1
|
Uwituze Y, Nyiraneza J, Dougherty K, Wagg C, Jiang Y, Dessureaut-Rompré J, Mitterboeck F, Fraser TD. The application of shrub willow chip organic amendments impacts soil microbial community dynamics. Can J Microbiol 2025; 71:1-20. [PMID: 39899816 DOI: 10.1139/cjm-2024-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Incorporating shrub willow chips into soil may improve the chemical, physical, and biological properties of soils with low organic matter but the impact on soil microbial communities and their dynamics is not known. We assessed changes in the soil microbial communities in response to willow chip applied at increasing rates (0, 20, 40, and 60 Mg ha-1) in a potato-barley cropping system. Bacterial and fungal community diversity, relative abundance, and potential functions were assessed using amplicon sequencing of 16S and ITS rRNA genes at six time points. High rates (40 and 60 Mg ha-1) of willow chips had no effect on bacterial alpha diversity but significantly decreased fungal alpha diversity (Shannon) while increasing fungal richness (Chao-1). At rates of 40 Mg ha-1 and higher, the relative abundance of copiotrophic bacterial groups increased, while that of copiotrophic fungal groups decreased. The relative abundance of the most dominant microbial phyla and genera varied over time, with copiotrophic groups declining and oligotrophic groups increasing. High willow chip application rates increased bacterial molecular markers related to carbon fixation and degradation, nitrogen fixation, and phosphorus solubilization, while decreasing markers related to cellobiose transport and denitrification. This study demonstrates the ability of willow chips to influence the microbial community composition and potential function over time.
Collapse
Affiliation(s)
- Yvonne Uwituze
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
- Department of Soils and Agri-Food Engineering, Laval University, Québec, QC G1V 0A6, Canada
| | - Judith Nyiraneza
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Kyra Dougherty
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada
| | - Yefang Jiang
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | | | - Fatima Mitterboeck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 95 Innovation Road, Fredericton, NB E3B 4Z7, Canada
| | - Tandra D Fraser
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| |
Collapse
|
2
|
Huusko K, Manninen OH, Myrsky E, Stark S. Soil fungal and bacterial communities reflect differently tundra vegetation state transitions and soil physico-chemical properties. THE NEW PHYTOLOGIST 2024; 243:407-422. [PMID: 38750646 DOI: 10.1111/nph.19808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Strong disturbances may induce ecosystem transitions into new alternative states that sustain through plant-soil interactions, such as the transition of dwarf shrub-dominated into graminoid-dominated vegetation by herbivory in tundra. Little evidence exists on soil microbial communities in alternative states, and along the slow process of ecosystem return into the predisturbance state. We analysed vegetation, soil microbial communities and activities as well as soil physico-chemical properties in historical reindeer enclosures in northernmost Finland in the following plot types: control heaths in the surrounding tundra; graminoid-dominated; 'shifting'; and recovered dwarf shrub-dominated vegetation inside enclosures. Soil fungal communities followed changes in vegetation, whereas bacterial communities were more affected by soil physico-chemical properties. Graminoid plots were characterized by moulds, pathotrophs and dark septate endophytes. Ericoid mycorrhizal and saprotrophic fungi were typical for control and recovered plots. Soil microbial communities inside the enclosures showed historical contingency, as their spatial variation was high in recovered plots despite the vegetation being more homogeneous. Self-maintaining feedback loops between plant functional types, soil microbial communities, and carbon and nutrient mineralization act effectively to stabilize alternative vegetation states, but once predisturbance vegetation reestablishes itself, soil microbial communities and physico-chemical properties return back towards their predisturbance state.
Collapse
Affiliation(s)
- Karoliina Huusko
- Arctic Center, University of Lapland, PO Box 122, Rovaniemi, FI-96101, Finland
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Outi H Manninen
- Arctic Center, University of Lapland, PO Box 122, Rovaniemi, FI-96101, Finland
| | - Eero Myrsky
- Arctic Center, University of Lapland, PO Box 122, Rovaniemi, FI-96101, Finland
| | - Sari Stark
- Arctic Center, University of Lapland, PO Box 122, Rovaniemi, FI-96101, Finland
| |
Collapse
|
3
|
Dumigan CR, Deyholos MK. Soil and seed both influence bacterial diversity in the microbiome of the Cannabis sativa seedling endosphere. FRONTIERS IN PLANT SCIENCE 2024; 15:1326294. [PMID: 38450399 PMCID: PMC10914941 DOI: 10.3389/fpls.2024.1326294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Introduction Phytobiomes have a significant impact on plant health. The microbiome of Cannabis sativa is particularly interesting both because of renewed interest in this crop and because it is commercially propagated in two different ways (i.e. clonally and by seed). Angiosperms obtain a founding population of seed-borne endophytes from their seed-bearing parent. This study examines the influence of both seed and soil-derived bacteria on the endospheres of cannabis seedlings of both hemp- and drug-types. Methods A multi-factorial metagenomic study was conducted with three cannabis genotypes and two soil sources, which were tested both before and after autoclave sterilization. Seedlings were grown on soil, then rinsed and surface-sterilized, and 16S rDNA amplicons from seedling endophytes were sequenced, taxonomically classified, and used to estimate alpha- and beta-diversity in Qiime2. The statistical significance of differences in seedling microbiomes across treatments was tested, and PiCRUST2 was used to infer the functional relevance of these differences. Results Soil was found to have a profound effect on the alpha-diversity, beta-diversity, relative abundance, and functional genes of endophytic bacteria in germinating cannabis seedlings. Additionally, there was a significant effect of cannabis genotype on beta diversity, especially when genotypes were grown in sterilized soil. Gammaproteobacteria and Bacilli were the two most abundant taxa and were found in all genotypes and soil types, including sterilized soil. Discussion The results indicated that a component of cannabis seedling endosphere microbiomes is seed-derived and conserved across the environments tested. Functional prediction of seedling endophytes using piCRUST suggested a number of important functions of seed-borne endophytes in cannabis including nutrient and amino acid cycling, hormone regulation, and as precursors to antibiotics. This study suggested both seed and soil play a critical role in shaping the microbiome of germinating cannabis seedlings.
Collapse
Affiliation(s)
| | - Michael K. Deyholos
- Department of Biology, Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
4
|
Wang S, Zhu XM, Hong SD, Zheng SJ, Wang YB, Huang XC, Tian YC, Li WT, Lu YZ, Wu J, Zeng RJ, Dai K, Zhang F. Unveiling the Occurrence and Non-Negligible Role of Amino Sugars in Waste Activated Sludge Fermentation by an Enriched Chitin-Degradation Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1966-1975. [PMID: 38153028 DOI: 10.1021/acs.est.3c09302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.
Collapse
Affiliation(s)
- Shuai Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Mei Zhu
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Di Hong
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Si-Jie Zheng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi-Bo Wang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xing-Chen Huang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ye-Chao Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong-Ze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
5
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
6
|
Arnold ND, Garbe D, Brück TB. Isolation, biochemical characterization, and genome sequencing of two high-quality genomes of a novel chitinolytic Jeongeupia species. Microbiologyopen 2023; 12:e1372. [PMID: 37642486 PMCID: PMC10404844 DOI: 10.1002/mbo3.1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Chitin is the second most abundant polysaccharide worldwide as part of arthropods' exoskeletons and fungal cell walls. Low concentrations in soils and sediments indicate rapid decomposition through chitinolytic organisms in terrestrial and aquatic ecosystems. The enacting enzymes, so-called chitinases, and their products, chitooligosaccharides, exhibit promising characteristics with applications ranging from crop protection to cosmetics, medical, textile, and wastewater industries. Exploring novel chitinolytic organisms is crucial to expand the enzymatical toolkit for biotechnological chitin utilization and to deepen our understanding of diverse catalytic mechanisms. In this study, we present two long-read sequencing-based genomes of highly similar Jeongeupia species, which have been screened, isolated, and biochemically characterized from chitin-amended soil samples. Through metabolic characterization, whole-genome alignments, and phylogenetic analysis, we could demonstrate how the investigated strains differ from the taxonomically closest strain Jeongeupia naejangsanensis BIO-TAS4-2T (DSM 24253). In silico analysis and sequence alignment revealed a multitude of highly conserved chitinolytic enzymes in the investigated Jeongeupia genomes. Based on these results, we suggest that the two strains represent a novel species within the genus of Jeongeupia, which may be useful for environmentally friendly N-acetylglucosamine production from crustacean shell or fungal biomass waste or as a crop protection agent.
