1
|
Cisek AA, Dolka B, Bąk I, Cukrowska B. Microorganisms Involved in Hydrogen Sink in the Gastrointestinal Tract of Chickens. Int J Mol Sci 2023; 24:ijms24076674. [PMID: 37047647 PMCID: PMC10095559 DOI: 10.3390/ijms24076674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Hydrogen sink is a beneficial process, which has never been properly examined in chickens. Therefore, the aim of this study was to assess the quantity and quality of microbiota involved in hydrogen uptake with the use of real-time PCR and metagenome sequencing. Analyses were carried out in 50 free-range chickens, 50 commercial broilers, and 54 experimental chickens isolated from external factors. The median values of acetogens, methanogens, sulfate-reducing bacteria (SRB), and [NiFe]-hydrogenase utilizers measured in the cecum were approx. 7.6, 0, 0, and 3.2 log10/gram of wet weight, respectively. For the excreta samples, these values were 5.9, 4.8, 4, and 3 log10/gram of wet weight, respectively. Our results showed that the acetogens were dominant over the other tested groups of hydrogen consumers. The quantities of methanogens, SRB, and the [NiFe]-hydrogenase utilizers were dependent on the overall rearing conditions, being the result of diet, environment, agrotechnical measures, and other factors combined. By sequencing of the 16S rRNA gene, archaea of the genus Methanomassiliicoccus (Candidatus Methanomassiliicoccus) were discovered in chickens for the first time. This study provides some indication that in chickens, acetogenesis may be the main metabolic pathway responsible for hydrogen sink.
Collapse
Affiliation(s)
- Agata Anna Cisek
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, St. Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Iwona Bąk
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, St. Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| |
Collapse
|
2
|
Sato Y, Wippler J, Wentrup C, Ansorge R, Sadowski M, Gruber-Vodicka H, Dubilier N, Kleiner M. Fidelity varies in the symbiosis between a gutless marine worm and its microbial consortium. MICROBIOME 2022; 10:178. [PMID: 36273146 PMCID: PMC9587655 DOI: 10.1186/s40168-022-01372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/15/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species. RESULTS In this study on the obligate symbiosis between the gutless marine annelid Olavius algarvensis and its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80 O. algarvensis individuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of all O. algarvensis individuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted. CONCLUSIONS We hypothesize that variable degrees of fidelity are advantageous for O. algarvensis by allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources. Video Abstract.
Collapse
Affiliation(s)
- Yui Sato
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Juliane Wippler
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Rebecca Ansorge
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359, Bremen, Germany.
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
De Corte D, Muck S, Tiroch J, Mena C, Herndl GJ, Sintes E. Microbes mediating the sulfur cycle in the Atlantic Ocean and their link to chemolithoautotrophy. Environ Microbiol 2021; 23:7152-7167. [PMID: 34490972 DOI: 10.1111/1462-2920.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Only about 10%-30% of the organic matter produced in the epipelagic layers reaches the dark ocean. Under these limiting conditions, reduced inorganic substrates might be used as an energy source to fuel prokaryotic chemoautotrophic and/or mixotrophic activity. The aprA gene encodes the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase, present in sulfate-reducing (SRP) and sulfur-oxidizing prokaryotes (SOP). The sulfur-oxidizing pathway can be coupled to inorganic carbon fixation via the Calvin-Benson-Bassham cycle. The abundances of aprA and cbbM, encoding RuBisCO form II (the key CO2 fixing enzyme), were determined over the entire water column along a latitudinal transect in the Atlantic from 64°N to 50°S covering six oceanic provinces. The abundance of aprA and cbbM genes significantly increased with depth reaching the highest abundances in meso- and upper bathypelagic layers. The contribution of cells containing these genes also increased from mesotrophic towards oligotrophic provinces, suggesting that under nutrient limiting conditions alternative energy sources are advantageous. However, the aprA/cbbM ratios indicated that only a fraction of the SOP is associated with inorganic carbon fixation. The aprA harbouring prokaryotic community was dominated by Pelagibacterales in surface and mesopelagic waters, while Candidatus Thioglobus, Chromatiales and the Deltaproteobacterium_SCGC dominated the bathypelagic realm. Noticeably, the contribution of the SRP to the prokaryotic community harbouring aprA gene was low, suggesting a major utilization of inorganic sulfur compounds either as an energy source (occasionally coupled with inorganic carbon fixation) or in biosynthesis pathways.
Collapse
Affiliation(s)
- Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
| | - Simone Muck
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Johanna Tiroch
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Catalina Mena
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Eva Sintes
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma, Spain
| |
Collapse
|
5
|
Goffredi SK, Motooka C, Fike DA, Gusmão LC, Tilic E, Rouse GW, Rodríguez E. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California. BMC Biol 2021; 19:8. [PMID: 33455582 PMCID: PMC7812739 DOI: 10.1186/s12915-020-00921-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous deep-sea invertebrates, at both hydrothermal vents and methane seeps, have formed symbiotic associations with internal chemosynthetic bacteria in order to harness inorganic energy sources typically unavailable to animals. Despite success in nearly all marine habitats and their well-known associations with photosynthetic symbionts, Cnidaria remain one of the only phyla present in the deep-sea without a clearly documented example of dependence on chemosynthetic symbionts. RESULTS A new chemosynthetic symbiosis between the sea anemone Ostiactis pearseae and intracellular bacteria was discovered at ~ 3700 m deep hydrothermal vents in the southern Pescadero Basin, Gulf of California. Unlike most sea anemones observed from chemically reduced habitats, this species was observed in and amongst vigorously venting fluids, side-by-side with the chemosynthetic tubeworm Oasisia aff. alvinae. Individuals of O. pearseae displayed carbon, nitrogen, and sulfur tissue isotope values suggestive of a nutritional strategy distinct from the suspension feeding or prey capture conventionally employed by sea anemones. Molecular and microscopic evidence confirmed the presence of intracellular SUP05-related bacteria housed in the tentacle epidermis of O. pearseae specimens collected from 5 hydrothermally active structures within two vent fields ~ 2 km apart. SUP05 bacteria (Thioglobaceae) dominated the O. pearseae bacterial community, but were not recovered from other nearby anemones, and were generally rare in the surrounding water. Further, the specific Ostiactis-associated SUP05 phylotypes were not detected in the environment, indicating a specific association. Two unusual candidate bacterial phyla (the OD1 and BD1-5 groups) appear to associate exclusively with O. pearseae and may play a role in symbiont sulfur cycling. CONCLUSION The Cnidarian Ostiactis pearseae maintains a physical and nutritional alliance with chemosynthetic bacteria. The mixotrophic nature of this symbiosis is consistent with what is known about other cnidarians and the SUP05 bacterial group, in that they both form dynamic relationships to succeed in nature. The advantages gained by appropriating metabolic and structural resources from each other presumably contribute to their striking abundance in the Pescadero Basin, at the deepest known hydrothermal vents in the Pacific Ocean.
