1
|
Yeh HY, Cox NA, Hinton A, Berrang ME. Detection and Distribution of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in Campylobacter jejuni Isolates from Chicken Livers. J Food Prot 2024; 87:100250. [PMID: 38382707 DOI: 10.1016/j.jfp.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Campylobacter jejuni is the leading foodborne bacterial pathogen that causes human gastroenteritis worldwide linked to the consumption of undercooked broiler livers. Application of bacteriophages during poultry production has been used as an alternative approach to reduce contamination of poultry meat by Campylobacter. To make this approach effective, understanding the presence of the bacteriophage sequences in the CRISPR spacers in C. jejuni is critical as they may confer bacterial resistance to bacteriophage treatment. Therefore, in this study, we explored the distribution of the CRISPR arrays from 178 C. jejuni isolated from chicken livers between January and July 2018. Genomic DNA of C. jejuni isolates was extracted, and CRISPR type 1 sequences were amplified by PCR. Amplicons were purified and sequenced by the Sanger dideoxy sequencing method. Direct repeats (DRs) and spacers of CRISPR sequences were identified using the CRISPRFinder program. Further, spacer sequences were submitted to the CRISPRTarget to identify potential homology to bacteriophage types. Even though CRISPR-Cas is reportedly not an active system in Campylobacter, a total of 155 (87%) C. jejuni isolates were found to harbor CRISPR sequences; one type of DR was identified in all 155 isolates. The CRISPR loci lengths ranged from 97 to 431 nucleotides. The numbers of spacers ranged from one to six. A total of 371 spacer sequences were identified in the 155 isolates that could be grouped into 51 distinctive individual sequences. Further comparison of these 51 spacer sequences with those in databases showed that most spacer sequences were homologous to Campylobacter bacteriophage DA10. The results of our study provide important information relative to the development of an effective bacteriophage treatment to mitigate Campylobacter during poultry production.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA 30605-2720, USA.
| | - Nelson A Cox
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA 30605-2720, USA
| | - Arthur Hinton
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA 30605-2720, USA
| | - Mark E Berrang
- U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA 30605-2720, USA
| |
Collapse
|
2
|
Muzyukina P, Soutourina O. CRISPR genotyping methods: Tracing the evolution from spoligotyping to machine learning. Biochimie 2024; 217:66-73. [PMID: 37506757 DOI: 10.1016/j.biochi.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with adaptive immunity defenses against foreign genetic invaders. The identification of CRISPR-Cas function is among the most impactful discoveries of recent decades that have shaped the development of genome editing in various organisms paving the way for a plethora of promising applications in biotechnology and health. Even before the discovery of CRISPR-Cas biological role, the particular structure of CRISPR loci has been explored for epidemiological genotyping of bacterial pathogens. CRISPR-Cas loci are arranged in CRISPR arrays of mostly identical direct repeats intercalated with invader-derived spacers and an operon of cas genes encoding the Cas protein components. Each small CRISPR RNA (crRNA) encoded within the CRISPR array constitutes a key functional unit of this RNA-based CRISPR-Cas defense system guiding the Cas effector proteins toward the foreign nucleic acids for their destruction. The information acquired from prior invader encounters and stored within CRISPR arrays turns out to be extremely valuable in tracing the microevolution and epidemiology of major bacterial pathogens. We review here the history of CRISPR-based typing strategies highlighting the first PCR-based methods that have set the stage for recent developments of high-throughput sequencing and machine learning-based approaches. A great amount of whole genome sequencing and metagenomic data accumulated in recent years opens up new avenues for combining experimental and computational approaches of high-resolution CRISPR-based typing.
Collapse
Affiliation(s)
- P Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - O Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Ohadi E, Azarnezhad A, Lotfollahi L, Asadollahi P, Kaviar VH, Razavi S, Sadeghi Kalani B. Evaluation of Genetic Content of the CRISPR Locus in Listeria monocytogenes Isolated From Clinical, Food, Seafood and Animal Samples in Iran. Curr Microbiol 2023; 80:388. [PMID: 37878078 DOI: 10.1007/s00284-023-03508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/14/2022] [Indexed: 10/26/2023]
Abstract
CRISPR arrays, which are organized to fight against non-self DNA elements, have shown sequence diversity that could be useful in evolution and typing studies. In this study, 55 samples of L. monocytogenes isolated from different sources were evaluated for CRISPR sequence polymorphism. The CRISPR loci were identified using CRISPR databases. A single PCR assay was designed to amplify the target CRISPRs using an appropriate universal primer. Sequencing results were analyzed using CRISPR databases and BLASTn, and the CRISPR locus was present in all the strains. Three hundred repeats including 55 terminal repeats were identified. Four types of consensuses direct repeat (DR) with different lengths and sequences were characterized. Sixty repeat variants were observed which possessed different polymorphisms. Two hundred and fifty spacers were identified from which 35 consensus sequences were determined, indicating the high polymorphism of the CRISPR spacers. The identified spacers showed similarities to listeria phage sequences, other bacterial phage sequences, plasmid sequences and bacterial sequences. In order to control the bacterial outbreaks, a robust and precise system of subtyping is required. High levels of polymorphism in the CRISPR loci in this study might be related to the origin and time of the samples' isolation. However, it is essential to assess, on a case-by-case basis, the characteristics of any given CRISPR locus before its use as an epidemiological marker. In conclusion, the results of this study showed that the use of sequence content of CRISPR area could provide new and valuable information on the evolution and typing of the L. monocytogenes bacterium.
Collapse
Affiliation(s)
- Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Asaad Azarnezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hasan Kaviar
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shabnam Razavi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
4
|
Pazra DF, Latif H, Basri C, Wibawan IWT, Rahayu P. Distribution analysis of tetracycline resistance genes in Escherichia coli isolated from floor surface and effluent of pig slaughterhouses in Banten Province, Indonesia. Vet World 2023; 16:509-517. [PMID: 37041843 PMCID: PMC10082748 DOI: 10.14202/vetworld.2023.509-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Slaughterhouses and their effluents could serve as a "hotspot" for the occurrence and distribution of antibiotic-resistant bacteria in the environment. This study aimed to understand the distribution of tetracycline resistance genes in Escherichia coli isolated from the floor surface and effluent samples of pig slaughterhouses in Banten Province, Indonesia. Materials and Methods Ten samples, each from floor surface swabs and effluents, were collected from 10 pig slaughterhouses in Banten Province. Escherichia coli strains were isolated and identified by referring to the protocol of the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli from the WHO (2021). Quantitative real-time polymerase chain reaction (qPCR) was used to detect the tet genes. Results The tetA, tetB, tetC, tetM, tetO, and tetX genes were distributed in the isolates from the floor surface samples, and the tetA, tetC, tetE, tetM, tetO, and tetX genes were distributed in the isolates from the effluent samples. The tetO gene (60%) was the most dominant gene in the isolates from floor surface samples, while the tetA gene was the dominant one in the isolates from the effluent samples (50%). The tetA + tetO gene combination was the dominant pattern (15%) in the E. coli isolates. Conclusion The high prevalence and diversity of the tet genes in floor surface and effluent samples from pig slaughterhouses in Banten Province indicated that the transmission of the tet genes had occurred from pigs to the environment; thus, this situation should be considered a serious threat to public health.
