1
|
Marcial-Quino J, Fierro F, Fernández FJ, Montiel-Gonzalez AM, Sierra-Palacios E, Tomasini A. Silencing of Amylomyces rouxii aspartic II protease by siRNA to increase tyrosinase activity. Fungal Biol 2023; 127:1415-1425. [PMID: 37993253 DOI: 10.1016/j.funbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Amylomyces rouxii is a zygomycete that produces extracellular protease and tyrosinase. The tyrosinase activity is negatively regulated by the proteases and, which attempts to purify the tyrosinase (tyr) enzyme that has been hampered by the presence of a protease that co-purified with it. In this work we identified genes encoding aspartic protease II (aspII) and VI of A. rouxii. Using an RNAi strategy based on the generation of a siRNA by transcription from two opposite-orientated promoters, the expression of these two proteases was silenced, showing that this molecular tool is suitable for gene silencing in Amylomyces. The transformant strains showed a significant attenuation of the transcripts (determined by RT-qPCR), with respective inhibition of the protease activity. In the case of aspII, inhibition was in the range of 43-90 % in different transformants, which correlated well with up to a five-fold increase in tyr activity with respect to the wild type and control strains. In contrast, silencing of aspVI caused a 43-65 % decrease in protease activity but had no significant effect on the tyr activity. The results show that aspII has a negative effect on tyr activity, and that the silencing of this protease is important to obtain strains with high levels of tyr activity.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco José Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba Mónica Montiel-Gonzalez
- Laboratorio de Biología Molecular, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, 90120, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico, 09620, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo, Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
2
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
3
|
Komárek J, Ivanov Kavková E, Houser J, Horáčková A, Ždánská J, Demo G, Wimmerová M. Structure and properties of AB21, a novelAgaricus bisporusprotein with structural relation to bacterial pore-forming toxins. Proteins 2018; 86:897-911. [DOI: 10.1002/prot.25522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Komárek
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Eva Ivanov Kavková
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Aneta Horáčková
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Jitka Ždánská
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| |
Collapse
|
4
|
Calkins SS, Elledge NC, Mueller KE, Marek SM, Couger MB, Elshahed MS, Youssef NH. Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. PeerJ 2018; 6:e4276. [PMID: 29404209 PMCID: PMC5796279 DOI: 10.7717/peerj.4276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower ldhD transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.
Collapse
Affiliation(s)
- Shelby S Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Nicole C Elledge
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.,Current affiliation: University of Texas A&M Corpus Christi, Department of Life Sciences, Marine Biology Program, USA
| | - Katherine E Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
5
|
The mitogen-activated protein kinase GlSlt2 regulates fungal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2017; 104:6-15. [PMID: 28435030 DOI: 10.1016/j.fgb.2017.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/03/2017] [Accepted: 04/17/2017] [Indexed: 01/02/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) are crucial signaling instruments in eukaryotes that play key roles in regulating fungal growth, development, and secondary metabolism and in adapting to the environment. In this study, we characterized an Slt2-type MAPK in Ganoderma lucidum, GlSlt2, which was transcriptionally induced during the primordium and fruiting body stages. RNA interference was used to examine the function of GlSlt2. Knockdown of GlSlt2 caused defects in growth and increased hyphal branching as well as hypersensitivity to cell wall-disturbing substances. Consistently, the chitin and β-1,3-d-glucan contents and the expression of cell wall biosynthesis genes were decreased and down-regulated, respectively, in GlSlt2 knockdown strains compared with those in the wild type (WT). In addition, no primordium or fruiting body could be observed in GlSlt2 knockdown strains. Furthermore, the intracellular reactive oxygen species (ROS) content and ganoderic acid biosynthesis also decreased in GlSlt2 knockdown strains. Addition of H2O2 could recover the decreased ganoderic acid content in GlSlt2 knockdown strains, indicating that GlSlt2 might regulate ganoderic acid biosynthesis via the intracellular ROS level. Overall, GlSlt2 is involved in hyphal growth, fruiting body development, cell wall integrity, oxidative stress and ganoderic acid biosynthesis in G. lucidum.
