1
|
Hallier M, Bronsard J, Dréano S, Sassi M, Cattoir V, Felden B, Augagneur Y. RNAIII is linked with the pentose phosphate pathway through the activation of RpiRc in Staphylococcus aureus. mSphere 2024; 9:e0034823. [PMID: 38591898 PMCID: PMC11237564 DOI: 10.1128/msphere.00348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Staphylococcus aureus RNAIII is a dual-function regulatory RNA that controls the expression of multiple virulence genes and especially the transition from adhesion to the production of exotoxins. However, its contribution to S. aureus central metabolism remains unclear. Using MS2-affinity purification coupled with RNA sequencing, we uncovered more than 50 novel RNAIII-mRNA interactions. Among them, we demonstrate that RNAIII is a major activator of the rpiRc gene, encoding a regulator of the pentose phosphate pathway (PPP). RNAIII binds the 5' UTR of rpiRc mRNA to favor ribosome loading, leading to an increased expression of RpiRc and, subsequently, of two PPP enzymes. Finally, we show that RNAIII and RpiRc are involved in S. aureus fitness in media supplemented with various carbohydrate sources related to PPP and glycolysis. Collectively, our data depict an unprecedented phenotype associated with the RNAIII regulon, especially the direct implication of RNAIII in central metabolic activity modulation. These findings show that the contribution of RNAIII in Staphylococcus aureus adaptation goes far beyond what was initially reported. IMPORTANCE Staphylococcus aureus is a major human pathogen involved in acute and chronic infections. Highly recalcitrant to antibiotic treatment, persistent infections are mostly associated with the loss of RNAIII expression, a master RNA regulator responsible for the switch from colonization to infection. Here, we used the MS2 affinity purification coupled with RNA sequencing approach to identify novel mRNA targets of RNAIII and uncover novel functions. We demonstrate that RNAIII is an activator of the expression of genes involved in the pentose phosphate pathway and is implicated in the adjustment of bacterial fitness as a function of carbohydrate sources. Taken together, our results demonstrate an unprecedented role of RNAIII that goes beyond the knowledge gained so far and contributes to a better understanding of the role of RNAIII in bacterial adaptation expression and the coordination of a complex regulatory network.
Collapse
Affiliation(s)
- Marc Hallier
- QCPS (Quality Control in Protein Synthesis), IGDR UMR CNRS 6290, Université de Rennes 1, Rennes, France
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| | - Julie Bronsard
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| | - Stéphane Dréano
- Molecular Bases of Tumorigenesis: VHL Disease Team, CNRS UMR 6290 IGDR, BIOSIT, Université de Rennes 1, Rennes, France
| | - Mohamed Sassi
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| | - Vincent Cattoir
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| | - Brice Felden
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| | - Yoann Augagneur
- BRM (Bacterial Regulatory RNAs and Medicine), UMR_S 1230, Université de Rennes 1, Rennes, France
| |
Collapse
|
2
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang HH, Sternberg SH. Bacterial genome engineering using CRISPR-associated transposases. Nat Protoc 2024; 19:752-790. [PMID: 38216671 DOI: 10.1038/s41596-023-00927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/02/2023] [Indexed: 01/14/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposases have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in Escherichia coli at efficiencies approaching ~100%. Moreover, they generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CRISPR-associated transposase (CAST) systems, including guidelines on the available vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational CRISPR RNA design algorithm to avoid potential off-targets, and a CRISPR array cloning pipeline for performing multiplexed DNA insertions. The method presented here allows the isolation of clonal strains containing a novel genomic integration event of interest within 1-2 weeks using available plasmid constructs and standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang H, Sternberg SH. Bacterial genome engineering using CRISPR RNA-guided transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533263. [PMID: 36993567 PMCID: PMC10055292 DOI: 10.1101/2023.03.18.533263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR-associated transposons (CASTs) have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability, and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in E. coli at efficiencies approaching ~100%, generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CAST systems, including guidelines on the available homologs and vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational crRNA design algorithm to avoid potential off-targets and CRISPR array cloning pipeline for DNA insertion multiplexing. Starting from available plasmid constructs, the isolation of clonal strains containing a novel genomic integration event-of-interest can be achieved in 1 week using standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Zhou Q, Jiao L, Li W, Hu Z, Li Y, Zhang H, Yang M, Xu L, Yan Y. A Novel Cre/ lox-Based Genetic Tool for Repeated, Targeted and Markerless Gene Integration in Yarrowia lipolytica. Int J Mol Sci 2021; 22:ijms221910739. [PMID: 34639080 PMCID: PMC8509416 DOI: 10.3390/ijms221910739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 01/30/2023] Open
Abstract
The unconventional yeast Yarrowia lipolytica is extensively applied in bioproduction fields owing to its excellent metabolite and protein production ability. Nonetheless, utilization of this promising host is still restricted by the limited availability of precise and effective gene integration tools. In this study, a novel and efficient genetic tool was developed for targeted, repeated, and markerless gene integration based on Cre/lox site-specific recombination system. The developed tool required only a single selection marker and could completely excise the unnecessary sequences. A total of three plasmids were created and seven rounds of marker-free gene integration were examined in Y. lipolytica. All the integration efficiencies remained above 90%, and analysis of the protein production and growth characteristics of the engineered strains confirmed that genome modification via the novel genetic tool was feasible. Further work also confirmed that the genetic tool was effective for the integration of other genes, loci, and strains. Thus, this study significantly promotes the application of the Cre/lox system and presents a powerful tool for genome engineering in Y. lipolytica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Xu
- Correspondence: (L.X.); (Y.Y.)
| | | |
Collapse
|
5
|
Pätzold L, Brausch AC, Bielefeld EL, Zimmer L, Somerville GA, Bischoff M, Gaupp R. Impact of the Histidine-Containing Phosphocarrier Protein HPr on Carbon Metabolism and Virulence in Staphylococcus aureus. Microorganisms 2021; 9:microorganisms9030466. [PMID: 33668335 PMCID: PMC7996215 DOI: 10.3390/microorganisms9030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/01/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common mechanism pathogenic bacteria use to link central metabolism with virulence factor synthesis. In gram-positive bacteria, catabolite control protein A (CcpA) and the histidine-containing phosphocarrier protein HPr (encoded by ptsH) are the predominant mediators of CCR. In addition to modulating CcpA activity, HPr is essential for glucose import via the phosphotransferase system. While the regulatory functions of CcpA in Staphylococcus aureus are largely known, little is known about the function of HPr in CCR and infectivity. To address this knowledge gap, ptsH mutants were created in S. aureus that either lack the open reading frame or harbor a ptsH variant carrying a thymidine to guanosine mutation at position 136, and the effects of these mutations on growth and metabolism were assessed. Inactivation of ptsH altered bacterial physiology and decreased the ability of S. aureus to form a biofilm and cause infections in mice. These data demonstrate that HPr affects central metabolism and virulence in S. aureus independent of its influence on CcpA regulation.