Collapse
Affiliation(s)
- Nathanael D. Arnold
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Daniel Garbe
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| | - Thomas B. Brück
- Department of ChemistryWerner‐Siemens Chair for Synthetic Biotechnology (WSSB), TUM School of Natural Sciences, Technical University of MunichGarchingGermany
| |
Collapse
|
7
|
Wentzien NM, Fernández-González AJ, Villadas PJ, Valverde-Corredor A, Mercado-Blanco J, Fernández-López M. Thriving beneath olive trees: The influence of organic farming on microbial communities. Comput Struct Biotechnol J 2023; 21:3575-3589. [PMID: 37520283 PMCID: PMC10372477 DOI: 10.1016/j.csbj.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Soil health and root-associated microbiome are interconnected factors involved in plant health. The use of manure amendment on agricultural fields exerts a direct benefit on soil nutrient content and water retention, among others. However, little is known about the impact of manure amendment on the root-associated microbiome, particularly in woody species. In this study, we aimed to evaluate the effects of ovine manure on the microbial communities of the olive rhizosphere and root endosphere. Two adjacent orchards subjected to conventional (CM) and organic (OM) management were selected. We used metabarcoding sequencing to assess the bacterial and fungal communities. Our results point out a clear effect of manure amendment on the microbial community. Fungal richness and diversity were increased in the rhizosphere. The fungal biomass in the rhizosphere was more than doubled, ranging from 1.72 × 106 ± 1.62 × 105 (CM) to 4.54 × 106 ± 8.07 × 105 (OM) copies of the 18 S rRNA gene g-1 soil. Soil nutrient content was also enhanced in the OM orchard. Specifically, oxidable organic matter, total nitrogen, nitrate, phosphorous, potassium and sulfate concentrations were significantly increased in the OM orchard. Moreover, we predicted a higher abundance of bacteria in OM with metabolic functions involved in pollutant degradation and defence against pathogens. Lastly, microbial co-occurrence network showed more positive interactions, complexity and shorter geodesic distance in the OM orchard. According to our results, manure amendment on olive orchards represents a promising tool for positively modulating the microbial community in direct contact with the plant.
Collapse
Affiliation(s)
- Nuria M. Wentzien
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Antonio J. Fernández-González
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | - Pablo J. Villadas
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| | | | - Jesús Mercado-Blanco
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
- Crop Protection Department, Instituto de Agricultura Sostenible (CSIC), 14004 Córdoba, Spain
| | - Manuel Fernández-López
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain
| |
Collapse
|
8
|
Fan Y, Liu J, Liu Z, Hu X, Yu Z, Li Y, Chen X, Li L, Jin J, Wang G. Chitin amendments eliminate the negative impacts of continuous cropping obstacles on soil properties and microbial assemblage. FRONTIERS IN PLANT SCIENCE 2022; 13:1067618. [PMID: 36507440 PMCID: PMC9730418 DOI: 10.3389/fpls.2022.1067618] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Continuous cropping of soybean leads to soil environment deterioration and soil-borne disease exacerbation, which in turn limits the sustainability of agricultural production. Chitin amendments are considered promising methods for alleviating soybean continuous cropping obstacles; however, the underlying mechanisms of soil sickness reduction remain unclear. In this study, soil amendments with pure and crude chitin at different addition dosages were employed to treat diseased soil induced by continuous cropping of soybean for five years. Chitin amendments, especially crude chitin, remarkably increased soil pH, available phosphorus (AP), potassium (AK) and nitrate nitrogen ( NO 3 - -N) contents, and improved soybean plant growth and soil microbial activities (FDA). Additionally, chitin application significantly enriched the relative abundances of the potential biocontrol bacteria Sphingomonas, Streptomyces, and Bacillus and the fungi Mortierella, Purpureocillium, and Metarhizium while depleted those of the potential plant pathogens Fusarium, Cylindrocarpon and Paraphoma. Moreover, chitin amendments induced looser pathogenic subnetwork structures and less pathogenic cooperation with other connected microbial taxa in the rhizosphere soils. The structural equation model (SEM) revealed that pure and crude chitin amendments promoted soybean plant growth by indirectly regulating soil pH-mediated soil microbial activities and potentially beneficial microbes, respectively. Therefore, the reduction strategies for continuous cropping obstacles by adding pure and crude chitin were distinct; pure chitin amendments showed general disease suppression, while crude chitin exhibited specific disease suppression. Overall, chitin amendments could suppress potential plant pathogens and improve soil health, thereby promoting soybean growth, which provides new prospects for cultivation practices to control soybean continuous cropping obstacles.
Collapse
Affiliation(s)
- Yanli Fan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhuxiu Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xueli Chen
- Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lujun Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
9
|
Rangel F, Santos RA, Monteiro M, Lavrador AS, Gasco L, Gai F, Oliva-Teles A, Enes P, Serra CR. Isolation of Chitinolytic Bacteria from European Sea Bass Gut Microbiota Fed Diets with Distinct Insect Meals. BIOLOGY 2022; 11:964. [PMID: 36101344 PMCID: PMC9312007 DOI: 10.3390/biology11070964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Insect meal (IM), recently authorized for use in aquafeeds, positions itself as a promising commodity for aquafeed inclusion. However, insects are also rich in chitin, a structural polysaccharide present in the exoskeleton, which is not digested by fish, resulting in lower fish performance. Through the application of a dietary pressure, this study aimed to modulate European sea bass gut microbiota towards the enrichment of chitinolytic bacteria to allow the isolation of novel probiotics capable of improving the use of IM-containing diets, overcoming chitin drawbacks. Five isoproteic (44%) and isolipidic (18%) diets were used: a fish meal (FM)-based diet (diet CTR), a chitin-supplemented diet (diet CHIT5), and three diets with either 25% of Hermetia illucens and Tenebrio molitor larvae meals (HM25 and TM25, respectively) or H. illucens exuviae meal (diet HEM25) as partial FM substitutes. After an 8-week feeding trial, the results showed a clear modulatory effect towards spore-forming bacteria by HM25 and HEM25 diets, with the latter being responsible for the majority of the chitinolytic fish isolates (FIs) obtained. Sequential evaluation of the FI hemolytic activity, antibiotic resistance, total chitinolytic activity, sporulation, and survival in gastrointestinal-like conditions identified FI645 and FI658 as the most promising chitinolytic probiotics for in vivo application.
Collapse
Affiliation(s)
- Fábio Rangel
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rafaela A. Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Monteiro
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ana Sofia Lavrador
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy;
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Paula Enes
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Cláudia R. Serra
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Ed. FC4, 4169-007 Porto, Portugal; (F.R.); (R.A.S.); (M.M.); (A.S.L.); (A.O.-T.)