Collapse
Affiliation(s)
- Debby Fadhilah Pazra
- Animal Biomedical Science Study Program, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
- Animal Health Study Program, Bogor Agricultural Development Polytechnic, Bogor, Indonesia
| | - Hadri Latif
- Department of Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
- Corresponding author: Hadri Latif, e-mail: Co-authors: DFP: , CB: , IWTW: , PR:
| | - Chaerul Basri
- Department of Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - I. Wayan Teguh Wibawan
- Department of Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences (SVMBS), IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| |
Collapse
|
5
|
Li Y, Wang Q, Peng K, Liu Y, Xiao X, Mohsin M, Li R, Wang Z. Distribution and genomic characterization of tigecycline-resistant tet(X4)-positive Escherichia coli of swine farm origin. Microb Genom 2021; 7:000667. [PMID: 34693904 PMCID: PMC8627205 DOI: 10.1099/mgen.0.000667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/06/2021] [Indexed: 02/03/2023] Open
Abstract
Abstract The emergence of plasmid-mediated tigecycline-resistant strains is posing a serious threat to food safety and human health, which has attracted worldwide attention. The tigecycline resistance gene tet (X4) has been found in diverse sources, but the distribution of tet (X4) and its genetic background in the animal farming environment is not fully understood. Thirty-two tet (X)-positive Escherichia coli strains isolated from 159 samples collected from swine farms showed resistance to tigecycline. The tet (X)-positive strains were characterized by antimicrobial susceptibility testing, conjugation assay, PCR, Illumina and long-read Nanopore sequencing, and bioinformatics analysis. A total of 11 different sequence types (STs) were identified and most of them belonged to phylogroup A, except ST641. In total, 196 possible prophage sequences were identified and some of the prophage regions were found to carry resistance genes, including tet (X4). Furthermore, our results showed possible correlations between CRISPR spacer sequences and serotypes or STs. The co-existence of tigecycline-resistant tet (A) variants and tet (X4) complicates the evolution of vital resistance genes in farming environments. Further, four reorganization plasmids carrying tet (X4) were observed, and the formation mechanism mainly involved homologous recombination. These findings contribute significantly to a better understanding of the diversity and complexity of tet (X4)-bearing plasmids, an emerging novel public health concern.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Qian Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Kai Peng
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Xia Xiao
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| |
Collapse
|
6
|
Yeh HY, Awad A, Rothrock MJ. Detection of Campylobacter jejuni diversity by clustered regularly interspaced short palindromic repeats (CRISPR) from an animal farm. Vet Med Sci 2021; 7:2381-2388. [PMID: 34510794 PMCID: PMC8604122 DOI: 10.1002/vms3.622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Campylobacter jejuni is the leading bacterial pathogen that causes foodborne illness worldwide. Because of genetic diversity and sophisticated growth requirements of C. jejuni, several genotyping methods have been investigated to classify this bacterium during the outbreaks. One of such method is to use clustered regularly interspaced short palindromic repeats (CRISPR). Objectives The goal of this study was to explore the diversity of C. jejuni isolates with CRISPR from an animal farm. Methods Seventy‐seven C. jejuni isolates from an animal farm were used in this study. The day‐old broilers were reared with other poultry and farm animals, including layer hens, guinea hens, dairy goats and sheep. A small swine herd was also present on an adjacent, but separate plot of land. Isolation and identification of C. jejuni were performed according to the standard procedures. The CRISPR type 1 was PCR amplified from genomic DNA, and the amplicons were sequenced by the Sanger dideoxy method. The direct repeats (DRs) and spacers of the CRISPR sequences were identified using the CRISPRFinder. Results The CRISPR sequences were detected in all 77 isolates. One type of DRs was identified in these 77 isolates. The lengths of the CRISPR locus ranged from 100 to 560 nucleotides, whereas the number of spacers ranged from one to eight. The distributions of the numbers of CRISPR spacers from different sources seemed to be random. Overall, 17 out of 77 (22%) C. jejuni isolates had two and five spacers, whereas 14 out of 77 (18%) isolates had three spaces in their genomes. By further analysis of spacer sequences, a total of 266 spacer sequences were identified in 77 C. jejuni isolates. By comparison with known published spacer sequences, we observed that 49 sequences were unique in this study. The CRISPR sequence combination of Nos. 16, 19, 48 and 57 was found among a total of 15 C. jejuni isolates containing various multi‐locus sequence typing (MLST) types (ST‐50, ST‐607, ST‐2231 and ST‐5602). No. 57 spacer sequence was unique from this study, whereas the other three (Nos. 16, 19 and 48) sequences were found in previous reports. Combination of Nos. 5, 9, 15, 30 and 45 was associated with ST‐353. To compare the CRISPR genotyping with other methods, the MLST was selected due to its high discriminatory power to differentiate isolates. Based on calculation of the Simpson's index of diversity, a combination of both methods had higher Simpson's index value than those for CRISPR or MLST, respectively. Conclusions Our results suggest that the MLST from C. jejuni isolates can be discriminated based on the CRISPR unique spacer sequences and the numbers of spacers. In the future, investigation on the CRISPR resolution for C. jejuni identification in outbreaks is needed. A database that integrates both MLST sequences and CRISPR sequences and is searchable is greatly in demand for tracking outbreaks and evolution of this bacterium.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, USA
| | - Amal Awad
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, USA.,Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
7
|
Gomes CN, Barker DOR, Duque SDS, Che EV, Jayamanna V, Taboada EN, Falcão JP. Campylobacter coli isolated in Brazil typed by core genome Multilocus Sequence Typing shows high genomic diversity in a global context. INFECTION GENETICS AND EVOLUTION 2021; 95:105018. [PMID: 34332158 DOI: 10.1016/j.meegid.2021.105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Collapse
Affiliation(s)
- Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Emily Victoria Che
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Vasena Jayamanna
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Adiguzel MC, Goulart DB, Wu Z, Pang J, Cengiz S, Zhang Q, Sahin O. Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens 2021; 10:345. [PMID: 33809410 PMCID: PMC8000906 DOI: 10.3390/pathogens10030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022] Open
Abstract
To aid development of phage therapy against Campylobacter, we investigated the distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) systems in fluoroquinolone (FQ)-resistant Campylobacter jejuni. A total of 100 FQ-resistant C. jejuni strains from different sources were analyzed by PCR and DNA sequencing to determine resistance-conferring mutation in the gyrA gene and the presence of various CRISPR systems. All but one isolate harbored 1-5 point mutations in gyrA, and the most common mutation was the Thr86Ile change. Ninety-five isolates were positive with the CRISPR PCR, and spacer sequences were found in 86 of them. Among the 292 spacer sequences identified in this study, 204 shared 93-100% nucleotide homology to Campylobacter phage D10, 44 showed 100% homology to Campylobacter phage CP39, and 3 had 100% homology with Campylobacter phage CJIE4-5. The remaining 41 spacer sequences did not match with any phages in the database. Based on the results, it was inferred that the FQ-resistant C. jejuni isolates analyzed in this study were potentially resistant to Campylobacter phages D10, CP39, and CJIE4-5 as well as some unidentified phages. These phages should be excluded from cocktails of phages that may be utilized to treat FQ-resistant Campylobacter.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Debora Brito Goulart
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Seyda Cengiz
- Department of Microbiology, College of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (M.C.A.); (S.C.)
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (D.B.G.); (Z.W.); (J.P.); (Q.Z.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Syarifah IK, Latif H, Basri C, Rahayu P. Identification and differentiation of Campylobacter isolated from chicken meat using real-time polymerase chain reaction and high resolution melting analysis of hipO and glyA genes. Vet World 2020; 13:1875-1883. [PMID: 33132600 PMCID: PMC7566261 DOI: 10.14202/vetworld.2020.1875-1883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background and Aim: Campylobacter species have been recognized as the most frequently identified bacterial cause of human gastroenteritis. The aims of this study were to identify Campylobacter jejuni and Campylobacter coli species isolated from chicken meat and to analyze the differences in the melting curve patterns of both species. Materials and Methods: A total of 105 chicken meat samples collected from slaughterhouses and retailers in six provinces in Indonesia were examined for the isolation and identification of Campylobacter spp. A total of 56 positive isolates of Campylobacter spp. were analyzed using the quantitative real-time polymerase chain reaction and high resolution melting method. Results: The prevalence of Campylobacter spp. in chicken meat was found to be 61.9%. Regarding the identification, 23 isolates (41.07%) were C. jejuni, 22 (39.29%) were C. coli, six (10.71%) were a mix between C. jejuni and C. coli, and five isolates (8.93%) were Campylobacter spp. All the C. jejuni and C. coli isolates produced varied melting curve patterns. Conclusion: The high prevalence of C. jejuni and C. coli in chicken meat in Indonesia indicates a high risk of the incidence of campylobacteriosis in humans.