Collapse
Affiliation(s)
- Linda Pätzold
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Anne-Christine Brausch
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Evelyn-Laura Bielefeld
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Lisa Zimmer
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68588, USA;
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
- Correspondence: ; Tel.: +49-6841-162-39-63
| | - Rosmarie Gaupp
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany; (L.P.); (A.-C.B.); (E.-L.B.); (L.Z.); (R.G.)
| |
Collapse
|
6
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Expression and purification of codon-optimized cre recombinase in E. coli. Protein Expr Purif 2020; 167:105546. [DOI: 10.1016/j.pep.2019.105546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 12/31/2022]
|
8
|
Abstract
Clostridia are a group of Gram-positive anaerobic bacteria of medical and industrial importance for which limited genetic methods are available. Here, we demonstrate an approach to make large genomic deletions and insertions in the model Clostridium phytofermentans by combining designed group II introns (targetrons) and Cre recombinase. We apply these methods to delete a 50-gene prophage island by programming targetrons to position markerless lox66 and lox71 sites, which mediate deletion of the intervening 39-kb DNA region using Cre recombinase. Gene expression and growth of the deletion strain showed that the prophage genes contribute to fitness on nonpreferred carbon sources. We also inserted an inducible fluorescent reporter gene into a neutral genomic site by recombination-mediated cassette exchange (RMCE) between genomic and plasmid-based tandem lox sites bearing heterospecific spacers to prevent intracassette recombination. These approaches generally enable facile markerless genome engineering in clostridia to study their genome structure and regulation.IMPORTANCE Clostridia are anaerobic bacteria with important roles in intestinal and soil microbiomes. The inability to experimentally modify the genomes of clostridia has limited their study and application in biotechnology. Here, we developed a targetron-recombinase system to efficiently make large targeted genomic deletions and insertions using the model Clostridium phytofermentans We applied this approach to reveal the importance of a prophage to host fitness and introduce an inducible reporter by recombination-mediated cassette exchange.
Collapse
|
9
|
Schuster CF, Howard SA, Gründling A. Use of the counter selectable marker PheS* for genome engineering in Staphylococcus aureus. Microbiology (Reading) 2019; 165:572-584. [DOI: 10.1099/mic.0.000791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Christopher F. Schuster
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Sophie A. Howard
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
10
|
Floxed-Cassette Allelic Exchange Mutagenesis Enables Markerless Gene Deletion in Chlamydia trachomatis and Can Reverse Cassette-Induced Polar Effects. J Bacteriol 2018; 200:JB.00479-18. [PMID: 30224436 DOI: 10.1128/jb.00479-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/12/2018] [Indexed: 01/04/2023] Open
Abstract
As obligate intracellular bacteria, Chlamydia spp. have evolved numerous, likely intricate, mechanisms to create and maintain a privileged intracellular niche. Recent progress in elucidating and characterizing these processes has been bolstered by the development of techniques enabling basic genetic tractability. Florescence-reported allelic exchange mutagenesis (FRAEM) couples chromosomal gene deletion with the insertion of a selection cassette encoding antibiotic resistance and green fluorescent protein (GFP). Similar to other bacteria, many chlamydial genes exist within polycistronic operons, raising the possibility of polar effects mediated by insertion cassettes. Indeed, FRAEM-mediated deletion of Chlamydia trachomatis tmeA negatively impacts the expression of tmeB We have adapted FRAEM technology by employing a gfp-bla cassette flanked by loxP sites. Conditional expression of Cre recombinase in Chlamydia tmeA containing a floxed cassette resulted in deletion of the marker and restoration of tmeB expression.IMPORTANCE C. trachomatis infections represent a significant burden to human health. The ability to genetically manipulate Chlamydia spp. is overcoming historic confounding barriers that have impeded rapid progress in understanding overall chlamydial pathogenesis. The current state of genetic manipulation in Chlamydia spp. requires further development, including mechanisms to generate markerless gene disruption. We leveraged a stepwise Cre-lox approach to excise selection marker genes from a deleted gene locus. We found this process to be efficient, and the removal of extraneous elements resulted in the reversal of a negative polar effect on a downstream gene. This technique facilitates a more direct assessment of gene function and adds to the Chlamydia molecular toolbox by facilitating the deletion of genes within operons.
Collapse
|
11
|
Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 2018. [PMID: 29534563 DOI: 10.1021/acsinfecdis.8b00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Ge Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy C. Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Li D, Zhang B, Li S, Zhou J, Cao H, Huang Y, Cui Z. A Novel Vector for Construction of Markerless Multicopy Overexpression Transformants in Pichia pastoris. Front Microbiol 2017; 8:1698. [PMID: 28955309 PMCID: PMC5601908 DOI: 10.3389/fmicb.2017.01698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pichia pastoris is widely used as a platform for heterologous protein expression because of its high volumetric productivity. Multicopy integration of the target gene is commonly used to improve the production of the target protein. Cre/lox recombination system is a powerful tool for the marker rescue during multiple integrations with one selection marker. Here we reported a novel expression vector based on the Cre/lox recombination system for multiple integrations of target gene to construct multicopy expression strain of P. pastoris. PAOX1 promoter was fused to cre to construct a methanol inducible Cre recombinase. The leakage expression of Cre recombinase in Escherichia coli was blocked by introducing the operator gene lacO. The expression vector designed pMCO-AOXα was stable in E. coli and could effectively rescue the Zeocin resistance gene for next round of integration in P. pastoris. Phytase AppA from E. coli was chosen as a reporter gene. Transformants with 2-16 copies of appA were constructed by using a single antibiotic. Expression of appA was gene dosage dependent when <12 copies were integrated. The protein yield increased 4.45-folds when 12 copies of appA were integrated comparing with the single copy integration. Our results showed that pMCO-AOXα was highly effective for rational construction of multicopy transformat in P. pastoris.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Shuting Li
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
13
|
Liu Q, Jiang Y, Shao L, Yang P, Sun B, Yang S, Chen D. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus. Acta Biochim Biophys Sin (Shanghai) 2017; 49:764-770. [PMID: 28910979 DOI: 10.1093/abbs/gmx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important pathogenic bacterium prevalent in nosocomial infections and associated with high morbidity and mortality rates, which arise from the significant pathogenicity and multi-drug resistance. However, the typical genetic manipulation tools used to explore the relevant molecular mechanisms of S. aureus have multiple limitations: leaving a scar in the genome, comparatively low gene-editing efficiency, and prolonged experimental period. Here, we present a single-plasmid based on the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system which allows rapid and efficient chromosomal manipulation in S. aureus. The plasmid carries the cas9 gene under the control of the constitutive promoter Pxyl/tet, a single guide RNA-encoding sequence transcribed via a strong promoter Pspac, and donor DNA used to repair the double strand breaks. The function of the CRISPR/Cas9 vector was demonstrated by deleting the tgt gene and the rocA gene, and by inserting the erm R cassette in S. aureus. This research establishes a CRISPR/Cas9 genome editing tool in S. aureus, which enables marker-free, scarless and rapid genetic manipulation, thus accelerating the study of gene function in S. aureus.
