1
|
Kongpanna P, Jamikorn U, Tripipat T, Tantituvanont A, Ngampak R, Nilubol D. Efficacy of Three Doses of Halquinol on Growth Performance, Diarrhea Incidence, Nutrient Digestibility, and Fecal Microbiome of Weaned Pigs. Animals (Basel) 2025; 15:1258. [PMID: 40362078 PMCID: PMC12071017 DOI: 10.3390/ani15091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
The weaning period is a critical phase for nursery pigs that is characterized by rapid growth and alterations in the intestinal microbiome associated with nutrient utilization. The present study aimed to investigate the efficacy of halquinol, when used as an antibiotic (ABO), on the growth performance, diarrhea incidence, coefficient of apparent total tract digestibility (CATTD), fecal volatile fatty acids (VFAs), and microbiota in pigs. A total of 210 healthy weaned pigs with an average initial weight of 6.9 kg and aged 28 ± 2 days were assigned to five treatments (six pens/treatment) in a complete randomized design, including a control group (T1, CON; feed with no ABO), a colistin group (T2, CLT; feed containing 120 ppm colistin), and three halquinol groups (T3 to T5, HAL; feed containing 180, 240, and 360 ppm halquinol, respectively). The experiment period lasted for 10 days. Field recordings, observation, and feces collection were performed on D1, D5, and D10. CATTD and VFA assessments were conducted on D10. The composition of the fecal microbiota was analyzed via 16S rRNA gene sequencing using the Illumina Miseq platform. The results demonstrated that the in-feed ABO groups exhibited a significantly lower ADFI (p < 0.01). Pigs fed the T3 and T4 diets had the lowest FCR (p < 0.01) on D5 and D10 and, thus, had reduced ADFI (p < 0.01). A quadratic contrast was found in ADFI and FCR on D5 and D10, indicating a negative correlation with HAL concentration (p < 0.01). Pigs fed CLT and HAL had significantly reduced levels of coliform (p < 0.01) and E. coli (p < 0.01). Moreover, pigs receiving ABO also had a lower fecal score compared to those on the CON diet (p < 0.01). Dietary in-feed ABO had no effect on all the parameters of the CATTD on D10 (p > 0.05), except for fat digestibility in pigs that received T4 (p < 0.01). Pigs fed the T4 and T5 diets had higher propionate concentrations and lower A/P ratios than pigs fed T1, T2, and T3 (p < 0.01). The microbial diversity shifted quickly through the early weaning period. The relative abundance of beneficial Enterococcus microbes increased in pigs fed in-feed ABO, whereas the relative prevalence of pathogenic bacteria, such as Escherichia and Klebsiella, decreased. Escherichia and Bacteroides were negatively correlated with carbohydrate digestibility and butyric and valeric acid production (p < 0.05). Overall, the appropriate HAL dosage was 240 ppm (T4), and this antimicrobial can potentially be characterized as an in-feed colistin replacer that improves feed efficiency and fat digestion, enhancing VFA production, alleviating post-weaning diarrhea, and protecting ABO-resistant piglets.
Collapse
Affiliation(s)
- Panumas Kongpanna
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (U.J.)
| | - Uttra Jamikorn
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (P.K.); (U.J.)
| | - Thitima Tripipat
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rakthai Ngampak
- Department of Livestock Development, Ministry of Agriculture and Cooperatives, Bangkok 10400, Thailand;
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Baker JT, Deng Z, Gormley AR, Kim SW. Impacts of non-starch polysaccharide sources with enzymes influencing intestinal mucosa-associated microbiota and mucosal immunity of nursery pigs on growth and carcass traits at market weight. J Anim Sci Biotechnol 2025; 16:47. [PMID: 40165296 PMCID: PMC11959798 DOI: 10.1186/s40104-025-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This study investigated the effects of different non-starch polysaccharide (NSP) sources with NSP degrading enzymes (NSPases) and the influence on the mucosa-associated microbiota and intestinal immunity of nursery pigs, on growth performance and carcass traits at market weight. METHODS One hundred and sixty newly weaned pigs at 7.0 ± 0.3 kg body weight (BW) were allotted in a 2 × 2 factorial with NSP sources and NSPases serving as factors. The 4 dietary treatments were: DDGS, corn distillers' dried grains with solubles as source of NSP; DDGS + NSPases (DDGS +), DDGS with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed; SHWB, soybean hulls and wheat bran replacing corn DDGS as the source of NSP; SHWB with NSPases (SHWB +), SHWB with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed. Pigs were fed for 37 d and housed in groups of 4 pigs per pen. At d 37, the median body weight pig in each pen was euthanized for sampling to analyze intestinal health parameters. Remaining pigs were fed a common diet for subsequent phases to evaluate the carryover effect on growth and carcass traits. RESULTS The SHWB decreased (P < 0.05) the relative abundance of Helicobacter, tended to increase (P = 0.074) the relative abundance of Lactobacillus, increased (P < 0.05) immunoglobulin G (IgG) in the jejunal mucosa, tended to increase (P = 0.096) the villus height (VH) in the jejunum, and tended to improve ADG (P = 0.099) and feed efficiency (P = 0.068) during phase 1 compared to DDGS treatment. Supplementation of NSPases increased (P < 0.05) Shannon index of diversity, increased the relative abundance of Streptococcus and Acinetobacter, and tended to increase (P = 0.082) dry matter digestibility. The BW of pigs fed SHWB was more uniform (P < 0.05) at the end of the 120 d study. Additionally, hot carcass weight of pigs fed SHWB tended to be more uniform (P = 0.089) than DDGS treatment. CONCLUSION Soybean hulls and wheat bran replacing DDGS in nursery diets improved uniformity of pigs at market weight, which might be attributed to beneficial modulation of the mucosa-associated microbiota and enhanced intestinal morphology during the nursery phase. Supplementation of NSPases had beneficial effects on the intestinal mucosa-associated microbiota, digestibility, and intestinal immunity in SHWB treatment, whereas no carryover effects were overserved at market weight.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Goel A, Ncho CM, Jeong CM, Gupta V, Jung JY, Ha SY, Yang JK, Choi YH. Alleviation of Acute Heat Stress in Broiler Chickens by Dietary Supplementation of Polyphenols from Shredded, Steam-Exploded Pine Particles. Microorganisms 2025; 13:235. [PMID: 40005601 PMCID: PMC11858311 DOI: 10.3390/microorganisms13020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Reducing the detrimental effects of heat stress (HS) in poultry is essential to minimize production losses. The present study evaluates the effects of dietary polyphenols prepared from underutilized wood byproducts on the growth, gut health, and cecal microbiota in broilers subjected to acute heat stress (AHS). One hundred eight one-day-old Indian River broilers were fed with 0%, 0.5%, or 1% polyphenols from shredded, steam-exploded pine particles (PSPP) in their diet. On the 37th day, forty birds were equally distributed among four groups containing either a control diet at thermoneutral temperatures (NT0%) or AHS temperatures with 0% (AHS0%), 0.5% (AHS0.5%), and 1% (AHS1%) PSPP-supplemented diets. The temperature in the NT room was maintained at 21.0 °C, while, in the AHS room, it was increased to 31 °C. AHS negatively influenced performance parameters and increased rectal temperature (RT) in broilers. The AHS0% group showed a higher expression of NOX4, HSP-70, and HSP-90 genes, while the expression was lower in PSPP-supplemented birds. In the jejunum, mRNA expression of SOD was increased in all the birds under AHS compared to NT. The expression of the CLDN1 and ZO2 genes was increased in AHS0%, while that of the ZO1 and MUC2 genes was increased in PSPP-supplemented birds. HS tends to increase TLR2 and TLR4 gene expression in chickens. The significantly modified genera were Bariatricus, Sporobacter, Sporanaerobacter, and Natranaerovirga. Concludingly, AHS negatively influences the performance parameters, RT, stress, gut-health-related genes, and pathogenic penetration, but PSPP supplementation reduces its bad impact by overcoming the stress and gut-health-related genes, increasing favorable bacterial abundance and reducing pathogenic penetration in chickens.
Collapse
Affiliation(s)
- Akshat Goel
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
| | - Chris-Major Ncho
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
| | - Chae-Mi Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Vaishali Gupta
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Young Jung
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Si-Young Ha
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jae-Kyung Yang
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Department of Environmental Materials Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Yang-Ho Choi
- Division of Animal Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (A.G.); (C.-M.N.); (C.-M.J.); (V.G.)
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.-Y.J.); (J.-K.Y.)
- Division of Applied Life Sciences (BK21 Four Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Duarte ME, Deng Z, Kim SW. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18 + Escherichia coli. J Anim Sci Biotechnol 2024; 15:139. [PMID: 39390608 PMCID: PMC11468193 DOI: 10.1186/s40104-024-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is a threat to humans and animals that causes intestinal disorders. Antimicrobial resistance has urged alternatives, including Lactobacillus postbiotics, to mitigate the effects of enterotoxigenic E. coli. METHODS Forty-eight newly weaned pigs were allotted to NC: no challenge/no supplement; PC: F18+ E. coli challenge/no supplement; ATB: F18+ E. coli challenge/bacitracin; and LPB: F18+ E. coli challenge/postbiotics and fed diets for 28 d. On d 7, pigs were orally inoculated with F18+ E. coli. At d 28, the mucosa-associated microbiota, immune and oxidative stress status, intestinal morphology, the gene expression of pattern recognition receptors (PRR), and intestinal barrier function were measured. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS PC increased (P < 0.05) Helicobacter mastomyrinus whereas reduced (P < 0.05) Prevotella copri and P. stercorea compared to NC. The LPB increased (P < 0.05) P. stercorea and Dialister succinatiphilus compared with PC. The ATB increased (P < 0.05) Propionibacterium acnes, Corynebacterium glutamicum, and Sphingomonas pseudosanguinis compared to PC. The PC tended to reduce (P = 0.054) PGLYRP4 and increased (P < 0.05) TLR4, CD14, MDA, and crypt cell proliferation compared with NC. The ATB reduced (P < 0.05) NOD1 compared with PC. The LPB increased (P < 0.05) PGLYRP4, and interferon-γ and reduced (P < 0.05) NOD1 compared with PC. The ATB and LPB reduced (P < 0.05) TNF-α and MDA compared with PC. CONCLUSIONS The F18+ E. coli challenge compromised intestinal health. Bacitracin increased beneficial bacteria showing a trend towards increasing the intestinal barrier function, possibly by reducing the expression of PRR genes. Lactobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γ and PGLYRP4, and by reducing TLR4, NOD1, and CD14.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Xue L, Long S, Cheng B, Song Q, Zhang C, Hansen LHB, Sheng Y, Zang J, Piao X. Dietary Triple-Strain Bacillus-Based Probiotic Supplementation Improves Performance, Immune Function, Intestinal Morphology, and Microbial Community in Weaned Pigs. Microorganisms 2024; 12:1536. [PMID: 39203378 PMCID: PMC11356216 DOI: 10.3390/microorganisms12081536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based probiotic. In this study, we investigate the effects of SLV on performance, immunity, intestinal morphology, and microbial community in piglets. A total of 480 weaned pigs [initial body weight (BW) of 8.13 ± 0.08 kg and 28 days of age] were assigned to three treatments in a randomized complete block design: P0: basal diet (CON); P200: CON + 200 mg SLV per kg feed (6.5 × 108 CFU/kg feed); and P400: CON + 400 mg SLV per kg feed (1.3 × 109 CFU/kg feed). Each treatment had 20 replicated pens with eight pigs (four male/four female) per pen. During the 31 d feeding period (Phase 1 = wean to d 14, Phase 2 = d 15 to 31 after weaning), all pigs were housed in a temperature-controlled nursery room (23 to 25 °C). Feed and water were available ad libitum. The results showed that the pigs in the P400 group increased (p < 0.05) average daily gain (ADG) in phase 2 and tended (p = 0.10) to increase ADG overall. The pigs in the P200 and P400 groups tended (p = 0.10) to show improved feed conversion ratios overall in comparison with control pigs. The pigs in the P200 and P400 groups increased (p < 0.05) serum immunoglobulin A, immunoglobulin G, and haptoglobin on d 14, and serum C-reactive protein on d 31. The pigs in the P200 group showed an increased (p < 0.01) villus height at the jejunum, decreased (p < 0.05) crypt depth at the ileum compared with other treatments, and tended (p = 0.09) to have an increased villus-crypt ratio at the jejunum compared with control pigs. The pigs in the P200 and P400 groups showed increased (p < 0.05) goblet cells in the small intestine. Moreover, the pigs in the P400 group showed down-regulated (p < 0.05) interleukin-4 and tumor necrosis factor-α gene expressions, whereas the pigs in the P400 group showed up-regulated occludin gene expression in the ileum. These findings suggest that SLV alleviates immunological reactions, improves intestinal microbiota balance, and reduces weaning stress in piglets. Therefore, SOLVENS has the potential to improve health and performance for piglets.