Collapse
Affiliation(s)
- Ika Kartika Syarifah
- Veterinary Public Health Study Program, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia.,Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| | - Hadri Latif
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Chaerul Basri
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Puji Rahayu
- Quality Control Laboratory and Certification of Animal Products, Bogor, Indonesia
| |
Collapse
|
10
|
Elnaggar M, Al-Mohannadi A, Kizhakayil D, Raynaud CM, Al-Mannai S, Gentilcore G, Pavlovski I, Sathappan A, Van Panhuys N, Borsotti C, Follenzi A, Grivel JC, Deola S. Flow-Cytometry Platform for Intracellular Detection of FVIII in Blood Cells: A New Tool to Assess Gene Therapy Efficiency for Hemophilia A. Mol Ther Methods Clin Dev 2020; 17:1-12. [PMID: 31886317 PMCID: PMC6920166 DOI: 10.1016/j.omtm.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Abstract
Detection of factor VIII (FVIII) in cells by flow cytometry is controversial, and no monoclonal fluorescent antibody is commercially available. In this study, we optimized such an assay and successfully used it as a platform to study the functional properties of phosphoglycerate kinase (PGK)-FVIII lentiviral vector-transduced cells by directly visualizing FVIII in cells after different gene transfer conditions. We could measure cellular stress parameters after transduction by correlating gene expression and protein accumulation data. Flow cytometry performed on transduced cell lines showed that increasing MOI rates resulted in increased protein levels, plateauing after an MOI of 30. We speculated that, at higher MOI, FVIII production could be impaired by a limiting factor required for proper folding. To test this hypothesis, we interfered with the unfolded protein response by blocking proteasomal degradation and measured the accumulation of intracellular misfolded protein. Interestingly, at higher MOIs the cells displayed signs of toxicity with reactive oxygen species accumulation. This suggests the need for identifying a safe window of transduction dose to avoid consequent cell toxicity. Herein, we show that our flow cytometry platform for intracytoplasmic FVIII protein detection is a reliable method for optimizing gene therapy protocols in hemophilia A by shedding light on the functional status of cells after gene transfer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor Pavlovski
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | | | - Chiara Borsotti
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro,” 28100 Novara, Italy
| | | | - Sara Deola
- Research Department, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
11
|
Frazão MR, de Souza RA, Medeiros MIC, da Silva Duque S, Cao G, Allard MW, Falcão JP. Molecular typing of Campylobacter jejuni strains: comparison among four different techniques. Braz J Microbiol 2020; 51:519-525. [PMID: 31872391 PMCID: PMC7203312 DOI: 10.1007/s42770-019-00218-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/17/2019] [Indexed: 11/29/2022] Open
Abstract
This study compared the ability of pulsed-field gel electrophoresis (PFGE), flaA small variable region (SVR) sequencing, analysis of the clustered regularly interspaced short palindromic repeats locus by high resolution melting analysis (CRISPR-HRMA), and multilocus sequence typing (MLST) for typing 111 Campylobacter jejuni strains isolated from diverse sources during 20 years in Brazil. For this, we used previous results obtained by PFGE and flaA-SVR sequencing from our research group and performed CRISPR-HRMA and MLST typing for the first time. Furthermore, the discrimination index (DI) of each method was accessed. The DI for PFGE, flaA-SVR sequencing, CRISPR-HRMA, and MLST was 0.980, 0.932, 0.868, and 0.931, respectively. By PFGE and flaA-SVR sequencing, some strains from clinical and non-clinical sources and from humans and animals presented ≥ 80% similarity. Similarly, some strains from different origins presented the same ST and CRISPR-HRMA types. In conclusion, despite the different DI values, all assays provided the same epidemiological information suggesting that a potential transmission may have occurred between C. jejuni from clinical and non-clinical sources and from animals and humans in Brazil. Furthermore it was demonstrated the suitability of PFGE that should be used preferably together with MLST and/or flaA-SVR sequencing for typing C. jejuni strains.
Collapse
Affiliation(s)
- Miliane Rodrigues Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Av. do Café, s/n°- Campus Universitário USP, Ribeirão Preto, SP 14040-903 Brazil
| | - Roberto Antonio de Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Av. do Café, s/n°- Campus Universitário USP, Ribeirão Preto, SP 14040-903 Brazil
| | | | - Sheila da Silva Duque
- Fundação Oswaldo Cruz (Fiocruz), Instituto Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ 21040-900 Brazil
| | - Guojie Cao
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740 USA
| | - Marc William Allard
- Division of Microbiology, Office of Regular Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 5001 Campus Drive, College Park, MD 20740 USA
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, FCFRP-USP, Av. do Café, s/n°- Campus Universitário USP, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
12
|
Yeh HY, Awad A. Genotyping of Campylobacter jejuni Isolates from Poultry by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Curr Microbiol 2020; 77:1647-1652. [PMID: 32279188 DOI: 10.1007/s00284-020-01965-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
Campylobacter jejuni is the leading bacterial foodborne pathogen that causes human acute gastrointestinal illness worldwide. Due to its genetic diversity, fastidious growth and sophisticated biochemical requirements, classification of Campylobacter by traditional techniques is problematic. Several molecular typing methods have been explored in this bacterium. One such method is to use clustered regularly interspaced short palindromic repeats (CRISPR). These CRISPRs consist of a direct repeat interspaced with nonrepetitive spacer sequences. In this study, we applied this genotyping method to explore the genetic diversity of C. jejuni isolated from poultry sources. Ninety-nine C. jejuni isolates from poultry environments in four different US states were used. Genomic DNA of the isolates were extracted from cultures using a commercial kit. PCR primers and conditions for CRISPR type 1 amplification were described previously. The amplicons were purified and sequenced by the Sanger dideoxy sequencing method. The direct repeats (DR) and spacers of the CRISPR sequences were identified using the CRISPRFinder. The results show there were 21% isolates no detectable, 30% isolates questionable, and 49% isolates confirmed CRISPR, respectively. The lengths of CRISPR range from 100 to 695 nucleotides. One type of DR was found in CRISPR of these isolates. The number of spacers in CRISPR ranges from 1 to 10 with various sequences. A total of 55 distinctive spacer sequences were identified in 78 isolates. Among them, 33 sequences were found unique in this study. In addition, the CRISPR genotyping had higher the Simpson's index of diversity value than that from flaA nucleotide typing. The results of our study show the CRISPR genotyping on C. jejuni may be complementary to the other genotyping methods.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA, 30605-2720, USA.
| | - Amal Awad
- Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, 950 College Station Road, Athens, GA, 30605-2720, USA.,Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
13
|
SEPAHVAND A, HOSSEINI-SAFA A, YOUSOFI HA, TAJEDINI MH, PAHLAVAN GHAREHBABAH R, PESTEHCHIAN N. Genotype Characteristics of Giardia duodenalis in Patients Using High Resolution Melting Analysis Technique in Khorramabad, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:204-213. [PMID: 32595710 PMCID: PMC7311821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND We aimed at genotyping and evaluating the predominance of G. duodenalis assemblages isolated from patients referred to medical laboratories in Khorramabad, Iran from Nov 2015 to Sep 2016. Hence, the development of a cost-effective HRM approach to determine genotypes of G. duodenalis based on the triosephosphate isomerase (tpi) gene was examined and the genotyping results with and without diarrhea was compared. METHODS Seventy G. duodenalis positive fecal samples were collected. A microscopic confirmation for the presence of Giardia spp. was performed, cysts of 70 Giardia spp. positive specimens were concentrated using sucrose flotation technique and sucrose solution PCR amplification was performed on 69 of 70 (98.5%) samples, and High Resolution Melting (HRM) analysis was performed using a software. RESULTS The results showed two distinct genotypes (assemblages A and B) of G. duodenalis but infections with mixture of both assemblages were not detected. The genotypes of G. duodenalis showed that the sub assemblage AI, BIII and BIV were present in a proportion of 68.1%, 20.3% and 11.6% respectively in samples. Assemblage AI was significantly (P<0.05) more frequently found in patients with diarrhea. CONCLUSION The sub-assemblage AI, BIII, and BIV are more zoonotic potential. According to the comparison of the results of this study with the results of previous studies in this area and around of it, as well as the way people live and keep pets. This pattern established in Khorramabad city. HRM can be an ideal technique to detect and genotyping of G. duodenalis in clinical samples.
