1
|
Matotoka MM, Masoko P. Evaluation of the Antioxidant, Cytotoxicity, Antibacterial, Anti-Motility, and Anti-Biofilm Effects of Myrothamnus flabellifolius Welw. Leaves and Stem Defatted Subfractions. PLANTS (BASEL, SWITZERLAND) 2024; 13:847. [PMID: 38592866 PMCID: PMC10974473 DOI: 10.3390/plants13060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The formation of biofilms underscores the challenge of treating bacterial infections. The study aimed to assess the antioxidant, cytotoxicity, antibacterial, anti-motility, and anti-biofilm effects of defatted fractions from Myrothamnus flabellifolius (resurrection plant). Antioxidant activity was assessed using DPPH radical scavenging and hydrogen peroxide assays. Cytotoxicity was screened using a brine shrimp lethality assay. Antibacterial activity was determined using the micro-dilution and growth curve assays. Antibiofilm potential was screened using the crystal violet and tetrazolium reduction assay. Liquid-liquid extraction of crude extracts concentrated polyphenols in the ethyl acetate and n-butanol fractions. Subsequently, these fractions had notable antioxidant activity and demonstrated broad-spectrum antibacterial activity against selected Gram-negative and Gram-positive bacteria and Mycobacterium smegmatis (MIC values < 630 μg/mL). Growth curves showed that the bacteriostatic inhibition by the ethyl acetate fractions was through the extension of the lag phase and/or suppression of the growth rate. The sub-inhibitory concentrations of the ethyl acetate fractions inhibited the swarming motility of Pseudomonas aeruginosa and Klebsiella pneumoniae by 100% and eradicated more than 50% of P. aeruginosa biofilm biomass. The polyphenolic content of M. flabellifolius plays an important role in its antibacterial, anti-motility, and antibiofilm activity, thus offering an additional strategy to treat biofilm-associated infections.
Collapse
Affiliation(s)
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa;
| |
Collapse
|
2
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
3
|
Bouffartigues E, Si Hadj Mohand I, Maillot O, Tortuel D, Omnes J, David A, Tahrioui A, Duchesne R, Azuama CO, Nusser M, Brenner-Weiss G, Bazire A, Connil N, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P, Chevalier S. The Temperature-Regulation of Pseudomonas aeruginosa cmaX-cfrX-cmpX Operon Reveals an Intriguing Molecular Network Involving the Sigma Factors AlgU and SigX. Front Microbiol 2020; 11:579495. [PMID: 33193206 PMCID: PMC7641640 DOI: 10.3389/fmicb.2020.579495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ishac Si Hadj Mohand
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Jordane Omnes
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Audrey David
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Rachel Duchesne
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Cecil Onyedikachi Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| |
Collapse
|
4
|
Effects of Spo0A on Clostridium acetobutylicum with an emphasis on biofilm formation. World J Microbiol Biotechnol 2020; 36:80. [PMID: 32444896 DOI: 10.1007/s11274-020-02859-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
Clostridium acetobutylicum is a well-known strain for biofuel production. In previous work, it was found that this strain formed biofilm readily during fermentation processes. Biofilm formation could protect cells and enhance productivities under environmental stresses in our previous work. To explore the molecular mechanism of biofilm formation, Spo0A of C. acetobutylicum was selected to investigate its influences on biofilm formation and other physiological performances. When spo0A gene was disrupted, the spo0A mutant could hardly form biofilm. The aggregation and adhesion abilities of the spo0A mutant as well as its swarming motility were dramatically reduced compared to those of wild type strain. Sporulation was also negatively influenced by spo0A disruption, and solvent production was almost undetectable in the spo0A mutant fermentation. Furthermore, proteomic differences between wild type strain and the spo0A mutant were consistent with physiological performances. This is the first study confirming a genetic clue to C. acetobutylicum biofilm and will be valuable for biofilm optimization through genetic engineering in the future.