Collapse
Affiliation(s)
- Lei Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Bo Cheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Qian Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Can Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | | | - Yongshuai Sheng
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark (Y.S.)
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| |
Collapse
|
6
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
7
|
Marin C, Migura-García L, Rodríguez JC, Ventero MP, Pérez-Gracia MT, Vega S, Tort-Miró C, Marco-Fuertes A, Lorenzo-Rebenaque L, Montoro-Dasi L. Swine farm environmental microbiome: exploring microbial ecology and functionality across farms with high and low sanitary status. Front Vet Sci 2024; 11:1401561. [PMID: 39021414 PMCID: PMC11252001 DOI: 10.3389/fvets.2024.1401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Stringent regulations in pig farming, such as antibiotic control and the ban on certain additives and disinfectants, complicate disease control efforts. Despite the evolution of microbial communities inside the house environment, they maintain stability over the years, exhibiting characteristics specific to each type of production and, in some cases, unique to a particular company or farm production type. In addition, some infectious diseases are recurrent in specific farms, while other farms never present these diseases, suggesting a connection between the presence of these microorganisms in animals or their environment. Therefore, the aim of this study was to characterise environmental microbiomes of farms with high and low sanitary status, establishing the relationships between both, health status, environmental microbial ecology and its functionality. Methods For this purpose, 6 pig farms were environmentally sampled. Farms were affiliated with a production company that handle the majority of the pigs slaughtered in Spain. This study investigated the relationship among high health and low health status farms using high throughput 16S rRNA gene sequencing. In addition, to identify ecologically relevant functions and potential pathogens based on the 16S rRNA gene sequences obtained, functional Annotation with PROkaryotic TAXa (FAPROTAX) was performed. Results and Discussion This study reveals notable differences in microbial communities between farms with persistent health issues and those with good health outcomes, suggesting a need for protocols tailored to address specific challenges. The variation in microbial populations among farms underscores the need for specific and eco-friendly cleaning and disinfection protocols. These measures are key to enhancing the sustainability of livestock farming, ensuring safer products and boosting competitive edge in the market.
Collapse
Affiliation(s)
- Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Lourdes Migura-García
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carla Tort-Miró
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, Valencia, Spain
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
8
|
Kongpanna P, Doerr JA, Nilubol D, Jamikorn U. Effect of a Multi-Species Direct-Fed Microbial on Growth Performance, Nutrient Digestibility, Intestinal Morphology and Colonic Volatile Fatty Acids in Weanling Pigs. Animals (Basel) 2024; 14:1749. [PMID: 38929368 PMCID: PMC11200373 DOI: 10.3390/ani14121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The potentials of ABO replacer of ENZ and DFM on growth performance, AID, colonic VFAs, gut morphology, fecal score and diarrhea incidence were evaluated. We randomly assigned 120 piglets to four experimental diets that included: (1) control diet (CON), fed the basal ration; (2) ABO was added at 250 ppm of in-feed ABO; (3) ENZ was added at a rate of 3 kg/ton feed; (4) DFM was added with 50 × 106 cfu/g of Bacillus subtilis and 2 × 106 cfu/g of Lactobacillus spp. at a rate of 1.2 kg/ton feed. A complete randomized design used six pens per treatment with five pigs per pen. Pigs had ad libitum access to feed and water throughout the 6-week trial. Feed intake and BW were recorded on weeks 0, 2, 4 and 6, as well as fecal scores and diarrhea incidences (visually recorded and calculated). At weeks 2 and 4, a sub-sample of pigs (n = 6) was sacrificed for intestinal morphology, enzyme activity and VFAs. The results of the study demonstrated that DFM piglets showed increased final BW (3 kg) (p < 0.001) vs. CON. Likewise, ADG was positively affected by the incorporation of ABO, ENZ and DFM in the diets, with an average increase of 8 to 17% on ADG compared with CON (p < 0.001). The AID of gross energy, organic matter, CP and EAAs in piglets fed ENZ and DFM were significantly higher (p < 0.05) than those of CON and ABO at weeks 2 and 4. Inclusion of DFM increased intestinal morphology, enzymatic activities and propionic and butyric acid more than in pigs fed CON, ABO and ENZ (p < 0.05). The fecal score and diarrhea incidence generally decreased over time in pigs fed DFM (p < 0.05). These findings indicate that dietary supplementation with DFM has better effects at any period on growth performance, CP and AA digestibility and beneficially altered the intestinal health in weanling piglets.
Collapse
Affiliation(s)
- Panumas Kongpanna
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - John A. Doerr
- Agrarian Solutions, 585 Shawnee St., Nappanee, IN 46550, USA;
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Uttra Jamikorn
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
9
|
Zhang F, Chen M, Liu X, Ji X, Li S, Jin E. New insights into the unfolded protein response (UPR)-anterior gradient 2 (AGR2) pathway in the regulation of intestinal barrier function in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:225-232. [PMID: 38033605 PMCID: PMC10685161 DOI: 10.1016/j.aninu.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/02/2023]
Abstract
Sustained dysfunction of the intestinal barrier caused by early weaning is a major factor that induces postweaning diarrhea in weaned piglets. In both healthy and diseased states, the intestinal barrier is regulated by goblet cells. Alterations in the characteristics of goblet cells are linked to intestinal barrier dysfunction and inflammatory conditions during pathogenic infections. In this review, we summarize the current understanding of the mechanisms of the unfolded protein response (UPR) and anterior gradient 2 (AGR2) in maintaining intestinal barrier function and how modifications to these systems affect mucus barrier characteristics and goblet cell dysregulation. We highlight a novel mechanism underlying the UPR-AGR2 pathway, which affects goblet cell differentiation and maturation and the synthesis and secretion of mucin by regulating epidermal growth factor receptor and mucin 2. This study provides a theoretical basis and new insights into the regulation of intestinal health in weaned piglets.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Mengxian Chen
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
10
|
Shi J, Zhao Y, Chen Q, Liao X, Chen J, Xie H, Liu J, Sun J, Chen S. Association Analysis of Gut Microbiota and Prognosis of Patients with Acute Ischemic Stroke in Basal Ganglia Region. Microorganisms 2023; 11:2667. [PMID: 38004679 PMCID: PMC10673176 DOI: 10.3390/microorganisms11112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Previous studies have implied the potential impact of gut microbiota on acute ischemic stroke (AIS), but the relationships of gut microbiota with basal ganglia region infarction (BGRI) and the predictive power of gut microbiota in BGRI prognosis is unclear. The aim of this study was to ascertain characteristic taxa of BGRI patients with different functional outcomes and identify their predictive value. Fecal samples of 65 BGRI patients were collected at admission and analyzed with 16s rRNA gene sequencing. Three-month functional outcomes of BGRI were evaluated using modified Rankin Scale (mRS), and patients with mRS score of 0-1 were assigned to good-BGRI group while others were assigned to poor-BGRI group. We further identified characteristic microbiota using linear discriminant analysis effect size, and receiver operating characteristic (ROC) curve was used to determine the predictive value of differential bacteria. According to the mRS score assessed after 3 months of stroke onset, 22 patients were assigned to poor-BGRI group, while 43 patients were assigned to good-BGRI group. Short chain fatty acids-producing bacteria, Romboutsia and Fusicatenibacter, were characteristic microbiota of the good-BGRI group, while pro-inflammatory taxa, Acetanaerobacterium, were characteristic microbiota of the poor-BGRI group. Furthermore, the differential bacteria showed extensive associations with clinical indices. ROC curves, separately plotted based on Romboutsia and Fusicatenibacter, achieved area under the curve values of 0.7193 and 0.6839, respectively. This study identified the efficient discriminative power of characteristic microbiota in BGRI patients with different outcomes and provided novel insights into the associations of gut microbiota with related risk factors.
Collapse
Affiliation(s)
- Jiayu Shi
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Yiting Zhao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Qionglei Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Xiaolan Liao
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Jiaxin Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China;
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China; (J.S.); (Y.Z.); (Q.C.); (X.L.); (J.C.); (H.X.)