Collapse
Affiliation(s)
- Akram SEPAHVAND
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad HOSSEINI-SAFA
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ali YOUSOFI
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza PAHLAVAN GHAREHBABAH
- Department of Medical Biotechnology, Faculty of Advance Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader PESTEHCHIAN
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence
| |
Collapse
|
14
|
Banowary B, Dang VT, Sarker S, Connolly JH, Chenu J, Groves P, Raidal S, Ghorashi SA. Evaluation of Two Multiplex PCR-High-Resolution Melt Curve Analysis Methods for Differentiation of Campylobacter jejuni and Campylobacter coli Intraspecies. Avian Dis 2019; 62:86-93. [PMID: 29620472 DOI: 10.1637/11739-080417-reg.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter infection is a common cause of bacterial gastroenteritis in humans and remains a significant global public health issue. The capability of two multiplex PCR (mPCR)-high-resolution melt (HRM) curve analysis methods (i.e., mPCR1-HRM and mPCR2-HRM) to detect and differentiate 24 poultry isolates and three reference strains of Campylobacter jejuni and Campylobacter coli was investigated. Campylobacter jejuni and C. coli were successfully differentiated in both assays, but the differentiation power of mPCR2-HRM targeting the cadF gene was found superior to that of mPCR1-HRM targeting the gpsA gene or a hypothetical protein gene. However, higher intraspecies variation within C. coli and C. jejuni isolates was detected in mPCR1-HRM when compared with mPCR2-HRM. Both assays were rapid and required minimum interpretation skills for discrimination between and within Campylobacter species when using HRM curve analysis software.
Collapse
Affiliation(s)
- Banya Banowary
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678
| | - Van Tuan Dang
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678
| | - Subir Sarker
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678.,C School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia 3086
| | - Joanne H Connolly
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678.,B Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries and Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678
| | - Jeremy Chenu
- D Birling Avian Laboratories, Bringelly, New South Wales, Australia 2556
| | - Peter Groves
- E University of Sydney, Sydney, New South Wales, Australia 2006
| | - Shane Raidal
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678.,B Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries and Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678
| | - Seyed Ali Ghorashi
- A School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678.,B Graham Centre for Agricultural Innovation, New South Wales Department of Primary Industries and Charles Sturt University, Wagga Wagga, New South Wales, Australia 2678
| |
Collapse
|
15
|
Riley LW. Laboratory Methods in Molecular Epidemiology: Bacterial Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0004-2018. [PMID: 30387415 PMCID: PMC11633637 DOI: 10.1128/microbiolspec.ame-0004-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
In infectious disease epidemiology, the laboratory plays a critical role in diagnosis, outbreak investigations, surveillance, and characterizing biologic properties of microbes associated with their transmissibility, resistance to anti-infectives, and pathogenesis. The laboratory can inform and refine epidemiologic study design and data analyses. In public health, the laboratory functions to assess effect of an intervention. In addition to research laboratories, the new-generation molecular microbiology technology has been adapted into clinical and public health laboratories to simplify, accelerate, and make precise detection and identification of infectious disease pathogens. This technology is also being applied to subtype microbes to conduct investigations that advance our knowledge of epidemiology of old and emerging infectious diseases. Because of the recent explosive progress in molecular microbiology technology and the vast amount of data generated from the applications of this technology, this Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases describes these methods separately for bacteria, viruses, and parasites. This review discusses past and current advancements made in laboratory methods used to conduct epidemiologic studies of bacterial infections. It describes methods used to subtype bacterial organisms based on molecular microbiology techniques, following a discussion on what is meant by bacterial "species" and "clones." Discussions on past and new genotyping tests applied to epidemiologic investigations focus on tests that compare electrophoretic band patterns, hybridization matrices, and nucleic acid sequences. Applications of these genotyping tests to address epidemiologic issues are detailed elsewhere in other reviews of this series. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
16
|
Shiozaki Y, Okamura K, Kohno S, Keenan AL, Williams K, Zhao X, Chick WS, Miyazaki-Anzai S, Miyazaki M. The CDK9-cyclin T1 complex mediates saturated fatty acid-induced vascular calcification by inducing expression of the transcription factor CHOP. J Biol Chem 2018; 293:17008-17020. [PMID: 30209133 PMCID: PMC6222109 DOI: 10.1074/jbc.ra118.004706] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Indexed: 11/06/2022] Open
Abstract
Vascular calcification (or mineralization) is a common complication of chronic kidney disease (CKD) and is closely associated with increased mortality and morbidity rates. We recently reported that activation of the activating transcription factor 4 (ATF4) pathway through the saturated fatty acid (SFA)-induced endoplasmic reticulum (ER) stress response plays a causative role in CKD-associated vascular calcification. Here, using mouse models of CKD, we 1) studied the contribution of the proapoptotic transcription factor CCAAT enhancer-binding protein homologous protein (CHOP) to CKD-dependent medial calcification, and 2) we identified an additional regulator of ER stress-mediated CHOP expression. Transgenic mice having smooth muscle cell (SMC)-specific CHOP expression developed severe vascular apoptosis and medial calcification under CKD. Screening of a protein kinase inhibitor library identified 16 compounds, including seven cyclin-dependent kinase (CDK) inhibitors, that significantly suppressed CHOP induction during ER stress. Moreover, selective CDK9 inhibitors and CRISPR/Cas9-mediated CDK9 reduction blocked SFA-mediated induction of CHOP expression, whereas inhibitors of other CDK isoforms did not. Cyclin T1 knockout inhibited SFA-mediated induction of CHOP and mineralization, whereas deletion of cyclin T2 and cyclin K promoted CHOP expression levels and mineralization. Of note, the CDK9-cyclin T1 complex directly phosphorylated and activated ATF4. These results demonstrate that the CDK9-cyclin T1 and CDK9-cyclin T2/K complexes have opposing roles in CHOP expression and CKD-induced vascular calcification. They further reveal that the CDK9-cyclin T1 complex mediates vascular calcification through CHOP induction and phosphorylation-mediated ATF4 activation.
Collapse
Affiliation(s)
- Yuji Shiozaki
- From the Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Kayo Okamura
- From the Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Shohei Kohno
- From the Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Audrey L Keenan
- From the Division of Renal Diseases and Hypertension, Department of Medicine, and
| | - Kristina Williams
- the Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, Colorado 80045
| | - Xiaoyun Zhao
- the Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, Colorado 80045
| | - Wallace S Chick
- the Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, Colorado 80045
| | | | - Makoto Miyazaki
- From the Division of Renal Diseases and Hypertension, Department of Medicine, and
| |
Collapse
|
17
|
Shabbir MAB, Tang Y, Xu Z, Lin M, Cheng G, Dai M, Wang X, Liu Z, Yuan Z, Hao H. The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni. Front Cell Infect Microbiol 2018; 8:285. [PMID: 30177957 PMCID: PMC6109747 DOI: 10.3389/fcimb.2018.00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/26/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni is considered as the leading cause of gastroenteritis all over the world. This bacterium has the CRISPR–cas9 system, which is used as a gene editing technique in different organisms. However, its role in bacterial virulence has just been discovered; that discovery, however, is just the tip of the iceberg. The purpose of this study is to find out the relationship between cas9 and virulence both phenotypically and genotypically in C. jejuni NCTC11168. Understanding both aspects of this relationship allows for a much deeper understanding of the mechanism of bacterial pathogenesis. The present study determined virulence in wild and mutant strains by observing biofilm formation, motility, adhesion and invasion, intracellular survivability, and cytotoxin production, followed by the transcriptomic analysis of both strains. The comparative gene expression profile of wild and mutant strains was determined on the basis of De-Seq transcriptomic analysis, which showed that the cas9 gene is involved in enhancing virulence. Differential gene expression analysis revealed that multiple pathways were involved in virulence, regulated by the CRISPR-cas9 system. Our findings help in understanding the potential role of cas9 in regulating the other virulence associated genes in C. jejuni NCTC11168. The findings of this study provide critical information about cas9's potential involvement in enhancing the virulence of C. jejuni, which is a major public health threat.