Collapse
|
6
|
Hu Y, Stenlid J, Elfstrand M, Olson Å. Evolution of RNA interference proteins dicer and argonaute in Basidiomycota. Mycologia 2017; 105:1489-98. [DOI: 10.3852/13-171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Åke Olson
- Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Science, P.O. Box 7026, SE-750 07 Uppsala, Sweden
| |
Collapse
|
7
|
Armas-Tizapantzi A, Montiel-González AM. RNAi silencing: A tool for functional genomics research on fungi. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Hori C, Cullen D. Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Development of a transformation system for the edible mushroom Grifola frondosa: Demonstrating heterologous gene expression and RNAi-mediated gene silencing. MYCOSCIENCE 2015. [DOI: 10.1016/j.myc.2014.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
|
11
|
Arockiaraj J, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: gene silencing, SOD activity, superoxide anion production and expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1937-1955. [PMID: 25183231 DOI: 10.1007/s10695-014-9981-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
We have reported the molecular characterization including gene silencing, superoxide activity, superoxide anion production, gene expression and molecular characterization of a mitochondrial manganese superoxide dismutase (mMnSOD) from striped murrel Channa striatus (named as CsmMnSOD). The CsmMnSOD polypeptide contains 225 amino acids with a molecular weight of 25 kDa and a theoretical isoelectric point of 8.3. In the N-terminal region, CsmMnSOD carries a mitochondrial targeting sequence and a superoxide dismutases (SOD) Fe domain (28-109), and in C-terminal region, it carries another SOD Fe domain (114-220). The CsmMnSOD protein sequence shared significant similarity with its homolog of MnSOD from rock bream Oplegnathus fasciatus (96%). The phylogenetic analysis showed that the CsmMnSOD fell in the clade of fish mMnSOD group. The monomeric structure of CsmMnSOD possesses 9 α-helices (52.4%), 3 β-sheets (8.8%) and 38.8% random coils. The highest gene expression was noticed in liver, and its expression was inducted with fungal (Aphanomyces invadans) and bacterial (Aeromonas hydrophila) infections. The gene silencing results show that the fish that received dsRNA exhibited significant (P < 0.05) changes in expression when compared to their non-injected and fish physiological saline-injected controls. The SOD activity shows that the activity increases with the spread of infection and decreases once the molecule controls the pathogen. The capacity of superoxide anion production was determined by calculating the granular blood cell count during infection in murrel. It shows that the infection influenced the superoxide radical production which plays a major role in killing the pathogens. Overall, this study indicated the defense potentiality of CsmMnSOD; however, further research is necessary to explore its capability at protein level.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, Chennai, 603 203, Tamil Nadu, India,
| | | | | | | | | | | | | |
Collapse
|
12
|
Trippe KM, Wolpert TJ, Hyman MR, Ciuffetti LM. RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 2013; 25:137-51. [DOI: 10.1007/s10532-013-9646-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
|
13
|
Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2013; 14:326. [PMID: 23663523 PMCID: PMC3658920 DOI: 10.1186/1471-2164-14-326] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme Microb Technol 2013; 53:104-9. [PMID: 23769310 DOI: 10.1016/j.enzmictec.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
The cellulase and xylanase genes of filamentous Trichoderma fungi exist under carbon catabolite repression mediated by the regulator carbon catabolite repressor (CREI). Our objective was to find the role of CREI in a cellulase-hyperproducing mutant of Trichoderma koningii, and address whether enzyme production can be further improved by silencing the cre1 gene. cre1 partially silenced strains were constructed to improve enzyme production in T. koningii YC01, a cellulase-hyperproducing mutant. Silencing of cre1 resulted in derepression of cellulase gene expression in glucose-based cultivation. The cre1 interference strain C313 produced 2.1-, 1.4-, 0.8-, and 0.8-fold higher amounts of filter paper activity, β-1,4-exoglucanase activity (ρ-nitrophenyl-β-D-cellobioside as substrate), β-1,4-endoglucanase activity (sodium carboxymethyl cellulose as substrate), and xylanase activity, respectively, than the control strain, suggesting that silencing of cre1 resulted in enhanced enzyme production capability. In addition, downregulation of cre1 resulted in elevated expression of another regulator of xylanase and cellulase expression, xyr1, indicating that CREI also acted as a repressor of xyr1 transcription in T. koningii under inducing conditions. These results show that RNAi is a feasible method for analyzing the regulatory mechanisms of gene expression and improving xylanase and cellulase productivity in T. koningii.