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Séneca J, Söllinger A, Herbold CW, Pjevac P, Prommer J, Verbruggen E, Sigurdsson BD, Peñuelas J, Janssens IA, Urich T, Tveit AT, Richter A. Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils. ISME COMMUNICATIONS 2021; 1:69. [PMID: 36759732 PMCID: PMC9723740 DOI: 10.1038/s43705-021-00073-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Global warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils. This was mainly driven by increased levels of transcripts coding for enzymes involved in the degradation of microbial cell walls and proteins. Additionally, higher transcription levels for chitin, nucleic acid, and peptidoglycan degrading enzymes were found in long-term warmed soils. We conclude that an acceleration in microbial turnover under warming is coupled to higher investments in N acquisition enzymes, particularly those involved in the breakdown and recycling of microbial residues, in comparison with ambient conditions.
Collapse
Affiliation(s)
- Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| | - Andrea Söllinger
- Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Judith Prommer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Erik Verbruggen
- Research Group PLECO, Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF- CSIC-UAB, Bellaterra, Catalonia, Spain
| | - Ivan A Janssens
- Research Group PLECO, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Tim Urich
- Department of Bacterial Physiology, University of Greifswald, Greifswald, Germany
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
| |
Collapse
|
11
|
Tatsumi C, Azuma WA, Ogawa Y, Komada N. Nitrogen Availability and Microbial Communities of Canopy Soils in a Large Cercidiphyllum japonicum Tree of a Cool-Temperate Old Growth Forest. MICROBIAL ECOLOGY 2021; 82:919-931. [PMID: 33606088 DOI: 10.1007/s00248-021-01707-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Canopy soils on large trees are important for supporting the lives of many canopy plants, and thereby increasing regional biodiversity. However, because of the less accessibility to canopy soils, there is insufficient knowledge on how canopy soils produce available nitrogen (N) for canopy plants through the activity of canopy soil microbes. Canopy soils usually have different soil properties from ground soils, so we hypothesized that canopy soils would have unique microbial communities compared to ground soils, but still provide available N for canopy plants. Here, we compared soil N availability, including net N mineralization and nitrification rate, and microbial communities between canopy soils (organic soils) collected at various heights of a large Cercidiphyllum japonicum tree and ground soils (organic and mineral soils) in a cool-temperate old-growth forest of Japan. The canopy soils had significantly different N availability (mass-based higher but volume-based lower) and microbial communities from the ground mineral soils. Among organic soils, the height of the soil had an impact on the microbial communities but not on the N availability, which agreed with our hypothesis. Despite the decrease in fungal abundance in the higher soils, the increase in certain components of the cellulose-decomposing fungi and oligotrophic bacteria may contribute to the available N production. Also, the abundance of ammonia-oxidizers did not change with the height, which would be important for the nitrification rate. Our study implied canopy soils could provide N to canopy plants partly through the functional redundancy within different microbial communities and constant population of ammonia-oxidizers.
Collapse
Affiliation(s)
- Chikae Tatsumi
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Wakana A Azuma
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
| | - Yuya Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Natsuki Komada
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Rummel PS, Beule L, Hemkemeyer M, Schwalb SA, Wichern F. Black Soldier Fly Diet Impacts Soil Greenhouse Gas Emissions From Frass Applied as Fertilizer. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.709993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased global production of animal-based protein results in high greenhouse gas (GHG) emissions and other adverse consequences for human and planetary health. Recently, commercial insect rearing has been claimed a more sustainable source of animal protein. However, this system also leaves residues called frass, which—depending on the insect diet—is rich in carbon (C) and nitrogen (N), and could thus be used as fertilizer in agriculture. The impact of this kind of fertilizer on soil GHG emissions is yet unknown. Therefore, we investigated the effect of black soldier fly (Hermetia illucens L.) frass derived from a carbohydrate (Carb-) or a protein (Prot-) based diet applied at two different application rates to an arable soil on C and N fluxes and microbial properties in a 40-day incubation experiment. CO2, N2O, NO, N2, CH4, water extractable organic C (WEOC), and inorganic N were continuously measured quantitatively. At the end of the incubation, microbial biomass (MB), stoichiometry, community composition, and abundance of functional genes were assessed. Along with a strong increase in WEOC and CO2, Carb-frass caused strong initial N2O emissions associated with high N and C availability. In contrast, Prot-frass showed lower CO2 emissions and N2O release, although soil nitrate levels were higher. At the end of incubation, MB was significantly increased, which was more pronounced following Carb-frass as compared to Prot-frass application, and at higher amendment rates. Fungal abundance increased most from both frass types with an even stronger response at higher application rates, whereas bacterial abundance rose following Carb-frass as compared to Prot-application. Abundance of functional genes related to ammonia-oxidizing bacteria and archaea were enhanced by high frass application but did not clearly differ between frass types. C use efficiency of microorganisms, as revealed by the metabolic quotient, was most strongly reduced in the high Prot-frass application rate. Overall, insect diet influenced available C and N in frass and thus affected mineralization dynamics, GHG emissions, and microbial growth. Overall, emissions were very high undermining the potential environmental benefit of insect based protein production and calling for more detailed analyses before frass is widely applied in agriculture.
Collapse
|
13
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
14
|
Hui C, Jiang H, Liu B, Wei R, Zhang Y, Zhang Q, Liang Y, Zhao Y. Chitin degradation and the temporary response of bacterial chitinolytic communities to chitin amendment in soil under different fertilization regimes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:136003. [PMID: 31846813 DOI: 10.1016/j.scitotenv.2019.136003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/20/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Chitin amendment is a promising agricultural management strategy to control fungal and nematodal plant diseases and to improve crop yield. Chitin degradation in the soil contributes significantly to carbon and nitrogen cycling in terrestrial ecosystems. However, little is known about chitin degradation and bacterial chitinolytic communities in agricultural soil under different fertilization regimes. Thus, in the present study, a 42-day soil incubation experiment was conducted, in which soil under four fertilization regimes (i.e., no fertilization (CK), chemical fertilizer (CF), pig manure plus 50% chemical fertilizer (PMCF), and rice straw plus 100% chemical fertilizer (SRCF)) were amended or not with chitin or its monomer, N-acetylglucosamine (NAG). Different nitrogen forms and CO2 and N2O emission were measured to evaluate chitin degradation and its environmental implications. SRCF soil had the highest CO2 emission, chitin N mineralization, and fungal abundance. NAG and chitin were enriched to exploit the chitin degraders. High-throughput sequencing analyses reveled that Streptomycetaceae, Oxalobacteraceae, Gemmatimonadaceae, and Acidobacteria were generally increased upon chitin amendment in CK, CF, and PMCF soil, whereas Streptomycetaceae dominated chitin-amended SRCF soil. Herpetosiphonaceae was enriched only in chitin-amended CK soil. LEfSe and network analysis were used to predict chitinolytic and opportunistic species, and revealed that most previously reported chitinolytic bacteria were detected in the present study and new potential chitin degraders, including unidentified_Solibacterales, Gemmatimonadaceae, and Herpetosiphonaceae, were identified. Some members of Firmicutes, Actinobacteria, and Proteobacteria, including Bacillus, and Kitasatospora, were speculated to be opportunistic species. The findings improve our understanding of the effects of chitin degradation on carbon and nitrogen cycling in agricultural soil under different fertilization regimes and help to identify chitinolytic bacteria.
