1
|
Li ZY, Li M, Liu B, Zhang XN, Yi S, Zhuang WQ, Wang W, Sun YL, Wang AJ. Cumulative inhibitory effect of 6:2 chlorinated polyfluorooctane ether sulfonate in anaerobic digestion processes. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138372. [PMID: 40273846 DOI: 10.1016/j.jhazmat.2025.138372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Microbial anaerobic metabolism is crucial for biogeochemical cycles, impacting both natural and engineered ecosystems. However, the increasing emissions of 6:2 Cl-PFESA, an alternative to PFOS, pose significant risks. In this study, long-term high 6:2 Cl-PFESA concentration level of 10 µg/g TS exposure led to a substantial decrease in methane production from 204.8 ± 4.8 mL/g VS to 143.6 ± 3.5 mL/g VS, indicating a cumulative inhibitory effect on carbohydrate-related anaerobic digestion. Key processes such as polysaccharide release, hydrolysis, acetogenesis, and acetoclastic methanogenesis were contributed by 28.6 %, 9.3 %, 8.9 %, and 11.7 % of significant reduction, respectively, correlating with inhibition in relevant enzymatic activities and gene expressions. Hydrolytic bacteria such as Rectinema and Defluviitoga declined to 11.7 % from 14.3 % and 20.9 % from 23.9 %, reflecting decreased hydrolysis efficiency. Reduced transcription levels of acetogenesis- and acidogenesis-related genes further inhibited these processes. Conversely, methanogens Methanolinea and Methanothrix increased from 35.8 % to 55.7 % and 10.9-40.8 %, suggesting enzyme inhibition rather than methanogen abundance reduction. Additionally, 6:2 Cl-PFESA partially biotransformed into 6:2H-PFESA, facilitated by species like Dechloromonas, unclassified Xanthomonadales, and Betaproteobacteria. These findings confirm that the limited degradation and cumulative inhibitory effects of 6:2 Cl-PFESA during anaerobic digestion highlight its significant disruption to carbon cycling stability within ecosystems.
Collapse
Affiliation(s)
- Zhou-Yang Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Bin Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Wen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Dong S, Yan PF, Mezzari MP, Abriola LM, Pennell KD, Cápiro NL. Using Network Analysis and Predictive Functional Analysis to Explore the Fluorotelomer Biotransformation Potential of Soil Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7480-7492. [PMID: 38639388 DOI: 10.1021/acs.est.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Microbial transformation of per- and polyfluoroalkyl substances (PFAS), including fluorotelomer-derived PFAS, by native microbial communities in the environment has been widely documented. However, few studies have identified the key microorganisms and their roles during the PFAS biotransformation processes. This study was undertaken to gain more insight into the structure and function of soil microbial communities that are relevant to PFAS biotransformation. We collected 16S rRNA gene sequencing data from 8:2 fluorotelomer alcohol and 6:2 fluorotelomer sulfonate biotransformation studies conducted in soil microcosms under various redox conditions. Through co-occurrence network analysis, several genera, including Variovorax, Rhodococcus, and Cupriavidus, were found to likely play important roles in the biotransformation of fluorotelomers. Additionally, a metagenomic prediction approach (PICRUSt2) identified functional genes, including 6-oxocyclohex-1-ene-carbonyl-CoA hydrolase, cyclohexa-1,5-dienecarbonyl-CoA hydratase, and a fluoride-proton antiporter gene, that may be involved in defluorination. This study pioneers the application of these bioinformatics tools in the analysis of PFAS biotransformation-related sequencing data. Our findings serve as a foundational reference for investigating enzymatic mechanisms of microbial defluorination that may facilitate the development of efficient microbial consortia and/or pure microbial strains for PFAS biotransformation.