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
11
|
Xu J, Jia Z, Xiao S, Long C, Wang L. Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms 2023; 11:2646. [PMID: 38004658 PMCID: PMC10672776 DOI: 10.3390/microorganisms11112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrhea in weaning piglets, which are vulnerable to changes in environment and feed. This study aimed to determine the effects of the ETEC challenge on piglet growth performance, diarrhea rate, jejunal microbial profile, jejunal morphology and goblet cell distribution. A total of 13 piglets from one litter were selected on postnatal day 21 and assigned to treatments with or without ETEC challenge at 1 × 108 CFUs, as ETEC group or control group, respectively. On postnatal day 28, samples were collected, followed by the detection of serum biochemical indexes and inflammatory indicators, HE staining, PAS staining and 16S rDNA gene amplicon sequencing. Results showed that the growth performance decreased, while the diarrhea rate increased for the ETEC group. The jejunum is the main segment of the injured intestine during the ETEC challenge. Compared with the control, the ETEC group displayed fewer goblet cells in the jejunum, where goblet cells are more distributed at the crypt and less distributed at the villus. In addition, ETEC piglets possessed higher abundances of the genus Desulfovibrio, genus Oxalobacter and genus Peptococus and lower abundances of the genus Prevotella 2, genus Flavonifractor and genus Blautra. In terms of alpha diversity, Chao 1 and observed features indexes were both increased for the ETEC group. Our study provides insights into jejunal histopathological impairment and microbial variation in response to ETEC infection for weaned piglets and is a valuable reference for researchers engaged in animal health research to select stress models.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Jia
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Shu Xiao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Cimin Long
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leli Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
12
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
13
|
Wang T, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, He J. Genetic- and Fiber-Diet-Mediated Changes in Antibiotic Resistance Genes in Pig Colon Contents and Feces and Their Driving Factors. Microorganisms 2023; 11:2370. [PMID: 37894028 PMCID: PMC10609257 DOI: 10.3390/microorganisms11102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Comprehensive studies on the effects of genetics and fiber diets on antibiotic resistance genes (ARGs) remain scarce. In this study, we analyzed the profiles of ARGs in colonic contents and fecal samples of Taoyuan, Duroc, and Xiangcun pigs (n = 10) fed at different fiber levels. Through macrogenomic analysis, we identified a total of 850 unique types of ARGs and classified them into 111 drug resistance classes. The abundance of partially drug-resistant ARGs was higher in the colonic contents of local pig breeds under a large-scale farming model. ARGs were found to be widely distributed among a variety of bacteria, predominantly in the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Fiber diets reduce the abundance of ARGs in colonic contents and feces, and mobile genetic elements (MGEs) and short-chain fatty acids (SCFAs) are important drivers in mediating the effect of fiber diets on the abundance of ARGs. In vitro fermentation experiments confirmed that butyric acid significantly reduced the abundance of ARGs. In summary, the results of this study enhanced our understanding of the distribution and composition of ARGs in the colon of different breeds of pigs and revealed that a fiber diet can reduce ARGs in feces through its Butyric acid, providing reference data for environmental safety.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
14
|
Deng Z, Duarte ME, Kim SW. Efficacy of soy protein concentrate replacing animal protein supplements in mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:235-248. [PMID: 37600837 PMCID: PMC10432921 DOI: 10.1016/j.aninu.2023.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the effects of using soy protein concentrate (SPC) to replace animal protein supplements on mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Fifty-six newly weaned pigs (BW = 6.4 ± 0.6 kg) were allotted to 5 treatments in a randomized complete block design. Pigs were fed for 35 d in 3 phases (P; 1, 2, 3) for 10, 12, 13 d, respectively. Dietary treatments were: (1) basal diet with fish meal (P1: 4%, P2: 2%, and P3: 1%), poultry meal (P1: 10%, P2: 8%, and P3: 4%), and blood plasma (P1: 4%, P2: 2%, and P3: 1%), where SPC replacing none (NC); (2) basal diet with SPC replacing fish meal (RFM); (3) basal diet with SPC replacing poultry meal (RPM); (4) basal diet with SPC replacing blood plasma (RBP); and (5) basal diet with SPC replacing all animal protein supplements (PC). Growth performance was recorded for each phase. Pigs were euthanized on d 35 to collect jejunal mucosa and tissue to evaluate intestinal health and microbiota, and ileal digesta to measure apparent ileal digestibility (AID) of nutrients. Data were analyzed using the MIXED procedure of SAS. Overall, RFM, RPM, and RBP did not affect growth performance, whereas PC decreased (P < 0.05) ADG and ADFI. The RPM increased (P < 0.05) Prevotella stercorea and decreased (P < 0.05) Helicobacter rappini. The PC decreased (P < 0.05) H. rappini, whilst increasing (P < 0.05) Prevotella copri, Propionibacterium acnes, and Pelomonas aquatica. The RFM tended to increase (P = 0.096) immunoglobulin A in the jejunum. The PC tended to decrease (P = 0.078) jejunal crypt cell proliferation. There were no differences in the villus height, AID of nutrients, intestinal inflammation, and intestinal oxidative stress among treatments. In conclusion, SPC can replace fish meal, poultry meal, or blood plasma individually without affecting growth performance and intestinal health, and AID of nutrients of nursery pigs. Particularly SPC replacing poultry meal benefitted intestinal health by reducing H. rappini and increasing P. stercorea. However, SPC replacing all three animal protein supplements reduced growth of nursery pigs mainly by reducing feed intake.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Cao G, Yang S, Wang H, Zhang R, Wu Y, Liu J, Qiu K, Dong Y, Yue M. Effects of Bacillus licheniformis on the Growth Performance, Antioxidant Capacity, Ileal Morphology, Intestinal Short Chain Fatty Acids, and Colonic Microflora in Piglets Challenged with Lipopolysaccharide. Animals (Basel) 2023; 13:2172. [PMID: 37443970 DOI: 10.3390/ani13132172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of the present study was to investigate the effects of Bacillus licheniformis (BL) on the growth performance, antioxidant capacity, ileal morphology, intestinal fecal short-chain fatty acids, and microflora of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were assigned into three groups: basal diet (Con), a basal diet with added 109 CFU B. licheniformis/kg (BLl), and a basal diet with added 1010 CFU B. licheniformis/kg (BLh). On day 28, BLh piglets were intraperitoneally injected with LPS (CBL) and sterilized saline water (BL), Con piglets were injected with LPS (LPS) and sterilized saline water (Con), with the injections being administered for three consecutive days. The average daily gain significantly increased from day 1 to day 28 and the feed: gain ratio decreased with BL supplementation compared with the Con group. Supplementation with BLl and BLh reduced the diarrhea rate in piglets. Serum catalase activity increased and malondialdehyde concentration decreased in the CBL treatment group compared with the LPS treatment group. Both BL and CBL treatments increased the ileal villus length/crypt depth ratio compared with Con and LPS treatments. BL administration significantly increased colonic propionic and isobutyric acid concentrations compared with Con treatment. Both BL and CBL piglets had significantly increased fecal acetic, propionic, and butyric acid levels compared with LPS piglets. Analysis of the colonic microbial metagenome showed that Prevotella species were the predominant bacteria in piglets treated with BL and CBL. The CBL-treated piglets had higher scores for lysine biosynthesis, arginine biosynthesis, sulfur relay system, and histidine metabolism. BL-treated piglets had higher scores for glycosaminoglycan biosynthesis-keratan sulfate, oxidative phosphorylation, and pyruvate and carbon metabolism.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Shenglan Yang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Huixian Wang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, Zhejiang A & F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Huijia Biotechnology Co., Ltd., Huzhou 313307, China
| | - Kaifan Qiu
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Yingkun Dong
- College of Standardisation, China Jiliang Universtiy, Hangzhou 310058, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
16
|
Sun W, Chen W, Meng K, Cai L, Li G, Li X, Jiang X. Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets. BIOLOGY 2023; 12:biology12020238. [PMID: 36829515 PMCID: PMC9953057 DOI: 10.3390/biology12020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bacillus licheniformis (B. Licheniformis) has been considered to be an effective probiotic to maintain gut health and boost productivity in the pig industry, but there is no complete understanding of its mechanisms. We determined whether weaned piglets exposed to BL-S6 (probiotic) had altered intestinal barrier function or microbiota composition. In our study, 108 weaned piglets (54 barrows and 54 gilts) were divided equally into three groups, each with six pens and six piglets/pen, and fed a basal diet supplemented without or with antibiotic (40 g/t of Virginiamycin and 500 g/t of Chlortetracycline) or probiotic (1000 g/t of B. Licheniformis) for a 14-day trial. On day 14, one piglet was chosen from each pen to collect blood and intestinal samples. Compared with the control group, dietary supplementation with a probiotic promoted body weight (BW) gain and average daily gains (ADG) while reducing diarrhea incidence (p < 0.05). Probiotics enhanced superoxidase dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in serum (p < 0.05), and increased the level of mRNA expression of SOD1, Nrf2, and HO-1 (p < 0.05) in the jejunum mucosa. Moreover, supplementation with probiotics improved intestinal mucosal integrity as evidenced by higher villus heights and a higher ratio of villus heights to crypt depths (duodenum and jejunum) and higher mRNA and protein levels of occludin and ZO-1 in jejunum mucosa (p < 0.05). The intestinal sIgA levels (p < 0.05) were elevated in the probiotic group, and that of serum immunoglobulin A (IgA) tended to be higher (p = 0.09). Furthermore, weaning piglets who were given probiotics had a better balance of the cecum microbiota, with lactobacillus abundance increased and clostridium_sensu_stricto_1 abundance decreased. In conclusion, dietary supplementation with the probiotic BL-S6 promoted intestinal integrity, which was associated, in part, with modulating intestinal barrier function and microbial diversity in weaned piglets; it may offer a promising alternative to antibiotics to prevent diarrhea.
Collapse
Affiliation(s)
- Wenjuan Sun
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenning Chen
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Cai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiguan Li
- COFCO Feed Co., Ltd., Beijing 100020, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (G.L.); (X.J.); Tel.: +86-010-82108134 (X.J.)
| |
Collapse
|
17
|
Combined Omics Analysis Further Unveils the Specific Role of Butyrate in Promoting Growth in Early-Weaning Animals. Int J Mol Sci 2023; 24:ijms24021787. [PMID: 36675302 PMCID: PMC9864007 DOI: 10.3390/ijms24021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Abnormal mutations in the microbial structure of early-weaning mammals are an important cause of enteritis. Based on the multiple known beneficial functions of butyrate, we hypothesized that butyrate would alleviate the imbalance of intestinal homeostasis induced by early weaning in animals. However, the mechanisms of action between butyrate and intestinal microbes are still poorly explored. In this study, we aimed to investigate whether butyrate exerts beneficial effects on the structure of the intestinal flora of weanling rabbits and their intestinal homeostasis, growth and development, and we attempted to elucidate the potential mechanisms of action through a combined omics analysis. We found that dietary butyrate upregulated the transcription of tight junction-related proteins in the epithelial barrier and improved the intestinal microbial structure by suppressing harmful bacteria and promoting beneficial ones. Intestinal and plasma metabolomes were also altered. The bile acid secretion, α-linolenic acid, apoptotic, and prostate cancer pathways responded to the positive dietary butyrate-induced metabolic changes in the weanling rabbits, resulting in the inhibition of inflammation, improved antioxidant capacity, increased rates of cell proliferation and survival, and decreased levels of apoptosis. Additionally, dietary butyrate suppressed the release of pro-inflammatory factors and enhanced positive appetite regulation, which increased the average daily gain of the rabbits. These results demonstrated that dietary butyrate can help maintain the integrity of the intestinal epithelial barrier, improve the structural composition of the intestinal microflora, enhance organismal metabolism, inhibit inflammation, reduce post-weaning anorexia, and promote growth and development in early-weaning rabbits. These positive effects of dietary butyrate were exerted via the modulation of the microbe-gut-brain axis.
Collapse
|
18
|
Dowley A, Sweeney T, Conway E, Vigors S, Ryan MT, Yadav S, Wilson J, O'Doherty JV. The effects of dietary supplementation with mushroom or selenium enriched mushroom powders on the growth performance and intestinal health of post-weaned pigs. J Anim Sci Biotechnol 2023; 14:12. [PMID: 36631908 PMCID: PMC9832780 DOI: 10.1186/s40104-022-00808-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/23/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide (ZnO). The objectives of this study were to: 1) compare the effects of mushroom powder supplemented with inorganic selenium (inSeMP) to mushroom powder enriched with organic selenium (orgSeMP) to pharmacological levels of ZnO on growth performance and faecal scores (FS) for the first 21 d post-weaning (Period 1); and 2) compare the molecular and microbial effects of inSeMP and orgSeMP in these pigs on d 39 post-weaning (Period 2). METHODS In Period 1, pigs (3 pigs/pen; 8 pens/treatment) were assigned to: (1) basal diet (control); (2) basal diet + zinc oxide (ZnO) (3100 mg/kg d 1-14, 1550 mg/kg d 15-21); (3) basal diet + mushroom powder supplemented with inorganic selenium (inSeMP) containing selenium (selenite) content of 0.3 mg/kg feed; (4) basal diet + mushroom powder enriched with organic selenium (orgSeMP) containing selenium (selenocysteine) content of 0.3 mg/kg feed. Mushroom powders were included at 6.5 g/kg of feed. RESULTS In Period 1, there was no effect of diets on average daily gain (ADG) and gain:feed (G:F) ratio (P > 0.05). The orgSeMP supplemented pigs had a lower average daily feed intake (ADFI) compared to all other groups (P < 0.05). The ZnO supplemented pigs had reduced FS compared to the basal and mushroom group, while the orgSeMP supplemented pigs had lower FS compared to the basal group during the 21 d experimental period (P < 0.05). In Period 2, there was no effect of diets on ADFI, ADG and G:F ratio (P > 0.05). The orgSeMP supplementation increased the caecal abundance of bacterial members of the Firmicutes and Bacteroidetes phylum, including Lactobacillus, Agathobacter, Roseburia, and Prevotella and decreased the abundance of Sporobacter compared to the basal group, while inSeMP increased the caecal abundance of Prevotella and decreased the caecal abundance of Sporobacter compared to the basal group (P < 0.05). Dietary supplementation with inSeMP increased expression of TLR4 and anti-inflammatory cytokine gene IL10 and decreased nutrient transporter gene FABP2 compared to the orgSeMP group (P < 0.05). CONCLUSION OrgSeMP is a novel and sustainable way to incorporate selenium and β-glucans into the diet of weaned pigs whilst improving FS and modulating the caecal microbiota.