Collapse
Affiliation(s)
| | | | | | | | | | - Greg W Rouse
- Scripps Institution of Oceanography, San Diego, CA, USA
| | | |
Collapse
|
6
|
Abstract
To track organisms across all domains of life, the SSU rRNA gene is the gold standard. Many environmental microbes are known only from high-throughput sequence data, but the SSU rRNA gene, the key to visualization by molecular probes and link to existing literature, is often missing from metagenome-assembled genomes (MAGs). The easy-to-use phyloFlash software suite tackles this gap with rapid, SSU rRNA-centered taxonomic classification, targeted assembly, and graph-based linking to MAGs. Starting from a cleaned reference database, phyloFlash profiles the taxonomic diversity and assembles the sorted SSU rRNA reads. The phyloFlash design is domain agnostic and covers eukaryotes, archaea, and bacteria alike. phyloFlash also provides utilities to visualize multisample comparisons and to integrate the recovered SSU rRNAs in a metagenomics workflow by linking them to MAGs using assembly graph parsing. The small-subunit rRNA (SSU rRNA) gene is the key marker in molecular ecology for all domains of life, but it is largely absent from metagenome-assembled genomes that often are the only resource available for environmental microbes. Here, we present phyloFlash, a pipeline to overcome this gap with rapid, SSU rRNA-centered taxonomic classification, targeted assembly, and graph-based binning of full metagenomic assemblies. We show that a cleanup of artifacts is pivotal even with a curated reference database. With such a filtered database, the general-purpose mapper BBmap extracts SSU rRNA reads five times faster than the rRNA-specialized tool SortMeRNA with similar sensitivity and higher selectivity on simulated metagenomes. Reference-based targeted assemblers yielded either highly fragmented assemblies or high levels of chimerism, so we employ the general-purpose genomic assembler SPAdes. Our optimized implementation is independent of reference database composition and has satisfactory levels of chimera formation. phyloFlash quickly processes Illumina (meta)genomic data, is straightforward to use, even as part of high-throughput quality control, and has user-friendly output reports. The software is available at https://github.com/HRGV/phyloFlash (GPL3 license) and is documented with an online manual. IMPORTANCE To track organisms across all domains of life, the SSU rRNA gene is the gold standard. Many environmental microbes are known only from high-throughput sequence data, but the SSU rRNA gene, the key to visualization by molecular probes and link to existing literature, is often missing from metagenome-assembled genomes (MAGs). The easy-to-use phyloFlash software suite tackles this gap with rapid, SSU rRNA-centered taxonomic classification, targeted assembly, and graph-based linking to MAGs. Starting from a cleaned reference database, phyloFlash profiles the taxonomic diversity and assembles the sorted SSU rRNA reads. The phyloFlash design is domain agnostic and covers eukaryotes, archaea, and bacteria alike. phyloFlash also provides utilities to visualize multisample comparisons and to integrate the recovered SSU rRNAs in a metagenomics workflow by linking them to MAGs using assembly graph parsing.
Collapse
|
7
|
Lee YM, Noh HJ, Lee DH, Kim JH, Jin YK, Paull C. Bacterial endosymbiont of Oligobrachia sp. (Frenulata) from an active mud volcano in the Canadian Beaufort Sea. Polar Biol 2019. [DOI: 10.1007/s00300-019-02599-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Baker LJ, Freed LL, Easson CG, Lopez JV, Fenolio D, Sutton TT, Nyholm SV, Hendry TA. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 2019; 8:47606. [PMID: 31571583 PMCID: PMC6773444 DOI: 10.7554/elife.47606] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and that these bacteria have undergone extreme genome reduction although they are not vertically transmitted. The deep sea is home to many different species of anglerfish, a group of animals in which females often display a dangling lure on the top of their heads. This organ shelters bacteria that make light, a partnership (known as symbiosis) that benefits both parties. The bacteria get a safe environment in which to grow, while the animal may use the light to confuse predators as well as attract prey and mates. The genetic information of these bacteria has changed since they became associated with their host. Their genomes have become smaller and more specialized, limiting their ability to survive outside of the fish. This phenomenon is also observed in other symbiotic bacteria, but mostly in microorganisms that are directly transmitted from parent to offspring, never having to live on their own. Yet, some evidence suggests that the bacteria in the lure of anglerfish may be spending time in the water until they find a new host, crossing thousands of meters of ocean in the process. To explore this paradox, Baker et al. looked into the type of bacteria carried by different groups of anglerfish. If each type of fish has its own kind of bacteria, this would suggest that the microorganisms are passed from one generation to the next, and are evolving with their hosts. On the other hand, if the same sort of bacteria can be found in different anglerfish species, this would imply that the bacteria pass from host to host and evolve independently from the fish. Genetic data analysis showed that amongst six groups of anglerfishes, one species of bacteria is shared across five groups while another is specific to one type of fish. The analyses also revealed that anglerfish and their bacteria are most likely not evolving together. This means that the bacteria must make the difficult journey from host to host by persisting in the deep sea, which was confirmed by finding the genetic information of these bacteria in the water near the fish. Anglerfish and the bacteria that light up their lure are hard to study, as they live so deep in the ocean. In fact, many symbiotic relationships are equally difficult to investigate. Examining genetic information can help to give an insight into how hosts and bacteria interact across the tree of life.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Cornell University, New York, United States
| | - Lindsay L Freed
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States.,Department of Biology, Middle Tennessee State University, Murfreesboro, United States
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Danté Fenolio
- Center for Conservation and Research, San Antonio Zoo, San Antonio, United States
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
| | - Tory A Hendry
- Department of Microbiology, Cornell University, New York, United States
| |
Collapse
|
9
|
Jensen S, Hovland M, Lynch MDJ, Bourne DG. Diversity of deep-water coral-associated bacteria and comparison across depth gradients. FEMS Microbiol Ecol 2019; 95:5519855. [DOI: 10.1093/femsec/fiz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 11/14/2022] Open
Abstract