Collapse
Affiliation(s)
- Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, 214 Riley-Robb Hall, 111 Wing Drive, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
4
|
Zhang Y, O'Loughlin EJ, Park SY, Kwon MJ. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166993. [PMID: 37717756 DOI: 10.1016/j.scitotenv.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
5
|
Campa MF, Chen See JR, Unverdorben LV, Wright OG, Roth KA, Niles JM, Ressler D, Macatugal EMS, Putt AD, Techtmann SM, Righetti TL, Hazen TC, Lamendella R. Geochemistry and Multiomics Data Differentiate Streams in Pennsylvania Based on Unconventional Oil and Gas Activity. Microbiol Spectr 2022; 10:e0077022. [PMID: 35980272 PMCID: PMC9603415 DOI: 10.1128/spectrum.00770-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
Unconventional oil and gas (UOG) extraction is increasing exponentially around the world, as new technological advances have provided cost-effective methods to extract hard-to-reach hydrocarbons. While UOG has increased the energy output of some countries, past research indicates potential impacts in nearby stream ecosystems as measured by geochemical and microbial markers. Here, we utilized a robust data set that combines 16S rRNA gene amplicon sequencing (DNA), metatranscriptomics (RNA), geochemistry, and trace element analyses to establish the impact of UOG activity in 21 sites in northern Pennsylvania. These data were also used to design predictive machine learning models to determine the UOG impact on streams. We identified multiple biomarkers of UOG activity and contributors of antimicrobial resistance within the order Burkholderiales. Furthermore, we identified expressed antimicrobial resistance genes, land coverage, geochemistry, and specific microbes as strong predictors of UOG status. Of the predictive models constructed (n = 30), 15 had accuracies higher than expected by chance and area under the curve values above 0.70. The supervised random forest models with the highest accuracy were constructed with 16S rRNA gene profiles, metatranscriptomics active microbial composition, metatranscriptomics active antimicrobial resistance genes, land coverage, and geochemistry (n = 23). The models identified the most important features within those data sets for classifying UOG status. These findings identified specific shifts in gene presence and expression, as well as geochemical measures, that can be used to build robust models to identify impacts of UOG development. IMPORTANCE The environmental implications of unconventional oil and gas extraction are only recently starting to be systematically recorded. Our research shows the utility of microbial communities paired with geochemical markers to build strong predictive random forest models of unconventional oil and gas activity and the identification of key biomarkers. Microbial communities, their transcribed genes, and key biomarkers can be used as sentinels of environmental changes. Slight changes in microbial function and composition can be detected before chemical markers of contamination. Potential contamination, specifically from biocides, is especially concerning due to its potential to promote antibiotic resistance in the environment. Additionally, as microbial communities facilitate the bulk of nutrient cycling in the environment, small changes may have long-term repercussions. Supervised random forest models can be used to identify changes in those communities, greatly enhance our understanding of what such impacts entail, and inform environmental management decisions.
Collapse
Affiliation(s)
- Maria Fernanda Campa
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | | | | | | | | - Andrew D. Putt
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Terry C. Hazen
- University of Tennessee, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
6
|
Zhong C, Nesbø CL, von Gunten K, Zhang Y, Shao X, Jin R, Konhauser KO, Goss GG, Martin JW, He Y, Qian PY, Lanoil BD, Alessi DS. Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure, and functional potentials. Environ Microbiol 2022; 24:4108-4123. [PMID: 35416402 DOI: 10.1111/1462-2920.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
The consequences of soils exposed to hydraulic fracturing (HF) return fluid, often collectively termed flowback and produced water (FPW), are poorly understood, even though soils are a common receptor of FPW spills. Here, we investigate the impacts on soil microbiota exposed to FPW collected from the Montney Formation of western Canada. We measured soil respiration, microbial community structure, and functional potentials under FPW exposure across a range of concentrations, exposure time, and soil types (luvisol and chernozem). We find that soil type governs microbial community response upon FPW exposure. Within each soil, FPW exposure led to reduced biotic soil respiration, and shifted microbial community structure and functional potentials. We detect substantially higher species richness and more unique functional genes in FPW-exposed soils than in FPW-unexposed soils, with metagenome-assembled genomes (e.g., Marinobacter persicus) from luvisol soil exposed to concentrated FPW being most similar to genomes from HF/FPW sites. Our data demonstrate the complex impacts of microbial communities following FPW exposure, and highlight the site-specific effects in evaluation of spills and agricultural reuse of FPW on the normal soil functions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.,Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Camilla L Nesbø
