1
|
McMullen BN, Chen See J, Baker S, Wright JR, Anderson SLC, Yochum G, Koltun W, Portolese A, Jeganathan NA, Lamendella R. Metatranscriptomic analysis of colonic mucosal samples exploring the functional role of active microbial consortia in complicated diverticulitis. Microbiol Spectr 2025:e0243124. [PMID: 40401932 DOI: 10.1128/spectrum.02431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/28/2025] [Indexed: 05/23/2025] Open
Abstract
In this study, we investigated complicated diverticulitis, an inflammatory condition associated with abscesses, fistulas, intestinal obstructions, perforations, and primarily affects adults over the age of 60. Although the exact etiology remains unclear, the gut microbiome has been suggested as a contributing factor. Previous studies have used 16S rRNA gene analysis from patient fecal samples, which is limited to identifying the bacterial communities present. Herein, we employed shotgun metatranscriptomics on 40 patient-matched samples of diseased and adjacent normal colonic mucosal tissues from 20 patients with complicated diverticulitis to gain a more comprehensive understanding of active microbial taxa and gene expression patterns that may be involved in this disease state. Our findings revealed distinct beta diversity and a conglomerate of pathogenic microbiota in the diseased tissues, including Staphylococcus cohnii, Corynebacterium jeikeium, Kineococcus, Talaromyces rugulosus, Campylobacteraceae, and Ottowia, among others. The adjacent normal tissues were a stark contrast, harboring anti-inflammatory taxa such as Streptococcus salivarius and housekeeping genes and pathways such as the ABC-2 type transport system ATP-binding protein. These results align with previous amplicon sequencing studies and provide novel functional insights that may be crucial for understanding the etiology of complicated diverticulitis.IMPORTANCEComplicated diverticulitis is a virulent condition with no clear cause other than the association with colonic diverticulosis. We assessed the microbial gene expression in complicated diverticulitis patients using colonic tissue samples, revealing microbes in the diseased tissue known to exacerbate the diverticular condition and to live in extreme places, and microbes in patients' normal tissue known to maintain normal bodily functions. This functional information is therefore important for understanding what microbial taxa are present and what they are doing. It is possible clinicians could someday harness this information to more effectively treat complicated diverticulitis symptoms. For example, clinicians may suggest dietary changes and prescribe probiotics to increase beneficial bacteria. Clinicians may also prescribe targeted antibiotics or consider the emerging treatment option of fecal transplants in complicated diverticulitis patients. While not curing complicated diverticulitis, each potential treatment option mentioned addresses balancing out dysbiosis of the gut microbiome, therefore alleviating associated symptoms.
Collapse
Affiliation(s)
- Brittney N McMullen
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
- Wright Labs, LLC, Huntingdon, Pennsylvania, USA
| | | | - Samantha Baker
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | | | | | - Gregory Yochum
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Walter Koltun
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Austin Portolese
- Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
- Wright Labs, LLC, Huntingdon, Pennsylvania, USA
| |
Collapse
|
2
|
Nikolai von Krusenstiern A, Cohen NA, Rhee RL. Upper Respiratory Microbiome in Vasculitis. Rheum Dis Clin North Am 2025; 51:189-200. [PMID: 40246437 DOI: 10.1016/j.rdc.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The pathogenesis of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), such as granulomatosis with polyangiitis, is not well understood. These diseases cause significant inflammation in the upper airway. The nares and upper airway are host to many commensal microbes as well as a frequent site of exposure to pathogenic microbes. This review explores the association between upper airway microbial dysregulation and AAV. The role of Staphylococcus aureus colonization as a possible driver of disease is discussed, as well as recent work exploring how fluctuations in the abundance and diversity of commensal microbes are related to vasculitis and risk of flare.