Collapse
Affiliation(s)
- Cai Hui
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Jiang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ran Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiping Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Yuhua Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Short-Term Nitrogen Fertilization Affects Microbial Community Composition and Nitrogen Mineralization Functions in an Agricultural Soil. Appl Environ Microbiol 2020; 86:AEM.02278-19. [PMID: 31836579 DOI: 10.1128/aem.02278-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023] Open
Abstract
Soil extracellular enzymes play a significant role in the N mineralization process. However, few studies have documented the linkage between enzyme activity and the microbial community that performs the function. This study examined the effects of inorganic and organic N fertilization on soil microbial communities and their N mineralization functions over 4 years. Soils were collected from silage corn field plots with four contrasting N treatments: control (no additional N), ammonium sulfate (AS; 100 and 200 kg of N ha-1), and compost (200 kg of N ha-1). Illumina amplicon sequencing was used to comprehensively assess the overall bacterial community (16S rRNA genes), bacterial ureolytic community (ureC), and bacterial chitinolytic community (chiA). Selected genes involved in N mineralization were also examined using quantitative real-time PCR and metagenomics. Enzymes (and marker genes) included protease (npr and sub), chitinase (chiA), urease (ureC), and arginase (rocF). Compost significantly increased diversity of overall bacterial communities even after one application, while ammonium fertilizers had no influence on the overall bacterial communities over four seasons. Bacterial ureolytic and chitinolytic communities were significantly changed by N fertilization. Compost treatment strongly elevated soil enzyme activities after 4 years of repeated application. Functional gene abundances were not significantly affected by N treatments, and they were not correlated with corresponding enzyme activities. N mineralization genes were recovered from soil metagenomes based on a gene-targeted assembly. Understanding how the structure and function of soil microbial communities involved with N mineralization change in response to fertilization practices may indicate suitable agricultural management practices that improve ecosystem services while reducing negative environmental consequences.IMPORTANCE Agricultural N management practices influence the enzymatic activities involved in N mineralization. However, specific enzyme activities do not identify the microbial species directly involved in the measured process, leaving the link between the composition of the microbial community and the production of key enzymes poorly understood. In this study, the application of high-throughput sequencing, real-time PCR, and metagenomics shed light on how the abundance and diversity of microorganisms involved in N mineralization respond to N management. We suggest that N fertilization has significantly changed bacterial ureolytic and chitinolytic communities.
Collapse
|
16
|
Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments. Appl Environ Microbiol 2019; 85:AEM.00963-19. [PMID: 31285190 PMCID: PMC6715849 DOI: 10.1128/aem.00963-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments. Chitin is massively produced by freshwater plankton species as a structural element of their exoskeleton or cell wall. At the same time, chitin does not accumulate in the predominantly anoxic sediments, underlining its importance as carbon and nitrogen sources for sedimentary microorganisms. We studied chitin degradation in littoral sediment of Lake Constance, Central Europe’s third largest lake. Turnover of the chitin analog methyl-umbelliferyl-N,N-diacetylchitobioside (MUF-DC) was highest in the upper oxic sediment layer, with 5.4 nmol MUF-DC h−1 (g sediment [dry weight])−1. In the underlying anoxic sediment layers, chitin hydrolysis decreased with depth from 1.1 to 0.08 nmol MUF-DC h−1 (g sediment [dry weight])−1. Bacteria involved in chitin degradation were identified by 16S rRNA (gene) amplicon sequencing of anoxic microcosms incubated in the presence of chitin compared to microcosms amended either with N-acetylglucosamine as the monomer of chitin or no substrate. Chitin degradation was driven by a succession of bacteria responding specifically to chitin only. The early phase (0 to 9 days) was dominated by Chitinivibrio spp. (Fibrobacteres). The intermediate phase (9 to 21 days) was characterized by a higher diversity of chitin responders, including, besides Chitinivibrio spp., also members of the phyla Bacteroidetes, Proteobacteria, Spirochaetes, and Chloroflexi. In the late phase (21 to 43 days), the Chitinivibrio populations broke down with a parallel strong increase of Ruminiclostridium spp. (formerly Clostridium cluster III, Firmicutes), which became the dominating chitin responders. Our study provides quantitative insights into anaerobic chitin degradation in lake sediments and linked this to a model of microbial succession associated with this activity. IMPORTANCE Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments.
Collapse
|
17
|
Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). Biodegradation 2019; 30:415-431. [DOI: 10.1007/s10532-019-09884-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
|
18
|
Männistö M, Vuosku J, Stark S, Saravesi K, Suokas M, Markkola A, Martz F, Rautio P. Bacterial and fungal communities in boreal forest soil are insensitive to changes in snow cover conditions. FEMS Microbiol Ecol 2019; 94:5043222. [PMID: 29939247 DOI: 10.1093/femsec/fiy123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
The northern regions are experiencing considerable changes in winter climate leading to more frequent warm periods, rain-on-snow events and reduced snow pack diminishing the insulation properties of snow cover and increasing soil frost and freeze-thaw cycles. In this study, we investigated how the lack of snow cover, formation of ice encasement and snow compaction affect the size, structure and activities of soil bacterial and fungal communities. Contrary to our hypotheses, snow manipulation treatments over one winter had limited influence on microbial community structure, bacterial or fungal copy numbers or enzyme activities. However, microbial community structure and activities shifted seasonally among soils sampled before snow melt, in early and late growing season and seemed driven by substrate availability. Bacterial and fungal communities were dominated by stress-resistant taxa such as the orders Acidobacteriales, Chaetothyriales and Helotiales that are likely adapted to adverse winter conditions. This study indicated that microbial communities in acidic northern boreal forest soil may be insensitive to direct effects of changing snow cover. However, in long term, the detrimental effects of increased ice and frost to plant roots may alter plant derived carbon and nutrient pools to the soil likely leading to stronger microbial responses.
Collapse
Affiliation(s)
- Minna Männistö
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland
| | - Jaana Vuosku
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland
| | - Sari Stark
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland.,Arctic Centre, University of Lapland, P.O. Box 122, FI-96101 Rovaniemi, Finland
| | - Karita Saravesi
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Marko Suokas
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Annamari Markkola
- Department of Ecology and Genetics, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Françoise Martz
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland
| | - Pasi Rautio
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland
| |
Collapse
|
19
|
Wright RJ, Gibson MI, Christie-Oleza JA. Understanding microbial community dynamics to improve optimal microbiome selection. MICROBIOME 2019; 7:85. [PMID: 31159875 PMCID: PMC6547603 DOI: 10.1186/s40168-019-0702-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Artificial selection of microbial communities that perform better at a desired process has seduced scientists for over a decade, but the method has not been systematically optimised nor the mechanisms behind its success, or failure, determined. Microbial communities are highly dynamic and, hence, go through distinct and rapid stages of community succession, but the consequent effect this may have on artificially selected communities is unknown. RESULTS Using chitin as a case study, we successfully selected for microbial communities with enhanced chitinase activities but found that continuous optimisation of incubation times between selective transfers was of utmost importance. The analysis of the community composition over the entire selection process revealed fundamental aspects in microbial ecology: when incubation times between transfers were optimal, the system was dominated by Gammaproteobacteria (i.e. main bearers of chitinase enzymes and drivers of chitin degradation), before being succeeded by cheating, cross-feeding and grazing organisms. CONCLUSIONS The selection of microbiomes to enhance a desired process is widely used, though the success of artificially selecting microbial communities appears to require optimal incubation times in order to avoid the loss of the desired trait as a consequence of an inevitable community succession. A comprehensive understanding of microbial community dynamics will improve the success of future community selection studies.