Collapse
Affiliation(s)
- Qi Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201206, China
| | - Lei Shao
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Bingbing Sun
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201206, China
| | - Daijie Chen
- Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Togawa Y, Nunoshiba T, Hiratsu K. Cre/lox-based multiple markerless gene disruption in the genome of the extreme thermophile Thermus thermophilus. Mol Genet Genomics 2017; 293:277-291. [PMID: 28840320 DOI: 10.1007/s00438-017-1361-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/20/2017] [Indexed: 12/01/2022]
Abstract
Markerless gene-disruption technology is particularly useful for effective genetic analyses of Thermus thermophilus (T. thermophilus), which have a limited number of selectable markers. In an attempt to develop a novel system for the markerless disruption of genes in T. thermophilus, we applied a Cre/lox system to construct a triple gene disruptant. To achieve this, we constructed two genetic tools, a loxP-htk-loxP cassette and cre-expressing plasmid, pSH-Cre, for gene disruption and removal of the selectable marker by Cre-mediated recombination. We found that the Cre/lox system was compatible with the proliferation of the T. thermophilus HB27 strain at the lowest growth temperature (50 °C), and thus succeeded in establishing a triple gene disruptant, the (∆TTC1454::loxP, ∆TTC1535KpnI::loxP, ∆TTC1576::loxP) strain, without leaving behind a selectable marker. During the process of the sequential disruption of multiple genes, we observed the undesired deletion and inversion of the chromosomal region between multiple loxP sites that were induced by Cre-mediated recombination. Therefore, we examined the effects of a lox66-htk-lox71 cassette by exploiting the mutant lox sites, lox66 and lox71, instead of native loxP sites. We successfully constructed a (∆TTC1535::lox72, ∆TTC1537::lox72) double gene disruptant without inducing the undesired deletion of the 0.7-kbp region between the two directly oriented lox72 sites created by the Cre-mediated recombination of the lox66-htk-lox71 cassette. This is the first demonstration of a Cre/lox system being applicable to extreme thermophiles in a genetic manipulation. Our results indicate that this system is a powerful tool for multiple markerless gene disruption in T. thermophilus.
Collapse
Affiliation(s)
- Yoichiro Togawa
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan
| | - Tatsuo Nunoshiba
- College of Liberal Arts, International Christian University, Osawa 3-10-2, Mitaka, Tokyo, 181-8585, Japan
| | - Keiichiro Hiratsu
- Department of Applied Chemistry, National Defense Academy, Hashirimizu 1-10-20, Yokosuka, Kanagawa, 239-8686, Japan.
| |
Collapse
|
15
|
Zhang S, Ban A, Ebara N, Mizutani O, Tanaka M, Shintani T, Gomi K. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae. J Biosci Bioeng 2017; 123:403-411. [DOI: 10.1016/j.jbiosc.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/29/2023]
|
16
|
Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol 2017; 101:2217-2226. [PMID: 28184986 DOI: 10.1007/s00253-017-8156-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 01/08/2023]
Abstract
Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.
Collapse
|
17
|
Affiliation(s)
- Oksana Bilyk
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
| | - Andriy Luzhetskyy
- Helmholtz Institute for Pharmaceutical Research; Actinobacteria Metabolic Engineering Group; Universitätscampus E8 66123 Saarbrücken Germany
- University of Saarland; Department of Pharmaceutical Biotechnology; UdS Campus C2.366123 Saarbrücken Germany
| |
Collapse
|
18
|
The Peptidoglycan Pattern of Staphylococcus carnosus TM300-Detailed Analysis and Variations Due to Genetic and Metabolic Influences. Antibiotics (Basel) 2016; 5:antibiotics5040033. [PMID: 27669322 PMCID: PMC5187514 DOI: 10.3390/antibiotics5040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/09/2016] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
The Gram-positive bacterium Staphylococcus carnosus (S. carnosus) TM300 is an apathogenic staphylococcal species commonly used in meat starter cultures. As with all Gram-positive bacteria, its cytoplasmic membrane is surrounded by a thick peptidoglycan (PGN) or murein sacculus consisting of several layers of glycan strands cross-linked by peptides. In contrast to pathogenic staphylococci, mainly Staphylococcus aureus (S. aureus), the chemical composition of S. carnosus PGN is not well studied so far. UPLC/MS analysis of enzymatically digested S. carnosus TM300 PGN revealed substantial differences in its composition compared to the known pattern of S. aureus. While in S. aureus the uncross-linked stem peptide consists of a pentapeptide, in S. carnosus, this part of the PGN is shortened to tripeptides. Furthermore, we found the PGN composition to vary when cells were incubated under certain conditions. The collective overproduction of HlyD, FtsE and FtsX—a putative protein complex interacting with penicillin-binding protein 2 (PBP2)—caused the reappearance of classical penta stem peptides. In addition, under high sugar conditions, tetra stem peptides occur due to overflow metabolism. This indicates that S. carnosus TM300 cells adapt to various conditions by modification of their PGN.
Collapse
|
19
|
Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors. PLoS Pathog 2016; 12:e1005812. [PMID: 27490492 PMCID: PMC4973975 DOI: 10.1371/journal.ppat.1005812] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota. The complex and dynamic microbial communities of human body surfaces are of utmost importance for human body functions in health and diseases. Human microbiomes contribute to metabolic processes, instruct the immune system, and often include antibiotic-resistant pathogens, responsible for the majority of severe bacterial infections. It is generally accepted that microbiota composition is strongly affected by mechanisms of microbial interference, but how specific bacteria may achieve fitness benefits and outcompete other microbes has remained largely unknown. We demonstrate that production of antimicrobial bacteriocins is not an occasional trait but a dominant and highly variable strategy among human nasal bacteria for limiting the growth of competing microbes. We found that more than 80% of nasal Staphylococcus isolates produce bacteriocins with highly diverse activity spectra, in particular under habitat-specific stress conditions such as iron limitation and exposure to hydrogen peroxide. Inactivation of a representative bacteriocin diminished the producer’s competitive capability indicating that bacteriocins may be a major driving force for the dynamics of microbiomes in nutrient-poor habitats such as the human nose. The identification of bacteriocin genes on mobile genetic elements with composite structure suggests that they are subject to highly dynamic co-evolutionary processes.