ABSTRACTEnvironmental conditions influence species composition, including the microbial communities that associate with benthic organisms such as corals. In this study we identified and compared bacteria that associate with three common deep-water corals, Lophelia pertusa, Madrepora oculata and Paragorgia arborea, from a reef habitat on the mid-Norwegian shelf. The 16S rRNA gene amplicon sequencing data obtained revealed that >50% of sequences were represented by only five operational taxonomic units. Three were host-specific and unclassified below class level, belonging to Alphaproteobacteria with affiliation to members of the Rhizobiales order (L. pertusa), Flavobacteria affiliated with members of the Elisabethkingia genus (M. oculata) and Mollicutes sequences affiliated with the Mycoplasma genus (P. arborea). In addition, gammaproteobacterial sequences within the genera Sulfitobacter and Oleispira were found across all three deep-water coral taxa. Although highly abundant in the coral microbiomes, these sequences accounted for <0.1% of the surrounding bacterioplankton, supporting specific relationships. We combined this information with previous studies, undertaking a meta-data analysis of 165 widespread samples across coral hosts and habitats. Patterns in bacterial diversity indicated enrichment of distinct uncultured species in coral microbiomes that differed among deep (>200 m), mesophotic (30–200 m) and shallow (<30 m) reefs.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biology, University of Bergen, PO Box 7803, Bergen 5020, Norway
| | - Martin Hovland
- Centre for Geobiology, University of Bergen
- Tech Team Solutions ASA, Stavanger
| | | | - David G Bourne
- College of Science of Engineering James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
10
|
Acquisition of a Novel Sulfur-Oxidizing Symbiont in the Gutless Marine Worm Inanidrilus exumae. Appl Environ Microbiol 2018; 84:AEM.02267-17. [PMID: 29330187 PMCID: PMC5861843 DOI: 10.1128/aem.02267-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/09/2018] [Indexed: 12/05/2022] Open
Abstract
Gutless phallodrilines are marine annelid worms without a mouth or gut, which live in an obligate association with multiple bacterial endosymbionts that supply them with nutrition. In this study, we discovered an unusual symbiont community in the gutless phallodriline Inanidrilus exumae that differs markedly from the microbiomes of all 22 of the other host species examined. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization revealed that I. exumae harbors cooccurring gamma-, alpha-, and deltaproteobacterial symbionts, while all other known host species harbor gamma- and either alpha- or deltaproteobacterial symbionts. Surprisingly, the primary chemoautotrophic sulfur oxidizer “Candidatus Thiosymbion” that occurs in all other gutless phallodriline hosts does not appear to be present in I. exumae. Instead, I. exumae harbors a bacterial endosymbiont that resembles “Ca. Thiosymbion” morphologically and metabolically but originates from a novel lineage within the class Gammaproteobacteria. This endosymbiont, named Gamma 4 symbiont here, had a 16S rRNA gene sequence that differed by at least 7% from those of other free-living and symbiotic bacteria and by 10% from that of “Ca. Thiosymbion.” Sulfur globules in the Gamma 4 symbiont cells, as well as the presence of genes characteristic for autotrophy (cbbL) and sulfur oxidation (aprA), indicate that this symbiont is a chemoautotrophic sulfur oxidizer. Our results suggest that a novel lineage of free-living bacteria was able to establish a stable and specific association with I. exumae and appears to have displaced the “Ca. Thiosymbion” symbionts originally associated with these hosts. IMPORTANCE All 22 gutless marine phallodriline species examined to date live in a highly specific association with endosymbiotic, chemoautotrophic sulfur oxidizers called “Ca. Thiosymbion.” These symbionts evolved from a single common ancestor and represent the ancestral trait for this host group. They are transmitted vertically and assumed to be in transition to becoming obligate endosymbionts. It is therefore surprising that despite this ancient, evolutionary relationship between phallodriline hosts and “Ca. Thiosymbion,” these symbionts are apparently no longer present in Inanidrilus exumae. They appear to have been displaced by a novel lineage of sulfur-oxidizing bacteria only very distantly related to “Ca. Thiosymbion.” Thus, this study highlights the remarkable plasticity of both animals and bacteria in establishing beneficial associations: the phallodriline hosts were able to acquire and maintain symbionts from two very different lineages of bacteria, while sulfur-oxidizing bacteria from two very distantly related lineages were able to independently establish symbiotic relationships with phallodriline hosts.
Collapse
|
11
|
McCuaig B, Liboiron F, Dufour SC. The bivalve Thyasira cf. gouldi hosts chemoautotrophic symbiont populations with strain level diversity. PeerJ 2017; 5:e3597. [PMID: 28761786 PMCID: PMC5533157 DOI: 10.7717/peerj.3597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/29/2017] [Indexed: 11/20/2022] Open
Abstract
Invertebrates from various marine habitats form nutritional symbioses with chemosynthetic bacteria. In chemosynthetic symbioses, both the mode of symbiont transmission and the site of bacterial housing can affect the composition of the symbiont population. Vertically transmitted symbionts, as well as those hosted intracellularly, are more likely to form clonal populations within their host. Conversely, symbiont populations that are environmentally acquired and extracellular may be more likely to be heterogeneous/mixed within host individuals, as observed in some mytilid bivalves. The symbionts of thyasirid bivalves are also extracellular, but limited 16S rRNA sequencing data suggest that thyasirid individuals contain uniform symbiont populations. In a recent study, Thyasira cf. gouldi individuals from Bonne Bay, Newfoundland, Canada were found to host one of three 16S rRNA phylotypes of sulfur-oxidizing gammaproteobacteria, suggesting environmental acquisition of symbionts and some degree of site-specificity. Here, we use Sanger sequencing of both 16S RNA and the more variable ribulose-1,5-bisphosphate carboxylase (RuBisCO) PCR products to further examine Thyasira cf. gouldi symbiont diversity at the scale of host individuals, as well as to elucidate any temporal or spatial patterns in symbiont diversity within Bonne Bay, and relationships with host OTU or size. We obtained symbiont 16S rRNA and RuBisCO Form II sequences from 54 and 50 host individuals, respectively, during nine sampling trips to three locations over four years. Analyses uncovered the same three closely related 16S rRNA phylotypes obtained previously, as well as three divergent RuBisCO phylotypes; these were found in various pair combinations within host individuals, suggesting incidents of horizontal gene transfer during symbiont evolution. While we found no temporal patterns in phylotype distribution or relationships with host OTU or size, some spatial effects were noted, with some phylotypes only found within particular sampling sites. The sequencing also revealed symbiont populations within individual hosts that appeared to be a mixture of different phylotypes, based on multiple base callings at divergent sites. This work provides further evidence that Thyasira cf. gouldi acquires its symbionts from the environment, and supports the theory that hosts can harbour symbiont populations consisting of multiple, closely related bacterial phylotypes.