Collapse
Affiliation(s)
- Robyn J. Wright
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry, UK
- Medical School, University of Warwick, Coventry, UK
| | | |
Collapse
|
20
|
Hu H, da Costa RR, Pilgaard B, Schiøtt M, Lange L, Poulsen M. Fungiculture in Termites Is Associated with a Mycolytic Gut Bacterial Community. mSphere 2019; 4:e00165-19. [PMID: 31092601 PMCID: PMC6520439 DOI: 10.1128/msphere.00165-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Termites forage on a range of substrates, and it has been suggested that diet shapes the composition and function of termite gut bacterial communities. Through comparative analyses of gut metagenomes in nine termite species with distinct diets, we characterize bacterial community compositions and use peptide-based functional annotation method to determine biomass-degrading enzymes and the bacterial taxa that encode them. We find that fungus-growing termite guts have relatively more fungal cell wall-degrading enzyme genes, while wood-feeding termite gut communities have relatively more plant cell wall-degrading enzyme genes. Interestingly, wood-feeding termite gut bacterial genes code for abundant chitinolytic enzymes, suggesting that fungal biomass within the decaying wood likely contributes to gut bacterial or termite host nutrition. Across diets, the dominant biomass-degrading enzymes are predominantly coded for by the most abundant bacterial taxa, suggesting tight links between diet and gut community composition, with the most marked difference being the communities coding for the mycolytic capacity of the fungus-growing termite gut.IMPORTANCE Understanding functional capacities of gut microbiomes is important to improve our understanding of symbiotic associations. Here, we use peptide-based functional annotation to show that the gut microbiomes of fungus-farming termites code for a wealth of enzymes that likely target the fungal diet the termites eat. Comparisons to other termites showed that fungus-growing termite guts have relatively more fungal cell wall-degrading enzyme genes, whereas wood-feeding termite gut communities have relatively more plant cell wall-degrading enzyme genes. Across termites with different diets, the dominant biomass-degrading enzymes are predominantly coded for by the most abundant bacterial taxa, suggesting tight links between diet and gut community compositions.
Collapse
Affiliation(s)
- Haofu Hu
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Rodrigues da Costa
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bo Pilgaard
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Lange
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Stark S, Egelkraut D, Aronsson KÅ, Olofsson J. Contrasting vegetation states do not diverge in soil organic matter storage: evidence from historical sites in tundra. Ecology 2019; 100:e02731. [PMID: 30991449 DOI: 10.1002/ecy.2731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Ecosystems where severe disturbance has induced permanent shifts in vegetation and soil processes may represent alternative stable states. To date, little is known on how long-lasting changes in soil processes are following such disturbances, and how the changes in plant and soil processes between the alternative states eventually manifest themselves in soil organic matter (SOM) storage. Here, we analyzed plant density, the shrub : forb ratio, microbial respiration, extracellular enzyme activities and SOM stocks in soils of subarctic tundra and historical milking grounds, where reindeer herding induced a vegetation transition from deciduous shrubs to graminoids several centuries earlier but were abandoned a century ago. This provides the possibility to compare sites with similar topography, but highly contrasting vegetation for centuries. We found that enzymatic activities and N:P stoichiometry differed between control and disturbed sites, confirming that culturally induced vegetation shifts exert lasting impacts on tundra soil processes. Transition zones, where shrubs had encroached into the historical milking grounds during the past 50 yr, indicated that microbial activities for N and P acquisition changed more rapidly along a vegetation shift than those for microbial C acquisition. Although plant and soil processes differed between control and disturbed sites, we found no effect of historical vegetation transition on SOM stock. Across the study sites, soil SOM stocks were correlated with total plant density but not with the shrub : forb ratio. Our finding that SOM stock was insensitive to a centennial difference in plant community composition suggests that, as such, grazing-induced alternative vegetation states might not necessarily differ in SOM sequestration.
Collapse
Affiliation(s)
- Sari Stark
- Arctic Centre, University of Lapland, FI 96100, Rovaniemi, Finland
| | - Dagmar Egelkraut
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Johan Olofsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Houfani AA, Větrovský T, Navarrete OU, Štursová M, Tláskal V, Beiko RG, Boucherba N, Baldrian P, Benallaoua S, Jorquera MA. Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. MICROBIAL ECOLOGY 2019; 77:713-725. [PMID: 30209585 DOI: 10.1007/s00248-018-1251-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α-proteobacteria, δ-proteobacteria, and γ-proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.
Collapse
Affiliation(s)
- Aicha Asma Houfani
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Oscar U Navarrete
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
23
|
Salas-Ovilla R, Gálvez-López D, Vázquez-Ovando A, Salvador-Figueroa M, Rosas-Quijano R. Isolation and identification of marine strains of Stenotrophomona maltophilia with high chitinolytic activity. PeerJ 2019; 7:e6102. [PMID: 30627485 PMCID: PMC6321750 DOI: 10.7717/peerj.6102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Chitin is the second most abundant organic compound in nature and represents a rich carbon and nitrogen source that is primarily transformed by bacterial communities. Bacteria capable of gradually hydrolyzing chitin into N-acetylglucosamine monomers can have applications in the transformation of residues from shrimp and other crustaceans. The objective of the present study was to isolate, characterize and identify microorganisms with high chitinolytic activity. These microorganisms were isolated and characterized based on macro- and microscopic morphological traits. Strains were selected on colloidal chitin agar medium primarily based on a hydrolysis halo larger than 2 mm and a growing phase no longer than 6 days. Secondary selection consisted of semi-quantitative evaluation of chitinolytic activity with a drop dilution assay. From the above, ten strains were selected. Then, strain-specific activity was evaluated. The B4 strain showed the highest specific activity, which was 6,677.07 U/mg protein. Molecular identification indicated that the isolated strains belong to the species Stenotrophomonas maltophilia.
Collapse
Affiliation(s)
- Roger Salas-Ovilla
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
| | - Didiana Gálvez-López
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
| | | | | | | |
Collapse
|
24
|
|
25
|
Lacombe-Harvey MÈ, Brzezinski R, Beaulieu C. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution. Appl Microbiol Biotechnol 2018; 102:7219-7230. [PMID: 29931600 PMCID: PMC6097792 DOI: 10.1007/s00253-018-9149-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022]
Abstract
Actinobacteria, a large group of Gram-positive bacteria, secrete a wide range of extracellular enzymes involved in the degradation of organic compounds and biopolymers including the ubiquitous aminopolysaccharides chitin and chitosan. While chitinolytic enzymes are distributed in all kingdoms of life, actinobacteria are recognized as particularly good decomposers of chitinous material and several members of this taxon carry impressive sets of genes dedicated to chitin and chitosan degradation. Degradation of these polymers in actinobacteria is dependent on endo- and exo-acting hydrolases as well as lytic polysaccharide monooxygenases. Actinobacterial chitinases and chitosanases belong to nine major families of glycosyl hydrolases that share no sequence similarity. In this paper, the distribution of chitinolytic actinobacteria within different ecosystems is examined and their chitinolytic machinery is described and compared to those of other chitinolytic organisms.
Collapse
Affiliation(s)
| | - Ryszard Brzezinski
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Carole Beaulieu
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
26
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
27
|
Inderbitzin P, Ward J, Barbella A, Solares N, Izyumin D, Burman P, Chellemi DO, Subbarao KV. Soil Microbiomes Associated with Verticillium Wilt-Suppressive Broccoli and Chitin Amendments are Enriched with Potential Biocontrol Agents. PHYTOPATHOLOGY 2018; 108:31-43. [PMID: 28876209 DOI: 10.1094/phyto-07-17-0242-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two naturally infested Verticillium wilt-conducive soils from the Salinas Valley of coastal California were amended with disease-suppressive broccoli residue or crab meal amendments, and changes to the soil prokaryote community were monitored using Illumina sequencing of a 16S ribosomal RNA gene library generated from 160 bulk soil samples. The experiment was run in a greenhouse, twice, with eggplant as the Verticillium wilt-susceptible host. Disease suppression, plant height, soil microsclerotia density, and soil chitinase activity were assessed at the conclusion of each experiment. In soil with high microsclerotia density, all amendments significantly reduced Verticillium wilt severity and microsclerotia density, and increased soil chitinase activity. Plant height was increased only in the broccoli-containing treatments. In total, 8,790 error-corrected sequence variants representing 1,917,893 different sequences were included in the analyses. The treatments had a significant impact on the soil microbiome community structure but measures of α diversity did not vary between treatments. Community structure correlated with disease score, plant height, microsclerotia density, and soil chitinase activity, suggesting that the prokaryote community may affect the disease-related response variables or vice versa. Similarly, the abundance of 107 sequence variants correlated with disease-related response variables, which included variants from genera with known antagonists of filamentous fungal plant pathogens, such as Pseudomonas and Streptomyces. Overall, genera with antifungal antagonists were more abundant in amended soils than unamended soils, and constituted up to 8.9% of all sequences in broccoli+crabmeal-amended soil. This study demonstrates that substrate-mediated shifts in soil prokaryote communities are associated with the transition of Verticillium wilt-conducive soils to Verticillium wilt-suppressive soils, and suggests that soils likely harbor numerous additional antagonists of fungal plant pathogens that contribute to the biological suppression of plant disease.