Collapse
Affiliation(s)
- Daniela Janek
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Alexander Zipperer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| | - Andreas Kulik
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Microbiology/Biotechnology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
- * E-mail:
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology, Eberhard-Karls-University Tübingen, Tübingen, Germany
- German Center for Infection Research, Partner site Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Wu L, Conner RL, Wang X, Xu R, Li H. Variation in Growth, Colonization of Maize, and Metabolic Parameters of GFP- and DsRed-Labeled Fusarium verticillioides Strains. PHYTOPATHOLOGY 2016; 106:890-899. [PMID: 27088391 DOI: 10.1094/phyto-09-15-0236-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Autofluorescent proteins are frequently applied as visual markers in the labeling of filamentous fungi. Genes gfp and DsRed were transformed into the genome of Fusarium verticillioides via the Agrobacterium tumefaciens-mediated transformation method. The selected transformants displayed a bright green or red fluorescence in all the organelles of the growing fungal mycelia and spores (except for the vacuoles) both in cultures and in the maize (Zea mays) roots they colonized. The results of gene-specific polymerase chain reaction (PCR) analysis and the thermal asymmetrical interlaced (TAIL)-PCR analysis demonstrated that gfp and DsRed were integrated on different chromosomes of the fungus. Reductions in the colony growth on the plates at pH 4.0 and 5.5 was observed for the green fluorescent protein (GFP)-transformant G3 and the DsRed-transformant R4, but transformants G4 and R1 grew as well as the wild-type strain at pH 4.0. The speed of growth of all the transformants was similar to the wild-type strain at pH ≥ 7. The insertion of gfp and DsRed did not alter the production of extracellular enzymes and fumonisin B by F. verticillioides. The transformants expressing GFP and DsRed proteins were able to colonize maize roots. However, the four transformants examined produced fewer CFU in the root samples than the wild-type strain during a sampling period of 7 to 28 days after inoculation.
Collapse
Affiliation(s)
- Lei Wu
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - R L Conner
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Xiaoming Wang
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Rongqi Xu
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| | - Hongjie Li
- First, third, and fifth authors: The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081; second author: Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba R6M 1Y5, Canada; and fourth author: Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing
| |
Collapse
|
21
|
Wu L, Wu HJ, Qiao J, Gao X, Borriss R. Novel Routes for Improving Biocontrol Activity of Bacillus Based Bioinoculants. Front Microbiol 2015; 6:1395. [PMID: 26696998 PMCID: PMC4674565 DOI: 10.3389/fmicb.2015.01395] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/23/2015] [Indexed: 11/14/2022] Open
Abstract
Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are increasingly applied in sustainable agriculture. Especially inoculants prepared from endospore-forming Bacillus strains have been proven as efficient and environmental-friendly alternative to chemical pesticides due to their long shelf life, which is comparable with that of agrochemicals. However, these formulations of the first generation are sometimes hampered in their action and do not fulfill in each case the expectations of the appliers. In this review we use the well-known plant-associated Bacillus amyloliquefaciens type strain FZB42 as example for the successful application of different techniques offered today by comparative, evolutionary and functional genomics, site-directed mutagenesis and strain construction including marker removal, for paving the way for preparing a novel generation of BC agents.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Hui-Jun Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Junqing Qiao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China ; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of Agriculture Nanjing, China
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin Berlin, Germany ; Nord Reet UG Greifswald, Germany
| |
Collapse
|
22
|
Genome editing by natural genetic transformation in Streptococcus mutans. J Microbiol Methods 2015; 119:134-41. [PMID: 26481669 DOI: 10.1016/j.mimet.2015.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
Abstract
Classical mutagenesis strategies using selective markers linked to designed mutations are powerful and widely applicable tools for targeted mutagenesis via natural genetic transformation in bacteria and archaea. However, the markers that confer power are also potentially problematic as they can be cumbersome, risk phenotypic effects of the inserted genes, and accumulate as unwanted genes during successive mutagenesis cycles. Alternative mutagenesis strategies use temporary plasmid or cassette insertions and can in principle achieve equally flexible mutation designs, but design of suitable counter-selected markers can be complex. All these drawbacks are eased by use of direct genome editing. Here we describe a strategy for directly editing the genome of S. mutans, which is applied to the widely studied reference strain UA159 (ATCC 700610) and has the advantage of extreme simplicity, requiring construction of only one synthetic donor amplicon and a single transformation step, followed by a simple PCR screen among a few dozen clones to identify the desired mutant. The donor amplicon carries the mutant sequence and extensive flanking segments of homology, which ensure efficient and precise integration by the recombination machinery specific to competent cells. The recipients are highly competent cells, in a state achieved by treatment with a synthetic competence pheromone.
Collapse
|
23
|
The νSaα Specific Lipoprotein Like Cluster (lpl) of S. aureus USA300 Contributes to Immune Stimulation and Invasion in Human Cells. PLoS Pathog 2015; 11:e1004984. [PMID: 26083414 PMCID: PMC4470592 DOI: 10.1371/journal.ppat.1004984] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023] Open
Abstract
All Staphylococcus aureus genomes contain a genomic island, which is termed νSaα and characterized by two clusters of tandem repeat sequences, i.e. the exotoxin (set) and 'lipoprotein-like' genes (lpl). Based on their structural similarities the νSaα islands have been classified as type I to IV. The genomes of highly pathogenic and particularly epidemic S. aureus strains (USA300, N315, Mu50, NCTC8325, Newman, COL, JH1 or JH9) belonging to the clonal complexes CC5 and CC8 bear a type I νSaα island. Since the contribution of the lpl gene cluster encoded in the νSaα island to virulence is unclear to date, we deleted the entire lpl gene cluster in S. aureus USA300. The results showed that the mutant was deficient in the stimulation of pro-inflammatory cytokines in human monocytes, macrophages and keratinocytes. Purified lipoprotein Lpl1 was further shown to elicit a TLR2-dependent response. Furthermore, heterologous expression of the USA300 lpl cluster in other S. aureus strains enhanced their immune stimulatory activity. Most importantly, the lpl cluster contributed to invasion of S. aureus into human keratinocytes and mouse skin and the non-invasive S. carnosus expressing the lpl gene cluster became invasive. Additionally, in a murine kidney abscess model the bacterial burden in the kidneys was higher in wild type than in mutant mice. In this infection model the lpl cluster, thus, contributes to virulence. The present report is one of the first studies addressing the role of the νSaα encoded lpl gene cluster in staphylococcal virulence. The finding that the lpl gene cluster contributes to internalization into non-professional antigen presenting cells such as keratinocytes highlights the lpl as a new cell surface component that triggers host cell invasion by S. aureus. Increased invasion in murine skin and an increased bacterial burden in a murine kidney abscess model suggest that the lpl gene cluster serves as an important virulence factor. Highly pathogenic and epidemic Staphylococcus aureus strains carry a pathogenicity island in their genome that contains a cluster of lipoprotein-encoding genes termed lpl. As the role lpl in virulence is still unclear, we deleted the entire lpl cluster in the community-acquired methicillin-resistant S. aureus (CA-MRSA) USA300 and found that the mutant was defective in stimulation of pro-inflammatory cytokines in human immune cells. Moreover, the major finding highlighted in this study is that the lpl cluster contributes to invasion into non-professional phagocytes such as epithelial cells and keratinocytes. Furthermore, the lpl-dependent increase in invasive activity, most likely, accounts for the enhanced bacterial burden observed in a murine kidney abscess model. In general, internalization of a pathogen into host epithelial cells shields the pathogen from immune defense and antibiotic treatment. However, further investigation is needed to clarify whether the increased ability to invade host cells is responsible for the potent disseminative activity and hypervirulent phenotype characterizing the νSaα type I island expressing S. aureus strains, including the USA300 CA-MRSA strain.