Collapse
Affiliation(s)
- Bonita McCuaig
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - France Liboiron
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
12
|
Jensen S, Fortunato SAV, Hoffmann F, Hoem S, Rapp HT, Øvreås L, Torsvik VL. The Relative Abundance and Transcriptional Activity of Marine Sponge-Associated Microorganisms Emphasizing Groups Involved in Sulfur Cycle. MICROBIAL ECOLOGY 2017; 73:668-676. [PMID: 27664049 DOI: 10.1007/s00248-016-0836-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
During the last decades, our knowledge about the activity of sponge-associated microorganisms and their contribution to biogeochemical cycling has gradually increased. Functional groups involved in carbon and nitrogen metabolism are well documented, whereas knowledge about microorganisms involved in the sulfur cycle is still limited. Both sulfate reduction and sulfide oxidation has been detected in the cold water sponge Geodia barretti from Korsfjord in Norway, and with specimens from this site, the present study aims to identify extant versus active sponge-associated microbiota with focus on sulfur metabolism. Comparative analysis of small subunit ribosomal RNA (16S rRNA) gene (DNA) and transcript (complementary DNA (cDNA)) libraries revealed profound differences. The transcript library was predominated by Chloroflexi despite their low abundance in the gene library. An opposite result was found for Acidobacteria. Proteobacteria were detected in both libraries with representatives of the Alpha- and Gammaproteobacteria related to clades with presumably thiotrophic bacteria from sponges and other marine invertebrates. Sequences that clustered with sponge-associated Deltaproteobacteria were remotely related to cultivated sulfate-reducing bacteria. The microbes involved in sulfur cycling were identified by the functional gene aprA (adenosine-5'-phosphosulfate reductase) and its transcript. Of the aprA sequences (DNA and cDNA), 87 % affiliated with sulfur-oxidizing bacteria. They clustered with Alphaproteobacteria and with clades of deep-branching Gammaproteobacteria. The remaining sequences clustered with sulfate-reducing Archaea of the phylum Euryarchaeota. These results indicate an active role of yet uncharacterized Bacteria and Archaea in the sponge's sulfur cycle.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biology, University of Bergen, Bergen, Norway
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Friederike Hoffmann
- Department of Biology, Centre for Geobiology, University of Bergen, PO Box 7803, Bergen, 5020, Norway
| | - Solveig Hoem
- Department of Biology, Centre for Geobiology, University of Bergen, PO Box 7803, Bergen, 5020, Norway
| | - Hans Tore Rapp
- Department of Biology, Centre for Geobiology, University of Bergen, PO Box 7803, Bergen, 5020, Norway
| | - Lise Øvreås
- Department of Biology, University of Bergen, Bergen, Norway
| | - Vigdis L Torsvik
- Department of Biology, Centre for Geobiology, University of Bergen, PO Box 7803, Bergen, 5020, Norway.
| |
Collapse
|
13
|
Trembath-Reichert E, Case DH, Orphan VJ. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments. PeerJ 2016; 4:e1913. [PMID: 27114874 PMCID: PMC4841229 DOI: 10.7717/peerj.1913] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range of Deltaproteobacteria diversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seep sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. Many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed to many co-occurrences containing putatively heterotrophic, candidate phyla such as OD1, Atribacteria, MBG-B, and Hyd24-12 and the potential for complex sulfur cycling involving Epsilon-, Delta-, and Gammaproteobacteria in methane seep ecosystems.
Collapse
Affiliation(s)
- Elizabeth Trembath-Reichert
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - David H Case
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology , Pasadena, CA , United States
| |
Collapse
|
14
|
Zimmermann J, Wentrup C, Sadowski M, Blazejak A, Gruber-Vodicka HR, Kleiner M, Ott JA, Cronholm B, De Wit P, Erséus C, Dubilier N. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla. Mol Ecol 2016; 25:3203-23. [PMID: 26826340 DOI: 10.1111/mec.13554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.
Collapse
Affiliation(s)
- Judith Zimmermann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Cecilia Wentrup
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Miriam Sadowski
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | - Anna Blazejak
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany
| | | | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Department of Geoscience, University of Calgary, Calgary, 2500 University Drive, AB, T2N 1N4, Canada
| | - Jörg A Ott
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Bodil Cronholm
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Sven Lovén Centre for Marine Sciences Tjärnö, University of Gothenburg, Hättebäcksvägen 7, SE-452 96, Strömstad, Sweden
| | - Christer Erséus
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany.,Faculty of Biology/Chemistry, University of Bremen, Bibliothekstrasse 1, D-28359, Bremen, Germany
| |
Collapse
|
15
|
Abstract
Mitochondria are the energy-producing organelles of our cells and derive from bacterial ancestors that became endosymbionts of microorganisms from a different lineage, together with which they formed eukaryotic cells. For a long time it has remained unclear from which bacteria mitochondria actually evolved, even if these organisms in all likelihood originated from the α lineage of proteobacteria. A recent article (Degli Esposti M, et al. 2014. Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. PLoS One 9:e96566) has presented novel evidence indicating that methylotrophic bacteria could be among the closest living relatives of mitochondrial ancestors. Methylotrophs are ubiquitous bacteria that live on single carbon sources such as methanol and methane; in the latter case they are called methanotrophs. In this review, I examine their possible ancestry to mitochondria within a survey of the common features that can be found in the central and terminal bioenergetic systems of proteobacteria and mitochondria. I also discuss previously overlooked information on methanotrophic bacteria, in particular their intracytoplasmic membranes resembling mitochondrial cristae and their capacity of establishing endosymbiotic relationships with invertebrate animals and archaic plants. This information appears to sustain the new idea that mitochondrial ancestors could be related to extant methanotrophic proteobacteria, a possibility that the genomes of methanotrophic endosymbionts will hopefully clarify.
Collapse
|
16
|
Zimmermann J, Lott C, Weber M, Ramette A, Bright M, Dubilier N, Petersen JM. Dual symbiosis with co-occurring sulfur-oxidizing symbionts in vestimentiferan tubeworms from a Mediterranean hydrothermal vent. Environ Microbiol 2014; 16:3638-56. [DOI: 10.1111/1462-2920.12427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Judith Zimmermann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Christian Lott
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Miriam Weber
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Fetovaia Campo nell'Elba (LI) Italy
| | - Alban Ramette
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Monika Bright
- Department of Limnology and Oceanography; University of Vienna; Althanstrasse Vienna Austria
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| | - Jillian M. Petersen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse; Bremen Germany
| |
Collapse
|
17
|
Microbial communities in semi-consolidated carbonate sediments of the Southwest Indian Ridge. J Microbiol 2014; 52:111-9. [DOI: 10.1007/s12275-014-3133-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/29/2013] [Accepted: 09/10/2013] [Indexed: 10/25/2022]
|
18
|
Marshall KT, Morris RM. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. THE ISME JOURNAL 2013; 7:452-5. [PMID: 22875135 PMCID: PMC3554405 DOI: 10.1038/ismej.2012.78] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/08/2022]
Abstract
Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle.
Collapse
Affiliation(s)
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Raggi L, Schubotz F, Hinrichs KU, Dubilier N, Petersen JM. Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico. Environ Microbiol 2012; 15:1969-87. [PMID: 23279012 DOI: 10.1111/1462-2920.12051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/14/2012] [Indexed: 11/28/2022]
Abstract
Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition.
Collapse
Affiliation(s)
- L Raggi
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359 Bremen, Germany
| | | | | | | | | |
Collapse
|
20
|
Tiago I, Veríssimo A. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ Microbiol 2012; 15:1687-706. [PMID: 23731249 DOI: 10.1111/1462-2920.12034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/25/2012] [Indexed: 11/27/2022]
Abstract
Microbial and functional diversity were assessed, from a serpentinization-driven subterrestrial alkaline aquifer - Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO - cbbL was detected. Autotrophic carbon fixation via the rTCA, 3-HP and 3-HP/4H-B cycles could not be confirmed. The detected APS reductase alpha subunit - aprA sequences were phylogenetically related to sequences of sulfate-reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur-oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase - mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME-1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2 , methane and/or sulfur may be the major driving forces in this environment.