Collapse
|
5
|
Cai YM, Hutchin A, Craddock J, Walsh MA, Webb JS, Tews I. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Sci Rep 2020; 10:6232. [PMID: 32277108 PMCID: PMC7148300 DOI: 10.1038/s41598-020-63008-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
In Pseudomonas aeruginosa, the transition between planktonic and biofilm lifestyles is modulated by the intracellular secondary messenger cyclic dimeric-GMP (c-di-GMP) in response to environmental conditions. Here, we used gene deletions to investigate how the environmental stimulus nitric oxide (NO) is linked to biofilm dispersal, focusing on biofilm dispersal phenotype from proteins containing putative c-di-GMP turnover and Per-Arnt-Sim (PAS) sensory domains. We document opposed physiological roles for the genes ΔrbdA and Δpa2072 that encode proteins with identical domain structure: while ΔrbdA showed elevated c-di-GMP levels, restricted motility and promoted biofilm formation, c-di-GMP levels were decreased in Δpa2072, and biofilm formation was inhibited, compared to wild type. A second pair of genes, ΔfimX and ΔdipA, were selected on the basis of predicted impaired c-di-GMP turnover function: ΔfimX showed increased, ΔdipA decreased NO induced biofilm dispersal, and the genes effected different types of motility, with reduced twitching for ΔfimX and reduced swimming for ΔdipA. For all four deletion mutants we find that NO-induced biomass reduction correlates with increased NO-driven swarming, underlining a significant role for this motility in biofilm dispersal. Hence P. aeruginosa is able to differentiate c-di-GMP output using structurally highly related proteins that can contain degenerate c-di-GMP turnover domains.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew Hutchin
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Structure and Function of Biological Membranes Lab, Université Libre de Bruxelles, Boulevard du Triomphe, 1050, Bruxelles, Belgium
| | - Jack Craddock
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Martin A Walsh
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.,Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK.,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ivo Tews
- National Biofilms Innovation Centre, University of Southampton, Southampton, SO17 1BJ, UK. .,Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
6
|
Dutta S, Yu SM, Jeong SC, Lee YH. High-throughput analysis of genes involved in biocontrol performance of Pseudomonas fluorescens NBC275 against Gray mold. J Appl Microbiol 2019; 128:265-279. [PMID: 31574191 DOI: 10.1111/jam.14475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023]
Abstract
AIMS Many physiological and microbial characteristics influence the biocontrol performance of the biological control agents (BCAs) in agricultural fields. To implement effective biocontrol, the contribution of specific genes, mechanisms and traits to the biocontrol performance of BCAs need to be characterized and explored in greater detail. METHODS AND RESULTS In this study, a transposon (Tn) mutant library using the BCA Pseudomonas fluorescens NBC275 (Pf275) was generated to explore genes and bacterial characteristics involved in antifungal activity and biocontrol performance. Among the Tn mutants, 205 strains showing variations in antifungal activity compared to wild-type (WT) were selected and further analysed for biocontrol efficacy against gray mold in pepper fruits. The genes involved in pyoverdine biosynthesis (pvdI and pvdD) and chitin-binding protein (gbpA) played essential roles in the antifungal activity and biocontrol capacity of Pf275. In addition, a mutation in phlD completely abolished the antifungal activity and significantly suppressed the biocontrol ability of the strain. Genes affecting antifungal activity of Pf275 significantly influenced swimming motility, which was identified as an important trait for the biocontrol ability of the bacterial strain. CONCLUSIONS Overall, our results suggest that antifungal compound production, siderophore biosynthesis and swimming motility synergistically contribute to Pf275 biocontrol performance. The utility of this library was demonstrated by identifying genes for antagonism and biocontrol ability in this BCA strain. The functional roles of many genes identified as contributing to antagonism and in vivo biocontrol activity require further study. SIGNIFICANCE AND IMPACT OF THIS STUDY Genes contributing to antifungal activity and biocontrol performance of P. fluorescens were identified and highlighted by Tn mutagenesis, which will give insight to improve the biocontrol performance of this BCA.