Collapse
|
24
|
Schuster CF, Mechler L, Nolle N, Krismer B, Zelder ME, Götz F, Bertram R. The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus. PLoS One 2015; 10:e0126118. [PMID: 25965381 PMCID: PMC4428803 DOI: 10.1371/journal.pone.0126118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/30/2015] [Indexed: 12/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems are genetic elements of prokaryotes which encode a stable toxin and an unstable antitoxin that can counteract toxicity. TA systems residing on plasmids are often involved in episomal maintenance whereas those on chromosomes can have multiple functions. The opportunistic pathogen Staphylococcus aureus possesses at least four different families of TA systems but their physiological roles are elusive. The chromosomal mazEF system encodes the RNase toxin MazF and the antitoxin MazE. In the light of ambiguity regarding the cleavage activity, we here verify that MazF specifically targets UACAU sequences in S. aureus in vivo. In a native strain background and under non-stress conditions, cleavage was observed in the absence or presence of mazE. Transcripts of spa (staphylococcal protein A) and rsbW (anti-σB factor) were cut, but translational reporter fusions indicated that protein levels of the encoded products were unaffected. Despite a comparable growth rate as the wild-type, an S. aureus mazEF deletion mutant was more susceptible to β-lactam antibiotics, which suggests that further genes, putatively involved in the antibiotic stress response or cell wall synthesis or turnover, are controlled by this TA system.
Collapse
Affiliation(s)
- Christopher F. Schuster
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Lukas Mechler
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Nicoletta Nolle
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Cellular and Molecular Microbiology, IMIT, University of Tübingen, German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Marc-Eric Zelder
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Ralph Bertram
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
25
|
Bacilysin overproduction in Bacillus amyloliquefaciens FZB42 markerless derivative strains FZBREP and FZBSPA enhances antibacterial activity. Appl Microbiol Biotechnol 2014; 99:4255-63. [DOI: 10.1007/s00253-014-6251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
26
|
Koczula A, Willenborg J, Bertram R, Takamatsu D, Valentin-Weigand P, Goethe R. Establishment of a Cre recombinase based mutagenesis protocol for markerless gene deletion in Streptococcus suis. J Microbiol Methods 2014; 107:80-3. [PMID: 25281472 DOI: 10.1016/j.mimet.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/27/2022]
Abstract
The lack of knowledge about pathogenicity mechanisms of Streptococcus (S.) suis is, at least partially, attributed to limited methods for its genetic manipulation. Here, we established a Cre-lox based recombination system for markerless gene deletions in S. suis serotype 2 with high selective pressure and without undesired side effects.
Collapse
Affiliation(s)
- A Koczula
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - J Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | - R Bertram
- Department of Microbial Genetics, University of Tuebingen, Tuebingen, Germany
| | - D Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan; The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - P Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - R Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
27
|
Hartmann T, Zhang B, Baronian G, Schulthess B, Homerova D, Grubmüller S, Kutzner E, Gaupp R, Bertram R, Powers R, Eisenreich W, Kormanec J, Herrmann M, Molle V, Somerville GA, Bischoff M. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. J Biol Chem 2013; 288:36116-28. [PMID: 24194525 DOI: 10.1074/jbc.m113.516302] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tricarboxylic acid cycle (TCA cycle) is a central metabolic pathway that provides energy, reducing potential, and biosynthetic intermediates. In Staphylococcus aureus, TCA cycle activity is controlled by several regulators (e.g. CcpA, CodY, and RpiRc) in response to the availability of sugars, amino acids, and environmental stress. Developing a bioinformatic search for additional carbon catabolite-responsive regulators in S. aureus, we identified a LysR-type regulator, catabolite control protein E (CcpE), with homology to the Bacillus subtilis CcpC regulator. Inactivation of ccpE in S. aureus strain Newman revealed that CcpE is a positive transcriptional effector of the first two enzymes of the TCA cycle, aconitase (citB) and to a lesser extent citrate synthase (citZ). Consistent with the transcriptional data, aconitase activity dramatically decreased in the ccpE mutant relative to the wild-type strain. The effect of ccpE inactivation on citB transcription and the lesser effect on citZ transcription were also reflected in electrophoretic mobility shift assays where CcpE bound to the citB promoter but not the citZ promoter. Metabolomic studies showed that inactivation of ccpE resulted in increased intracellular concentrations of acetate, citrate, lactate, and alanine, consistent with a redirection of carbon away from the TCA cycle. Taken together, our data suggest that CcpE is a major direct positive regulator of the TCA cycle gene citB.
Collapse
Affiliation(s)
- Torsten Hartmann
- From the Institute of Medical Microbiology and Hygiene, University of Saarland Hospital, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The mevalonate auxotrophic mutant of Staphylococcus aureus can adapt to mevalonate depletion. Antimicrob Agents Chemother 2013; 57:5710-3. [PMID: 23959312 DOI: 10.1128/aac.00726-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we attempted to adopt the auxotrophic mevalonate synthase mutant (ΔmvaS mutant) of Staphylococcus aureus to study whether a nongrowing but viable cell population is tolerant to bactericidal antibiotics. The mevalonate-depleted nongrowing ΔmvaS mutant was found tolerant to antibiotics. Surprisingly, after prolonged cultivation, we obtained stable ΔmvaS variants that were able to grow without mevalonate, which suggested unknown mechanisms for compensating undecaprenyl pyrophosphate production without mevalonate in S. aureus.
Collapse
|
29
|
Kiriukhin M, Tyurin M. Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO₂/H₂ blend. Bioprocess Biosyst Eng 2013; 37:245-60. [PMID: 23775000 DOI: 10.1007/s00449-013-0991-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/31/2013] [Indexed: 11/30/2022]
Abstract
Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO₂/H₂ blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60% CO and 40% H₂ (v/v) (p < 0.005). Mevalonate production was 97 mM if only CO₂/H₂ blend was fed instead of syngas (p < 0.005). Mevalonate from CO₂/H₂ blend might serve as a commercial route to mitigate global warming in proportion to CO₂ fermentation scale worldwide.
Collapse
Affiliation(s)
- Michael Kiriukhin
- Syngas Biofuels Energy, Inc., P.O. Box 300819, Houston, TX, 77230, USA
| | | |
Collapse
|
30
|
Tyurin M, Kiriukhin M. Synthetic 2,3-Butanediol Pathway Integrated Using Tn7-tool and Powered Via Elimination of Sporulation and Acetate Production in Acetogen Biocatalyst. Appl Biochem Biotechnol 2013; 170:1503-24. [DOI: 10.1007/s12010-013-0285-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
31
|
Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 2013; 97:4701-12. [PMID: 23584280 DOI: 10.1007/s00253-013-4866-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Abstract
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.