Collapse
Affiliation(s)
- Igor Tiago
- Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal
| | | |
Collapse
|
21
|
Duperron S, Rodrigues CF, Léger N, Szafranski K, Decker C, Olu K, Gaudron SM. Diversity of symbioses between chemosynthetic bacteria and metazoans at the Guiness cold seep site (Gulf of Guinea, West Africa). Microbiologyopen 2012; 1:467-80. [PMID: 23233246 PMCID: PMC3535391 DOI: 10.1002/mbo3.47] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 11/10/2022] Open
Abstract
Fauna from deep-sea cold seeps worldwide is dominated by chemosymbiotic metazoans. Recently, investigation of new sites in the Gulf of Guinea yielded numerous new species for which symbiosis was strongly suspected. In this study, symbioses are characterized in five seep-specialist metazoans recently collected from the Guiness site located at ≈ 600 m depth. Four bivalve and one annelid species belonging to families previously documented to harbor chemosynthetic bacteria were investigated using bacterial marker gene sequencing, fluorescence in situ hybridization, and stable isotope analyses. Results support that all five species display chemosynthetic, sulfur-oxidizing γ-proteobacteria. Bacteria are abundant in the gills of bivalves, and in the trophosome of the siboglinid annelid. As observed for their relatives occurring at deeper sites, chemoautotrophy is a major source of carbon for animal nutrition. Although symbionts found in each host species are related to symbionts found in other metazoans from the same families, several incongruencies are observed among phylogenetic trees obtained from the different bacterial genes, suggesting a certain level of heterogeneity in symbiont strains present. Results provide new insights into the diversity, biogeography, and role of symbiotic bacteria in metazoans from the Gulf of Guinea, at a site located at an intermediate depth between the continental shelf and the deep sea.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7138 (UPMC CNRS IRD MNHN), Systématique, Adaptation, Evolution, Université Pierre et Marie Curie, 7, quai St. Bernard, bâtiment A, 75005, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. MICROBIAL ECOLOGY 2012; 63:605-618. [PMID: 21984347 DOI: 10.1007/s00248-011-9946-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 09/15/2011] [Indexed: 05/31/2023]
Abstract
Interactions between corals and associated bacteria and amongst these bacterial groups are likely to play a key role in coral health. However, the complexity of these interactions is poorly understood. We investigated the functional role of specific coral-associated bacteria in maintaining microbial communities on the coral Acropora millepora (Ehrenberg 1834) and the ability of coral mucus to support or inhibit bacterial growth. Culture-independent techniques were used to assess bacterial community structures whilst bacterial culture was employed to assess intra- and inter-specific antimicrobial activities of bacteria. Members of Pseudoalteromonas and ribotypes closely related to Vibrio coralliilyticus displayed potent antimicrobial activity against a range of other cultured isolates and grew readily on detached coral mucus. Although such bacterial ribotypes would be expected to have a competitive advantage, they were rare or absent on intact and healthy coral colonies growing in situ (analysed using denaturing gradient gel electrophoresis and 16S rRNA gene sequencing). The most abundant bacterial ribotypes found on healthy corals were Gammaproteobacteria, previously defined as type A coral associates. Our results indicate that this group of bacteria and specific members of the Alphaproteobacteria described here as 'type B associates' may be important functional groups for coral health. We suggest that bacterial communities on coral are kept in check by a combination of host-derived and microbial interactions and that the type A associates in particular may play a key role in maintaining stability of microbial communities on healthy coral colonies.
Collapse
Affiliation(s)
- E Charlotte E Kvennefors
- Centre for Marine Science, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Wendeberg A, Zielinski FU, Borowski C, Dubilier N. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis. THE ISME JOURNAL 2012; 6:104-12. [PMID: 21734728 PMCID: PMC3246237 DOI: 10.1038/ismej.2011.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 11/09/2022]
Abstract
The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45'N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5'-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry.
Collapse
Affiliation(s)
- Annelie Wendeberg
- Department of Molecular Ecology, Celsiusstr, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | | | | | | |
Collapse
|
24
|
Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K, Bulgheresi S, Heindl NR, Horn M, Lott C, Loy A, Wagner M, Ott J. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms. Proc Natl Acad Sci U S A 2011; 108:12078-83. [PMID: 21709249 PMCID: PMC3141929 DOI: 10.1073/pnas.1105347108] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria--the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as "Candidatus Riegeria galateiae" based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal-chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Bayes Theorem
- Biological Evolution
- Cluster Analysis
- DNA Primers/genetics
- In Situ Hybridization, Fluorescence
- Likelihood Functions
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Models, Genetic
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Rhodospirillales/genetics
- Rhodospirillales/ultrastructure
- Sequence Analysis, DNA
- Species Specificity
- Spectrum Analysis, Raman
- Symbiosis
- Turbellaria/microbiology
- Turbellaria/ultrastructure
Collapse
|
25
|
La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L'Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM. Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 2011; 13:2250-68. [PMID: 21518212 DOI: 10.1111/j.1462-2920.2011.02478.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In September 2008, an expedition of the RV Urania was devoted to exploration of the genomic richness of deep hypersaline anoxic lakes (DHALs) located in the Western part of the Mediterranean Ridge. Approximately 40 nautical miles SE from Urania Lake, the presence of anoxic hypersaline lake, which we named Thetis, was confirmed by swath bathymetry profiling and through immediate sampling casts. The brine surface of the Thetis Lake is located at a depth of 3258 m with a thickness of ≈ 157 m. Brine composition was found to be thalassohaline, saturated by NaCl with a total salinity of 348‰, which is one of highest value reported for DHALs. Similarly to other Mediterranean DHALs, seawater-brine interface of Thetis represents a steep pycno- and chemocline with gradients of salinity, electron donors and acceptors and posseses a remarkable stratification of prokaryotic communities, observed to be more metabolically active in the upper interface where redox gradient was sharper. [(14) C]-bicarbonate fixation analysis revealed that microbial communities are sustained by sulfur-oxidizing chemolithoautotrophic primary producers that thrive within upper interface. Besides microaerophilic autotrophy, heterotrophic sulfate reduction, methanogenesis and anaerobic methane oxidation are likely the predominant processes driving the ecosystem of Thetis Lake.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, CNR, Spianata S.Raineri 86, 98122 Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Ruehland C, Dubilier N. Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 2010; 12:2312-26. [PMID: 21966922 DOI: 10.1111/j.1462-2920.2010.02256.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The marine oligochaete worm Tubificoides benedii is often found in high numbers in eutrophic coastal sediments with low oxygen and high sulfide concentrations. A dense biofilm of filamentous bacteria on the worm's tail end were morphologically described over 20 years ago, but no further studies of these epibiotic associations were done. In this study, we used fluorescence in situ hybridization and comparative sequence analysis of 16S rRNA and protein-coding genes to characterize the microbial community of the worm's tail ends. The presence of genes involved in chemoautotrophy (cbbL and cbbM) and sulfur metabolism (aprA) indicated the potential of the T. benedii microbial community for chemosynthesis. Two filamentous ectosymbionts were specific to the worm's tail ends: one belonged to the Leucothrix mucor clade within the Gammaproteobacteria and the other to the Thiovulgaceae within the Epsilonproteobacteria. Both T. benedii ectosymbionts belonged to clades that consisted almost exclusively of bacteria associated with invertebrates from deep-sea hydrothermal vents. Such close relationships between symbionts from shallow-water and deep-sea hosts that are not closely related to each other are unusual, and indicate that biogeography and host affiliation did not play a role in these associations. Instead, similarities between the dynamic environments of vents and organic-rich mudflats with their strong fluctuations in reductants and oxidants may have been the driving force behind the establishment and evolution of these symbioses.