Collapse
Affiliation(s)
- Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion T Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Supriya Yadav
- Mbio, Monaghan Mushroom Group, Tyholland, Co.Monaghan, Ireland
| | - Jude Wilson
- Mbio, Monaghan Mushroom Group, Tyholland, Co.Monaghan, Ireland
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Galacto-Oligosaccharides Increase the Abundance of Beneficial Probiotic Bacteria and Improve Gut Architecture and Goblet Cell Expression in Poorly Performing Piglets, but Not Performance. Animals (Basel) 2023; 13:ani13020230. [PMID: 36670770 PMCID: PMC9854465 DOI: 10.3390/ani13020230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Poorly performing piglets receiving commercial milk replacers do not benefit from the naturally occurring probiotic galacto-oligosaccharides otherwise found in sow milk. Study objectives were to investigate the effects of complete milk replacer supplemented with galacto-oligosaccharides on the microbiome, gut architecture and immunomodulatory goblet cell expression of poorly performing piglets that could benefit from milk replacement feeding when separated from sows and housed with fit siblings in environmentally controlled pens. The study is novel in that it is one of the first to investigate the effects of supplementing complete milk replacer with galacto-oligosaccharides in poorly performing piglets. Gastrointestinal tract samples were collected from piglets, and the microbiome composition was assessed by 16s ribosomal ribonucleic acid gene sequencing. Gut architectural features, villus/crypt ratio and enumeration of goblet cells in tissues were assessed by histopathological techniques. The most abundant taxa identified at the genus level were Lactobacillus, Streptococcus, Prevotella, Lactococcus and Leuconostoc. Milk replacer plus galacto-oligosaccharides significantly improved gut architectural features and villus/crypt ratio throughout the gastrointestinal tract, increased the number of goblet cells and revealed a differential abundance of beneficial probiotic bacteria, particularly Lactobacillus and Bifidobacterium. In these respects, galacto-oligosaccharide-supplemented milk replacer may be a useful addition to animal husbandry in poorly performing, non-thriving animals when moved to environmentally controlled pens away from sows and fit siblings, thereby modulating the microbiome and gastrointestinal tract performance.
Collapse
|
20
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|
21
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Chang SY, Song MH, Lee JH, Oh HJ, Kim YJ, An JW, Go YB, Song DC, Cho HA, Cho SY, Kim DJ, Kim MS, Kim HB, Cho JH. Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. J Anim Sci Biotechnol 2022; 13:107. [PMID: 36050784 PMCID: PMC9438252 DOI: 10.1186/s40104-022-00750-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 01/23/2023] Open
Abstract
Background This study was conducted to investigate the effects of each phytogenic feed additive (PFA; PFA1, bitter citrus extract; PFA2, a microencapsulated blend of thymol and carvacrol; PFA3, a mixture of bitter citrus extract, thymol, and carvacrol; PFA4, a premixture of grape seed, grape marc extract, green tea, and hops; PFA5, fenugreek seed powder) on the growth performance, nutrient digestibility, intestinal morphology, and immune response in weaned pigs infected with Escherichia coli (E. coli). Results A total of 63 4-week-old weaned pigs were placed in individual metabolic cages and assigned to seven treatment groups. The seven treatments were as follows: 1) NC; basal diet without E. coli challenge, 2) PC; basal diet with E. coli challenge, 3) T1; PC + 0.04% PFA1, 4) T2; PC + 0.01% PFA2, 5) T3; PC + 0.10% PFA3, 6) T4; PC + 0.04% PFA4, 7) T5; PC + 0.10% PFA5. The experiments lasted in 21 d, including 7 d before and 14 d after the first E. coli challenge. In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F18 for 3 consecutive days. The PFA-added groups significantly increased (P < 0.05) average daily gain and feed efficiency and decreased (P < 0.05) the fecal score at d 0 to 14 post-inoculation (PI). Tumor necrosis factor α was significantly lower (P < 0.05) in the PFA-added groups except for T1 in d 14 PI compared to the PC treatment. The T3 had a higher (P < 0.05) immunoglobulin G and immunoglobulin A concentration compared to the PC treatment at d 7 PI. Also, T3 showed significantly higher (P < 0.05) villus height:crypt depth and claudin 1 expression in ileal mucosa, and significantly down-regulated (P < 0.05) the expression of calprotectin compared to the PC treatment. Conclusions Supplementation of PFA in weaned pigs challenged with E. coli alleviated the negative effects of E. coli and improved growth performance. Among them, the mixed additive of bitter citrus extract, thymol, and carvacrol showed the most effective results, improving immune response, intestinal morphology, and expression of tight junctions.
Collapse
Affiliation(s)
- Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | | | | | | | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
23
|
Sudan S, Zhan X, Li J. A Novel Probiotic Bacillus subtilis Strain Confers Cytoprotection to Host Pig Intestinal Epithelial Cells during Enterotoxic Escherichia coli Infection. Microbiol Spectr 2022; 10:e0125721. [PMID: 35736372 PMCID: PMC9430607 DOI: 10.1128/spectrum.01257-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/26/2022] [Indexed: 01/13/2023] Open
Abstract
Enteric infections caused by enterotoxic Escherichia coli (ETEC) negatively impact the growth performance of piglets during weaning, resulting in significant economic losses for the producers. With the ban on antibiotic usage in livestock production, probiotics have gained a lot of attention as a potential alternative. However, strain specificity and limited knowledge on the host-specific targets limit their efficacy in preventing ETEC-related postweaning enteric infections. We recently isolated and characterized a novel probiotic Bacillus subtilis bacterium (CP9) that demonstrated antimicrobial activity. Here, we report anti-ETEC properties of CP9 and its impact on metabolic activity of swine intestinal epithelial (IPEC-J2) cells. Our results showed that pre- or coincubation with CP9 protected IPEC-J2 cells from ETEC-induced cytotoxicity. CP9 significantly attenuated ETEC-induced inflammatory response by reducing ETEC-induced nitric oxide production and relative mRNA expression of the Toll-like receptors (TLRs; TLR2, TLR4, and TLR9), proinflammatory tumor necrosis factor alpha, interleukins (ILs; IL-6 and IL-8), augmenting anti-inflammatory granulocyte-macrophage colony-stimulating factor and host defense peptide mucin 1 (MUC1) mRNA levels. We also show that CP9 significantly (P < 0.05) reduced caspase-3 activity, reinstated cell proliferation and increased relative expression of tight junction genes, claudin-1, occludin, and zona occludens-1 in ETEC-infected cells. Finally, metabolomic analysis revealed that CP9 exposure induced metabolic modulation in IPEC J2 cells with the greatest impact seen in alanine, aspartate, and glutamate metabolism; pyrimidine metabolism; nicotinate and nicotinamide metabolism; glutathione metabolism; the citrate cycle (TCA cycle); and arginine and proline metabolism. Our study shows that CP9 incubation attenuated ETEC-induced cytotoxicity in IPEC-J2 cells and offers insight into potential application of this probiotic for ETEC infection control. IMPORTANCE ETEC remains one of the leading causes of postweaning diarrhea and mortality in swine production. Due to the rising concerns with the antibiotic use in livestock, alternative interventions need to be developed. In this study, we analyzed the cytoprotective effect of a novel probiotic strain in combating ETEC infection in swine intestinal cells, along with assessing its mechanism of action. To our knowledge, this is also the first study to analyze the metabolic impact of a probiotic on intestinal cells. Results from this study should provide effective cues in developing a probiotic intervention for ameliorating ETEC infection and improving overall gut health in swine production.
Collapse
Affiliation(s)
- Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Li J, Zhang Q, Zhuo Y, Fang Z, Che L, Xu S, Feng B, Lin Y, Jiang X, Zhao X, Wu D. Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals (Basel) 2022; 12:ani12172246. [PMID: 36077966 PMCID: PMC9454523 DOI: 10.3390/ani12172246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Weaning piglets face stressors from changes in feed and environment, which affects their growth. To resolve this problem, we explored the separate effects of multi-strain probiotics and Perilla frutescens seed extract and their combined effect on weaning piglets. We found multi-strain probiotics or Perilla frutescens seed extract both improved the gain to feed ratio and antioxidant capacity. In addition, multi-strain probiotics improved jejunal villus height and the villus height/crypt depth ratio. Perilla frutescens seed extract improved ileal villus height. The interactive effects were observed in jejunal villus height and the villus height/crypt depth ratio, ileal villus height, and the gene expression of IL-1β and mucin2 in the intestinal mucosa. This study shows that using either multi-strain probiotics or Perilla frutescens seed extract alone is more effective than their combined use in weaning piglets. Abstract This study examined the effects of multi-strain probiotics (BL) and Perilla frutescens seed extract (PSE), alone or in combination, on weaning piglets. In total, 96 weaning piglets were allocated into four treatments: CON group (the basal diet), PSE group (basal diet + 1g/kg PSE), BL group (basal diet + 2 g/kg BL), and BL+PSE group (basal diet +1 g/kg PSE + 2 g/kg BL) according to a 2 × 2 factorial arrangement. The supplementation of BL or PSE improved the gain to feed ratio. Dietary BL reduced diarrhea occurrence and Escherichia coli, but increased Lactobacillus counts in the ileal digesta. Dietary PSE tended to increase Lactobacillus counts in the ileal digesta. Interactive effects were found in terms of ileal villus height, the gene expression of IL-1β, and malondialdehyde in the ileal mucosa. Dietary BL lowered malondialdehyde in the spleen, liver, and jejunal mucosa but increased the total antioxidant capacity (T-AOC) in the liver and ileum mucosa. The supplementation of PSE improved superoxide dismutase in serum and T-AOC in the liver, and reduced MDA in liver, spleen, and jejunum mucosa. Taken together, BL or PSE showed positive effects, improving growth and intestinal morphology and enhancing antioxidant capacity. However, their interaction showed no beneficial effects on the antioxidant indices and the intestinal morphology of weaned piglets.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| | - Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| |
Collapse
|
25
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
26
|
Conway E, Sweeney T, Dowley A, Vigors S, Ryan M, Yadav S, Wilson J, O’Doherty JV. Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets. Animals (Basel) 2022; 12:1503. [PMID: 35739840 PMCID: PMC9219493 DOI: 10.3390/ani12121503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 01/01/2023] Open
Abstract
This study was conducted to examine the effects of varying selenium (Se) inclusion levels, in the form of Se-enriched mushroom powder (SeMP) and selenite, on post-weaning growth performance (Period 1; day 1−21), intestinal health and antioxidant capacity (Period 2; day 21−39). Weaned pigs were blocked according to live weight, sex and litter of origin and randomly assigned to the following experimental groups: basal (basal + selenite (0.3 ppm Se)); ZnO (basal + ZnO + selenite (0.3 ppm Se)); 0.15 SeMP (basal + SeMP (0.15 ppm Se)); 0.3 SeMP (basal + SeMP (0.3 ppm Se)) and 0.6 SeMP/Sel (basal + SeMP (0.3 ppm Se) + selenite (Sel) (0.3 ppm Se)) with eight replicates/experimental group. After 21 days, the ZnO experimental group was removed from the experiment and the remaining pigs continued on their respective diet until day 39 post-weaning (Period 2). In Period 1, 0.15 SeMP supplementation reduced (p < 0.05) average daily gain (ADG), average daily feed intake (ADFI) and day 21 body weight, and increased (p < 0.05) faecal scores compared to the ZnO group. Supplementation with 0.3 SeMP and 0.6 SeMP/Sel during Period 1 resulted in similar (p > 0.05) ADG, ADFI, gain-to-feed ratio (G:F) and body weight compared to the ZnO group. However, 0.6 SeMP/Sel supplementation increased (p < 0.05) faecal scores compared to the ZnO group. In Period 2, 0.6 SeMP/Sel increased (p < 0.05) ADG, feed efficiency and day 39 body weight compared to the basal group. Supplementation with Se-enriched mushroom powder, at all inclusion levels, increased (p < 0.05) the abundance of Prevotellaceae and Prevotella, decreased (p < 0.05) the abundance of Sporobacter and increased (p < 0.05) the expression of SELENOP in the jejunum compared to the basal group. Lactobacillaceae and Lactobacillus was increased (p < 0.05) in 0.15 SeMP and 0.3 SeMP pigs compared to the basal group. Selenium deposition in muscle and liver tissue increased (p < 0.001) as a function of inclusion level while pigs supplemented with 0.3 ppm organic Se (0.3 SeMP) had an increase (p < 0.05) in total Se in the muscle compared to pigs supplemented with 0.3 ppm inorganic Se (basal). In conclusion, 0.3 SeMP supplementation led to positive effects on faecal scores and had similar pig performance compared to ZnO in Period 1, while the addition of 0.3 ppm selenite to 0.3 SeMP (0.6 SeMP/Sel) in Period 2 led to enhanced pig performance and aspects of gastrointestinal health.