Collapse
|
32
|
Selective methanol or formate production during continuous CO2 fermentation by the acetogen biocatalysts engineered via integration of synthetic pathways using Tn7-tool. World J Microbiol Biotechnol 2013; 29:1611-23. [DOI: 10.1007/s11274-013-1324-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
|
33
|
Kiriukhin M, Tyurin M. Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2 /H2 blend fermentation. J Appl Microbiol 2013; 114:1033-45. [PMID: 23289641 DOI: 10.1111/jam.12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/08/2012] [Accepted: 12/24/2012] [Indexed: 11/28/2022]
Abstract
AIMS To engineer acetogen biocatalyst selectively overproducing ethanol from synthesis gas or CO2 /H2 as the only liquid carbonaceous product. METHODS AND RESULTS Ethanol-resistant mutant originally capable of producing only acetate from CO2 /CO was engineered to eliminate acetate production and spore formation using our proprietary Cre-lox66/lox71-system. Bi-functional aldehyde/alcohol dehydrogenase was inserted into the chromosome of the engineered mutant using Tn7-based approach. Recombinants with three or six copies of the inserted gene produced 525 mmol l(-1) and 1018 mmol l(-1) of ethanol, respectively, in five independent single-step fermentation runs 25 days each (P < 0.005) in five independent repeats using syngas blend 60% CO and 40% H2 . Ethanol production was 64% if only CO2 + H2 blend was used compared with syngas blend (P < 0.005). CONCLUSIONS Elimination of genes unnecessary for syngas fermentation can boost artificial integrated pathway performance. SIGNIFICANCE AND IMPACT OF THE STUDY Cell energy released via elimination of phosphotransacetylase, acetate kinase and early-stage sporulation genes boosted ethanol production. Deletion of sporulation genes added theft-proof feature to the engineered biocatalyst. Production of ethanol from CO2 /H2 blend might be utilized as a tool to mitigate global warming proportional to CO2 fermentation scale.
Collapse
Affiliation(s)
- M Kiriukhin
- Ajinomoto-Genetika Research Institute, Moscow, Russia
| | | |
Collapse
|
34
|
Prax M, Lee CY, Bertram R. An update on the molecular genetics toolbox for staphylococci. MICROBIOLOGY-SGM 2013; 159:421-435. [PMID: 23378573 PMCID: PMC3709823 DOI: 10.1099/mic.0.061705-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococci are Gram-positive spherical bacteria of enormous clinical and biotechnological relevance. Staphylococcus aureus has been extensively studied as a model pathogen. A plethora of methods and molecular tools has been developed for genetic modification of at least ten different staphylococcal species to date. Here we review recent developments of various genetic tools and molecular methods for staphylococcal research, which include reporter systems and vectors for controllable gene expression, gene inactivation, gene essentiality testing, chromosomal integration and transposon delivery. It is furthermore illustrated how mutant strain construction by homologous or site-specific recombination benefits from sophisticated counterselection methods. The underlying genetic components have been shown to operate in wild-type staphylococci or modified chassis strains. Finally, possible future developments in the field of applied Staphylococcus genetics are highlighted.
Collapse
Affiliation(s)
- Marcel Prax
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Ralph Bertram
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Selective n-Butanol Production by Clostridium sp. MTButOH1365 During Continuous Synthesis Gas Fermentation Due to Expression of Synthetic Thiolase, 3-Hydroxy Butyryl-CoA Dehydrogenase, Crotonase, Butyryl-CoA Dehydrogenase, Butyraldehyde Dehydrogenase, and NAD-Dependent Butanol Dehydrogenase. Appl Biochem Biotechnol 2013; 169:950-9. [DOI: 10.1007/s12010-012-0060-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
36
|
Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 2013; 9:685. [PMID: 24002656 PMCID: PMC3792343 DOI: 10.1038/msb.2013.41] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022] Open
Abstract
Efficient bacterial genetic engineering approaches with broad-host applicability are rare. We combine two systems, mobile group II introns ('targetrons') and Cre/lox, which function efficiently in many different organisms, into a versatile platform we call GETR (Genome Editing via Targetrons and Recombinases). The introns deliver lox sites to specific genomic loci, enabling genomic manipulations. Efficiency is enhanced by adding flexibility to the RNA hairpins formed by the lox sites. We use the system for insertions, deletions, inversions, and one-step cut-and-paste operations. We demonstrate insertion of a 12-kb polyketide synthase operon into the lacZ gene of Escherichia coli, multiple simultaneous and sequential deletions of up to 120 kb in E. coli and Staphylococcus aureus, inversions of up to 1.2 Mb in E. coli and Bacillus subtilis, and one-step cut-and-pastes for translocating 120 kb of genomic sequence to a site 1.5 Mb away. We also demonstrate the simultaneous delivery of lox sites into multiple loci in the Shewanella oneidensis genome. No selectable markers need to be placed in the genome, and the efficiency of Cre-mediated manipulations typically approaches 100%.
Collapse
Affiliation(s)
- Peter J Enyeart
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Steven M Chirieleison
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mai N Dao
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Jiri Perutka
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
| | - Erik M Quandt
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Jacob T Whitt
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Adrian T Keatinge-Clay
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
| | - Alan M Lambowitz
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
37
|
Berzin V, Kiriukhin M, Tyurin M. Cre-lox66/lox71-Based Elimination of Phosphotransacetylase or Acetaldehyde Dehydrogenase Shifted Carbon Flux in Acetogen Rendering Selective Overproduction of Ethanol or Acetate. Appl Biochem Biotechnol 2012; 168:1384-93. [DOI: 10.1007/s12010-012-9864-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/21/2012] [Indexed: 11/29/2022]
|
38
|
Actinomycetes genome engineering approaches. Antonie van Leeuwenhoek 2012; 102:503-16. [DOI: 10.1007/s10482-012-9795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/09/2012] [Indexed: 10/28/2022]
|
39
|
Zhang X, Paganelli FL, Bierschenk D, Kuipers A, Bonten MJM, Willems RJL, van Schaik W. Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium. PLoS Genet 2012; 8:e1002804. [PMID: 22761597 PMCID: PMC3386183 DOI: 10.1371/journal.pgen.1002804] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/17/2012] [Indexed: 01/03/2023] Open
Abstract
Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism. Enterococcus faecium has emerged as an important nosocomial pathogen around the world. Clinical E. faecium isolates are often resistant to multiple antibiotics, thereby complicating therapeutic interventions. However, the molecular mechanisms that contribute to the recent emergence of E. faecium as a nosocomial pathogen of major importance are only poorly understood, which is, at least partially, due to the lack of appropriate genetic tools for the study of this organism. Here, we developed a systematic genome-wide strategy, based on transposon mutagenesis and microarray-based screening, to identify E. faecium genes that contribute to ampicillin resistance. We also adapted the Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. These tools enabled us to perform both high-throughput genome-wide analysis and specific targeted investigations in a clinical E. faecium isolate. We comprehensively identified, confirmed, and characterized a compendium of genes affecting the sensitivity to ampicillin in E. faecium. The identified intrinsic ampicillin resistance determinants are highly conserved among E. faecium, indicating that this organism has a high potential to evolve towards ampicillin resistance. These ampicillin-resistance determinants may serve as targets for the development of novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernanda L. Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Damien Bierschenk
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemarie Kuipers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc J. M. Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Site-specific recombination strategies for engineering actinomycete genomes. Appl Environ Microbiol 2012; 78:1804-12. [PMID: 22247163 DOI: 10.1128/aem.06054-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The feasibility of using technologies based on site-specific recombination in actinomycetes was shown several years ago. Despite their huge potential, these technologies mostly have been used for simple marker removal from a chromosome. In this paper, we present different site-specific recombination strategies for genome engineering in several actinomycetes belonging to the genera Streptomyces, Micromonospora, and Saccharothrix. Two different systems based on Cre/loxP and Dre/rox have been utilized for numerous applications. The activity of the Cre recombinase on the heterospecific loxLE and loxRE sites was similar to its activity on wild-type loxP sites. Moreover, an apramycin resistance marker flanked by the loxLERE sites was eliminated from the Streptomyces coelicolor M145 genome at a surprisingly high frequency (80%) compared to other bacteria. A synthetic gene encoding the Dre recombinase was constructed and successfully expressed in actinomycetes. We developed a marker-free expression method based on the combination of phage integration systems and site-specific recombinases. The Cre recombinase has been used in the deletion of huge genomic regions, including the phenalinolactone, monensin, and lipomycin biosynthetic gene clusters from Streptomyces sp. strain Tü6071, Streptomyces cinnamonensis A519, and Streptomyces aureofaciens Tü117, respectively. Finally, we also demonstrated the site-specific integration of plasmid and cosmid DNA into the chromosome of actinomycetes catalyzed by the Cre recombinase. We anticipate that the strategies presented here will be used extensively to study the genetics of actinomycetes.