Collapse
Affiliation(s)
- Caroline Ruehland
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | |
Collapse
|
28
|
Hügler M, Gärtner A, Imhoff JF. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field. FEMS Microbiol Ecol 2010; 73:526-37. [PMID: 20597983 DOI: 10.1111/j.1574-6941.2010.00919.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Life at deep-sea hydrothermal vents depends on chemolithoautotrophic microorganisms as primary producers mediating the transfer of energy from hydrothermal fluids to higher trophic levels. A comprehensive molecular survey was performed with microbial communities in a mussel patch at the Irina II site of the Logatchev hydrothermal field by combining the analysis of 16S rRNA gene sequences with studies of functional key genes involved in biochemical pathways of sulfur oxidation-reduction (soxB, aprA) and autotrophic carbon fixation (aclB, cbbM, cbbL). Most significantly, major groups of chemoautotrophic sulfur oxidizers in the diffuse fluids differed in their biosynthetic pathways of both carbon fixation and sulfur oxidation. One important component of the community, the Epsilonproteobacteria, has the potential to grow chemoautotrophically by means of the reductive tricarboxylic acid cycle and to gain energy through the oxidation of reduced sulfur compounds using the Sox pathway. The majority of soxB and all retrieved aclB gene sequences were assigned to this group. Another important group in this habitat, the Gammaproteobacteria, may use the adenosine 5'-phosphosulfate pathway and the Calvin-Benson-Bassham cycle, deduced from the presence of aprA and cbbM genes. Hence, two important groups of primary producers at the investigated site might use different pathways for sulfur oxidation and carbon fixation.
Collapse
Affiliation(s)
- Michael Hügler
- Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Kiel, Germany.
| | | | | |
Collapse
|
29
|
Abstract
The perpetuation of symbioses through host generations relies on symbiont transmission. Horizontally transmitted symbionts are taken up from the environment anew by each host generation, and vertically transmitted symbionts are most often transferred through the female germ line. Mixed modes also exist. In this Review we describe the journey of symbionts from the initial contact to their final residence. We provide an overview of the molecular mechanisms that mediate symbiont attraction and accumulation, interpartner recognition and selection, as well as symbiont confrontation with the host immune system. We also discuss how the two main transmission modes shape the evolution of the symbiotic partners.
Collapse
Affiliation(s)
- Monika Bright
- University of Vienna, Department of Marine Biology, Althanstrasse 14, A-1090 Vienna, Austria.
| | | |
Collapse
|
30
|
Duperron SÃ, De Beer D, Zbinden M, Boetius A, Schipani V, Kahil N, Gaill F. Molecular characterization of bacteria associated with the trophosome and the tube of Lamellibrachia sp., a siboglinid annelid from cold seeps in the eastern Mediterranean. FEMS Microbiol Ecol 2009; 69:395-409. [DOI: 10.1111/j.1574-6941.2009.00724.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
31
|
Stewart FJ, Cavanaugh CM. Pyrosequencing analysis of endosymbiont population structure: co-occurrence of divergent symbiont lineages in a single vesicomyid host clam. Environ Microbiol 2009; 11:2136-47. [PMID: 19397674 DOI: 10.1111/j.1462-2920.2009.01933.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria-eukaryote endosymbioses are perhaps the most pervasive co-evolutionary associations in nature. Here, intracellular chemosynthetic symbionts of deep-sea clams (Vesicomyidae) were analysed by amplicon pyrosequencing to explore how symbiont transmission mode affects the genetic diversity of the within-host symbiont population. Vesicomyid symbionts (Gammaproteobacteria) are presumed to be obligately intracellular, to undergo nearly strict vertical transmission between host generations, and to be clonal within a host. However, recent data show that vesicomyid symbionts can be acquired laterally via horizontal transfer between hosts or uptake from the environment, potentially creating opportunities for multiple symbiont strains to occupy the same host. Here, genotype-specific PCR and direct sequencing of the bacterial internal transcribed spacer initially demonstrated the co-occurrence of two symbiont strains, symA and symB (93.5% nt identity), in 8 of 118 Vesicomya sp. clams from 3 of 7 hydrothermal vent sites on the Juan de Fuca Ridge. To confirm multiple strains within individual clams, amplicon pyrosequencing of two symbiont loci was used to obtain deep-coverage measurements (mean: approximately 1500x coverage per locus per clam) of symbiont population structure. Pyrosequencing confirmed symA-symB co-occurrence for two individuals, showing the presence of both genotypes in amplicon pools. However, in the majority of clams, the endosymbiont population was remarkably homogenous, with > 99.5% of sequences collapsing into a single symbiont genotype in each clam. These results support the hypothesis that a predominantly vertical transmission strategy leads to the fixation of a single symbiont strain in most hosts. However, mixed symbiont populations do occur in vesicomyids, potentially facilitating the exchange of genetic material between divergent symbiont lineages.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
32
|
Bayer C, Heindl NR, Rinke C, Lücker S, Ott JA, Bulgheresi S. Molecular characterization of the symbionts associated with marine nematodes of the genus Robbea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:136-144. [PMID: 19838308 PMCID: PMC2761003 DOI: 10.1111/j.1758-2229.2009.00019.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/06/2009] [Indexed: 05/24/2023]
Abstract
Marine nematodes that carry sulfur-oxidizing bacteria on their cuticle (Stilbonematinae, Desmodoridae) migrate between oxidized and reduced sand layers thereby supplying their symbionts with oxygen and sulfide. These symbionts, in turn, constitute the worms' major food source. Due to the accessibility, abundance and relative simplicity of this association, stilbonematids may be useful to understand symbiosis establishment. Nevertheless, only the symbiont of Laxus oneistus has been found to constitute one single phylotype within the Gammaproteobacteria. Here, we characterized the symbionts of three yet undescribed nematodes that were morphologically identified as members of the genus Robbea. They were collected at the island of Corsica, the Cayman Islands and the Belize Barrier Reef. The surface of these worms is covered by a single layer of morphologically undistinguishable bacteria. 18S rDNA-based phylogenetic analysis showed that all three species belong to the Stilbonematinae, although they do not form a distinct cluster within that subfamily. 16S rDNA-based analysis of the symbionts placed them interspersed in the cluster comprising the sulfur-oxidizing symbionts of L. oneistus and of marine gutless oligochaetes. Finally, the presence and phylogeny of the aprA gene indicated that the symbionts of all three nematodes can use reduced sulfur compounds as an energy source.