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Konstantin von Gunten
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaoqing Shao
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rong Jin
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| | - Greg G Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jonathan W Martin
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangzhou, China
| | - Brian D Lanoil
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
7
|
Alhajjar RK, Ghannam RB, Chen See JR, Wright OG, Campa MF, Hazen TC, Lamendella R, Techtmann SM. Comparative study of the effects of biocides and metal oxide nanoparticles on microbial community structure in a stream impacted by hydraulic fracturing. CHEMOSPHERE 2021; 284:131255. [PMID: 34214929 DOI: 10.1016/j.chemosphere.2021.131255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Our study goal was to investigate the impact of biocides and nanoparticles (NPs) on the microbial diversity in a hydraulic fracturing impacted stream. Biocides and NPs are known for their antimicrobial properties and controlling microbial growth. Previous work has shown that biocides can alter the microbial community composition of stream water and may select for biocide-resistant bacteria. Additional studies have shown that nanoparticles can also alter microbial community composition. However, previous work has often focused on the response to a single compound. Here we provide a more thorough analysis of the microbial community response to three different biocides and three different nanoparticles. A microcosm-based study was undertaken that exposed stream microbial communities to either biocides or NPs. Our results showed a decrease in bacterial abundance with different types of nanoparticles, but an increase in microbial abundance in biocide-amended treatments. The microbial community composition (MCC) was distinct from the controls in all biocide and NP treatments, which resulted in differentially enriched taxa in the treatments compared to the controls. Our results indicate that NPs slightly altered the MCC compared to the biocide-treated microcosms. After 14 days, the MCC in the nanoparticle-treated conditions was similar to the MCC in the control. Conversely, the MCC in the biocide-treated microcosms was distinct from the controls at day 14 and distinct from all conditions at day 0. This finding may point to the use of NPs as an alternative to biocides in some settings.
Collapse
Affiliation(s)
- Rehab K Alhajjar
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Ryan B Ghannam
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | | | | | - Maria Fernanda Campa
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA
| | | | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
8
|
Akob DM, Mumford AC, Fraser A, Harris CR, Orem WH, Varonka MS, Cozzarelli IM. Oil and Gas Wastewater Components Alter Streambed Microbial Community Structure and Function. Front Microbiol 2021; 12:752947. [PMID: 34938277 PMCID: PMC8686200 DOI: 10.3389/fmicb.2021.752947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives-the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)-on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.
Collapse
Affiliation(s)
- Denise M. Akob
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Adam C. Mumford
- United States Geological Survey, Water Mission Area, Reston, VA, United States
| | - Andrea Fraser
- United States Geological Survey, Water Mission Area, Reston, VA, United States
| | - Cassandra R. Harris
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - William H. Orem
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Matthew S. Varonka
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| | - Isabelle M. Cozzarelli
- United States Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, United States
| |
Collapse
|
9
|
Zhou L, Xu Z, Zhang J, Zhang Z, Tang Y. Degradation of hydroxypropyl guar gum at wide pH range by a heterogeneous Fenton-like process using bentonite-supported Cu(0). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1635-1642. [PMID: 33107857 DOI: 10.2166/wst.2020.436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To seek for efficient Fenton-like oxidation processing for treatment of waste fracturing fluid containing hydroxypropyl guar gum (HPGG), in heterogeneous reaction, five bentonite-supported zero-valent metal catalysts were prepared by liquid-phase reduction. The results showed that the bentonite-supported zero-valent copper exhibited best catalytic performance, attributed to the high dispersion of active sites of zero-valent copper. The effects of the most relevant operating factors (H2O2 concentration, catalyst dosage, temperature and pH) were evaluated in detail. Moreover, the chemical oxygen demand removal rate of HPGG can achieve 76% when the reaction time was selected at 45 min under optimal experimental conditions. The stability evaluation showed that the catalytic performance was almost unaffected after the catalyst was recycled and used once more showing the good stability of the bentonite-supported zero-valent copper in the application process.