Collapse
Affiliation(s)
- S Dutta
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea
| | - S-M Yu
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - S C Jeong
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, Republic of Korea
| | - Y H Lee
- Division of Biotechnology, Chonbuk National University, Iksan-si, Jeollabuk-do, Republic of Korea.,Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-industry, Chonbuk National University, Ikansi-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
7
|
Khan F, Lee JW, Manivasagan P, Pham DTN, Oh J, Kim YM. Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 2019; 135:103623. [PMID: 31325574 DOI: 10.1016/j.micpath.2019.103623] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023]
Abstract
The infection caused by Pseudomonas aeruginosa is a serious concern in human health. The bacterium is an opportunistic pathogen which has been reported to cause nosocomial and chronic infections through biofilm formation and synthesis of several toxins and virulence factors. Furthermore, the formation of biofilm by P. aeruginosa is known as one of the resistance mechanisms against conventional antibiotics. Natural compounds from marine resources have become one of the simple, cost-effective, biocompatible and non-toxicity for treating P. aeruginosa biofilm-related infections. Furthermore, hybrid formulation with nanomaterials such as nanoparticles becomes an effective alternative strategy to minimize the drug toxicity problem and cytotoxicity properties. For this reason, the present study has employed chitosan oligosaccharide for the synthesis of chitosan oligosaccharide-capped gold nanoparticles (COS-AuNPs). The synthesized COS-AuNPs were then characterized by using UV-Visible spectroscopy, Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), Field emission transmission electron microscopy (FE-TEM), and Energy dispersive X-ray diffraction (EDX). The synthesized COS-AuNPs were applied for inhibiting P. aeruginosa biofilm formation. Results have shown that COS-AuNPs exhibited inhibition to biofilm as well as eradication to pre-existing mature biofilm. Simultaneously, COS-AuNPs were also able to reduce bacterial hemolysis and different virulence factors produced by P. aeruginosa. Overall, the present study concluded that the hybrid nanoformulation such as COS-AuNPs could act as a potential agent to exhibit inhibitory properties against the P. aeruginosa pathogenesis arisen from biofilm formation.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
8
|
Han X, Liu Y, Ma Y, Zhang M, He Z, Siriwardena TN, Xu H, Bai Y, Zhang X, Reymond JL, Qiao M. Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms. Appl Microbiol Biotechnol 2019; 103:5821-5830. [PMID: 31101943 DOI: 10.1007/s00253-019-09801-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Herein we report that peptide dendrimers G3KL and TNS18, which were recently reported to control multidrug-resistant bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, strongly inhibit biofilm formation by P. aeruginosa PA14 below their minimum inhibitory concentration (MIC) value, under which conditions they also strongly affect swarming motility. Eradication of preformed biofilms, however, required concentrations above the MIC values. Scanning electron microscopy observation and confocal laser scanning micrographs showed that peptide dendrimers can destroy the biofilm morphological structure and thickness in a dose-dependent manner, even make the biofilm dispersed completely. Membrane potential analysis indicated that planktonic cells treated with peptide dendrimers presented an increase in fluorescence intensity, suggesting that cytoplasmic membrane could be the target of G3KL and TNS18 similarly to polymyxin B. RNA-seq analysis showed that the expressions of genes in the arnBCADTEF operon-regulating lipid A modification resulting in resistance to AMPs are differentially affected between these three compounds, suggesting that each compound targets the cell membrane but in different manner. Potent activity on planktonic cells and biofilms of P. aeruginosa suggests that peptide dendrimers G3KL and TNS18 are promising candidates of clinical development for treating infections.
Collapse
Affiliation(s)
- Xiao Han
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yujie Liu
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yibing Ma
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Mengqing Zhang
- Electricity Information and Automation College, Civil Aviation University of China, Tianjin, 300300, China
| | - Zhengjin He
- Key Laboratory of Systems Biology, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Thissa N Siriwardena
- Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yanling Bai
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, 3012, Bern, Switzerland.