Collapse
Affiliation(s)
- Christoph Bayer
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Niels R Heindl
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Christian Rinke
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Sebastian Lücker
- Departments of Microbial Ecology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Joerg A Ott
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| | - Silvia Bulgheresi
- Departments of Marine Biology, University of ViennaAlthanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
33
|
Rinke C, Schmitz-Esser S, Loy A, Horn M, Wagner M, Bright M. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont 'Candidatus Thiobios zoothamnicoli'. FEMS Microbiol Ecol 2009; 67:229-41. [PMID: 19120466 DOI: 10.1111/j.1574-6941.2008.00628.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
The giant marine ciliate Zoothamnium niveum (Ciliophora, Oligohymenophora) is obligatorily covered by a monolayer of putative chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria. For Z. niveum specimens from the Caribbean Sea it has been demonstrated that this ectosymbiotic population consists of only a single pleomorphic phylotype described as Candidatus Thiobios zoothamnicoli. The goal of our study was to identify and phylogenetically analyse the ectosymbiont(s) of a recently discovered Z. niveum population from the Mediterranean Sea, and to compare marker genes encoding key enzymes of the carbon and sulfur metabolism between the two symbiont populations. We identified a single bacterial phylotype representing the ectosymbiont of Z. niveum from the Mediterranean population showing 99.7% 16S rRNA gene (99.2% intergenic spacer region) similarity to the Caribbean Z. niveum ectosymbiont. Genes encoding enzymes typical for an inorganic carbon metabolism [ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO)] and for sulfur metabolism (5'-adenylylsulfate reductase, dissimilatory sulfite reductase) were detected in both symbiotic populations. The very high amino acid sequence identity (97-100%) and the high nucleic acid sequence identity (90-98%) of these marker enzymes in two geographically distant symbiont populations suggests that the association of Z. niveum with Cand. Thiobios zoothamnicoli is very specific as well as temporally and spatially stable.
Collapse
Affiliation(s)
- Christian Rinke
- Department of Marine Biology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Li H, Yu Y, Luo W, Zeng Y, Chen B. Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 2009; 13:233-46. [PMID: 19153801 DOI: 10.1007/s00792-009-0225-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022]
Abstract
In order to assess bacterial diversity within four surface sediment samples (0-5 cm) collected from the Pacific Arctic Ocean, 16S ribosomal DNA clone library analysis was performed. Near full length 16S rDNA sequences were obtained for 463 clones from four libraries and 13 distinct major lineages of Bacteria were identified (alpha, beta, gamma, delta and epsilon-Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Firmicutes, Planctomycetes, Spirochetes, and Verrucomicrobia). alpha, gamma, and delta-Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria were common phylogenetic groups from all the sediments. The gamma-Proteobacteria were the dominant bacterial lineage, representing near or over 50% of the clones. Over 35% of gamma-Proteobacteria clones of four clone library were closely related to cultured bacterial isolates with similarity values ranging from 94 to 100%. The community composition was different among sampling sites, which potentially was related to geochemical differences.
Collapse
Affiliation(s)
- Huirong Li
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, 200136 Shanghai, China.
| | | | | | | | | |
Collapse
|
35
|
Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, Mußmann M, Fuchs BM, Amann R, Lass U, Kuypers MMM. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 2008; 457:581-4. [DOI: 10.1038/nature07588] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 10/21/2008] [Indexed: 11/10/2022]
|
36
|
Ruehland C, Blazejak A, Lott C, Loy A, Erséus C, Dubilier N. Multiple bacterial symbionts in two species of co-occurring gutless oligochaete worms from Mediterranean sea grass sediments. Environ Microbiol 2008; 10:3404-16. [PMID: 18764872 DOI: 10.1111/j.1462-2920.2008.01728.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gutless oligochaete worms are found worldwide in the pore waters of marine sediments and live in symbiosis with chemoautotrophic sulfur-oxidizing bacteria. In the Mediterranean, two species of gutless oligochaete worms, Olavius algarvensis and O. ilvae, co-occur in sediments around sea grass beds. These sediments have extremely low sulfide concentrations (< 1 microM), raising the question if O. ilvae, as shown previously for O. algarvensis, also harbours sulfate-reducing symbionts that provide its sulfur-oxidizing symbionts with reduced sulfur compounds. In this study, we used fluorescence in situ hybridization (FISH) and comparative sequence analysis of genes for 16S rRNA, sulfur metabolism (aprA and dsrAB), and autotrophic carbon fixation (cbbL) to examine the microbial community of O. ilvae and re-examine the O. algarvensis symbiosis. In addition to the four previously described symbionts of O. algarvensis, in this study a fifth symbiont belonging to the Spirochaetes was found in these hosts. The symbiotic community of O. ilvae was similar to that of O. algarvensis and also included two gammaproteobacterial sulfur oxidizers and two deltaproteobacterial sulfate reducers, but not a spirochete. The phylogenetic and metabolic similarity of the symbiotic communities in these two co-occurring host species that are not closely related to each other indicates that syntrophic sulfur cycling provides a strong selective advantage to these worms in their sulfide-poor environment.
Collapse
MESH Headings
- Animals
- Bacteria/classification
- Bacteria/isolation & purification
- Bacterial Physiological Phenomena
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Geologic Sediments
- In Situ Hybridization, Fluorescence
- Mediterranean Sea
- Molecular Sequence Data
- Oligochaeta/microbiology
- Oligochaeta/physiology
- Phylogeny
- Poaceae
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sulfur/metabolism
- Symbiosis
Collapse
Affiliation(s)
- Caroline Ruehland
- Symbiosis Group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 2008; 6:725-40. [DOI: 10.1038/nrmicro1992] [Citation(s) in RCA: 509] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Lösekann T, Robador A, Niemann H, Knittel K, Boetius A, Dubilier N. Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an Arctic Cold Seep (Haakon Mosby Mud Volcano, Barents Sea). Environ Microbiol 2008; 10:3237-54. [PMID: 18707616 DOI: 10.1111/j.1462-2920.2008.01712.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Siboglinid tubeworms do not have a mouth or gut and live in obligate associations with bacterial endosymbionts. Little is currently known about the phylogeny of frenulate and moniliferan siboglinids and their symbionts. In this study, we investigated the symbioses of two co-occurring siboglinid species from a methane emitting mud volcano in the Arctic Ocean (Haakon Mosby Mud Volcano, HMMV): Oligobrachia haakonmosbiensis (Frenulata) and Sclerolinum contortum (Monilifera). Comparative sequence analysis of the host-specific 18S and the symbiont-specific 16S rRNA genes of S. contortum showed that the close phylogenetic relationship of this host to vestimentiferan siboglinids was mirrored in the close relationship of its symbionts to the sulfur-oxidizing gammaproteobacterial symbionts of vestimentiferans. A similar congruence between host and symbiont phylogeny was observed in O. haakonmosbiensis: both this host and its symbionts were most closely related to the frenulate siboglinid O. mashikoi and its gammaproteobacterial symbiont. The symbiont sequences from O. haakonmosbiensis and O. mashikoi formed a clade unaffiliated with known methane- or sulfur-oxidizing bacteria. Fluorescence in situ hybridization indicated that the dominant bacterial phylotypes originated from endosymbionts residing inside the host trophosome. In both S. contortum and O. haakonmosbiensis, characteristic genes for autotrophy (cbbLM) and sulfur oxidation (aprA) were present, while genes diagnostic for methanotrophy were not detected. The molecular data suggest that both HMMV tubeworm species harbour chemoautotrophic sulfur-oxidizing symbionts. In S. contortum, average stable carbon isotope values of fatty acids and cholesterol of -43 per thousand were highly negative for a sulfur oxidizing symbiosis, but can be explained by a (13)C-depleted CO(2) source at HMMV. In O. haakonmosbiensis, stable carbon isotope values of fatty acids and cholesterol of -70 per thousand are difficult to reconcile with our current knowledge of isotope signatures for chemoautotrophic processes.