Collapse
Affiliation(s)
- Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (A.D.); (S.V.)
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (T.S.); (M.R.)
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (A.D.); (S.V.)
| | - Stafford Vigors
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (A.D.); (S.V.)
| | - Marion Ryan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (T.S.); (M.R.)
| | - Supriya Yadav
- MBio, Monaghan Mushroom Group, Tyholland, H18 FW95 Monaghan, Ireland; (S.Y.); (J.W.)
| | - Jude Wilson
- MBio, Monaghan Mushroom Group, Tyholland, H18 FW95 Monaghan, Ireland; (S.Y.); (J.W.)
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (A.D.); (S.V.)
| |
Collapse
|
27
|
Su W, Gong T, Jiang Z, Lu Z, Wang Y. The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Front Cell Infect Microbiol 2022; 12:883107. [PMID: 35711653 PMCID: PMC9197122 DOI: 10.3389/fcimb.2022.883107] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
Early weaning of piglets is an important strategy for improving the production efficiency of sows in modern intensive farming systems. However, due to multiple stressors such as physiological, environmental and social challenges, postweaning syndrome in piglets often occurs during early weaning period, and postweaning diarrhea (PWD) is a serious threat to piglet health, resulting in high mortality. Early weaning disrupts the intestinal barrier function of piglets, disturbs the homeostasis of gut microbiota, and destroys the intestinal chemical, mechanical and immunological barriers, which is one of the main causes of PWD in piglets. The traditional method of preventing PWD is to supplement piglet diet with antibiotics. However, the long-term overuse of antibiotics led to bacterial resistance, and antibiotics residues in animal products, threatening human health while causing dysbiosis of gut microbiota and superinfection of piglets. Antibiotic supplementation in livestock diets is prohibited in many countries and regions. Regarding this context, finding antibiotic alternatives to maintain piglet health at the critical weaning period becomes a real emergency. More and more studies showed that probiotics can prevent and treat PWD by regulating the intestinal barriers in recent years. Here, we review the research status of PWD-preventing and treating probiotics and discuss its potential mechanisms from the perspective of intestinal barriers (the intestinal microbial barrier, the intestinal chemical barrier, the intestinal mechanical barrier and the intestinal immunological barrier) in piglets.
Collapse
Affiliation(s)
- Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Yizhen Wang,
| |
Collapse
|
28
|
Significance of Mucosa-Associated Microbiota and Its Impacts on Intestinal Health of Pigs Challenged with F18 +E. coli. Pathogens 2022; 11:pathogens11050589. [PMID: 35631110 PMCID: PMC9145386 DOI: 10.3390/pathogens11050589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
The objective of this study was to evaluate the significance of jejunal mucosa-associated microbiota and its impacts on the intestinal health of pigs challenged with F18+ Escherichia coli. Forty-four newly-weaned pigs were allotted to two treatments in a randomized complete block design with sex as blocks. Pigs were fed common diets for 28 d. At d 7 post-weaning, pigs were orally inoculated with saline solution or F18+ E. coli. At d 21 post-challenge, feces and blood were collected and pigs were euthanized to collect jejunal tissue to evaluate microbiota and intestinal health parameters. The relative abundance of Firmicutes and Bacteroidetes was lower (p < 0.05) in jejunal mucosa than in feces, whereas Proteobacteria was greater (p < 0.05) in jejunal mucosa. F18+ E. coli increased (p < 0.05) protein carbonyl, Helicobacteraceae, Pseudomonadaceae, Xanthomonadaceae, and Peptostreptococcaceae and reduced (p < 0.05) villus height, Enterobacteriaceae, Campylobacteraceae, Brachyspiraceae, and Caulobacteraceae in jejunal mucosa, whereas it reduced (p < 0.05) Spirochaetaceae and Oscillospiraceae in feces. Collectively, jejunal mucosa-associated microbiota differed from those in feces. Compared with fecal microbiota, the change of mucosa-associated microbiota by F18+ E. coli was more prominent, and it was mainly correlated with increased protein carbonyl and reduced villus height in jejunal mucosa impairing the intestinal health of nursery pigs.
Collapse
|
29
|
Bacillus-Based Direct-Fed Microbial Reduces the Pathogenic Synergy of a Coinfection with Salmonella enterica Serovar Choleraesuis and Porcine Reproductive and Respiratory Syndrome Virus. Infect Immun 2022; 90:e0057421. [PMID: 35254092 PMCID: PMC9022502 DOI: 10.1128/iai.00574-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a Bacillus-based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV. Nine days after the bacterial challenge, Salmonella was isolated from ileocecal lymph nodes of all challenged pigs regardless of DFM treatment. Compared to the single bacterial challenge, the dual challenge with Salmonella and PRRSV resulted in a pathogenic synergy exhibited by a higher rate of Salmonella colonization in the lung and a more extensive and severe interstitial pneumonia. Provision of DFM to dually challenged pigs reduced the rate of lung colonization by Salmonella, eliminated or reduced the presence of PRRSV in the lung, and reduced the extent and severity of gross lung pathology. Dually challenged pigs that received DFM had increased concentrations of interleukin 1 (IL-1) and IL-8 in lung lavage fluids, accompanied by increased expression in their blood cells of nucleotide-binding oligomerization domain receptor 2 (NOD2) and triggering receptor expressed in myeloid cells 1 (TREM-1) molecules. These changes in pulmonary inflammatory cytokine production and increased expression of NOD2 and TREM-1 suggest that the DFM exerted a systemic modulating effect on innate immunity. These observations are consistent with the notion that tonic stimulation by gut-derived microbial products can poise innate immunity to fight infections in the respiratory tract.
Collapse
|
30
|
Duarte ME, Kim SW. Intestinal microbiota and its interaction to intestinal health in nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:169-184. [PMID: 34977387 PMCID: PMC8683651 DOI: 10.1016/j.aninu.2021.05.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota has gained increased attention from researchers within the swine industry due to its role in promoting intestinal maturation, immune system modulation, and consequently the enhancement of the health and growth performance of the host. This review aimed to provide updated scientific information on the interaction among intestinal microbiota, dietary components, and intestinal health of pigs. The small intestine is a key site to evaluate the interaction of the microbiota, diet, and host because it is the main site for digestion and absorption of nutrients and plays an important role within the immune system. The diet and its associated components such as feed additives are the main factors affecting the microbial composition and is central in stimulating a beneficial population of microbiota. The microbiota–host interaction modulates the immune system, and, concurrently, the immune system helps to modulate the microbiota composition. The direct interaction between the microbiota and the host is an indication that the mucosa-associated microbiota can be more effective in evaluating its effect on health parameters. It was demonstrated that the mucosa-associated microbiota should be evaluated when analyzing the interaction among diets, microbiota, and health. In addition, supplementation of feed additives aimed to promote the intestinal health of pigs should consider their roles in the modulation of mucosa-associated microbiota as biomarkers to predict the response of growth performance to dietary interventions.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
31
|
Mun D, Kyoung H, Kong M, Ryu S, Jang KB, Baek J, Park KI, Song M, Kim Y. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1314-1327. [PMID: 34957446 PMCID: PMC8672252 DOI: 10.5187/jast.2021.e109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
Bacillus is characterized by the formation of spores in harsh
environments, which makes it suitable for use as a probiotic for feed because of
thermostability and high survival rate, even under long-term storage. This study
was conducted to investigate the effects of Bacillus-based
probiotics on growth performance, nutrient digestibility, intestinal morphology,
immune response, and intestinal microbiota of weaned pigs. A total of 40 weaned
pigs (7.01 ± 0.86 kg body weight [BW]; 28 d old) were randomly assigned
to two treatments (4 pigs/pen; 5 replicates/treatment) in a randomized complete
block design (block = BW and sex). The dietary treatment was either a typical
nursery diet based on corn and soybean meal (CON) or CON supplemented with 0.01%
probiotics containing a mixture of Bacillus subtilis and
Bacillus licheniformis (PRO). Fecal samples were collected
daily by rectal palpation for the last 3 days after a 4-day adaptation. Blood,
ileal digesta, and intestinal tissue samples were collected from one pig in each
pen at the respective time points. The PRO group did not affect the feed
efficiency, but the average daily gain was significantly improved
(p < 0.05). The PRO group showed a trend of improved
crude protein digestibility (p < 0.10). The serum
transforming growth factor-β1 level tended to be higher
(p < 0.10) in the PRO group on days 7 and 14. There
was no difference in phylum level of the intestinal microbiota, but there were
differences in genus composition and proportions. However,
β-diversity analysis showed no statistical
differences between the CON and the PRO groups. Taken together,
Bacillus-based probiotics had beneficial effects on the
growth performance, immune system, and intestinal microbiota of weaned pigs,
suggesting that Bacillus can be utilized as a functional
probiotic for weaned pigs.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Myunghwan Kong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 2769, USA
| | - Jangryeol Baek
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Kyeong Ii Park
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X. Nutrient L-Alanine-Induced Germination of Bacillus Improves Proliferation of Spores and Exerts Probiotic Effects in vitro and in vivo. Front Microbiol 2021; 12:796158. [PMID: 34925306 PMCID: PMC8675871 DOI: 10.3389/fmicb.2021.796158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
As alternatives to antibiotics in feed, probiotic Bacillus carries multiple advantages in animal production. Spores undergo strain-related germination in the gastrointestinal tract, but it is still unknown whether the probiotic function of the Bacillus depends on the germination of spores in vivo. In this study, based on 14 potential probiotic Bacillus strains from fermented food and feed, we detected the germination response of these Bacillus spores in relation to different germinating agents. The results showed the germination response was strain-specific and germinant-related, and nutrient germinant L-alanine significantly promoted the growth of strains with germination potential. Two strains of Bacillus subtilis, S-2 and 312, with or without a high spore germination response to L-alanine, were selected to study their morphological and genic differences induced by L-alanine through transmission electron microscopy and comparative transcriptomics analysis. Consequently, after L-alanine treatment, the gray phase was largely increased under microscopy, and the expression of the germination response genes was significantly up-regulated in the B. subtilis S-2 spores compared to the B. subtilis 312 spores (p < 0.05). The protective effect of L-alanine-induced spore germination of the two strains was comparatively investigated both in the IPEC-J2 cell model and a Sprague–Dawley (SD) rat model challenged by enterotoxigenic Escherichia coli K99. The result indicated that L-alanine helped B. subtilis S-2 spores, but not 312 spores, to decrease inflammatory factors (IL-6, IL-8, IL-1 β, TNF-α; p < 0.05) and promote the expression of occludin in IPEC-J2 cells. Besides, supplement with L-alanine-treated B. subtilis S-2 spores significantly improved the growth of the SD rats, alleviated histopathological GIT lesions, and improved the ratio of jejunal villus length to crypt depth in comparison to the B. subtilis S-2 spores alone (p < 0.05). Improved species diversity and abundance of fecal microbiota were only observed in the group with L-alanine-treated S-2 spores (p < 0.05). The study demonstrates L-alanine works well as a probiotic Bacillus adjuvant in improving intestinal health, and it also provides a solution for the practical and accurate regulation of their use as antibiotic alternatives in animal production.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xianyin Liao
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Ying Fang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
33
|
Yin C, Xia B, Tang S, Cao A, Liu L, Zhong R, Chen L, Zhang H. The Effect of Exogenous Bile Acids on Antioxidant Status and Gut Microbiota in Heat-Stressed Broiler Chickens. Front Nutr 2021; 8:747136. [PMID: 34901107 PMCID: PMC8652638 DOI: 10.3389/fnut.2021.747136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P < 0.05) while GSH-Px activities (P < 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P < 0.0001). Among them, TUDCA levels (P < 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.