Collapse
Affiliation(s)
- Muhammad A B Shabbir
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yanping Tang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zihui Xu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Mingyue Lin
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zhengli Liu
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- China MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Campoccia D, Montanaro L, Arciola CR. Current Methods for Molecular Epidemiology Studies of Implant Infections. Int J Artif Organs 2018; 32:642-54. [DOI: 10.1177/039139880903200914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the last few decades, the number of surgical procedures involving prosthetic materials has greatly multiplied, along with the rising medical and economic impact of implant-associated infections. The need to appropriately counteract and deal with this phenomenon has led to growing efforts to elucidate the etiology, pathogenesis and epidemiology of these types of infections, characterized by opportunistic pathogens. Molecular epidemiology studies have progressively emerged as a leading multitask tool to identify and fingerprint bacterial strains, unveil the complex clonal nature of important pathogens, detect outbreak events, track the origin of the infections, assess the clinical significance of individual strain types, survey their distribution, recognize associations of strain types with specific virulence determinants and/or pathological conditions, assess the role played by the specific components of the virulon, and reveal the phylogeny and the mechanisms through which new strain types have emerged. Despite the many advances that have been made thanks to these flourishing new approaches to molecular epidemiology, a number of critical aspects remain challenging. In this paper, we briefly discuss the current limitations and possible developments of molecular epidemiology methods in the investigation and surveillance of implant infections.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Department of Experimental Pathology, University of Bologna, Bologna - Italy
| |
Collapse
|
19
|
High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli. Antimicrob Agents Chemother 2017; 61:AAC.00265-17. [PMID: 28416542 PMCID: PMC5444143 DOI: 10.1128/aac.00265-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification.
Collapse
|
20
|
Identification and discrimination of Toxoplasma gondii, Sarcocystis spp., Neospora spp., and Cryptosporidium spp. by righ-resolution melting analysis. PLoS One 2017; 12:e0174168. [PMID: 28346485 PMCID: PMC5367704 DOI: 10.1371/journal.pone.0174168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/04/2017] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to standardize the high-resolution melting method for identification and discrimination of Toxoplasma gondii, Sarcocystis spp., Neospora spp., and Cryptosporidium spp. by amplification of 18S ribosomal DNA (rDNA) using a single primer pair. The analyses were performed on individual reactions (containing DNA from a single species of a protozoan), on duplex reactions (containing DNA from two species of protozoa in each reaction), and on a multiplex reaction (containing DNA of four parasites in a single reaction). The proposed method allowed us to identify and discriminate the four species by analyzing the derivative, normalized, and difference melting curves, with high reproducibility among and within the experiments, as demonstrated by low coefficients of variation (less than 2.2% and 2.0%, respectively). This is the first study where this method is used for discrimination of these four species of protozoa in a single reaction.
Collapse
|
21
|
Miles LA, Garippa RJ, Poirier JT. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J 2016; 283:3170-80. [PMID: 27250066 DOI: 10.1111/febs.13770] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
The recently described clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has proven to be an exquisitely powerful and invaluable method of genetic manipulation and/or modification. As such, many researchers have realized the potential of using the CRISPR/Cas9 system as a novel screening method for the identification of important proteins in biological processes and have designed short guide RNA libraries for an in vitro screening. The seminal papers describing these libraries offer valuable information regarding methods for generating the short guide RNA libraries, creating cell lines containing these libraries, and specific details regarding the screening workflow. However, certain considerations are often overlooked that may be important when planning and performing a screen, including which CRISPR library to use and how to best analyze the resulting screen data. In this review, we offer suggestions to answer some of these questions that are not covered as deeply in the papers describing the available CRISPR libraries for an in vitro screening.
Collapse
Affiliation(s)
- Linde A Miles
- Pharmacology Graduate Training Program, Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
22
|
Gomes CN, Souza RA, Passaglia J, Duque SS, Medeiros MIC, Falcão JP. Genotyping of Campylobacter coli strains isolated in Brazil suggests possible contamination amongst environmental, human, animal and food sources. J Med Microbiol 2016; 65:80-90. [PMID: 26531157 DOI: 10.1099/jmm.0.000201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter coli and Campylobacter jejuni are two of the most common causative agents of food-borne gastroenteritis in numerous countries worldwide. In Brazil, campylobacteriosis is under diagnosed and under-reported, and few studies have molecularly characterized Campylobacter spp. in this country. The current study genotyped 63 C. coli strains isolated from humans (n512), animals (n521), food (n510) and the environment (n520) between 1995 and 2011 in Brazil. The strains were genotyped using pulsed-field gel electrophoresis (PFGE), sequencing the short variable region (SVR) of the flaA gene ( flaA-SVR) and high-resolution melting analysis (HRMA) of the clustered regularly interspaced short palindromic repeat (CRISPR) locus to better understand C. coli genotypic diversity and compare the suitability of these three methods for genotyping this species. Additionally, the discrimination index (DI) of each of these methods was assessed. Some C. coli strains isolated from clinical and non-clinical origins presented ≥80 % genotypic similarity by PFGE and flaA-SVR sequencing. HRMA of the CRISPR locus revealed only four different melting profiles. In total, 22 different flaA-SVR alleles were detected. Of these, seven alleles, comprising gt1647–gt1653, were classified as novel. The most frequent genotypes were gt30 and gt1647. This distribution reveals the diversity of selected Brazilian isolates in comparison with the alleles described in the PubMLST database. The DIs for PFGE, flaA–SVR sequencing and CRISPR-HRMA were 0.986, 0.916 and 0.550, respectively. PFGE and flaA-SVR sequencing were suitable for subtyping C. coli strains, in contrast to CRISPR-HRMA. The high genomic similarity amongst some C. coli strains confirms the hypothesis that environmental and food sources potentially lead to human and animal contamination in Brazil.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/no, Campus Universitário USP, Ribeirão Preto, SP 14040-903, Brazil
| | - Roberto A Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/no, Campus Universitário USP, Ribeirão Preto, SP 14040-903, Brazil
| | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/no, Campus Universitário USP, Ribeirão Preto, SP 14040-903, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz, Pavilhão Rocha Lima, sala 516, Av. Brasil, 4365, Rio de Janeiro, RJ 21040-900, Brazil
| | - Marta I C Medeiros
- Instituto Adolfo Lutz de Ribeirão Preto, Rua Minas, 877 Ribeirão Preto, SP 14085-410, Brazil
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-USP, Av. do Café, s/no, Campus Universitário USP, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
23
|
DIAKITE BREHIMA, HAMZI KHALIL, HMIMECH WIAM, NADIFI SELLAMA, GMRAVC. Genetic polymorphisms of T-1131C APOA5 and ALOX5AP SG13S114 with the susceptibility of ischaemic stroke in Morocco. J Genet 2016; 95:303-9. [DOI: 10.1007/s12041-016-0635-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Forghani F, Wei S, Oh DH. A Rapid Multiplex Real-Time PCR High-Resolution Melt Curve Assay for the Simultaneous Detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in Food. J Food Prot 2016; 79:810-5. [PMID: 27296430 DOI: 10.4315/0362-028x.jfp-15-428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three important foodborne pathogens, Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus, are of great concern for food safety. They may also coexist in food matrices and, in the case of B. cereus and S. aureus, the resulting illnesses can resemble each other owing to similar symptoms. Therefore, their simultaneous detection may have advantages in terms of cost savings and rapidity. Given this context, a rapid multiplex real-time PCR high-resolution melt curve assay for the simultaneous detection of these three pathogens in food was developed. The assay successfully detected B. cereus (gyrB), L. monocytogenes (hly), and S. aureus (nuc) in a single reaction, and the average melting temperatures were 76.23, 80.19, and 74.01°C, respectively. The application of SYTO9 dye and a slow melt curve analysis ramp rate (0.1°C/s) enabled the production of sharp, high-resolution melt curve peaks that were easily distinguishable from each other. The detection limit in food (milk, rice, and lettuce) was 3.7 × 10(3) CFU/g without an enrichment step and 3.7 × 10(1) CFU/g following the 10-h enrichment. Hence, the assay developed here is specific and sensitive, providing an efficient tool for implementation in food for the simultaneous detection of B. cereus, L. monocytogenes, and S. aureus .