Collapse
|
15
|
Characterization of a gene coding for a putative adenosine deaminase-related growth factor by RNA interference in the basidiomycete Flammulina velutipes. J Biosci Bioeng 2012. [PMID: 23177216 DOI: 10.1016/j.jbiosc.2012.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A full-length cDNA coding for a putative adenosine deaminase (Fv-ada) was isolated from the basidiomycete Flammulina velutipes. Fv-ada encodes a polypeptide consisting of 537 amino acid residues, which has a consensus sequence conserved among adenosine deaminase-related growth factors (ADGF) found in several metazoa, including chordates and insects. Fv-ada transcript was detected at all stages of growth in dikaryotic F. velutipes cells, with a peak at the primordial stage. Heterologous expression of Fv-ada in the yeast Pichia pastoris produced recombinant Fv-ADA that catalyzed the conversion of adenosine to inosine. Dikaryotic mycelia from F. velutipes were transformed with the binary plasmid pFungiway-Fv-ada, which was designed to suppress the expression of Fv-ada through RNA interference. The growth rates of the resulting transformants were retarded in response to the degree of suppression, indicating that Fv-ada plays an important role in the mycelial growth of F. velutipes. These results suggested that ADGF could function as growth factors in fungi, as is seen in other eukaryotes.
Collapse
|
16
|
MacDonald J, Suzuki H, Master ER. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Appl Microbiol Biotechnol 2012; 94:339-51. [PMID: 22391967 DOI: 10.1007/s00253-012-3937-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
As white-rot basidiomycetes, Phanerochaete species are critical to the cycling of carbon sequestered as woody biomass, and are predicted to encode many enzymes that can be harnessed to promote the conversion of lignocellulose to sugars for fermentation to fuels and chemicals. Advances in genomic, transcriptomic, and proteomic technologies have enabled detailed analyses of different Phanerochaete species and have revealed numerous enzyme families required for lignocellulose utilization, as well as insight into the regulation of corresponding genes. Recent studies of Phanerochaete are also exemplified by molecular analyses following cultivation on different wood preparations, and show substrate-dependent responses that were difficult to predict using model compounds or isolated plant polysaccharides. The aim of this mini-review is to synthesize results from studies that have applied recent advances in molecular tools to evaluate the expression and regulation of proteins that contribute to lignocellulose conversion in Phanerochaete species. The identification of proteins with as yet unknown function are also highlighted and noted as important targets for future investigation of white-rot decay.
Collapse
Affiliation(s)
- Jacqueline MacDonald
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Canam T, Town JR, Tsang A, McAllister TA, Dumonceaux TJ. Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. BIORESOURCE TECHNOLOGY 2011; 102:10020-10027. [PMID: 21903381 DOI: 10.1016/j.biortech.2011.08.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
The use of Trametes versicolor as a biological pretreatment for canola straw was explored in the context of biofuel production. Specifically, the effects on the straw of a wild-type strain (52J) and a cellobiose dehydrogenase (CDH)-deficient strain (m4D) were investigated. The xylose and glucose contents of the straw treated with 52J were significantly reduced, while only the xylose content was reduced with m4D treatment. Lignin extractability was greatly improved with fungal treatments compared to untreated straw. Saccharification of the residue of the m4D-treated straw led to a significant increase in proportional glucose yield, which was partially attributed to the lack of cellulose catabolism by m4D. Overall, the results of this study indicate that CDH facilitates cellulose access by T. versicolor. Furthermore, treatment of lignocellulosic material with m4D offers improvements in lignin extractability and saccharification efficacy compared to untreated biomass without loss of substrate due to fungal catabolism.