Collapse
Affiliation(s)
- Chang Yin
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Bing Xia
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Shanlong Tang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Aizhi Cao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Shandong Longchang Animal Health Care Co., Ltd., Jinan, China
| | - Lei Liu
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ruqing Zhong
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Liang Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
34
|
Cheng YC, Duarte ME, Kim SW. Nutritional and functional values of lysed Corynebacterium glutamicum cell mass for intestinal health and growth of nursery pigs. J Anim Sci 2021; 99:skab331. [PMID: 34902029 PMCID: PMC8668180 DOI: 10.1093/jas/skab331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
35
|
Emodin Improves Intestinal Health and Immunity through Modulation of Gut Microbiota in Mice Infected by Pathogenic Escherichia coli O 1. Animals (Basel) 2021; 11:ani11113314. [PMID: 34828045 PMCID: PMC8614316 DOI: 10.3390/ani11113314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The effect of emodin on the intestinal mucosal barrier of a mouse E. coli O1-induced diarrhea model was observed. Following successful establishment of a diarrhea model, the mice were treated with drugs for seven days. Intestinal lesions and the shape and the number of goblet cells were assessed via hematoxylin-eosin and periodic-acid-Schiff staining, while changes in inflammatory factors, ultrastructure of the small intestine, expression of MUC-2, and changes in the intestinal microbiota were analyzed via RT-PCR, electron microscopy, immunofluorescence, and 16S rRNA sequencing. Examination showed that emodin ameliorated pathological damage to the intestines of diarrheic mice. RT-PCR indicated that emodin reduced TNF-α, IL-β, IL-6, MPO, and COX-2 mRNA levels in duodenal tissues and increased the levels of sIgA and MUC-2 and the number of goblet cells. Microbiome analysis revealed that Escherichia coli O1 reduced bacterial richness and altered the distribution pattern of bacterial communities at the phylum and order levels in cecum contents. Notably, pathogenic Clostridiales and Enterobacteriales were significantly increased in diarrheic mice. However, emodin reversed the trend. Thus, emodin protected against intestinal damage induced by E. coli O1 and improved intestinal mucosal barrier function in mice by increasing the abundance of beneficial intestinal microbiota and inhibiting the abundance of harmful bacteria, thereby alleviating diarrhea.
Collapse
|
36
|
Differential effects of early-life and post-weaning galactooligosaccharides intervention on colonic bacterial composition and function in weaning piglets. Appl Environ Microbiol 2021; 88:e0131821. [PMID: 34705551 DOI: 10.1128/aem.01318-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we have proved that the early-life galactooligosaccharides (GOS) intervention could improve the colonic function by altering the bacterial composition in the suckling piglets. However, whether the early-life GOS (ELG) intervention could have a long influence of the colonic microbiota, and the ELG and post-weaning GOS (PWG) combined intervention would have an interaction effect on maintaining colonic health in weaning piglets remain to be explored. Thus in this study, we illustrated the differential effect of ELG and PWG intervention on colonic microbiota and colonic function of weaning piglets. Our results showed that both the ELG and PWG intervention decreased the diarrhea frequency of weaning piglets, while the PWG intervention increased colonic indexes. After 16S rRNA MiSeq sequencing of gut bacteria belonged to colonic niches (mucosa and digesta), the PWG increased the α-diversity of colonic mucosal bacteria was revealed. In addition, we found both the ELG and PWG intervention enriched the abundance of short chain fatty acids (SCFAs) producer in different colonic niches and increased total SCFAs concentrations in colonic digesta. These changes selectively modulated the mRNA expression of pattern recognition receptors and barrier proteins in the colonic mucosa. Of note, the combined effect of ELG and PWG effectively enhanced colonic SCFAs producer enrichment and up-regulated the butyrate concentration. Meanwhile, the gene expression of MyD88-NFκB signaling and the pro-inflammatory cytokines contents were markedly reduced under the combined effect of ELG and PWG. Importance Reducing the disorders of gut ecosystem is an effective way to relieve weaning stresses of piglets and save economic losses in the modern swine industry. To this end, prebiotics were often added in diet during the weaning transition. In present study, we demonstrated that the ELG and PWG intervention had shown different effects on the bacterial composition of different colonic niches and colonic function in the weaning piglets. Especially under the combined effect of ELG and PWG intervention, the gene expression of MyD88-NFκB signaling and the contents of pro-inflammation cytokines decreased with the increasing concentration of butyrate, which is one of the important microbial metabolites in the colon of weaning piglets. These findings further provided new insights into nutritional interventions to alleviate intestinal ecosystem dysbiosis and gut dysfunction in the piglets during the weaning transition.
Collapse
|
37
|
Dynamics of the fecal microbiome and antimicrobial resistome in commercial piglets during the weaning period. Sci Rep 2021; 11:18091. [PMID: 34508122 PMCID: PMC8433359 DOI: 10.1038/s41598-021-97586-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/27/2021] [Indexed: 01/02/2023] Open
Abstract
This study aimed to characterize the alteration of the fecal microbiome and antimicrobial resistance (AMR) determinants in 24 piglets at day 3 pre-weaning (D. − 3), weaning day (D.0), days 3 (D.3) and 8 post-weaning (D.8), using whole-genome shotgun sequencing. Distinct clusters of microbiomes and AMR determinants were observed at D.8 when Prevotella (20.9%) was the major genus, whereas at D. − 3–D.3, Alistipes (6.9–12.7%) and Bacteroides (5.2–8.5%) were the major genera. Lactobacillus and Escherichia were notably observed at D. − 3 (1.2%) and D. − 3–D.3 (0.2–0.4%), respectively. For AMR, a distinct cluster of AMR determinants was observed at D.8, mainly conferring resistance to macrolide–lincosamide–streptogramin (mefA), β-lactam (cfxA6 and aci1) and phenicol (rlmN). In contrast, at D. − 3–D.3, a high abundance of determinants with aminoglycoside (AMG) (sat, aac(6')-aph(2''), aadA and acrF), β-lactam (fus-1, cepA and mrdA), multidrug resistance (MDR) (gadW, mdtE, emrA, evgS, tolC and mdtB), phenicol (catB4 and cmlA4), and sulfonamide patterns (sul3) was observed. Canonical correlation analysis (CCA) plot associated Escherichia coli with aac(6')-aph(2''), emrA, mdtB, catB4 and cmlA4 at D. − 3, D.0 and/or D.3 whereas at D.8 associations between Prevotella and mefA, cfxA6 and aci1 were identified. The weaning age and diet factor played an important role in the microbial community composition.
Collapse
|
38
|
Gao R, Tian S, Wang J, Zhu W. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. J Anim Sci Biotechnol 2021; 12:92. [PMID: 34376253 PMCID: PMC8356462 DOI: 10.1186/s40104-021-00612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) have been shown to modulate the intestinal microbiota of suckling piglets to exert beneficial effects on intestinal function. However, the modulation of intestinal microbiota and intestinal function by GOS in intestinal inflammation injury models has rarely been reported. In this study, we investigated the effects of GOS on the colonic mucosal microbiota composition, barrier function and inflammatory response of lipopolysaccharides (LPS)-challenged suckling piglets. METHODS A total of 18 newborn suckling piglets were divided into three groups, the CON group, the LPS-CON group and the LPS-GOS group. Piglets in the LPS-GOS group were orally fed with 1 g/kg body weight of GOS solution every day. On the d 14, piglets in the LPS-CON and LPS-GOS group were challenged intraperitoneally with LPS solution. All piglets were slaughtered 2 h after intraperitoneal injection and sampled. RESULTS We found that the colonic mucosa of LPS-challenged piglets was significantly injured and shedding, while the colonic mucosa of the LPS-GOS group piglets maintained its structure. Moreover, GOS significantly reduced the concentration of malondialdehyde (MDA) and the activity of reactive oxygen species (ROS) in the LPS-challenged suckling piglets, and significantly increased the activity of total antioxidant capacity (T-AOC). GOS significantly increased the relative abundance of norank_f__Muribaculaceae and Romboutsia, and significantly decreased the relative abundance of Alloprevotella, Campylobacter and Helicobacter in the colonic mucosa of LPS-challenged suckling piglets. In addition, GOS increased the concentrations of acetate, butyrate and total short chain fatty acids (SCFAs) in the colonic digesta of LPS-challenged suckling piglets. GOS significantly reduced the concentrations of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and cluster of differentiation 14 (CD14), and the relative mRNA expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) in the LPS-challenged suckling piglets. In addition, GOS significantly reduced the relative mRNA expression of mucin2 (MUC2), and significantly increased the protein expression of Claudin-1 and zonula occluden-1 (ZO-1) in LPS-challenged suckling piglets. CONCLUSIONS These results suggested that GOS can modulate the colonic mucosa-associated microbiota composition and improve the intestinal function of LPS-challenged suckling piglets.