Collapse
Affiliation(s)
- Ling Zhou
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China E-mail:
| | - Zhongying Xu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China E-mail:
| | - Jie Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China E-mail: ; Shanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an Shaanxi 710065, China
| | - Zhifang Zhang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Ying Tang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an Shaanxi 710065, China E-mail: ; School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| |
Collapse
|
10
|
Liu T, Schnürer A, Björkmalm J, Willquist K, Kreuger E. Diversity and Abundance of Microbial Communities in UASB Reactors during Methane Production from Hydrolyzed Wheat Straw and Lucerne. Microorganisms 2020; 8:E1394. [PMID: 32932830 PMCID: PMC7565072 DOI: 10.3390/microorganisms8091394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
The use of straw for biofuel production is encouraged by the European Union. A previous study showed the feasibility of producing biomethane in upflow anaerobic sludge blanket (UASB) reactors using hydrolyzed, steam-pretreated wheat straw, before and after dark fermentation with Caldicellulosiruptor saccharolyticus, and lucerne. This study provides information on overall microbial community development in those UASB processes and changes related to acidification. The bacterial and archaeal community in granular samples was analyzed using high-throughput amplicon sequencing. Anaerobic digestion model no. 1 (ADM1) was used to predict the abundance of microbial functional groups. The sequencing results showed decreased richness and diversity in the microbial community, and decreased relative abundance of bacteria in relation to archaea, after process acidification. Canonical correspondence analysis showed significant negative correlations between the concentration of organic acids and three phyla, and positive correlations with seven phyla. Organic loading rate and total COD fed also showed significant correlations with microbial community structure, which changed over time. ADM1 predicted a decrease in acetate degraders after a decrease to pH ≤ 6.5. Acidification had a sustained effect on the microbial community and process performance.
Collapse
Affiliation(s)
- Tong Liu
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 750 07 Uppsala, Sweden;
| | - Anna Schnürer
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 750 07 Uppsala, Sweden;
| | - Johanna Björkmalm
- RISE, Forskningsbyn Ideon Scheelevägen 27, 223 70 Lund, Sweden; (J.B.); (K.W.)
| | - Karin Willquist
- RISE, Forskningsbyn Ideon Scheelevägen 27, 223 70 Lund, Sweden; (J.B.); (K.W.)
| | - Emma Kreuger
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| |
Collapse
|
11
|
Acharya SM, Chakraborty R, Tringe SG. Emerging Trends in Biological Treatment of Wastewater From Unconventional Oil and Gas Extraction. Front Microbiol 2020; 11:569019. [PMID: 33013800 PMCID: PMC7509137 DOI: 10.3389/fmicb.2020.569019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Unconventional oil and gas exploration generates an enormous quantity of wastewater, commonly referred to as flowback and produced water (FPW). Limited freshwater resources and stringent disposal regulations have provided impetus for FPW reuse. Organic and inorganic compounds released from the shale/brine formation, microbial activity, and residual chemicals added during hydraulic fracturing bestow a unique as well as temporally varying chemical composition to this wastewater. Studies indicate that many of the compounds found in FPW are amenable to biological degradation, indicating biological treatment may be a viable option for FPW processing and reuse. This review discusses commonly characterized contaminants and current knowledge on their biodegradability, including the enzymes and organisms involved. Further, a perspective on recent novel hybrid biological treatments and application of knowledge gained from omics studies in improving these treatments is explored.