Collapse
Affiliation(s)
- Thomas Canam
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | | | | | | | | |
Collapse
|
18
|
Rodriguez-Caban J, Gonzalez-Velazquez W, Perez-Sanchez L, Gonzalez-Mendez R, Rodriguez-del Valle N. Calcium/calmodulin kinase1 and its relation to thermotolerance and HSP90 in Sporothrix schenckii: an RNAi and yeast two-hybrid study. BMC Microbiol 2011; 11:162. [PMID: 21745372 PMCID: PMC3146815 DOI: 10.1186/1471-2180-11-162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Sporothrix schenckii is a pathogenic dimorphic fungus of worldwide distribution. It grows in the saprophytic form with hyaline, regularly septated hyphae and pyriform conidia at 25°C and as the yeast or parasitic form at 35°C. Previously, we characterized a calcium/calmodulin kinase in this fungus. Inhibitors of this kinase were observed to inhibit the yeast cell cycle in S. schenckii. Results The presence of RNA interference (RNAi) mechanism in this fungus was confirmed by the identification of a Dicer-1 homologue in S. schenckii DNA. RNAi technology was used to corroborate the role of calcium/calmodulin kinase I in S. schenckii dimorphism. Yeast cells were transformed with the pSilent-Dual2G (pSD2G) plasmid w/wo inserts of the coding region of the calcium/calmodulin kinase I (sscmk1) gene. Transformants were selected at 35°C using resistance to geneticin. Following transfer to liquid medium at 35°C, RNAi transformants developed as abnormal mycelium clumps and not as yeast cells as would be expected. The level of sscmk1 gene expression in RNAi transformants at 35°C was less than that of cells transformed with the empty pSD2G at this same temperature. Yeast two-hybrid analysis of proteins that interact with SSCMK1 identified a homologue of heat shock protein 90 (HSP90) as interacting with this kinase. Growth of the fungus similar to that of the RNAi transformants was observed in medium with geldanamycin (GdA, 10 μM), an inhibitor of HSP90. Conclusions Using the RNAi technology we silenced the expression of sscmk1 gene in this fungus. RNAi transformants were unable to grow as yeast cells at 35°C showing decreased tolerance to this temperature. The interaction of SSCMK1 with HSP90, observed using the yeast two-hybrid assay suggests that this kinase is involved in thermotolerance through its interaction with HSP90. SSCMK1 interacted with the C terminal domain of HSP90 where effector proteins and co-chaperones interact. These results confirmed SSCMK1 as an important enzyme involved in the dimorphism of S. schenckii, necessary for the development of the yeast phase of this fungus. Also this study constitutes the first report of the transformation of S. schenckii and the use of RNAi to study gene function in this fungus.
Collapse
Affiliation(s)
- Jorge Rodriguez-Caban
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, PO Box 365067, San Juan, PR 00936-5067.
| | | | | | | | | |
Collapse
|
19
|
García-Triana A, Zenteno-Savín T, Peregrino-Uriarte AB, Yepiz-Plascencia G. Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1230-1235. [PMID: 20603145 DOI: 10.1016/j.dci.2010.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 06/24/2010] [Accepted: 06/26/2010] [Indexed: 05/29/2023]
Abstract
The effects of silencing the mRNA of cytosolic manganese superoxide dismutase (cMnSOD), an enzyme involved in the antioxidant defense, were analyzed in Whiteleg shrimp, Litopenaeus vannamei adults. Shrimp were intramuscularly injected with long dsRNAs corresponding to the N-terminal portion of the cMnSOD and held under normoxic conditions for 24h. Another group of shrimp was exposed to hypoxia for 6h followed by reoxygenation for 1h. Shrimp injected with long dsRNAs had lower cMnSOD transcripts in gills and hepatopancreas. In the cMnSOD silenced shrimp, superoxide dismutase (SOD) activity decreased in gills but not in hepatopancreas. Shrimp subjected to hypoxia had lower cMnSOD transcripts and SOD activity in gills and hepatopancreas; the production of superoxide anion (O2*-) by hemocytes was also lower in this group. Reoxygenation reverted the effect of hypoxia increasing the levels of cMnSOD transcripts, SOD activity and the production of O2*-. These results suggest that cMnSOD contributes significantly to the SOD activity in gills and hepatopancreas and indicate its importance in the redox system regulation for L. vannamei.
Collapse
Affiliation(s)
- Antonio García-Triana
- Centro de Investigación en Alimentación y Desarrollo, Biología Molecular de Organismos Acuáticos, Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83000, Mexico
| | | | | | | |
Collapse
|
20
|
Salame TM, Ziv C, Hadar Y, Yarden O. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 2010; 89:501-12. [DOI: 10.1007/s00253-010-2928-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022]
|
21
|
Lundell TK, Mäkelä MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. J Basic Microbiol 2010; 50:5-20. [PMID: 20175122 DOI: 10.1002/jobm.200900338] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Filamentous fungi owe powerful abilities for decomposition of the extensive plant material, lignocellulose, and thereby are indispensable for the Earth's carbon cycle, generation of soil humic matter and formation of soil fine structure. The filamentous wood-decaying fungi belong to the phyla Basidiomycota and Ascomycota, and are unique organisms specified to degradation of the xylem cell wall components (cellulose, hemicelluloses, lignins and extractives). The basidiomycetous wood-decaying fungi form brackets, caps or resupinaceous (corticioid) fruiting bodies when growing on wood for dissemination of their sexual basidiospores. In particular, the ability to decompose the aromatic lignin polymers in wood is mostly restricted to the white rot basidiomycetes. The white-rot decay of wood is possible due to secretion of organic acids, secondary metabolites, and oxidoreductive metalloenzymes, heme peroxidases and laccases, encoded by divergent gene families in these fungi. The brown rot basidiomycetes obviously depend more on a non-enzymatic strategy for decomposition of wood cellulose and modification of lignin. This review gives a current ecological, genomic, and protein functional and phylogenetic perspective of the wood and lignocellulose-decaying basidiomycetous fungi.