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
An Osmoregulatory Mechanism Operating through OmpR and LrhA Controls the Motile-Sessile Switch in the Plant Growth-Promoting Bacterium Pantoea alhagi. Appl Environ Microbiol 2019; 85:AEM.00077-19. [PMID: 30902852 DOI: 10.1128/aem.00077-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/14/2019] [Indexed: 11/20/2022] Open
Abstract
Adaptation to osmotic stress is crucial for bacterial growth and survival in changing environments. Although a large number of osmotic stress response genes have been identified in various bacterial species, how osmotic changes affect bacterial motility, biofilm formation, and colonization of host niches remains largely unknown. In this study, we report that the LrhA regulator is an osmoregulated transcription factor that directly binds to the promoters of the flhDC, eps, and opgGH operons and differentially regulates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production, synthesis of osmoregulated periplasmic glucans (OPGs), biofilm formation, and root colonization of the plant growth-promoting bacterium Pantoea alhagi LTYR-11Z. Further, we observed that the LrhA-regulated OPGs control RcsCD-RcsB activation in a concentration-dependent manner, and a high concentration of OPGs induced by increased medium osmolarity is maintained to achieve the high level of activation of the Rcs phosphorelay, which results in enhanced EPS synthesis and decreased motility in P. alhagi Moreover, we showed that the osmosensing regulator OmpR directly binds to the promoter of lrhA and promotes its expression, while lrhA expression is feedback inhibited by the activated Rcs phosphorelay system. Overall, our data support a model whereby P. alhagi senses environmental osmolarity changes through the EnvZ-OmpR two-component system and LrhA to regulate the synthesis of OPGs, EPS production, and flagellum-dependent motility, thereby employing a hierarchical signaling cascade to control the transition between a motile lifestyle and a biofilm lifestyle.IMPORTANCE Many motile bacterial populations form surface-attached biofilms in response to specific environmental cues, including osmotic stress in a range of natural and host-related systems. However, cross talk between bacterial osmosensing, swimming, and biofilm formation regulatory networks is not fully understood. Here, we report that the pleiotropic regulator LrhA in Pantoea alhagi is involved in the regulation of flagellar motility, biofilm formation, and host colonization and responds to osmotic upshift. We further show that this sensing relies on the EnvZ-OmpR two-component system that was known to detect changes in external osmotic stress. The EnvZ-OmpR-LrhA osmosensing signal transduction cascade is proposed to increase bacterial fitness under hyperosmotic conditions inside the host. Our work proposes a novel regulatory mechanism that links osmosensing and motile-sessile lifestyle transitions, which may provide new approaches to prevent or promote the formation of biofilms and host colonization in P. alhagi and other bacteria possessing a similar osmoregulatory mechanism.
Collapse
|
10
|
Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D, Mishra A, Varma M, Singh V. Context-Specific Requirement of Forty-Four Two-Component Loci in Pseudomonas aeruginosa Swarming. iScience 2019; 13:305-317. [PMID: 30877999 PMCID: PMC6423354 DOI: 10.1016/j.isci.2019.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 11/30/2022] Open
Abstract
Swarming in Pseudomonas aeruginosa is a coordinated movement of bacteria over semisolid surfaces (0.5%-0.7% agar). On soft agar, P. aeruginosa exhibits a dendritic swarm pattern, with multiple levels of branching. However, the swarm patterns typically vary depending upon the experimental design. In the present study, we show that the pattern characteristics of P. aeruginosa swarm are highly environment dependent. We define several quantifiable, macroscale features of the swarm to study the plasticity of the swarm, observed across different nutrient formulations. Furthermore, through a targeted screen of 113 two-component system (TCS) loci of the P. aeruginosa strain PA14, we show that forty-four TCS genes regulate swarming in PA14 in a contextual fashion. However, only four TCS genes-fleR, fleS, gacS, and PA14_59770-were found essential for swarming. Notably, many swarming-defective TCS mutants were found highly efficient in biofilm formation, indicating opposing roles for many TCS loci.
Collapse
Affiliation(s)
- Ameen M Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shubham Joge
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Harshitha S Kotian
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Divakar Badal
- Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Deep Prakash
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ayushi Mishra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Manoj Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India; Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India; Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
11
|
Mattingly AE, Weaver AA, Dimkovikj A, Shrout JD. Assessing Travel Conditions: Environmental and Host Influences On Bacterial Surface Motility. J Bacteriol 2018; 200:e00014-18. [PMID: 29555698 PMCID: PMC5952383 DOI: 10.1128/jb.00014-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The degree to which surface motile bacteria explore their surroundings is influenced by aspects of their local environment. Accordingly, regulation of surface motility is controlled by numerous chemical, physical, and biological stimuli. Discernment of such regulation due to these multiple cues is a formidable challenge. Additionally inherent ambiguity and variability from the assays used to assess surface motility can be an obstacle to clear delineation of regulated surface motility behavior. Numerous studies have reported single environmental determinants of microbial motility and lifestyle behavior but the translation of these data to understand surface motility and bacterial colonization of human host or environmental surfaces is unclear. Here, we describe the current state of the field and our understanding of exogenous factors that influence bacterial surface motility.