Collapse
Affiliation(s)
- Shwetha M Acharya
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
12
|
Shale gas development has limited effects on stream biology and geochemistry in a gradient-based, multiparameter study in Pennsylvania. Proc Natl Acad Sci U S A 2020; 117:3670-3677. [PMID: 32015108 PMCID: PMC7035526 DOI: 10.1073/pnas.1911458117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This investigation provides a comprehensive evaluation of the geochemical and biological effects of shale gas development on 25 small watersheds over the course of 2 y. Sampling headwater streams seasonally over two consecutive years yielded no statistically significant relationships between the intensity, presence, or absence of shale gas development and any signal in a comprehensive set of chemical constituents (including those recognized as oil and gas geochemical tracers) or any changes in microbial or benthic macroinvertebrate community composition. This work provides a framework for investigations of anthropogenic effects stemming from natural resource development, and highlights the importance of conducting studies which control for regional and temporal variability. The number of horizontally drilled shale oil and gas wells in the United States has increased from nearly 28,000 in 2007 to nearly 127,000 in 2017, and research has suggested the potential for the development of shale resources to affect nearby stream ecosystems. However, the ability to generalize current studies is limited by the small geographic scope as well as limited breadth and integration of measured chemical and biological indicators parameters. This study tested the hypothesis that a quantifiable, significant relationship exists between the density of oil and gas (OG) development, increasing stream water concentrations of known geochemical tracers of OG extraction, and the composition of benthic macroinvertebrate and microbial communities. Twenty-five headwater streams that drain lands across a gradient of shale gas development intensity were sampled. Our strategy included comprehensive measurements across multiple seasons of sampling to account for temporal variability of geochemical parameters, including known shale OG geochemical tracers, and microbial and benthic macroinvertebrate communities. No significant relationships were found between the intensity of OG development, shale OG geochemical tracers, or benthic macroinvertebrate or microbial community composition, whereas significant seasonal differences in stream chemistry were observed. These results highlight the importance of considering spatial and temporal variability in stream chemistry and biota and not only the presence of anthropogenic activities in a watershed. This comprehensive, integrated study of geochemical and biological variability of headwater streams in watersheds undergoing OG development provides a robust framework for examining the effects of energy development at a regional scale.
Collapse
|
13
|
Surface Water Microbial Community Response to the Biocide 2,2-Dibromo-3-Nitrilopropionamide, Used in Unconventional Oil and Gas Extraction. Appl Environ Microbiol 2019; 85:AEM.01336-19. [PMID: 31444200 PMCID: PMC6803298 DOI: 10.1128/aem.01336-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/15/2019] [Indexed: 02/01/2023] Open
Abstract
Unconventional oil and gas activity can affect pH, total organic carbon, and microbial communities in surface water, altering their ability to respond to new environmental and/or anthropogenic perturbations. These findings demonstrate that 2,2-dibromo-3-nitrilopropionamide (DBNPA), a common hydraulic fracturing (HF) biocide, affects microbial communities differently as a consequence of past HF exposure, persisting longer in HF-impacted (HF+) waters. These findings also demonstrate that DBNPA has low efficacy in environmental microbial communities regardless of HF impact. These findings are of interest, as understanding microbial responses is key for formulating remediation strategies in unconventional oil and gas (UOG)-impacted environments. Moreover, some DBNPA degradation by-products are even more toxic and recalcitrant than DBNPA itself, and this work identifies novel brominated degradation by-products formed. Production of unconventional oil and gas continues to rise, but the effects of high-density hydraulic fracturing (HF) activity near aquatic ecosystems are not fully understood. A commonly used biocide in HF, 2,2-dibromo-3-nitrilopropionamide (DBNPA), was studied in microcosms of HF-impacted (HF+) versus HF-unimpacted (HF−) surface water streams to (i) compare the microbial community response, (ii) investigate DBNPA degradation products based on past HF exposure, and (iii) compare the microbial community response differences and similarities between the HF biocides DBNPA and glutaraldehyde. The microbial community responded to DBNPA differently in HF-impacted versus HF-unimpacted microcosms in terms of the number of 16S rRNA gene copies quantified, alpha and beta diversity, and differential abundance analyses of microbial community composition through time. The differences in microbial community changes affected degradation dynamics. HF-impacted microbial