Collapse
Affiliation(s)
- Tina Lösekann
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen 28359, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Goffredi SK, Jones WJ, Erhlich H, Springer A, Vrijenhoek RC. Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environ Microbiol 2008; 10:2623-34. [DOI: 10.1111/j.1462-2920.2008.01684.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Appl Environ Microbiol 2008; 74:3143-50. [PMID: 18359832 DOI: 10.1128/aem.00191-08] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with (13)C-carbon and (15)N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities.
Collapse
|
41
|
Duperron S, Halary S, Lorion J, Sibuet M, Gaill F. Unexpected co-occurrence of six bacterial symbionts in the gills of the cold seep mussel Idas sp. (Bivalvia: Mytilidae). Environ Microbiol 2008; 10:433-45. [DOI: 10.1111/j.1462-2920.2007.01465.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Duperron S, Laurent MCZ, Gaill F, Gros O. Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol 2008; 63:338-49. [PMID: 18218025 DOI: 10.1111/j.1574-6941.2008.00438.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Six morphotypes of small mussels (Bivalvia: Mytilidae) were found attached to naturally sunken wood collected in the Bohol Sea (Philippines). These specimens are related to the large Bathymodiolus mussels that are found worldwide at cold seeps and hydrothermal vents. In these habitats, the mytilids harbour sulphur- and methane-oxidizing endosymbionts in their gills and depend on the energy and carbon provided by the symbionts. In this study, bacteria associated with the gills of wood-associated mussels are characterized using molecular and microscopic techniques. The existence of bacteria in the lateral zone of gill filaments in all specimens is demonstrated. Comparative analyses of 16S rRNA gene and adenosine 5'-phosphosulphate (APS) reductase gene sequences indicate that the bacteria are closely related to sulphur-oxidizing endosymbionts of Bathymodiolus. FISHs using specific probes confirm that sulphur oxidizers are by far the most abundant, if not the only bacteria present. Electron micrographs displayed mostly extracellular bacteria located between microvilli at the apical surface of host gill epithelial cells all along the lateral zone of each gill filament. In some specimens, occasional occurrence of intracellular bacteria with similar morphology was noted. This study provides the first molecular evidence for the presence of possible thiotrophic symbiosis in sunken wood ecosystems. With their epibiotic bacteria, wood-associated mussels display a less integrated type of interaction than described in their seep, vent and whale fall relatives.
Collapse
Affiliation(s)
- Sébastien Duperron
- UMR 7138 Systématique-Adaptation-Evolution, Equipe adaptation aux milieux extrêmes, Université Pierre et Marie Curie, Paris, France.
| | | | | | | |
Collapse
|
43
|
Meyer B, Kuever J. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes. MICROBIOLOGY-SGM 2007; 153:3478-3498. [PMID: 17906146 DOI: 10.1099/mic.0.2007/008250-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.
Collapse
Affiliation(s)
- Birte Meyer
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| | - Jan Kuever
- Max-Planck-Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
| |
Collapse
|
44
|
METFIES KATJA, BERZANO MARCO, MAYER CHRISTIAN, ROOSKEN PAUL, GUALERZI CLAUDIO, MEDLIN LINDA, MUYZER GERARD. An optimized protocol for the identification of diatoms, flagellated algae and pathogenic protozoa with phylochips. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1471-8286.2007.01799.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Musat N, Giere O, Gieseke A, Thiermann F, Amann R, Dubilier N. Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas. Environ Microbiol 2007; 9:1345-53. [PMID: 17472647 DOI: 10.1111/j.1462-2920.2006.01232.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95-96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition.
Collapse
Affiliation(s)
- Niculina Musat
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Antón J. Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ Microbiol 2007; 9:521-34. [PMID: 17222150 DOI: 10.1111/j.1462-2920.2006.01170.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ascidian Cystodytes dellechiajei (Della Valle, 1877) (phylum Chordata, class Ascidiacea, family Polycitoridae) is a colonial tunicate that inhabits benthic rock environments in the Atlantic, Pacific and Indian Oceans, as well as the Mediterranean Sea. Its life cycle has two phases, the adult sessile colony and the free-living larva. Both adult zooids and larvae are surrounded by a protective tunic that contains several eukaryotic cell lines, is composed mainly of acidic mucopolysacharides associated with collagen and elastin-like proteins, and is covered by a thin cuticle. The microbiota associated with the tunic tissues of adult colonies and larva of C. dellechiajei has been examined by optical, confocal and electron microscopy and by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and 16S rRNA gene clone library analysis. Microscopy analyses indicated the presence inside the tunic, both for the adult and the larva, of a dense community of Bacteria while only the external surface of colony cuticle was colonized by diatoms, rodophyte algae and prokaryotic-like epiphytes. Transmission electron microscopy showed tunic eukaryotic cells that were engulfing and lysing bacteria. 16S rRNA gene analyses (DGGE and clone libraries) and FISH indicated that the community inside the tunic tissues of the adults and larvae was dominated by Alphaproteobacteria. Bacteria belonging to the phyla Gammaproteobacteria and Bacteroidetes were also detected in the adults. Many of the 16S rRNA gene sequences in the tunic tissues were related to known aerobic anoxygenic phototrophs (AAP), like Roseobacter sp. and Erythrobacter sp. In order to check whether the gene pufM, coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis, was being expressed inside the ascidian tissues, two libraries, one for an adult colony and one for larva, of cDNA from the expressed pufM gene were also constructed. The sequences most frequently (64% for colony and 67% for larva) retrieved from these libraries presented > 90% aa identity with the pufM gene product of the Roseobacter-like group, a cluster of AAP widely detected in marine planktonic environments.
Collapse
|