Collapse
Affiliation(s)
- Anne E. Mattingly
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Aleksandar Dimkovikj
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
12
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
13
|
Strempel N, Nusser M, Neidig A, Brenner-Weiss G, Overhage J. The Oxidative Stress Agent Hypochlorite Stimulates c-di-GMP Synthesis and Biofilm Formation in Pseudomonas aeruginosa. Front Microbiol 2017; 8:2311. [PMID: 29213262 PMCID: PMC5702645 DOI: 10.3389/fmicb.2017.02311] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/08/2017] [Indexed: 01/25/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is able to survive under a variety of often harmful environmental conditions due to a multitude of intrinsic and adaptive resistance mechanisms, including biofilm formation as one important survival strategy. Here, we investigated the adaptation of P. aeruginosa PAO1 to hypochlorite (HClO), a phagocyte-derived host defense compound and frequently used disinfectant. In static biofilm assays, we observed a significant enhancement in initial cell attachment in the presence of sublethal HClO concentrations. Subsequent LC-MS analyses revealed a strong increase in cyclic-di-GMP (c-di-GMP) levels suggesting a key role of this second messenger in HClO-induced biofilm development. Using DNA microarrays, we identified a 26-fold upregulation of ORF PA3177 coding for a putative diguanylate cyclase (DGC), which catalyzes the synthesis of the second messenger c-di-GMP – an important regulator of bacterial motility, sessility and persistence. This DGC PA3177 was further characterized in more detail demonstrating its impact on P. aeruginosa motility and biofilm formation. In addition, cell culture assays attested a role for PA3177 in the response of P. aeruginosa to human phagocytes. Using a subset of different mutants, we were able to show that both Pel and Psl exopolysaccharides are effectors in the PA3177-dependent c-di-GMP network.
Collapse
Affiliation(s)
- Nikola Strempel
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anke Neidig
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Jia N, Ding MZ, Gao F, Yuan YJ. Comparative genomics analysis of the companion mechanisms of Bacillus thuringiensis Bc601 and Bacillus endophyticus Hbe603 in bacterial consortium. Sci Rep 2016; 6:28794. [PMID: 27353048 PMCID: PMC4926094 DOI: 10.1038/srep28794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
Bacillus thuringiensis and Bacillus endophyticus both act as the companion bacteria, which cooperate with Ketogulonigenium vulgare in vitamin C two-step fermentation. Two Bacillus species have different morphologies, swarming motility and 2-keto-L-gulonic acid productivities when they co-culture with K. vulgare. Here, we report the complete genome sequencing of B. thuringiensis Bc601 and eight plasmids of B. endophyticus Hbe603, and carry out the comparative genomics analysis. Consequently, B. thuringiensis Bc601, with greater ability of response to the external environment, has been found more two-component system, sporulation coat and peptidoglycan biosynthesis related proteins than B. endophyticus Hbe603, and B. endophyticus Hbe603, with greater ability of nutrients biosynthesis, has been found more alpha-galactosidase, propanoate, glutathione and inositol phosphate metabolism, and amino acid degradation related proteins than B. thuringiensis Bc601. Different ability of swarming motility, response to the external environment and nutrients biosynthesis may reflect different companion mechanisms of two Bacillus species. Comparative genomic analysis of B. endophyticus and B. thuringiensis enables us to further understand the cooperative mechanism with K. vulgare, and facilitate the optimization of bacterial consortium.