Collapse
Affiliation(s)
- Patrik Inderbitzin
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Judson Ward
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Alexandra Barbella
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Natalie Solares
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Dmitriy Izyumin
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Prabir Burman
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Dan O Chellemi
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| | - Krishna V Subbarao
- First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll's Strawberry Associates, Watsonville, CA
| |
Collapse
|
28
|
Zhang M, Wang W, Wang J, Teng Y, Xu Z. Dynamics of biochemical properties associated with soil nitrogen mineralization following nitrification inhibitor and fungicide applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11340-11348. [PMID: 28303541 DOI: 10.1007/s11356-017-8762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Agrochemical applications may have side effects on soil biochemical properties related to soil nitrogen (N) mineralization and thus affect N cycling. The present study aimed to evaluate the effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) and fungicide iprodione on soil neutral protease (NPR), alkaline protease (APR), chitinase (CHI), and their functional genes (nprA, aprA, and chiA) related to soil N mineralization. The following four treatments were included: blank control (CK), single DMPP application (DAA), weekly iprodione applications (IPR), and the combined applications of DMPP and iprodione (DI). Compared with the CK treatment, DMPP application significantly inhibited the CHI activity in the first 14 days of incubation, and iprodione applications, particularly when applied alone, decreased the NPR, APR, and CHI activities. Relative to the IPR treatment, extra DMPP application had the potential to alleviate the inhibitory effects of iprodione on the activities of these enzymes. DMPP application significantly increased aprA gene abundances after 14 days of incubation. However, repeated iprodione applications, alone or with the DMPP, decreased nprA and chiA gene abundances. Relative to the CK treatment, DMPP application generated negligible effects on the positive/negative correlations between soil enzyme activities and the corresponding functional gene abundances. However, the positive correlation between the CHI activity and chiA gene abundance was changed to negative correlation by repeated iprodione applications, alone or together with the DMPP. Our results demonstrated that agrochemical applications, particularly repeated fungicide applications, can have inadvertent effects on enzyme activities and functional gene abundances associated with soil N mineralization.
Collapse
Affiliation(s)
- Manyun Zhang
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia.
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Weijin Wang
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
- Department of Science, Information Technology and Innovation, Dutton Park, QLD, 4102, Australia
| | - Jun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Chongqing Research Academy of Environmental Sciences, Chongqing, 401147, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
29
|
Winkler AJ, Dominguez-Nuñez JA, Aranaz I, Poza-Carrión C, Ramonell K, Somerville S, Berrocal-Lobo M. Short-Chain Chitin Oligomers: Promoters of Plant Growth. Mar Drugs 2017; 15:md15020040. [PMID: 28212295 PMCID: PMC5334620 DOI: 10.3390/md15020040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 02/06/2017] [Indexed: 01/10/2023] Open
Abstract
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.
Collapse
Affiliation(s)
- Alexander J Winkler
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Department for Wood Biology, Centre for Wood Science and Technology, Universität Hamburg, Leuschnerstr. 91d, D-2103 Hamburg, Germany.
| | - Jose Alfonso Dominguez-Nuñez
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Inmaculada Aranaz
- Departamento de Físico-Química, Instituto de Estudios Bifuncionales, Facultad de Farmacia, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.
| | | | - Katrina Ramonell
- Department of Biological Sciences, P.O. Box 870344, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Shauna Somerville
- Plant Biology, Carnegie Institution of Science, 260 Panama St., Stanford, CA 94305, USA.
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, MONTES (School of Forest Engineering and Natural Environment), Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
30
|
Berini F, Presti I, Beltrametti F, Pedroli M, Vårum KM, Pollegioni L, Sjöling S, Marinelli F. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Fact 2017; 16:16. [PMID: 28137256 PMCID: PMC5282697 DOI: 10.1186/s12934-017-0634-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Background Through functional screening of a fosmid library, generated from a phytopathogen-suppressive soil metagenome, the novel antifungal chitinase—named Chi18H8 and belonging to family 18 glycosyl hydrolases—was previously discovered. The initial extremely low yield of Chi18H8 recombinant production and purification from Escherichia coli cells (21 μg/g cell) limited its characterization, thus preventing further investigation on its biotechnological potential. Results We report on how we succeeded in producing hundreds of milligrams of pure and biologically active Chi18H8 by developing and scaling up to a high-yielding, 30 L bioreactor process, based on a novel method of mild solubilization of E. coli inclusion bodies in lactic acid aqueous solution, coupled with a single step purification by hydrophobic interaction chromatography. Chi18H8 was characterized as a Ca2+-dependent mesophilic chitobiosidase, active on chitin substrates at acidic pHs and possessing interesting features, such as solvent tolerance, long-term stability in acidic environment and antifungal activity against the phytopathogens Fusarium graminearum and Rhizoctonia solani. Additionally, Chi18H8 was found to operate according to a non-processive endomode of action on a water-soluble chitin-like substrate. Conclusions Expression screening of a metagenomic library may allow access to the functional diversity of uncultivable microbiota and to the discovery of novel enzymes useful for biotechnological applications. A persisting bottleneck, however, is the lack of methods for large scale production of metagenome-sourced enzymes from genes of unknown origin in the commonly used microbial hosts. To our knowledge, this is the first report on a novel metagenome-sourced enzyme produced in hundreds-of-milligram amount by recovering the protein in the biologically active form from recombinant E. coli inclusion bodies. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0634-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy. .,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.