communities were more sensitive to DBNPA, causing the biocide and by-products of the degradation to persist for longer than in HF-unimpacted microcosms. A total of 17 DBNPA by-products were detected, many of them not widely known as DBNPA by-products. Many of the brominated by-products detected that are believed to be uncharacterized may pose environmental and health impacts. Similar taxa were able to tolerate glutaraldehyde and DBNPA; however, DBNPA was not as effective for microbial control, as indicated by a smaller overall decrease of 16S rRNA gene copies/ml after exposure to the biocide, and a more diverse set of taxa was able to tolerate it. These findings suggest that past HF activity in streams can affect the microbial community response to environmental perturbation such as that caused by the biocide DBNPA. IMPORTANCE Unconventional oil and gas activity can affect pH, total organic carbon, and microbial communities in surface water, altering their ability to respond to new environmental and/or anthropogenic perturbations. These findings demonstrate that 2,2-dibromo-3-nitrilopropionamide (DBNPA), a common hydraulic fracturing (HF) biocide, affects microbial communities differently as a consequence of past HF exposure, persisting longer in HF-impacted (HF+) waters. These findings also demonstrate that DBNPA has low efficacy in environmental microbial communities regardless of HF impact. These findings are of interest, as understanding microbial responses is key for formulating remediation strategies in unconventional oil and gas (UOG)-impacted environments. Moreover, some DBNPA degradation by-products are even more toxic and recalcitrant than DBNPA itself, and this work identifies novel brominated degradation by-products formed.
Collapse
|
14
|
Campa MF, Techtmann SM, Gibson CM, Zhu X, Patterson M, Garcia de Matos Amaral A, Ulrich N, Campagna SR, Grant CJ, Lamendella R, Hazen TC. Impacts of Glutaraldehyde on Microbial Community Structure and Degradation Potential in Streams Impacted by Hydraulic Fracturing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5989-5999. [PMID: 29683652 DOI: 10.1021/acs.est.8b00239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The environmental impacts of hydraulic fracturing, particularly those of surface spills in aquatic ecosystems, are not fully understood. The goals of this study were to (1) understand the effect of previous exposure to hydraulic fracturing fluids on aquatic microbial community structure and (2) examine the impacts exposure has on biodegradation potential of the biocide glutaraldehyde. Microcosms were constructed from hydraulic fracturing-impacted and nonhydraulic fracturing-impacted streamwater within the Marcellus shale region in Pennsylvania. Microcosms were amended with glutaraldehyde and incubated aerobically for 56 days. Microbial community adaptation to glutaraldehyde was monitored using 16S rRNA gene amplicon sequencing and quantification by qPCR. Abiotic and biotic glutaraldehyde degradation was measured using ultra-performance liquid chromatography--high resolution mass spectrometry and total organic carbon. It was found that nonhydraulic fracturing-impacted microcosms biodegraded glutaraldehyde faster than the hydraulic fracturing-impacted microcosms, showing a decrease in degradation potential after exposure to hydraulic fracturing activity. Hydraulic fracturing-impacted microcosms showed higher richness after glutaraldehyde exposure compared to unimpacted streams, indicating an increased tolerance to glutaraldehyde in hydraulic fracturing impacted streams. Beta diversity and differential abundance analysis of sequence count data showed different bacterial enrichment for hydraulic fracturing-impacted and nonhydraulic fracturing-impacted microcosms after glutaraldehyde addition. These findings demonstrated a lasting effect on microbial community structure and glutaraldehyde degradation potential in streams impacted by hydraulic fracturing operations.
Collapse
Affiliation(s)
- Maria Fernanda Campa
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Stephen M Techtmann
- Department of Biological Sciences , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Caleb M Gibson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Xiaojuan Zhu
- Office of Information Technology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Megan Patterson
- Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | | - Nikea Ulrich
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Shawn R Campagna
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biological and Small Molecule Mass Spectrometry Core , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Christopher J Grant
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Regina Lamendella
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Terry C Hazen
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Department of Civil and Environmental Engineering , University of Tennessee , Knoxville , Tennessee 37996-1605 , United States
- Earth & Planetary Sciences , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
- Institute for a Secure and Sustainable Environment , Knoxville , Tennessee 37996 , United States
| |
Collapse
|