Collapse
Affiliation(s)
- Taina K Lundell
- Fungal Biotechnology Group, Department of Applied Chemistry and Microbiology, Division of Microbiology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | |
Collapse
|
22
|
New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 2010; 86:51-62. [DOI: 10.1007/s00253-009-2416-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
23
|
Gene silencing for functional analysis: assessing RNAi as a tool for manipulation of gene expression. Methods Mol Biol 2010; 638:77-100. [PMID: 20238262 DOI: 10.1007/978-1-60761-611-5_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The availability of a large number of gene-disrupted mutants (either from natural mutants' collections or from knockout projects) is a great advantage for functional analysis studies. However, disfunction of many fungal genes, involved in key developmental processes, leads to dramatic and pleotropic changes in cell morphology, conferring a major difficulty in studying null mutants. Therefore, obtaining variable levels of reduction in gene expression, especially of essential genes or genes whose impaired expression confers a pleiotropic phenotype, is extremely beneficial for studying their function. Here, we describe the use of RNAi as a gene silencing mechanism, in a manner that might facilitate the functional analysis of such essential genes. Two alternative strategies for the construction of an RNAi-induced inverted-repeat construct are demonstrated and a third alternative is suggested. In addition, DNA-mediated transformation of conidia by electroporation, RNA extraction from fungal mycelium and northern blot analysis are described in detail.The experimental results presented, demonstrate that RNAi can be employed as a gene silencing tool in Neurospora crassa, both for nonessential (al-2) and essential (cot-1) genes, resulting in a range of stable, partially silenced mutants, exhibiting different phenotypes.
Collapse
|
24
|
Morel M, Ngadin AA, Droux M, Jacquot JP, Gelhaye E. The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium. Cell Mol Life Sci 2009; 66:3711-25. [PMID: 19662500 PMCID: PMC11115709 DOI: 10.1007/s00018-009-0104-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/03/2009] [Accepted: 07/13/2009] [Indexed: 12/13/2022]
Abstract
The recent release of several basidiomycete genome sequences allows an improvement of the classification of fungal glutathione S-transferases (GSTs). GSTs are well-known detoxification enzymes which can catalyze the conjugation of glutathione to non-polar compounds that contain an electrophilic carbon, nitrogen, or sulfur atom. Following this mechanism, they are able to metabolize drugs, pesticides, and many other xenobiotics and peroxides. A genomic and phylogenetic analysis of GST classes in various sequenced fungi--zygomycetes, ascomycetes, and basidiomycetes--revealed some particularities in GST distribution, in comparison with previous analyses with ascomycetes only. By focusing essentially on the wood-degrading basidiomycete Phanerochaete chrysosporium, this analysis highlighted a new fungal GST class named GTE, which is related to bacterial etherases, and two new subclasses of the omega class GSTs. Moreover, our phylogenetic analysis suggests a relationship between the saprophytic behavior of some fungi and the number and distribution of some GST isoforms within specific classes.