| | - Ilaria Presti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy.,Chemo Biosynthesis, Corana, Pavia, Italy
| | | | | | - Kjell M Vårum
- NOBIPOL, Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| | - Sara Sjöling
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,"The Protein Factory Research Center", Politecnico di Milano and University of Insubria, Varese, Italy
| |
Collapse
|
31
|
Itoh T, Hibi T, Suzuki F, Sugimoto I, Fujiwara A, Inaka K, Tanaka H, Ohta K, Fujii Y, Taketo A, Kimoto H. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery. PLoS One 2016; 11:e0167310. [PMID: 27907169 PMCID: PMC5132251 DOI: 10.1371/journal.pone.0167310] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/13/2016] [Indexed: 12/03/2022] Open
Abstract
The Gram-positive bacterium Paenibacillus sp. str. FPU-7 effectively hydrolyzes chitin by using a number of chitinases. A unique chitinase with two catalytic domains, ChiW, is expressed on the cell surface of this bacterium and has high activity towards various chitins, even crystalline chitin. Here, the crystal structure of ChiW at 2.1 Å resolution is presented and describes how the enzyme degrades chitin on the bacterial cell surface. The crystal structure revealed a unique multi-modular architecture composed of six domains to function efficiently on the cell surface: a right-handed β-helix domain (carbohydrate-binding module family 54, CBM-54), a Gly-Ser-rich loop, 1st immunoglobulin-like (Ig-like) fold domain, 1st β/α-barrel catalytic domain (glycoside hydrolase family 18, GH-18), 2nd Ig-like fold domain and 2nd β/α-barrel catalytic domain (GH-18). The structure of the CBM-54, flexibly linked to the catalytic region of ChiW, is described here for the first time. It is similar to those of carbohydrate lyases but displayed no detectable carbohydrate degradation activities. The CBM-54 of ChiW bound to cell wall polysaccharides, such as chin, chitosan, β-1,3-glucan, xylan and cellulose. The structural and biochemical data obtained here also indicated that the enzyme has deep and short active site clefts with endo-acting character. The affinity of CBM-54 towards cell wall polysaccharides and the degradation pattern of the catalytic domains may help to efficiently decompose the cell wall chitin through the contact surface. Furthermore, we clarify that other Gram-positive bacteria possess similar cell-surface-expressed multi-modular enzymes for cell wall polysaccharide degradation.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
- * E-mail: (TI); (HK)
| | - Takao Hibi
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Fumiko Suzuki
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Ikumi Sugimoto
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Akihiro Fujiwara
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
| | - Koji Inaka
- Maruwa Foods and Biosciences Inc., Yamatokoriyama, Nara, Japan
| | | | - Kazunori Ohta
- Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Yutaka Fujii
- Department of Molecular Biology and Chemistry, Faculty of Medicine, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Akira Taketo
- Department of Environmental and Biotechnological Frontier Engineering, Fukui University of Technology, Fukui, Fukui, Japan
| | - Hisashi Kimoto
- Department of Bioscience, Fukui Prefectural University, Yoshida-gun, Fukui, Japan
- * E-mail: (TI); (HK)
| |
Collapse
|
32
|
Haack FS, Poehlein A, Kröger C, Voigt CA, Piepenbring M, Bode HB, Daniel R, Schäfer W, Streit WR. Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum. Front Microbiol 2016; 7:1668. [PMID: 27833590 PMCID: PMC5080296 DOI: 10.3389/fmicb.2016.01668] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Janthinobacterium and Duganella are well-known for their antifungal effects. Surprisingly, almost nothing is known on molecular aspects involved in the close bacterium-fungus interaction. To better understand this interaction, we established the genomes of 11 Janthinobacterium and Duganella isolates in combination with phylogenetic and functional analyses of all publicly available genomes. Thereby, we identified a core and pan genome of 1058 and 23,628 genes. All strains encoded secondary metabolite gene clusters and chitinases, both possibly involved in fungal growth suppression. All but one strain carried a single gene cluster involved in the biosynthesis of alpha-hydroxyketone-like autoinducer molecules, designated JAI-1. Genome-wide RNA-seq studies employing the background of two isolates and the corresponding JAI-1 deficient strains identified a set of 45 QS-regulated genes in both isolates. Most regulated genes are characterized by a conserved sequence motif within the promoter region. Among the most strongly regulated genes were secondary metabolite and type VI secretion system gene clusters. Most intriguing, co-incubation studies of J. sp. HH102 or its corresponding JAI-1 synthase deletion mutant with the plant pathogen Fusarium graminearum provided first evidence of a QS-dependent interaction with this pathogen.
Collapse
Affiliation(s)
- Frederike S Haack
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Germany
| | - Cathrin Kröger
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Christian A Voigt
- Department of Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Meike Piepenbring
- Department of Mycology, Goethe University Frankfurt Frankfurt am Main, Germany
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt Frankfurt am Main, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
33
|
Singh S, Gaur R. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii
in chickpea. J Appl Microbiol 2016; 121:506-18. [DOI: 10.1111/jam.13176] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/30/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Affiliation(s)
- S.P. Singh
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
| | - R. Gaur
- Department of Microbiology; Mewar University, Gangrar; Chittorgarh India
- Department of Microbiology; Dr R. M. L. Avadh University; Faizabad India
| |
Collapse
|
34
|
Ballhausen MB, Vandamme P, de Boer W. Trait Differentiation within the Fungus-Feeding (Mycophagous) Bacterial Genus Collimonas. PLoS One 2016; 11:e0157552. [PMID: 27309848 PMCID: PMC4911057 DOI: 10.1371/journal.pone.0157552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/02/2022] Open
Abstract
The genus Collimonas consists of facultative, fungus-feeding (mycophagous) bacteria. To date, 3 species (C. fungivorans, C. pratensis and C. arenae) have been described and over 100 strains have been isolated from different habitats. Functional traits of Collimonas bacteria that are potentially involved in interactions with soil fungi mostly negatively (fungal inhibition e.g.), but also positively (mineral weathering e.g.), affect fungal fitness. We hypothesized that variation in such traits between Collimonas strains leads to different mycophagous bacterial feeding patterns. We investigated a) whether phylogenetically closely related Collimonas strains possess similar traits, b) how far phylogenetic resolution influences the detection of phylogenetic signal (possession of similar traits by related strains) and c) if there is a pattern of co-occurrence among the studied traits. We measured genetically encoded (nifH genes, antifungal collimomycin gene cluster e.g.) as well as phenotypically expressed traits (chitinase- and siderophore production, fungal inhibition and others) and related those to a high-resolution phylogeny (MLSA), constructed by sequencing the housekeeping genes gyrB and rpoB and concatenating those with partial 16S rDNA sequences. Additionally, high-resolution and 16S rDNA derived phylogenies were compared. We show that MLSA is superior to 16SrDNA phylogeny when analyzing trait distribution and relating it to phylogeny at fine taxonomic resolution (a single bacterial genus). We observe that several traits involved in the interaction of collimonads and their host fungus (fungal inhibition e.g.) carry phylogenetic signal. Furthermore, we compare Collimonas trait possession with sister genera like Herbaspirillum and Janthinobacterium.
Collapse
Affiliation(s)
- Max-Bernhard Ballhausen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Peter Vandamme
- Laboratory for Microbiology, Gent University, Gent, Belgium
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
- Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
35
|
Elieh-Ali-Komi D, Hamblin MR. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH 2016; 4:411-427. [PMID: 27819009 PMCID: PMC5094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with customized biochemical properties can be prepared. As a result, chitosan is one of the most well-studied biomaterials. The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Dabadé DS, Wolkers-Rooijackers JCM, Azokpota P, Hounhouigan DJ, Zwietering MH, Nout MJR, den Besten HMW. Bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and the surrounding brackish waters and sediment. Int J Food Microbiol 2015; 218:96-104. [PMID: 26656527 DOI: 10.1016/j.ijfoodmicro.2015.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/24/2022]
Abstract
This study aimed at determining bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and their surrounding brackish waters and sediment. Freshly caught shrimp, water and sediment samples were collected in Lakes Nokoue and Aheme in Benin (West Africa) during two periods with different water salinity and temperature. We used complementary culture-dependent and culture-independent methods for microbiota analysis. During both sampling periods, total mesophilic aerobic counts in shrimp samples ranged between 4.4 and 5.9 log CFU/g and were significantly higher than in water or sediment samples. In contrast, bacterial diversity was higher in sediment or water than in shrimps. The dominant phyla were Firmicutes and Proteobacteria in shrimps, Firmicutes, Proteobacteria, and Actinobacteria in water, and Proteobacteria and Chloroflexi in sediment. At species level, distinct bacterial communities were associated with sediment, water and shrimps sampled at the same site the same day. The study suggests that the bacterial community of tropical brackish water shrimps cannot be predicted from the microbiota of their aquatic environment. Thus, monitoring of microbiological quality of aquatic environments might not reflect shrimp microbiological quality.
Collapse
Affiliation(s)
- D Sylvain Dabadé
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Paulin Azokpota
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin
| | - D Joseph Hounhouigan
- Laboratoire de Biochimie Microbienne et de Biotechnologie Alimentaire, University of Abomey-Calavi, 01 B.P. 526 Cotonou, Benin
| | - Marcel H Zwietering
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - M J Rob Nout
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
37
|
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 2015; 6:1014. [PMID: 26441937 PMCID: PMC4585250 DOI: 10.3389/fmicb.2015.01014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibiotics, clinically useful bioactive compounds and industrially important enzymes. The focus of the current review is on the diversity and potential applications of thermophilic and alkaliphilic actinobacteria, which are highly diverse in their taxonomy and morphology with a variety of adaptations for surviving and thriving in hostile environments. The specific metabolic pathways in these actinobacteria are activated for elaborating pharmaceutically, agriculturally, and biotechnologically relevant biomolecules/bioactive compounds, which find multifarious applications.
