiong XP, Dong CF, Weng SP, Zhang J, Zhang Y, He JG. Antigenic identification of virion structural proteins from infectious spleen and kidney necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:919-924. [PMID: 21888976 DOI: 10.1016/j.fsi.2011.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 08/05/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), belonging to the genus Megalocytivirus in the family Iridoviridae, is one of the major agents causing mortality and economic losses to the freshwater fish culture industry in Asian countries. Currently, little information regarding the antigenic properties of Megalocytivirus (especially ISKNV) is available. Our previous study using four different workflows with systematic and comprehensive proteomic approaches led to the identification of 38 ISKNV virion-associated proteins (J. Virol. 2869-2877, 2011). Thus, in this report, the antigenicity of 31 structural proteins from ISKNV virion was investigated. A one-dimensional gel electrophoresis immunoblot profile coupled with MALDI-TOF-TOF MS/MS was applied to identify six immunogenic viral proteins, namely, ORFs major capsid protein (006L), 054L, 055L, 101L, 117L, and 125L. Then, the antigenicity of 31 structural proteins was characterized by Western blot by using pooled sera from mandarin fish that survived ISKNV infection. Of the 31 viral proteins, 22 were recognized by the fish ISKNV antiserum. Furthermore, this antiserum neutralizes MFF-1 cells ISKNV infection. To our knowledge, this study is the first report on the immunogenicity of viral proteins and characterization of the proteome of megalocytivirus infective agents. Our findings are expected to promote the development of effective vaccine candidates.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Huang X, Huang Y, Ouyang Z, Xu L, Yan Y, Cui H, Han X, Qin Q. Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. Apoptosis 2011; 16:831-45. [PMID: 21656148 DOI: 10.1007/s10495-011-0616-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virus induced cell death, including apoptosis and nonapoptotic cell death, plays a critical role in the pathogenesis of viral diseases. Singapore grouper iridovirus (SGIV), a novel iridovirus of genus Ranavirus, causes high mortality and heavy economic losses in grouper aquaculture. Here, using fluorescence microscopy, electron microscopy and biochemical assays, we found that SGIV infection in host (grouper spleen, EAGS) cells evoked nonapoptotic programmed cell death (PCD), characterized by appearance of cytoplasmic vacuoles and distended endoplasmic reticulum, in the absence of DNA fragmentation, apoptotic bodies and caspase activation. In contrast, SGIV induced typical apoptosis in non-host (fathead minnow, FHM) cells, as evidenced by caspase activation and DNA fragmentation, suggesting that SGIV infection induced nonapoptotic cell death by a cell type dependent fashion. Furthermore, viral replication was essential for SGIV induced nonapoptotic cell death, but not for apoptosis. Notably, the disruption of mitochondrial transmembrane potential (ΔΨm) and externalization of phosphatidylserine (PS) were not detected in EAGS cells but in FHM cells after SGIV infection. Moreover, the extracellular signal-regulated kinase (ERK) signaling was involved in SGIV infection induced nonapoptotic cell death and viral replication. This is a first demonstration of ERK-mediated nonapoptotic cell death induced by a DNA virus. These findings contribute to understanding the mechanisms of iridovirus pathogenesis.
Collapse
Affiliation(s)
- Xiaohong Huang
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang SM, Tu C, Tseng CH, Huang CC, Chou CC, Kuo HC, Chang SK. Genetic analysis of fish iridoviruses isolated in Taiwan during 2001-2009. Arch Virol 2011; 156:1505-15. [PMID: 21603939 PMCID: PMC3163811 DOI: 10.1007/s00705-011-1017-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 04/30/2011] [Indexed: 01/07/2023]
Abstract
To investigate the genetic relationships between field strains of iridoviruses gathered from various fish species in Taiwan, viruses that were collected from 2001 to 2009 were analyzed. Open reading frames encoding the viral major capsid protein (MCP) and adenosine triphosphatase (ATPase) were sequenced for phylogenetic analysis. Our results indicated that iridoviruses from Taiwan aquaculture fishes could be classified into two groups: prior to 2005, the viruses were closely related to members of the genus Ranavirus; and after 2005, they were similar to members of the genus Megalocytivirus. Based on the analysis of MCP amino acid sequences, virus isolates were divided into 4 major genotypes that were related to ISKNV, RSIV, FLIV, and GIV, respectively. Pairwise comparisons of MCP genes showed that the ranavirus was an epidemic pathogen for economically important species in the major production regions and cultured marine fish, while the megalocytivirus isolates were sensitive to host range. In addition, the distribution of synonymous and non-synonymous changes in the MCP gene revealed that the iridoviruses were evolving slowly, and most of the variations were synonymous mutations. The Ka/Ks values were lower than one, and hence, the viruses were under negative selection.
Collapse
Affiliation(s)
- Sue-Min Huang
- Division of Biology, Council of Agriculture, Animal Health Research Institute, Taipei 25158, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
33
|
Xiong XP, Dong CF, Xu X, Weng SP, Liu ZY, He JG. Proteomic analysis of zebrafish (Danio rerio) infected with infectious spleen and kidney necrosis virus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:431-440. [PMID: 21075138 DOI: 10.1016/j.dci.2010.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/07/2010] [Accepted: 11/07/2010] [Indexed: 05/30/2023]
Abstract
Iridovirus infections remain a severe problem in aquaculture industries worldwide. Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytovirus in the family Iridoviridae, has caused significant economic losses among freshwater fish in different Asian countries. To investigate the molecular mechanism of iridoviral pathogenesis, we analyzed the differential proteome from the spleen of ISKNV-infected zebrafish through two-dimensional gel electrophoresis (2-DE). Mass spectrometry revealed 35 altered cellular protein spots, including 15 upregulated proteins and 20 downregulated proteins at five days post-infection. The altered host proteins were classified into 13 categories based on their biological processes: cytoskeletal protein, stress response, lipoprotein metabolism, ubiquitin-proteasome pathway, carbohydrate metabolism, signal transduction, proteolysis, ion binding, transport, metabolic process, catabolic process, biosynthesis, and oxidation reduction. Moreover, 14 corresponding genes of the differentially expressed proteins were validated by RT-PCR. Western blot analysis further demonstrated the changes in α-tubulin, β-actin, HSC70, and major capsid protein (MCP) during infection. β-Actin was selected for further study via co-immunoprecipitation analyses, which confirmed that the cellular β-actin interacts with the MCP protein of ISKNV in the infected zebrafish. These findings provide insight into the interactions between iridoviruses (especially ISKNV) and host, as well as the mechanism and pathogenesis of ISKNV infections.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- State Key Laboratory of Biocontrol/MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Shimmoto H, Kawai K, Ikawa T, Oshima SI. Protection of red sea bream Pagrus major against red sea bream iridovirus infection by vaccination with a recombinant viral protein. Microbiol Immunol 2010; 54:135-42. [DOI: 10.1111/j.1348-0421.2010.00204.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|