Collapse
Affiliation(s)
- Mélanie Morel
- IFR 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Unité Mixte de Recherches INRA UHP 1136 Interaction Arbres Microorganismes, Université Nancy I BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Salame TM, Yarden O, Hadar Y. Pleurotus ostreatus manganese-dependent peroxidase silencing impairs decolourization of Orange II. Microb Biotechnol 2009; 3:93-106. [PMID: 21255310 PMCID: PMC3815951 DOI: 10.1111/j.1751-7915.2009.00154.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Decolourization of azo dyes by Pleurotus ostreatus, a white-rot fungus capable of lignin depolymerization and mineralization, is related to the ligninolytic activity of enzymes produced by this fungus. The capacity of P. ostreatus to decolourize the azo dye Orange II (OII) was dependent and positively co-linear to Mn(2+) concentration in the medium, and thus attributed to Mn(2+)-dependent peroxidase (MnP) activity. Based on the ongoing P. ostreatus genome deciphering project we identified at least nine genes encoding for MnP gene family members (mnp 1-9), of which only four (mnp 1-4) were previously known. Relative real-time PCR quantification analysis confirmed that all the nine genes are transcribed, and that Mn(2+) amendment results in a drastic increase in the transcript levels of the predominantly expressed MnP genes (mnp 3 and mnp 9), while decreasing versatile peroxidase gene transcription (mnp 4). A reverse genetics strategy based on silencing the P. ostreatus mnp 3 gene by RNAi was implemented. Knock-down of mnp 3 resulted in the reduction of fungal OII decolourization capacity, which was co-linear with marked silencing of the Mn(2+)-dependent peroxidase genes mnp 3 and mnp 9. This is the first direct genetic proof of an association between MnP gene expression levels and azo dye decolourization capacity in P. ostreatus, which may have significant implication on understanding the mechanisms governing lignin biodegradation. Moreover, this study has proven the applicability of RNAi as a tool for gene function studies in Pleurotus research.
Collapse
Affiliation(s)
- Tomer M Salame
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
26
|
Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem. Appl Microbiol Biotechnol 2009; 85:1961-76. [PMID: 19826808 PMCID: PMC2811248 DOI: 10.1007/s00253-009-2269-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 09/20/2009] [Accepted: 09/20/2009] [Indexed: 11/18/2022]
Abstract
The first leaky auxotrophic mutant for aromatic amino acids of the near-diploid fungal plant pathogen Verticillium longisporum (VL) has been generated. VL enters its host Brassica napus through the roots and colonizes the xylem vessels. The xylem contains little nutrients including low concentrations of amino acids. We isolated the gene Vlaro2 encoding chorismate synthase by complementation of the corresponding yeast mutant strain. Chorismate synthase produces the first branch point intermediate of aromatic amino acid biosynthesis. A novel RNA-mediated gene silencing method reduced gene expression of both isogenes by 80% and resulted in a bradytrophic mutant, which is a leaky auxotroph due to impaired expression of chorismate synthase. In contrast to the wild type, silencing resulted in increased expression of the cross-pathway regulatory gene VlcpcA (similar to cpcA/GCN4) during saprotrophic life. The mutant fungus is still able to infect the host plant B. napus and the model Arabidopsis thaliana with reduced efficiency. VlcpcA expression is increased in planta in the mutant and the wild-type fungus. We assume that xylem colonization requires induction of the cross-pathway control, presumably because the fungus has to overcome imbalanced amino acid supply in the xylem.
Collapse
|
27
|
Janus D, Hoff B, Kück U. Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. MICROBIOLOGY-SGM 2009; 155:3946-3956. [PMID: 19797363 DOI: 10.1099/mic.0.032763-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing system that downregulates target gene expression. Here, we provide several lines of evidence for RNA silencing in the industrial beta-lactam antibiotic producer Penicillium chrysogenum using the DsRed reporter gene under the control of the constitutive trpC promoter or the inducible xylP promoter. The functional RNAi system was verified by detection of siRNAs that hybridized exclusively with gene-specific (32)P-labelled RNA probes. Moreover, when RNAi was used to silence the endogenous PcbrlA morphogene that controls conidiophore development, a dramatic reduction in the formation of conidiospores was observed in 47 % of the corresponding transformants. Evidence that RNAi in P. chrysogenum is dependent on a Dicer peptide was provided with a strain lacking Pcdcl2. In the DeltaPcdcl2 background, silencing of the PcbrlA gene was tested. None of the transformants analysed showed a developmental defect. The applicability of the RNAi system in P. chrysogenum was finally demonstrated by silencing the Pcku70 gene to increase homologous recombination frequency. This led to the generation of single and double knockout mutants.
Collapse
Affiliation(s)
- Danielle Janus
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| | - Birgit Hoff
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
28
|
Kemppainen MJ, Pardo AG. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA - triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 2009; 3:178-200. [PMID: 21255319 PMCID: PMC3836584 DOI: 10.1111/j.1751-7915.2009.00122.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|