Collapse
Affiliation(s)
- Fereidoun Forghani
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea; Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shuai Wei
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | - Deog-Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
25
|
Delannoy S, Beutin L, Fach P. Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8163-8174. [PMID: 26449676 DOI: 10.1007/s11356-015-5446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Among strains of Shiga-toxin-producing Escherichia coli (STEC), seven serogroups (O26, O45, O103, O111, O121, O145, and O157) are frequently associated with severe clinical illness in humans. The development of methods for their reliable detection from complex samples such as food has been challenging thus far, and is currently based on the PCR detection of the major virulence genes stx1, stx2, and eae, and O-serogroup-specific genes. However, this approach lacks resolution. Moreover, new STEC serotypes are continuously emerging worldwide. For example, in May 2011, strains belonging to the hitherto rarely detected STEC serotype O104:H4 were identified as causative agents of one of the world's largest outbreak of disease with a high incidence of hemorrhagic colitis and hemolytic uremic syndrome in the infected patients. Discriminant typing of pathogens is crucial for epidemiological surveillance and investigations of outbreaks, and especially for tracking and tracing in case of accidental and deliberate contamination of food and water samples. Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of short, highly conserved DNA repeats separated by unique sequences of similar length. This distinctive sequence signature of CRISPRs can be used for strain typing in several bacterial species including STEC. This review discusses how CRISPRs have recently been used for STEC identification and typing.
Collapse
Affiliation(s)
- Sabine Delannoy
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France.
| | - Lothar Beutin
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Patrick Fach
- ANSES, Food Safety Laboratory, Platform IdentyPath, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
26
|
Xia E, Teo YY, Ong RTH. SpoTyping: fast and accurate in silico Mycobacterium spoligotyping from sequence reads. Genome Med 2016; 8:19. [PMID: 26883915 PMCID: PMC4756441 DOI: 10.1186/s13073-016-0270-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/25/2016] [Indexed: 01/25/2023] Open
Abstract
SpoTyping is a fast and accurate program for in silico spoligotyping of Mycobacterium tuberculosis isolates from next-generation sequencing reads. This novel method achieves high accuracy for reads of both uniform and varying lengths, and is about 20 to 40 times faster than SpolPred. SpoTyping also integrates the function of producing a report summarizing associated epidemiological data from a global database of all isolates having the same spoligotype. SpoTyping is freely available at: https://github.com/xiaeryu/SpoTyping-v2.0.
Collapse
Affiliation(s)
- Eryu Xia
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
| | - Yik-Ying Teo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore. .,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore. .,Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Genome Institute of Singapore, Singapore, Singapore.
| | - Rick Twee-Hee Ong
- Centre for Infectious Disease Epidemiology and Research, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
27
|
A novel pentaplex real time (RT)- PCR high resolution melt curve assay for simultaneous detection of emetic and enterotoxin producing Bacillus cereus in food. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
de Cárdenas I, Fernández-Garayzábal JF, de la Cruz ML, Domínguez L, Ugarte-Ruiz M, Gómez-Barrero S. Efficacy of a typing scheme for Campylobacter based on the combination of true and questionable CRISPR. J Microbiol Methods 2015; 119:147-53. [PMID: 26518609 DOI: 10.1016/j.mimet.2015.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/19/2023]
Abstract
This study evaluates an improved scheme for Campylobacter genotyping based on the combination of true and questionable CRISPR (clustered regularly interspaced short palindromic repeats) elements. A total of 180 Campylobacter strains (Campylobacter jejuni n=93 and Campylobacter coli n=87), isolated from neck skin and caecal content of broilers, poultry meat and sewage water were analysed. Another 97 C. jejuni DNA samples from cases of human campylobacteriosis were assessed. Sixty-three genotypes were found in C. jejuni considering only true CRISPR, and 16 additional genotypes were identified when questionable CRISPR were also taken into account. Likewise in C. coli the number of genotypes increased from eight for only true CRISPR to 14 after including questionable CRISPR elements. The number of typeable C. jejuni and C. coli isolates was 115 (60.5%) and 17 (19.5%) respectively considering only true CRISPR. These percentages increased to 92.7% (n=176) and 39.1% (n=34) respectively when both true and questionable CRISPR were considered. 60.9% of the C. coli isolates were non-typeable by CRISPR due to the lack of any PCR amplifiable CRISPR loci, which raises questions about CRISPR analysis as an appropriate method for C. coli typing. However the assessment of true and questionable CRISPR has proved to be fairly useful for typing C. jejuni due to its high discriminatory power (Simpson's index=0.960) and typeability (92.7%) values. The results of the present work show that our genotyping method based on the combination of true and questionable CRISPR elements may be used as a suitable complementary tool to existing C. jejuni genotyping methods.
Collapse
Affiliation(s)
- Inés de Cárdenas
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| | - José F Fernández-Garayzábal
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain; Department of Animal Health, Faculty of Veterinary Science, Complutense University, 28040 Madrid, Spain
| | | | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University, Madrid, Spain
| | | |
Collapse
|
29
|
Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet 2015; 6:300. [PMID: 26442115 PMCID: PMC4585242 DOI: 10.3389/fgene.2015.00300] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022] Open
Abstract
CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| |
Collapse
|
30
|
Differentiation of Campylobacter jejuni and Campylobacter coli Using Multiplex-PCR and High Resolution Melt Curve Analysis. PLoS One 2015; 10:e0138808. [PMID: 26394042 PMCID: PMC4578860 DOI: 10.1371/journal.pone.0138808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 09/03/2015] [Indexed: 01/30/2023] Open
Abstract
Campylobacter spp. are important causes of bacterial gastroenteritis in humans in developed countries. Among Campylobacter spp. Campylobacter jejuni (C. jejuni) and C. coli are the most common causes of human infection. In this study, a multiplex PCR (mPCR) and high resolution melt (HRM) curve analysis were optimized for simultaneous detection and differentiation of C. jejuni and C. coli isolates. A segment of the hippuricase gene (hipO) of C. jejuni and putative aspartokinase (asp) gene of C. coli were amplified from 26 Campylobacter isolates and amplicons were subjected to HRM curve analysis. The mPCR-HRM was able to differentiate between C. jejuni and C. coli species. All DNA amplicons generated by mPCR were sequenced. Analysis of the nucleotide sequences from each isolate revealed that the HRM curves were correlated with the nucleotide sequences of the amplicons. Minor variation in melting point temperatures of C. coli or C. jejuni isolates was also observed and enabled some intraspecies differentiation between C. coli and/or C. jejuni isolates. The potential of PCR-HRM curve analysis for the detection and speciation of Campylobacter in additional human clinical specimens and chicken swab samples was also confirmed. The sensitivity and specificity of the test were found to be 100% and 92%, respectively. The results indicated that mPCR followed by HRM curve analysis provides a rapid (8 hours) technique for differentiation between C. jejuni and C. coli isolates.
Collapse
|
31
|
Li J, Zhao GH, Lin R, Blair D, Sugiyama H, Zhu XQ. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis. Parasitol Res 2015; 114:4225-32. [PMID: 26253799 DOI: 10.1007/s00436-015-4660-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
- Institute of Animal Health, Guangdong Academy Agricultural Sciences, Guangzhou, Guangdong Province, 510640, People's Republic of China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - RuiQing Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - David Blair
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, 113-8421, Tokyo, Japan
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China.
| |
Collapse
|
32
|
Lier C, Baticle E, Horvath P, Haguenoer E, Valentin AS, Glaser P, Mereghetti L, Lanotte P. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages. Front Genet 2015; 6:214. [PMID: 26124774 PMCID: PMC4466440 DOI: 10.3389/fgene.2015.00214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) are found in 90% of archaea and about 40% of bacteria. In this original system, CRISPR arrays comprise short, almost unique sequences called spacers that are interspersed with conserved palindromic repeats. These systems play a role in adaptive immunity and participate to fight non-self DNA such as integrative and conjugative elements, plasmids, and phages. In Streptococcus agalactiae, a bacterium implicated in colonization and infections in humans since the 1960s, two CRISPR-Cas systems have been described. A type II-A system, characterized by proteins Cas9, Cas1, Cas2, and Csn2, is ubiquitous, and a type I–C system, with the Cas8c signature protein, is present in about 20% of the isolates. Unlike type I–C, which appears to be non-functional, type II-A appears fully functional. Here we studied type II-A CRISPR-cas loci from 126 human isolates of S. agalactiae belonging to different clonal complexes that represent the diversity of the species and that have been implicated in colonization or infection. The CRISPR-cas locus was analyzed both at spacer and repeat levels. Major distinctive features were identified according to the phylogenetic lineages previously defined by multilocus sequence typing, especially for the sequence type (ST) 17, which is considered hypervirulent. Among other idiosyncrasies, ST-17 shows a significantly lower number of spacers in comparison with other lineages. This characteristic could reflect the peculiar virulence or colonization specificities of this lineage.