Collapse
Affiliation(s)
- Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feng Gao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,Department of Physics, Tianjin University, Tianjin, 300072, PR China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
15
|
Zhang Q, Rui X, Li W, Chen X, Jiang M, Dong M. Anti-swarming and -biofilm activities of rose phenolic extract during simulated in vitro gastrointestinal digestion. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kondakova T, Catovic C, Barreau M, Nusser M, Brenner-Weiss G, Chevalier S, Dionnet F, Orange N, Poc CD. Response to Gaseous NO2 Air Pollutant of P. fluorescens Airborne Strain MFAF76a and Clinical Strain MFN1032. Front Microbiol 2016; 7:379. [PMID: 27065229 PMCID: PMC4814523 DOI: 10.3389/fmicb.2016.00379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/09/2016] [Indexed: 01/22/2023] Open
Abstract
Human exposure to nitrogen dioxide (NO2), an air pollutant of increasing interest in biology, results in several toxic effects to human health and also to the air microbiota. The aim of this study was to investigate the bacterial response to gaseous NO2. Two Pseudomonas fluorescens strains, namely the airborne strain MFAF76a and the clinical strain MFN1032 were exposed to 0.1, 5, or 45 ppm concentrations of NO2, and their effects on bacteria were evaluated in terms of motility, biofilm formation, antibiotic resistance, as well as expression of several chosen target genes. While 0.1 and 5 ppm of NO2did not lead to any detectable modification in the studied phenotypes of the two bacteria, several alterations were observed when the bacteria were exposed to 45 ppm of gaseous NO2. We thus chose to focus on this high concentration. NO2-exposed P. fluorescens strains showed reduced swimming motility, and decreased swarming in case of the strain MFN1032. Biofilm formed by NO2-treated airborne strain MFAF76a showed increased maximum thickness compared to non-treated cells, while NO2 had no apparent effect on the clinical MFN1032 biofilm structure. It is well known that biofilm and motility are inversely regulated by intracellular c-di-GMP level. The c-di-GMP level was however not affected in response to NO2 treatment. Finally, NO2-exposed P. fluorescens strains were found to be more resistant to ciprofloxacin and chloramphenicol. Accordingly, the resistance nodulation cell division (RND) MexEF-OprN efflux pump encoding genes were highly upregulated in the two P. fluorescens strains. Noticeably, similar phenotypes had been previously observed following a NO treatment. Interestingly, an hmp-homolog gene in P. fluorescens strains MFAF76a and MFN1032 encodes a NO dioxygenase that is involved in NO detoxification into nitrites. Its expression was upregulated in response to NO2, suggesting a possible common pathway between NO and NO2 detoxification. Taken together, our study provides evidences for the bacterial response to NO2 toxicity.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIBEvreux, France; Aerothermic and Internal Combustion Engine Technological Research CentreSaint Etienne du Rouvray, France
| | - Chloé Catovic
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Frédéric Dionnet
- Aerothermic and Internal Combustion Engine Technological Research Centre Saint Etienne du Rouvray, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| | - Cécile Duclairoir Poc
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Normandy University, University of Rouen, SéSa, IRIB Evreux, France
| |
Collapse
|
17
|
Pletzer D, Braun Y, Weingart H. Swarming motility is modulated by expression of the putative xenosiderophore transporter SppR-SppABCD in Pseudomonas aeruginosa PA14. Antonie van Leeuwenhoek 2016; 109:737-53. [PMID: 26995781 DOI: 10.1007/s10482-016-0675-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
Abstract
In the present study, we characterised the putative peptide ABC transporter SppABCD, which is co-transcribed with the TonB-dependent receptor SppR in Pseudomonas aeruginosa PA14. However, our data show that this transporter complex is not involved in the uptake of peptides. The fact that the TonB-dependent receptor SppR is regulated by an iron starvation ECF sigma factor suggested that this transporter is probably involved in the uptake of xenosiderophores. Therefore, we screened culture supernatants of 23 siderophore-producing bacteria for their ability to induce the expression of the SppR-regulating ECF sigma factor. However, none of them had an effect on the expression of this ECF sigma factor. Since the spp operon is not expressed under standard laboratory conditions, we overexpressed it from plasmids in PA14, which led to an impairment of its swarming motility on semisolid agar. Since we excluded the possibility that the uptake of a culture medium component was responsible for the observed phenotype, we hypothesize that the Spp transport system is involved in the uptake of a compound from the periplasmic space or a compound secreted by P. aeruginosa. Furthermore, we found that rhamnolipid synthesis was decreased while biofilm and exopolysaccharide synthesis was slightly increased upon overexpression of the spp operon. Moreover, we observed an impact of spp overexpression on regulation of genes involved in siderophore and phenazine biosynthesis.
Collapse
Affiliation(s)
- Daniel Pletzer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany.
- R.E.W. Hancock Laboratory, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
| | - Yvonne Braun
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Helge Weingart
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
18
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
19
|
Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MGJ, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol 2015; 6:630. [PMID: 26157434 PMCID: PMC4477172 DOI: 10.3389/fmicb.2015.00630] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joana A Moscoso
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Rachel Duchesne
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Thibaut Rosay
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Laurène Fito-Boncompte
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Gwendoline Gicquel
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Olivier Maillot
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine, University of Rouen Mont-Saint-Aignan, France
| | - Alexis Bazire
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Olivier Lesouhaitier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Patrice Lerouge
- Glyco-MeV Laboratory, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Alain Dufour
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Nicole Orange
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Marc G J Feuilloley
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Sylvie Chevalier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| |
Collapse
|