Collapse
|
38
|
Cretoiu MS, Berini F, Kielak AM, Marinelli F, van Elsas JD. A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomic library derived from chitin-amended agricultural soil. Appl Microbiol Biotechnol 2015; 99:8199-215. [PMID: 26040993 PMCID: PMC4561078 DOI: 10.1007/s00253-015-6639-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022]
Abstract
Here, we report on the construction of a metagenomic library from a chitin-amended disease-suppressive agricultural soil and its screening for genes that encode novel chitinolytic enzymes. The library, constructed in fosmids in an Escherichia coli host, comprised 145,000 clones containing inserts of sizes of 21 to 40 kb, yielding a total of approximately 5.8 GB of cloned soil DNA. Using genetic screenings by repeated PCR cycles aimed to detect gene sequences of the bacterial chitinase A-class (hereby named chi A genes), we identified and characterized five fosmids carrying candidate genes for chitinolytic enzymes. The analysis thus allowed access to the genomic (fosmid-borne) context of these genes. Using the chiA-targeted PCR, which is based on degenerate primers, the five fosmids all produced amplicons, of which the sequences were related to predicted chitinolytic enzyme-encoding genes of four different host organisms, including Stenotrophomonas maltophilia. Sequencing and de novo annotation of the fosmid inserts confirmed that each one of these carried one or more open reading frames that were predicted to encode enzymes active on chitin, including one for a chitin deacetylase. Moreover, the genetic contexts in which the putative chitinolytic enzyme-encoding genes were located were unique per fosmid. Specifically, inserts from organisms related to Burkholderia sp., Acidobacterium sp., Aeromonas veronii, and the chloroflexi Nitrolancetus hollandicus and/or Ktedonobacter racemifer were obtained. Remarkably, the S. maltophilia chiA-like gene was found to occur in two different genetic contexts (related to N. hollandicus/K. racemifer), indicating the historical occurrence of genetic reshufflings in this part of the soil microbiota. One fosmid containing the insert composed of DNA from the N. hollandicus-like organism (denoted 53D1) was selected for further work. Using subcloning procedures, its putative gene for a chitinolytic enzyme was successfully brought to expression in an E. coli host. On the basis of purified protein preparations, the produced protein was characterized as a chitobiosidase of 43.6 kDa, with a pI of 4.83. Given its activity spectrum, it can be typified as a halotolerant chitobiosidase.
Collapse
Affiliation(s)
- Mariana Silvia Cretoiu
- />Department of Microbial Ecology, CEES, University of Groningen, Groningen, The Netherlands
- />Department of Marine Microbiology, Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands
| | - Francesca Berini
- />Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- />“The Protein Factory” Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, Varese, Italy
| | - Anna Maria Kielak
- />Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO), Wageningen, The Netherlands
| | - Flavia Marinelli
- />Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- />“The Protein Factory” Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, Varese, Italy
| | - Jan Dirk van Elsas
- />Department of Microbial Ecology, CEES, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Vester JK, Glaring MA, Stougaard P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 2014; 19:17-29. [PMID: 25399309 PMCID: PMC4272415 DOI: 10.1007/s00792-014-0704-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
Only a small minority of microorganisms from an environmental sample can be cultured in the laboratory leaving the enormous bioprospecting potential of the uncultured diversity unexplored. This resource can be accessed by improved cultivation methods in which the natural environment is brought into the laboratory or through metagenomic approaches where culture-independent DNA sequence information can be combined with functional screening. The coupling of these two approaches circumvents the need for pure, cultured isolates and can be used to generate targeted information on communities enriched for specific activities or properties. Bioprospecting in extreme environments is often associated with additional challenges such as low biomass, slow cell growth, complex sample matrices, restricted access, and problematic in situ analyses. In addition, the choice of vector system and expression host may be limited as few hosts are available for expression of genes with extremophilic properties. This review summarizes the methods developed for improved cultivation as well as the metagenomic approaches for bioprospecting with focus on the challenges faced by bioprospecting in cold environments.
Collapse
Affiliation(s)
- Jan Kjølhede Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark,
| | | | | |
Collapse
|
40
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
41
|
Insensitivity of Soil Microbial Activity to Temporal Variation in Soil N in Subarctic Tundra: Evidence from Responses to Large Migratory Grazers. Ecosystems 2014. [DOI: 10.1007/s10021-014-9768-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Production and purification of a hyperthermostable chitinase from Brevibacillus formosus BISR-1 isolated from the Great Indian Desert soils. Extremophiles 2014; 18:451-62. [DOI: 10.1007/s00792-014-0630-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
|
43
|
Jacquiod S, Franqueville L, Cécillon S, M. Vogel T, Simonet P. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 2013; 8:e79699. [PMID: 24278158 PMCID: PMC3835784 DOI: 10.1371/journal.pone.0079699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- Microbial Molecular Ecology Group, Section of Microbiology, København Universitat, København, Denmark
| | - Laure Franqueville
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Timothy M. Vogel
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- * E-mail:
| |
Collapse
|
44
|
Cretoiu MS, Korthals GW, Visser JHM, van Elsas JD. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl Environ Microbiol 2013; 79:5291-301. [PMID: 23811512 PMCID: PMC3753968 DOI: 10.1128/aem.01361-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/22/2013] [Indexed: 11/20/2022] Open
Abstract
A long-term experiment on the effect of chitin addition to soil on the suppression of soilborne pathogens was set up and monitored for 8 years in an experimental field, Vredepeel, The Netherlands. Chitinous matter obtained from shrimps was added to soil top layers on two different occasions, and the suppressiveness of soil toward Verticillium dahliae, as well as plant-pathogenic nematodes, was assessed, in addition to analyses of the abundances and community structures of members of the soil microbiota. The data revealed that chitin amendment had raised the suppressiveness of soil, in particular toward Verticillium dahliae, 9 months after the (second) treatment, extending to 2 years following treatment. Moreover, major effects of the added chitin on the soil microbial communities were detected. First, shifts in both the abundances and structures of the chitin-treated soil microbial communities, both of total soil bacteria and fungi, were found. In addition, the abundances and structures of soil actinobacteria and the Oxalobacteraceae were affected by chitin. At the functional gene level, the abundance of specific (family-18 glycoside hydrolase) chitinase genes carried by the soil bacteria also revealed upshifts as a result of the added chitin. The effects of chitin noted for the Oxalobacteraceae were specifically related to significant upshifts in the abundances of the species Duganella violaceinigra and Massilia plicata. These effects of chitin persisted over the time of the experiment.
Collapse
Affiliation(s)
- Mariana Silvia Cretoiu
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| | - Gerard W. Korthals
- Applied Plant Research Institute, Wageningen University, Lelystad, The Netherlands
| | - Johnny H. M. Visser
- Applied Plant Research Institute, Wageningen University, Lelystad, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 2013; 4:149. [PMID: 23785358 PMCID: PMC3682446 DOI: 10.3389/fmicb.2013.00149] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/28/2013] [Indexed: 11/13/2022] Open
Abstract
Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.
Collapse
Affiliation(s)
- Sara Beier
- Department of Ecology and Genetics, Limnology, Uppsala University Uppsala, Sweden ; Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, UPMC Paris 06, UMR 7621 Banyuls sur mer, France ; Laboratoire d'Océanographie Microbienne, Observatoire Océanologique Centre National de la Recherche Scientifique, UMR 7621 Banyuls sur mer, France
| | | |
Collapse
|