Collapse
Affiliation(s)
- Clément Lier
- UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, Université de Tours, Tours France ; INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly France ; Service de Bactériologie-Virologie, Hôpital Bretonneau - Centre Hospitalier Régional et Universitaire de Tours, Tours France
| | - Elodie Baticle
- Service de Bactériologie-Virologie, Hôpital Bretonneau - Centre Hospitalier Régional et Universitaire de Tours, Tours France
| | | | - Eve Haguenoer
- UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, Université de Tours, Tours France ; INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly France
| | - Anne-Sophie Valentin
- UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, Université de Tours, Tours France ; INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly France ; Service de Bactériologie-Virologie, Hôpital Bretonneau - Centre Hospitalier Régional et Universitaire de Tours, Tours France
| | - Philippe Glaser
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, Institut Pasteur, Paris France ; CNRS UMR 3525, Paris France
| | - Laurent Mereghetti
- UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, Université de Tours, Tours France ; INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly France ; Service de Bactériologie-Virologie, Hôpital Bretonneau - Centre Hospitalier Régional et Universitaire de Tours, Tours France
| | - Philippe Lanotte
- UMR1282 Infectiologie et Santé Publique, Bactéries et Risque Materno-Foetal, Université de Tours, Tours France ; INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly France ; Service de Bactériologie-Virologie, Hôpital Bretonneau - Centre Hospitalier Régional et Universitaire de Tours, Tours France
| |
Collapse
|
33
|
|
34
|
Sheludchenko MS, Huygens F, Stratton H, Hargreaves M. CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters. PLoS One 2015; 10:e0124090. [PMID: 25946192 PMCID: PMC4422515 DOI: 10.1371/journal.pone.0124090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Seventy four SNP genotypes and 54 E. coli genomes from kangaroo, Tasmanian devil, reptile, cattle, dog, horse, duck, bird, fish, rodent, human and environmental water sources were screened for the presence of the CRISPR 2.1 loci flanked by cas2 and iap genes. CRISPR 2.1 regions were found in 49% of the strains analysed. The majority of human E. coli isolates lacked the CRISPR 2.1 locus. We described 76 CRISPR 2.1 positive isolates originating from Australian animals and humans, which contained a total of 764 spacer sequences. CRISPR arrays demonstrated a long history of phage attacks especially in isolates from birds (up to 40 spacers). The most prevalent spacer (1.6%) was an ancient spacer found mainly in human, horse, duck, rodent, reptile and environmental water sources. The sequence of this spacer matched the intestinal P7 phage and the pO111 plasmid of E. coli.
Collapse
Affiliation(s)
- Maxim S. Sheludchenko
- Smart Water Research Centre, Griffith University, Southport, Queensland, Australia
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen Stratton
- Smart Water Research Centre, Griffith University, Southport, Queensland, Australia
| | - Megan Hargreaves
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
G894T endothelial nitric oxide synthase polymorphism and ischemic stroke in Morocco. Meta Gene 2014; 2:349-57. [PMID: 25606419 PMCID: PMC4287825 DOI: 10.1016/j.mgene.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide plays a major role in the regulation of cerebral blood flow and loss of its function leads to alteration of the vascular relaxation given its central role in the physiology of the vascular system. G894T eNOS polymorphism could have adverse effects on the expression and activity of endothelial nitric oxide synthase, which can result in functional impairment of the endothelium and contribute to the development of ischemic stroke in the different models of transmission. In this study, genotyping with PCR-RFLP and HRM (high resolution melting) methods were conducted on 165 ischemic stroke patients as well as 182 controls. The goal here was to compare genotyping with PCR-RLFP primer sequences of eNOS gene (size < 300 bp) to HRM. Our data suggests a statistically significant association between G894T eNOS polymorphism and ischemic stroke in recessive, dominant and additive models with P < 0.05 and odds ratio of 2.68 (1.08-6.70), 1.78 (1.16-2.73), and 1.71 (1.21-2.43) respectively. In sum, although the sample size is relatively small, it suggests that G894T eNOS polymorphism could be a potentially important genetic marker of ischemic stroke in the Moroccan population. Future studies should be conducted in this direction taking into consideration the functional activity of eNOS.
Collapse
Key Words
- 894T eNOS, mutant allele of endothelial nitric oxide synthase
- AB, applied biosystems
- CI, confidence interval
- DNA, deoxyribonucleic acid or deoxyribose nucleic acid
- Fig., figure
- G894T eNOS
- G894T eNOS, replacement guanine by thymine at position 894 of the endothelial nitric oxide synthase
- GG eNOS, homozygous wild of endothelial nitric oxide synthase
- GT eNOS, heterozygous mutant of endothelial nitric oxide synthase
- Genetics models
- HRM, high resolution melt
- IS, ischemic stroke
- Ischemic stroke
- LGPM, genetic and molecular pathology laboratory
- NO, nitric oxide
- OR, odds ratio
- P, P value
- PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism
- Ref., reference
- TOAST, Trial of Org 10172 in Acute Stroke Treatment
- TT eNOS, homozygous mutant of endothelial nitric oxide synthase
- bp, base pair
- eNOS, endothelial nitric oxide synthase
- vs, versus
- χ2, chi square
Collapse
|
36
|
Alnuaimi A, Wiesenfeld D, O'Brien-Simpson N, Reynolds E, Peng B, McCullough M. The development and validation of a rapid genetic method for species identification and genotyping of medically important fungal pathogens using high-resolution melting curve analysis. Mol Oral Microbiol 2014; 29:117-30. [DOI: 10.1111/omi.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
Affiliation(s)
- A.D. Alnuaimi
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
| | - D. Wiesenfeld
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
- Head and Neck Oncology; The Royal Melbourne Hospital; Melbourne Vic. Australia
| | - N.M. O'Brien-Simpson
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
| | - E.C. Reynolds
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
| | - B. Peng
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
| | - M.J. McCullough
- Melbourne Dental School; Oral Health CRC; The University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
37
|
Kovanen SM, Kivistö RI, Rossi M, Hänninen ML. A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. J Appl Microbiol 2014; 117:249-57. [PMID: 24655229 DOI: 10.1111/jam.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/05/2014] [Accepted: 03/19/2014] [Indexed: 11/27/2022]
Abstract
AIM To elucidate the Campylobacter jejuni population in organically farmed laying hens in Finland, multilocus sequence typing (MLST) was combined with characterization of clustered regularly interspaced short palindromic repeat (CRISPR) sequences. METHODS AND RESULTS A total of 147 Camp. jejuni isolates, collected from organically farmed laying hens from 18 farms in 2003-2004, were previously analysed by pulsed-field gel electrophoresis. In the present study, subsets of the isolates were further analysed by MLST and CRISPR sequences. Fourteen STs were found by MLST. ST-50 (27%, 7/18 farms), ST-3272 (20%, 8/18 farms), ST-45 (12%, 7/18 farms) and ST-356 (12%, 5/18 farms) were the most common STs. CRISPR types were identical among all isolates of ST-50 (ST-21 clonal complex (CC)) and the most variable among ST-45 (ST-45 CC). CONCLUSIONS ST-3272 (UA), a common ST in this study, has been infrequently detected in other hosts. Other major STs (ST-50 and ST-45) have been common in several hosts such as conventional poultry and bovines. CRISPR typing provided additional discrimination between isolates of certain dominant STs and could be useful in further epidemiological studies. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives new information about MLST and CRISPR types of Camp. jejuni among organically farmed laying hens.
Collapse
Affiliation(s)
- S M Kovanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
38
|
Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 2014; 78:74-88. [PMID: 24600041 PMCID: PMC3957734 DOI: 10.1128/mmbr.00039-13] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular.