Collapse
|
41
|
Yu W, Götz F. Cell wall antibiotics provoke accumulation of anchored mCherry in the cross wall of Staphylococcus aureus. PLoS One 2012; 7:e30076. [PMID: 22253886 PMCID: PMC3254641 DOI: 10.1371/journal.pone.0030076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023] Open
Abstract
A fluorescence microscopy method to directly follow the localization of defined proteins in Staphylococcus was hampered by the unstable fluorescence of fluorescent proteins. Here, we constructed plasmid (pCX) encoded red fluorescence (RF) mCherry (mCh) hybrids, namely mCh-cyto (no signal peptide and no sorting sequence), mCh-sec (with signal peptide), and mCh-cw (with signal peptide and cell wall sorting sequence). The S. aureus clones targeted mCh-fusion proteins into the cytosol, the supernatant and the cell envelope respectively; in all cases mCherry exhibited bright fluorescence. In staphylococci two types of signal peptides (SP) can be distinguished: the +YSIRK motif SP(lip) and the -YSIRK motif SP(sasF). mCh-hybrids supplied with the +YSIRK motif SP(lip) were always expressed higher than those with -YSIRK motif SP(sasF). To study the location of the anchoring process and also the influence of SP type, mCh-cw was supplied on the one hand with +YSIRK motif (mCh-cw1) and the other hand with -YSIRK motif (mCh-cw2). MCh-cw1 preferentially localized at the cross wall, while mCh-cw2 preferentially localized at the peripheral wall. Interestingly, when treated with sub-lethal concentrations of penicillin or moenomycin, both mCh-cw1 and mCh-cw2 were concentrated at the cross wall. The shift from the peripheral wall to the cross wall required Sortase A (SrtA), as in the srtA mutant this effect was blunted. The effect is most likely due to antibiotic mediated increase of free anchoring sites (Lipid II) at the cross wall, the substrate of SrtA, leading to a preferential incorporation of anchored proteins at the cross wall.
Collapse
Affiliation(s)
- Wenqi Yu
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome. BMC Res Notes 2012; 5:5. [PMID: 22221385 PMCID: PMC3274448 DOI: 10.1186/1756-0500-5-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/05/2012] [Indexed: 01/03/2023] Open
Abstract
Background Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration. Findings We have developed a single-copy integration system that enables the cloning vector to integrate at a specific engineered site, within an untranscribed intergenic region, in the chromosome of Staphylococcus aureus. This system is based on the lysogenic phage L54a site-specific recombination system in which the L54a phage (attP) and chromosome (attB) attachment sites, which share an 18-bp identical core sequence, were modified with identical mutations. The integration vector, pLL102, was constructed to contain the modified L54a attP site (attP2) that was altered at 5 nucleotide positions within the core sequence. In the recipient strain, the similarly modified attB site (attB2) was inserted in an intergenic region devoid of detectable transcription read-through. Integration of the vector, which is unable to replicate in S. aureus extrachromosomally, was achieved by providing the L54a integrase gene in a plasmid in the recipient. We showed that pLL102 integrated specifically at the engineered site rather than at the native L54a attB site and that integration did not have a significant effect on transcription of genes immediately upstream or downstream of the integration site. Conclusions In this work, we describe an E. coli-S. aureus shuttle vector that can be used to introduce any cloned gene into the S. aureus chromosome at a select site without affecting gene expression. The vector should be useful for genetic manipulation of S. aureus and for marking strains for in vivo studies.
Collapse
|
43
|
Highly efficient Staphylococcus carnosus mutant selection system based on suicidal bacteriocin activation. Appl Environ Microbiol 2011; 78:1148-56. [PMID: 22179253 DOI: 10.1128/aem.06290-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Strains from various staphylococcal species produce bacteriocin peptides, which are thought to play important roles in bacterial competition and offer interesting biotechnological avenues. Many bacteriocins are secreted as inactive prepeptides with subsequent activation by specific proteolytic cleavage. By deletion of the protease gene gdmP in Staphylococcus gallinarum Tü3928, which produces the highly active lanthionine-containing bacteriocin gallidermin (lantibiotic), a strain was created producing inactive pregallidermin. On this basis, a new suicidal mutant selection system in the food-grade bacterium Staphylococcus carnosus was developed. Whereas pregallidermin was inactive against S. carnosus, it exerted potent bactericidal activity toward GdmP-secreting S. carnosus strains. To take advantage of this effect, gdmP was cloned in plasmid vectors used for random transposon mutagenesis or targeted allelic replacement of chromosomal genes. Both mutagenesis strategies rely on rare recombination events, and it has remained difficult and laborious to identify mutants among a vast majority of bacterial clones that still contain the delivery vectors. The gdmP-expressing plasmids pGS1 and pGS2 enabled very fast, easy, and reliable identification of transposon and gene replacement mutants, respectively. Mutant selection in the presence of pregallidermin caused suicidal inactivation of all clones that had retained the plasmids and allowed growth of only plasmid-cured mutants. Efficiency of mutant identification was several magnitudes higher than standard screening for the absence of plasmid-encoded antibiotic resistance markers and reached 100% specificity. Thus, the new pregallidermin-based mutant selection system represents a substantial improvement of staphylococcal mutagenesis methodology.