Collapse
Affiliation(s)
- Ren Gao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiyi Tian
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
39
|
Comprehensive Cultivation of the Swine Gut Microbiome Reveals High Bacterial Diversity and Guides Bacterial Isolation in Pigs. mSystems 2021; 6:e0047721. [PMID: 34282935 PMCID: PMC8407297 DOI: 10.1128/msystems.00477-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the substantial progress made in human gut culturomics, little is known about the culturability of the swine gut microbiota. In this study, we cultured swine gut microbiota using 53 bacterial cultivation methods with different medium and gas combinations from three pigs at four different growth stages. Both culture-dependent (CD; colony mixtures from each method) and culture-independent (CI; original fecal suspensions) samples were subjected to 16S rRNA gene amplicon sequencing. Increasing microbial diversities were observed in both CI and CD samples from successive growth stages. While a total of 378, 482, 565, and 555 bacterial amplicon sequence variants (ASVs) were observed in the CI samples, higher microbial diversities (415, 675, 808, and 823 observed ASVs) were detected using the CD methods at the lactation, nursery, growing, and finishing stages, respectively. We constructed reference culture maps showing the preferred cultivation conditions for specific bacterial taxa and examined the effects of culturing factors such as oxygen, medium, donor pig age, antibiotics, and blood culture preincubation on swine gut microbiota cultivation. We focused on a wide range of beneficial bacteria, chose 1,299 colonies based on the reference map, and Sanger sequenced their 16S rRNA genes. These isolates clustered into 148 different bacterial taxa covering 28 genera. We observed 11, 19, 33, and 25 pairs of cooccurring ASVs in both CD and CI samples at four successive growth stages. This study provides guidance in culturing the swine gut microbiota of interest, which is critical when characterizing their functions in this important animal species. IMPORTANCE The swine gut microbiome has been the focus of many investigations due to the fact that pigs serve as both an excellent biomedical model for human diseases and an important protein source. Substantial progress has been made in swine gut microbiome studies using next-generation sequencing-based culture-independent approaches, but little is known about the culturability of the swine gut microbiota. To understand their roles in swine production, it is critical to culture bacterial strains of interest. In this study, we cultured the gut microbiota from pigs at different growth stages using 53 bacterial cultivation methods with different medium and gas combinations. This study provides evidence that the swine gut microbiota is much more diverse based on a culture-dependent approach than previously known. It provides preliminary guidance for isolating certain bacteria of interest from pigs, which is critical in establishing causal relationships between the gut microbiota and the health status of pigs.
Collapse
|
40
|
Rhouma M, Braley C, Thériault W, Thibodeau A, Quessy S, Fravalo P. Evolution of Pig Fecal Microbiota Composition and Diversity in Response to Enterotoxigenic Escherichia coli Infection and Colistin Treatment in Weaned Piglets. Microorganisms 2021; 9:1459. [PMID: 34361896 PMCID: PMC8306681 DOI: 10.3390/microorganisms9071459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
The intestinal microbiota plays several important roles in pig health and growth. The aim of the current study was to characterize the changes in the fecal microbiota diversity and composition of weaned piglets following an oral challenge with an ETEC: F4 strain and/or a treatment with colistin sulfate (CS). Twenty-eight piglets were used in this experiment and were divided into four groups: challenged untreated, challenged treated, unchallenged treated, and unchallenged untreated. Rectal swab samples were collected at five sampling times throughout the study. Total genomic DNA was used to assess the fecal microbiota diversity and composition using the V4 region of the 16S rRNA gene. The relative abundance, the composition, and the community structure of piglet fecal microbiota was highly affected by the ETEC: F4 challenge throughout the experiment, while the oral treatment with CS, a narrow spectrum antibiotic, resulted in a significant decrease of E. coli/Shigella populations during the treatment period only. This study was the first to identify some gut microbiota subgroups (e.g., Streptococcus, Lachnospiraceae) that are associated with healthy piglets as compared to ETEC: F4 challenged animals. These key findings might contribute to the development of alternative strategies to reduce the use of antimicrobials in the control of post-weaning diarrhea in pigs.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charlotte Braley
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - William Thériault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sylvain Quessy
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.B.); (W.T.); (A.T.); (S.Q.); (P.F.)
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Conservatoire National des Arts et Métiers (CNAM), 292 rue Saint-Martin, 75003 Paris, France
| |
Collapse
|
41
|
Moita VHC, Duarte ME, da Silva SN, Kim SW. Supplemental Effects of Functional Oils on the Modulation of Mucosa-Associated Microbiota, Intestinal Health, and Growth Performance of Nursery Pigs. Animals (Basel) 2021; 11:1591. [PMID: 34071448 PMCID: PMC8230055 DOI: 10.3390/ani11061591] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the effects of functional oils on modulation of mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Forty newly weaned pigs (20 barrows and 20 gilts) with 7.0 ± 0.5 kg body weight (BW) were housed individually and randomly allotted in a randomized complete block design with sex and initial BW as blocks. The dietary treatments were a basal diet with increasing levels (0.00, 0.50, 0.75, 1.00, and 1.50 g/kg feed) of functional oils (a blend of castor oil and cashew nutshell liquid; Oligo Basics USA LLC, Cary, NC) fed to pigs for 34 days divided in two phases (P1 for 13 days and P2 for 21 days). Growth performance was analyzed weekly. On day 34, all pigs were euthanized to collect jejunal mucosa for analyzing the mucosa-associated microbiota and intestinal health, and ileal digesta for analyzing apparent ileal digestibility. Data were analyzed using SAS 9.4. Supplementation of functional oils did not affect the overall growth performance. Increasing supplementation of functional oils reduced (p < 0.05) the relative abundance of Helicobacteraceae, whereas it increased (p < 0.05) Lactobacillus kitasatonis. Supplementation of functional oils tended (p = 0.064) to decrease protein carbonyl and increase the villus height (p = 0.098) and crypt depth (p = 0.070). In conclusion, supplementation of functional oils enhanced intestinal health of nursery pigs by increasing beneficial and reducing harmful bacteria, potentially reducing oxidative stress and enhancing intestinal morphology, without affecting overall growth performance of pigs. Supplementation of functional oils at 0.75-1.50 g/kg feed was the most beneficial to the jejunal mucosa-associated microbiota and intestinal integrity of nursery pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (V.H.C.M.); (M.E.D.); (S.N.d.S.)
| |
Collapse
|
42
|
Wang D, Zhou L, Zhou H, Hu H, Hou G. Chemical composition and protective effect of guava (Psidium guajava L.) leaf extract on piglet intestines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2767-2778. [PMID: 33140438 DOI: 10.1002/jsfa.10904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/10/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Dietary intervention is an important approach to improve intestinal function of weaned piglets. Phytogenic and herbal products have received increasing attention as in-feed antibiotic alternatives. This study investigated the chemical composition of guava leaf extract (GE) by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Meanwhile, we investigated the effects of dietary supplementation with GE on diarrhea in relation to immune responses and intestinal health in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC). RESULTS In total, 323 characterized compounds, which including 91 phenolic compounds and 232 other compounds were identified. Animal experiment results showed that the supplementation of 50-200 mg kg-1 of GE in the diet could reduce diarrhea incidence, increase activities of superoxide dismutase, glutathione peroxidase and total anti-oxidant capacity in the serum (P < 0.05), decrease the levels of interleukin 1β, interleukin 6 and tumor necrosis factor α in the serum or jejunum mucosa (P < 0.05), and increase villus height and villus height to crypt depth ratio (P < 0.05) in the jejuna of piglets challenged by oral ETEC compared with negative control group (NC). Meanwhile, diet supplementation with 50-200 mg kg-1 GE reduced the levels of D-lactate, endothelin-1 and diamine oxidase in the serum, and increased the expression of zonula occludens-1, Claudin-1, Occludin and Na+ /H+ exchanger 3 (P < 0.05) in the jejuna mucosa of piglets challenged by ETEC compared with the NC. CONCLUSIONS These results suggested that GE could attenuate diarrhea and improve intestinal barrier function of piglets challenged by ETEC. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haichao Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
43
|
Wei X, Tsai T, Howe S, Zhao J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals (Basel) 2021; 11:1279. [PMID: 33946901 PMCID: PMC8146462 DOI: 10.3390/ani11051279] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.
Collapse
Affiliation(s)
| | | | | | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (S.H.)
| |
Collapse
|
44
|
Wang X, Tsai T, Wei X, Zuo B, Davis E, Rehberger T, Hernandez S, Jochems EJ, Maxwell CV, Zhao J. Effect of Lactylate and Bacillus subtilis on Growth Performance, Peripheral Blood Cell Profile, and Gut Microbiota of Nursery Pigs. Microorganisms 2021; 9:microorganisms9040803. [PMID: 33920300 PMCID: PMC8070655 DOI: 10.3390/microorganisms9040803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
To evaluate the effects of lactylate and Bacillus subtilis on growth performance, complete blood cell count, and microbial changes, 264 weaning pigs were assigned to four treatments (1) control (Con) basal diets that met the nutrient requirement for each phase, (2) 0.2% lactylate (LA), (3) 0.05% Bacillus subtilis strains mixtures (BM), or (4) the combination of LA and BM (LA+BM) added to the control basal diet at their respective inclusion rates in each of the three phases. Dietary lactylate tended to increase weight gain, significantly increased feed intake, and reduced fecal total E. coli and enterotoxigenic E. coli counts during Phase 1. Pigs fed Bacillus subtilis had a greater gain to feed ratio (G:F) during Phases 1 and 2. Pigs fed lactylate had an increased peripheral absolute neutrophil count on D14 but a decreased eosinophil percentage. Pigs fed Bacillus subtilis had an elevated peripheral total white blood cell count at study completion. The addition of lactylate increased microbiota richness, reduced E. coli, and increased Prevotella, Christensenellaceae, and Succinivibrio. Bacillus subtilis supplementation-enriched f_Ruminococcaceae_unclassified and S24-7_ unclassified had positive relationships with feed efficiency. Collectively, these findings suggested that lactylate can be added to diets to balance gut microbiota and improve growth performance during the early postweaning period. The combination of lactylate and Bacillus subtilis strains exerted a synergic effect on the growth performance of nursery pigs.
Collapse
Affiliation(s)
- Xiaofan Wang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Tsungcheng Tsai
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Bin Zuo
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Ellen Davis
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | - Tom Rehberger
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | - Samantha Hernandez
- Arm & Hammer Animal and Food Production, Church & Dwight, Inc., Waukesha, WI 53186, USA; (E.D.); (T.R.); (S.H.)
| | | | - Charles V. Maxwell
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (X.W.); (B.Z.); (C.V.M.)