Collapse
|
39
|
Hara Y, Nakajima T, Tasaki E, Kagawa S, Moore JE, Matsuda M. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in Campylobacter lari. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-013-0648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Ceccarelli M, Galluzzi L, Migliazzo A, Magnani M. Detection and characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR green-based real-time PCR and high resolution melt analysis targeting kinetoplast minicircle DNA. PLoS One 2014; 9:e88845. [PMID: 24551178 PMCID: PMC3923818 DOI: 10.1371/journal.pone.0088845] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/11/2014] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples, must be taken into account in quantitative PCR-based applications; however, it might also be used to differentiate between Leishmania subgenera.
Collapse
Affiliation(s)
- Marcello Ceccarelli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Fano (PU), Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Fano (PU), Italy
- * E-mail:
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino (PU), Italy
| |
Collapse
|
41
|
Vali Z, Raz A, Bokharaei H, Nabavi M, Bemanian MH, Yazdi MS, Djadid ND. Development of a High-resolution Melting Analysis Method Based on SYBR Green-I for rs7216389 Locus Genotyping in Asthmatic Child Patients. Avicenna J Med Biotechnol 2014; 6:72-80. [PMID: 24834309 PMCID: PMC4009098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is caused by the combination of different factors. Current concepts of asthma pathogenesis emphasize on gene-environment interactions. Mega-genome scanning projects revealed that different Single Nucleotide Polymorphisms (SNPs) are related to asthma susceptibility. rs7216389-T is one of them that is related to childhood asthma and its effect on childhood asthma severity has been proved in different nations, however no study has been performed in Eastern Mediterranean and Middle East countries yet. METHODS To perform population genetic studies, a rapid and high-throughput screening method is necessary. High-resolution melting analysis is a rapid, powerful and accurate method, which is suitable for this type of studies. Therefore, it has been decided to develop a high-resolution melting method for rs7216389 locus genotyping in Iranian asthmatic children. In the current study, a high-resolution melting analysis method based on SYBR Green-I was developed to check the frequency of rs7216389-T mutation in Iranian asthmatic children for the first time. RESULTS Second and third classes of intercalating dyes are commonly used for high-resolution melting method. However, in this study, SYBR Green-I was used for rs7216389 locus genotyping for the first time. Our results for 60 samples showed that SYBR Green-I has good efficacy for rs7216389 locus genotyping through high-resolution melting method in comparison with PCR-RFLP and sequencing. CONCLUSION Comparison of our results based on HRM analysis with PCR-RFLP showed that our developed method is rapid, accurate, high-throughput and economic to study the rs7216389 locus in asthmatic children and it is applicable for other similar population genetic studies.
Collapse
Affiliation(s)
- Zahra Vali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Department of Pediatrics, Shahid Sadoughi Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Corresponding authors: Abbasali Raz, Ph.D., and Navid Dinparast Djadid, Ph.D., Malaria & Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Tel: +98 21 66480780, Fax: +98 21 66465132. E-mail:;
| | - Hanieh Bokharaei
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Nabavi
- Department Allergy and Immunology, Hazrate Rasoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department Allergy and Immunology, Hazrate Rasoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran,Corresponding authors: Abbasali Raz, Ph.D., and Navid Dinparast Djadid, Ph.D., Malaria & Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Tel: +98 21 66480780, Fax: +98 21 66465132. E-mail:;
| |
Collapse
|
42
|
Abstract
Rapid and accurate strain identification is paramount in the battle against microbial outbreaks, and several subtyping approaches have been developed. One such method uses clustered regular interspaced short palindromic repeats (CRISPRs), DNA repeat elements that are present in approximately half of all bacteria. Though their signature function is as an adaptive immune system against invading DNA such as bacteriophages and plasmids, CRISPRs also provide an excellent framework for pathogen tracking and evolutionary studies. Analysis of the spacer DNA sequences that reside between the repeats has been tremendously useful for bacterial subtyping during molecular epidemiological investigations. Subtyping, or strain identification, using CRISPRs has been employed in diverse Gram-positive and Gram-negative bacteria, including Mycobacterium tuberculosis, Salmonella enterica, and the plant pathogen Erwinia amylovora. This review discusses the several ways in which CRISPR sequences are exploited for subtyping. This includes the well-established spoligotyping methodologies that have been used for 2 decades to type Mycobacterium species, as well as in-depth consideration of newer, higher-throughput CRISPR-based protocols.
Collapse
|
43
|
Hasiów-Jaroszewska B, Komorowska B. A new method for detection and discrimination of Pepino mosaic virus isolates using high resolution melting analysis of the triple gene block 3. J Virol Methods 2013; 193:1-5. [DOI: 10.1016/j.jviromet.2013.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022]
|
44
|
Dhakal R, Chauhan K, Seale RB, Deeth HC, Pillidge CJ, Powell IB, Craven H, Turner MS. Genotyping of dairy Bacillus licheniformis isolates by high resolution melt analysis of multiple variable number tandem repeat loci. Food Microbiol 2013; 34:344-51. [DOI: 10.1016/j.fm.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
|
45
|
Schunder E, Rydzewski K, Grunow R, Heuner K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol 2013; 303:51-60. [PMID: 23333731 DOI: 10.1016/j.ijmm.2012.11.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 11/26/2022] Open
Abstract
Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.
Collapse
Affiliation(s)
- Eva Schunder
- Cellular Interactions of Bacterial Pathogens, Centre for Biological Security, Division 2 (ZBS2), Robert Koch-Institute, Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Porcellato D, Østlie H, Liland K, Rudi K, Isaksson T, Skeie S. Strain-level characterization of nonstarter lactic acid bacteria in Norvegia cheese by high-resolution melt analysis. J Dairy Sci 2012; 95:4804-4812. [DOI: 10.3168/jds.2012-5386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022]
|
47
|
Abstract
High-resolution melting (HRM) analysis uses real-time PCR instrumentation to interrogate DNA sequence variation and is a low-cost, single-step, closed-tube method. Here we describe HRM technology and provide examples of varied clinical microbiological applications to highlight the strengths and limitations of HRM analysis.
Collapse
|
48
|
Rajaei M, Saadat I, Saadat M. High resolution melting analysis for detection of variable number of tandem repeats polymorphism of XRCC5. Biochem Biophys Res Commun 2012; 425:398-400. [DOI: 10.1016/j.bbrc.2012.07.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
49
|
Ruskova L, Raclavsky V. The potential of high resolution melting analysis (hrma) to streamline, facilitate and enrich routine diagnostics in medical microbiology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:239-52. [PMID: 22286809 DOI: 10.5507/bp.2011.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Routine medical microbiology diagnostics relies on conventional cultivation followed by phenotypic techniques for identification of pathogenic bacteria and fungi. This is not only due to tradition and economy but also because it provides pure culture needed for antibiotic susceptibility testing. This review focuses on the potential of High Resolution Melting Analysis (HRMA) of double-stranded DNA for future routine medical microbiology. METHODS AND RESULTS Search of MEDLINE database for publications showing the advantages of HRMA in routine medical microbiology for identification, strain typing and further characterization of pathogenic bacteria and fungi in particular. The results show increasing numbers of newly-developed and more tailor-made assays in this field. For microbiologists unfamiliar with technical aspects of HRMA, we also provide insight into the technique from the perspective of microbial characterization. CONCLUSIONS We can anticipate that the routine availability of HRMA in medical microbiology laboratories will provide a strong stimulus to this field. This is already envisioned by the growing number of medical microbiology applications published recently. The speed, power, convenience and cost effectiveness of this technology virtually predestine that it will advance genetic characterization of microbes and streamline, facilitate and enrich diagnostics in routine medical microbiology without interfering with the proven advantages of conventional cultivation.
Collapse
Affiliation(s)
- Lenka Ruskova
- Department of Microbiology, Palacky University Olomouc, Czech Republic
| | | |
Collapse
|
50
|
Jin D, Luo Y, Zhang Z, Fang W, Ye J, Wu F, Ding G. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiol Lett 2012; 330:72-80. [DOI: 10.1111/j.1574-6968.2012.02535.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/04/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Yun Luo
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou; China
| | - Zheng Zhang
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou; China
| | - Weijia Fang
- The First Affiliated Hospital, College of Medicine, Zhejiang University; Hangzhou; China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou; China
| | - Fang Wu
- Haining Center for Disease Control and Prevention; Haining; China
| | - Gangqiang Ding
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou; China
| |
Collapse
|