Collapse
|
44
|
Gauger T, Weihs F, Mayer S, Krismer B, Liese J, Kull M, Bertram R. Intracellular monitoring of target protein production in Staphylococcus aureus by peptide tag-induced reporter fluorescence. Microb Biotechnol 2011; 5:129-34. [PMID: 21958360 PMCID: PMC3815279 DOI: 10.1111/j.1751-7915.2011.00304.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An intracellular approach for monitoring protein production in Staphylococcus aureus is described. mCherry, fused to the dodecapeptide Tip, was capable of inducing tetracycline repressor (TetR). Time‐ and concentration‐dependent production of mCherry could be correlated to TetR‐controlled GFPmut2 activity. This approach can potentially be extended to native S. aureus proteins.
Collapse
Affiliation(s)
- Tina Gauger
- Lehrbereich Mikrobielle Genetik, Waldhäuser Str. 70/8, Eberhard Karls Universität Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Cloning-independent and counterselectable markerless mutagenesis system in Streptococcus mutans. Appl Environ Microbiol 2011; 77:8025-33. [PMID: 21948849 DOI: 10.1128/aem.06362-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion duplication mutagenesis and allelic replacement mutagenesis are among the most commonly utilized approaches for targeted mutagenesis in bacteria. However, both techniques are limited by a variety of factors that can complicate mutant phenotypic studies. To circumvent these limitations, multiple markerless mutagenesis techniques have been developed that utilize either temperature-sensitive plasmids or counterselectable suicide vectors containing both positive- and negative-selection markers. For many species, these techniques are not especially useful due to difficulties of cloning with Escherichia coli and/or a lack of functional negative-selection markers. In this study, we describe the development of a novel approach for the creation of markerless mutations. This system employs a cloning-independent methodology and should be easily adaptable to a wide array of Gram-positive and Gram-negative bacterial species. The entire process of creating both the counterselection cassette and mutation constructs can be completed using overlapping PCR protocols, which allows extremely quick assembly and eliminates the requirement for either temperature-sensitive replicons or suicide vectors. As a proof of principle, we used Streptococcus mutans reference strain UA159 to create markerless in-frame deletions of 3 separate bacteriocin genes as well as triple mutants containing all 3 deletions. Using a panel of 5 separate wild-type S. mutans strains, we further demonstrated that the procedure is nearly 100% efficient at generating clones with the desired markerless mutation, which is a considerable improvement in yield compared to existing approaches.
Collapse
|
46
|
Abo-Hashesh M, Wang R, Hallenbeck PC. Metabolic engineering in dark fermentative hydrogen production; theory and practice. BIORESOURCE TECHNOLOGY 2011; 102:8414-8422. [PMID: 21470849 DOI: 10.1016/j.biortech.2011.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 05/26/2023]
Abstract
Dark fermentation is an attractive option for hydrogen production since it could use already existing reactor technology and readily available substrates without requiring a direct input of solar energy. However, a number of improvements are required before the rates and yields of such a process approach those required for a practical process. Among the options for achieving the required advances, metabolic engineering offers some powerful tools for remodeling microbes to increase product production rates and molar yields. Here we review the current metabolic engineering tool box that is available, discuss the current status of engineering efforts as applied to dark hydrogen production, and suggest areas for future improvements.
Collapse
Affiliation(s)
- Mona Abo-Hashesh
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
47
|
Kato F, Sugai M. A simple method of markerless gene deletion in Staphylococcus aureus. J Microbiol Methods 2011; 87:76-81. [PMID: 21801759 DOI: 10.1016/j.mimet.2011.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is a Gram-positive pathogen that causes opportunistic infections and a wide variety of diseases. Methicillin-resistant S. aureus (MRSA) is frequently isolated as multidrug-resistant in nosocomial and community infections. Molecular genetic manipulation is an important tool for understanding the molecular mechanism of S. aureus infection. However the number of available antibiotic markers is limited due to multidrug resistance. In this study, we constructed two Escherichia coli-S. aureus shuttle vectors, pKFT and pKFC, that carry a temperature-sensitive origin of replication in S. aureus, lacZ(a) enabling a simple blue-white screening in E. coli, an ampicillin resistant gene, and either a tetracycline resistance gene or a chloramphenicol resistance gene. We report a simple technique using pKFT to construct a markerless gene deletion mutant in S. aureus by allelic replacement without the use of a counter-selection marker. Subculture twice at 25°C was critical to promote an allelic exchange rate in S. aureus. This technique is very simple and useful to facilitate genetic research on S. aureus.
Collapse
Affiliation(s)
- Fuminori Kato
- Department of Bacteriology, Hiroshima Univeristy Graduate School of Biomedical Sciences, Hiroshima 734-8851, Japan
| | | |
Collapse
|
48
|
Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 2011; 193:3525-36. [PMID: 21602348 DOI: 10.1128/jb.00264-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is the most abundant carbon-nitrogen biocompound on earth and has been shown to be an important source of nutrients for both catabolic and anabolic purposes in Bacillus species. In this work we show that the GntR family regulator YvoA of Bacillus subtilis serves as a negative transcriptional regulator of GlcNAc catabolism gene expression. YvoA represses transcription by binding a 16-bp sequence upstream of nagP encoding the GlcNAc-specific EIIBC component of the sugar phosphotransferase system involved in GlcNAc transport and phosphorylation, as well as another very similar 16-bp sequence upstream of the nagAB-yvoA locus, wherein nagA codes for N-acetylglucosamine-6-phosphate deacetylase and nagB codes for the glucosamine-6-phosphate (GlcN-6-P) deaminase. In vitro experiments demonstrated that GlcN-6-P acts as an inhibitor of YvoA DNA-binding activity, as occurs for its Streptomyces ortholog, DasR. Interestingly, we observed that the expression of nag genes was still activated upon addition of GlcNAc in a ΔyvoA mutant background, suggesting the existence of an auxiliary transcriptional control instance. Initial computational prediction of the YvoA regulon showed a distribution of YvoA binding sites limited to nag genes and therefore suggests renaming YvoA to NagR, for N-acetylglucosamine utilization regulator. Whole-transcriptome studies showed significant repercussions of nagR deletion for several major B. subtilis regulators, probably indirectly due to an excess of the crucial molecules acetate, ammonia, and fructose-6-phosphate, resulting from complete hydrolysis of GlcNAc. We discuss a model deduced from NagR-mediated gene expression, which highlights clear connections with pathways for GlcNAc-containing polymer biosynthesis and adaptation to growth under oxygen limitation.
Collapse
|
49
|
Qiao JQ, Tian DW, Huo R, Wu HJ, Gao XW. Functional analysis and application of the cryptic plasmid pBSG3 harboring the RapQ–PhrQ system in Bacillus amyloliquefaciens B3. Plasmid 2011; 65:141-9. [DOI: 10.1016/j.plasmid.2010.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
50
|
Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J Bacteriol 2010; 193:952-62. [PMID: 21169491 DOI: 10.1128/jb.01161-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H(+), whose regeneration requires respiration.
Collapse
|