- Correspondence:
| |
Collapse
|
45
|
da Silva Duarte V, dos Santos Cruz BC, Tarrah A, Sousa Dias R, de Paula Dias Moreira L, Lemos Junior WJF, Fidélis Silva LC, Rocha Santana G, Licursi de Oliveira L, Gouveia Peluzio MDC, Mantovani HC, Corich V, Giacomini A, de Paula SO. Chemoprevention of DMH-Induced Early Colon Carcinogenesis in Male BALB/c Mice by Administration of Lactobacillus Paracasei DTA81. Microorganisms 2020; 8:microorganisms8121994. [PMID: 33327620 PMCID: PMC7765108 DOI: 10.3390/microorganisms8121994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
We evaluated the effects of the probiotic candidate Lactobacillus paracasei DTA81 (DTA81) on liver oxidative stress, colonic cytokine profile, and gut microbiota in mice with induced early colon carcinogenesis (CRC) by 1,2-dimethylhydrazine (DMH). Animals were divided into four different groups (n = 6) and received the following treatments via orogastric gavage for 8 weeks: Group skim milk (GSM): 300 mg/freeze-dried skim milk/day; Group L. paracasei DTA81 (DTA81): 3 × 109 colony-forming units (CFU)/day; Group Lactobacillus rhamnosus GG (LGG): 3 × 109 CFU/day; Group non-intervention (GNI): 0.1 mL/water/day. A single DMH dose (20 mg/kg body weight) was injected intraperitoneally (i.p), weekly, in all animals (seven applications in total). At the end of the experimental period, DTA81 intake reduced hepatic levels of carbonyl protein and malondialdehyde (MDA). Moreover, low levels of the pro-inflammatory cytokines Interleukin-6 (IL-6) and IL-17, as well as a reduced expression level of the proliferating cell nuclear antigen (PCNA) were observed in colonic homogenates. Lastly, animals who received DTA81 showed an intestinal enrichment of the genus Ruminiclostridium and increased concentrations of caecal acetic acid and total short-chain fatty acids. In conclusion, this study indicates that the administration of the probiotic candidate DTA81 can have beneficial effects on the initial stages of CRC development.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Bruna Cristina dos Santos Cruz
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Roberto Sousa Dias
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | | | - Lívia Carneiro Fidélis Silva
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Gabriele Rocha Santana
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Leandro Licursi de Oliveira
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| |
Collapse
|
46
|
Saettone V, Biasato I, Radice E, Schiavone A, Bergero D, Meineri G. State-of-the-Art of the Nutritional Alternatives to the Use of Antibiotics in Humans and Monogastric Animals. Animals (Basel) 2020; 10:ani10122199. [PMID: 33255356 PMCID: PMC7759783 DOI: 10.3390/ani10122199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Antibiotic resistance represents a worldwide recognized issue affecting both human and veterinary medicine, with a particular focus being directed towards monogastric animals destined for human consumption. This scenario is the result of frequent utilization of the antibiotics either for therapeutic purposes (humans and animals) or as growth promoters (farmed animals). Therefore, the search for nutritional alternatives has progressively been the object of significant efforts by the scientific community. So far, probiotics, prebiotics and postbiotics are considered the most promising products, as they are capable of preventing or treating gastrointestinal diseases as well as restoring a eubiosis condition after antibiotic-induced dysbiosis development. This review provides an updated state-of-the-art of these nutritional alternatives in both humans and monogastric animals. Abstract In recent years, the indiscriminate use of antibiotics has been perpetrated across human medicine, animals destined for zootechnical productions and companion animals. Apart from increasing the resistance rate of numerous microorganisms and generating multi-drug resistance (MDR), the nonrational administration of antibiotics causes sudden changes in the structure of the intestinal microbiota such as dysbiotic phenomena that can have a great clinical significance for both humans and animals. The aim of this review is to describe the state-of-the-art of alternative therapies to the use of antibiotics and their effectiveness in humans and monogastric animals (poultry, pigs, fish, rabbits, dogs and cats). In particular, those molecules (probiotics, prebiotics and postbiotics) which have a direct function on the gastrointestinal health are herein critically analysed in the prevention or treatment of gastrointestinal diseases or dysbiosis induced by the consumption of antibiotics.
Collapse
Affiliation(s)
- Vittorio Saettone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy
- Correspondence:
| | - Elisabetta Radice
- Department of Surgical Sciences, Medical School, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Domenico Bergero
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| | - Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Grugliasco, Largo Braccini 2, 10095 Torino, Italy; (V.S.); (A.S.); (D.B.); (G.M.)
| |
Collapse
|
47
|
Li Y, Zhang T, Guo C, Geng M, Gai S, Qi W, Li Z, Song Y, Luo X, Zhang T, Wang N. Bacillus subtilis RZ001 improves intestinal integrity and alleviates colitis by inhibiting the Notch signalling pathway and activating ATOH-1. Pathog Dis 2020; 78:5804729. [PMID: 32166323 DOI: 10.1093/femspd/ftaa016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucosal barriers help the body resist many intestinal inflammatory diseases, such as inflammatory bowel disease (IBD). In this study, we identified a novel bacterium promoting the repair of intestinal mucosa and investigated the potential mechanisms underlying its activity. Culture supernatant of Bacillus subtilis RZ001 upregulated the expression of mucin 2 (MUC2) and tight junction (TJ) proteins in HT-29 cells in vitro. Oral administration of B. subtilis RZ001 may have significantly reduced symptoms such as the dextran sulfate sodium (DSS)-induced decrease in body weight, shortening of colon length and overproduction of proinflammatory factors. The number of goblet cells and levels of MUC2 and TJ proteins were significantly increased in adult mice fed with B. subtilis RZ001. B. subtilis RZ001 cells upregulated the levels of MUC2 in the intestinal organoids. Furthermore, culture supernatant of B. subtilis RZ001 could suppress the Notch signalling pathway and activate the expression of atonal homolog 1 (Atoh1). The transcription factor Atoh1 is required for intestinal secretory cell differentiation and activates transcription of MUC2 via binding to E-boxes on the MUC2 promoter. Taken together, B. subtilis strain RZ001 has the potential for treating IBD. The present study is helpful to elucidate the mechanisms of B. subtilis action.
Collapse
Affiliation(s)
- Yanru Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tengxun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Congcong Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Meng Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Sailun Gai
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, China. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin 300457, China
| |
Collapse
|
48
|
Ferreira RDS, Mendonça LABM, Ribeiro CFA, Calças NC, Guimarães RDCA, Nascimento VAD, Gielow KDCF, Carvalho CME, Castro APD, Franco OL. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr 2020; 62:1166-1186. [PMID: 33115284 DOI: 10.1080/10408398.2020.1836605] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The health-disease process can be influenced by the intestinal microbiota. As this plays a fundamental role in protecting the organism, the importance of studying the composition and diversity of this community becomes increasingly evident. Changes in the composition of the intestinal bacterial community may result in dysbiosis, and this process may contribute to triggering various diseases in all biological systems. This imbalance of intestinal microbiota homeostasis may alter commensal bacteria and the host metabolism, as well as immune function. Dysbiosis also causes an increase in intestinal permeability due to exposure to molecular patterns associated with the pathogen and lipopolysaccharides, leading to a chronic inflammatory process that can result in diseases for all biological systems. In this context, dietary intervention through the use of probiotics, prebiotics and antioxidant foods can be considered a contribution to the modulation of intestinal microbiota. Probiotics have been used to provide up to 10 billion colony forming units, and probiotic foods, Kefir and fermented natural yogurt are also used. Prebiotics, in turn, are found in supplemental formulations of processed foods and in functional foods that are also sources of phenolic compounds, such as flavonoids, antioxidant and anti-inflammatory substances, polyunsaturated fatty acids, vitamins, and minerals. In this review, we will discuss the relationship between an imbalance in the intestinal microbiota with the development of diseases, besides indicating the need for future studies that can establish bacterial parameters for the gastrointestinal tract by modulating the intestinal microbiota, associated with the adoption of healthy habits during all life cycles.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Camila Fontoura Acosta Ribeiro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Natali Camposano Calças
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Karine de Cássia Freitas Gielow
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Alinne Pereira de Castro
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
49
|
He Y, Jinno C, Kim K, Wu Z, Tan B, Li X, Whelan R, Liu Y. Dietary Bacillus spp . enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity. J Anim Sci Biotechnol 2020; 11:101. [PMID: 32944236 PMCID: PMC7491085 DOI: 10.1186/s40104-020-00498-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Previous research has shown that dietary supplementation of Bacillus spp. probiotics exerts beneficial effects on animals' growth. However, limited studies have evaluated the efficacy of Bacillus spp. on weaned pigs and their effects on host gut health and microbiome, and systemic immunity using a disease challenge model. The objective of this experiment was to investigate the effects of two Bacillus spp. strains (Bacillus subtilis DSM 32540 and Bacillus pumilus DSM 32539) on growth performance, diarrhea, intestinal health, microbiome, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC). Results Pigs in PRO1 (Bacillus subtilis DSM 32540) had greater (P < 0.05) body weight on d 7 and 14 PI, greater (P < 0.05) ADG from d 0 to 7 and d 7 to 14 PI, compared with pigs in CON (Control). Pigs in PRO1 had milder (P < 0.05) diarrhea on d 2 and 3 PI compared with pigs in CON. However, no differences were observed in growth performance and diarrhea score between PRO2 (Bacillus pumilus DSM 32539) and CON groups. Supplementation of PRO1 decreased (P < 0.05) lymphocyte counts on d 7 and 14 PI, compared with CON. Supplementation of PRO1 and PRO2 both reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 21 PI. Pigs in PRO2 had greater (P < 0.05) goblet cell number and sulfomucin percentage in duodenal villi and greater (P < 0.05) sialomucin percentage in jejunal villi than pigs in CON. Supplementation of PRO1 up-regulated (P < 0.05) MUC2 gene expression in jejunal mucosa and reduced (P < 0.05) PTGS-2 and IL1B gene expression in ileal mucosa on d 21 PI, compared with CON. Pigs in PRO1 had reduced (P < 0.05) relative abundance of families Lachnospiraceae, Peptostreptococcaceae and Pasteurellaceae in the ileum. Conclusions Supplementation of Bacillus subtilis DSM 32540 improved growth performance, alleviated diarrhea severity, enhanced gut health, and reduced systemic inflammation of weaned pigs infected with ETEC F18. Although Bacillus pumilus DSM 32539 was able to alleviate systemic inflammation, it had limited impacts on growth performance and severity of diarrhea of ETEC F18 challenged weaned pigs.
Collapse
Affiliation(s)
- Yijie He
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Zhaohai Wu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing, 100193 China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 China
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616 USA
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, 63457 Hanau-Wolfgang, Germany
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616 USA
| |
Collapse
|
50
|
Lin KH, Yu YH. Evaluation of Bacillus licheniformis-Fermented Feed Additive as an Antibiotic Substitute: Effect on the Growth Performance, Diarrhea Incidence, and Cecal Microbiota in Weaning Piglets. Animals (Basel) 2020; 10:E1649. [PMID: 32937883 PMCID: PMC7552216 DOI: 10.3390/ani10091649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
This study investigated the potential of a Bacillus licheniformis-fermented feed additive (BLF) as an antibiotic substitute in weaning piglets. Ninety-six crossbred piglets were randomly allotted into four treatments with three replicate pens per treatment and eight pigs per pen. Piglets were fed diets as follows: a basal diet as control, a basal diet supplemented with bacitracin (30 mg/kg of bacitracin methylene disalicylate), a basal diet supplemented with BLF (1 g/kg of the Bacillus licheniformis-fermented feed additive), and a basal diet supplemented with bacitracin and BLF (15 mg/kg of bacitracin methylene disalicylate and 0.5 g/kg of the Bacillus licheniformis-fermented feed additive). The results showed that replacing all or half the bacitracin with BLF both reduced the incidence of diarrhea in weaning piglets from day 1 to 14. Principal coordinates analysis and a species abundance heat map showed that distinct clusters were formed between groups. Replacing all the bacitracin with BLF reduced bacterial evenness in the cecal digesta of weaning piglets, while the inhibitory effect on bacterial evenness was reversed in the group treated with bacitracin in combination with BLF. These results indicated that the half replacement of bacitracin with BLF was able to decrease the incidence of diarrhea and modify cecal microbiota composition in weaning piglets, suggesting that a Bacillus licheniformis-fermented feed additive has good potential as a suitable alternative to antibiotics use in the swine industry.
Collapse
Affiliation(s)
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan;
| |
Collapse
|