Collapse
Affiliation(s)
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5th Floor White Building, Philadelphia, PA 19104, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Rennie L Rhee
- Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Iwasaki S, Také A, Uojima H, Horio K, Sakaguchi Y, Gotoh K, Satoh T, Hidaka H, Tanaka Y, Hayashi S, Kusano C. Quantification of Streptococcus salivarius using the digital polymerase chain reaction as a liver fibrosis marker. World J Hepatol 2025; 17:102027. [PMID: 40308822 PMCID: PMC12038421 DOI: 10.4254/wjh.v17.i4.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/21/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The Streptococcus salivarius (S. salivarius) group, which produces the enzyme urease has been identified as a potential contributor to ammonia production in the gut. Researchers have reported that patients with minimal HE had an increased abundance of the S. salivarius group, which is a specific change in the gut microbiota that distinguishes them from healthy individuals. The correlation between the aggregation of specific bacterial species and fibrosis progression in chronic liver disease (CLD) is yet to be fully elucidated. AIM To quantify S. salivarius using digital PCR (dPCR) as a liver fibrosis marker of CLD. METHODS This study retrospectively analysed 52 patients with CLD. To quantify S. salivarius in patients with CLD using dPCR, we evaluated the specificity and sensitivity of S. salivarius bacterial load using dPCR for a type strain. Next, we evaluated the clinical usefulness of dPCR for S. salivarius load quantification for detecting liver fibrosis in patients with CLD. The liver fibrosis stage was categorized into mild and advanced fibrosis based on pathological findings. RESULTS The dPCR assay revealed that S. salivarius was highly positive for the tnpA gene. The lower limit of quantification for dPCR using the tnpA gene with a 1 μL template comprising 1.28 × 102 CFU/mL was 4.3 copies. After considering the detection range in dPCR, we adjusted the extracted DNA concentration to 5.0 × 10-4 ng/μL from 200 mg stool samples. The median bacterial loads of S. salivarius in stool sample from patients with mild and advanced fibrosis were 1.9 and 7.4 copies/μL, respectively. The quantification of S. salivarius load was observed more frequently in patients with advanced fibrosis than in those with mild fibrosis (P = 0.032). CONCLUSION Quantifying of S. salivarius load using digital PCR is a useful biomarker for liver fibrosis in patients with CLD.
Collapse
Affiliation(s)
- Shuichiro Iwasaki
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
| | - Akira Také
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara 252-0373, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
- Department of Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Ichikawa 272-8516, Chiba, Japan.
| | - Kazue Horio
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8055, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takashi Satoh
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara 252-0373, Kanagawa, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Shunji Hayashi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara 252-0373, Kanagawa, Japan
| | - Chika Kusano
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara 252-0375, Kanagawa, Japan
| |
Collapse
|
4
|
Gopalakrishnan V, Kumar C, Robertsen I, Morehouse C, Sparklin B, Khader S, Henry I, Johnson LK, Hertel JK, Christensen H, Sandbu R, Greasley PJ, Sellman BR, Åsberg A, Andersson S, Löfmark RJ, Hjelmesæth J, Karlsson C, Cohen TS. A multi-omics microbiome signature is associated with the benefits of gastric bypass surgery and is differentiated from diet induced weight loss through 2 years of follow-up. Mucosal Immunol 2025:S1933-0219(25)00040-6. [PMID: 40222615 DOI: 10.1016/j.mucimm.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Roux-en-Y gastric bypass (GBP) surgery is an effective treatment for reducing body weight and correcting metabolic dysfunction in individuals with severe obesity. Herein, we characterize the differences between very low energy diet (VLED) and GBP induced weight loss by multi-omic analyses of microbiome and host features in a non-randomized, controlled, single-center study. Eighty-eight participants with severe obesity were recruited into two arms - GBP versus VLED with matching weight loss for 6 weeks and 2-years of follow-up. A dramatic shift in the distribution of gut microbial taxa and their functional capacity was seen in the GBP group at Week 2 after surgery and was sustained through 2 years. Multi-omic analyses were performed after 6 weeks of matching weight loss between the GBP and VLED groups, which pointed to microbiome derived metabolites such as indoxyl sulphate as characterizing the GBP group. We also identified an inverse association between Streptococcus parasanguinis (an oral commensal) and plasma levels of tryptophan and tyrosine. These data have important implications, as they reveal a significant robust restructuring of the microbiome away from a baseline dysbiotic state in the GBP group. Furthermore, multi-omics modelling points to potentially novel mechanistic insights at the intersection of the microbiome and host.
Collapse
Affiliation(s)
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Christopher Morehouse
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Ben Sparklin
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Shameer Khader
- Data Science and Artificial Intelligence, Biopharmaceuticals R&D, AstraZeneca, USA.
| | - Ian Henry
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Jens K Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bret R Sellman
- Discovery Microbiome, Early Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, PO 1068 Blindern, 0316 Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, P.O.Box 4950 Nydalen 0424 Oslo, Norway
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Jansson Löfmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, P.O.Box 2168, 3103 Tønsberg, Norway; Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, 0318 Oslo, Norway
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Taylor S Cohen
- Late Vaccines and Immune Therapies, Biopharmaceuticals R&D, AstraZeneca, USA.
| |
Collapse
|
5
|
Simpson A, Pilotto AM, Brocca L, Mazzolari R, Rosier BT, Carda-Diéguez M, Casas-Agustench P, Bescos R, Porcelli S, Mira A, Easton C, Henriquez FL, Burleigh M. Eight weeks of high-intensity interval training alters the tongue microbiome and impacts nitrate and nitrite levels in previously sedentary men. Free Radic Biol Med 2025; 231:11-22. [PMID: 39923866 DOI: 10.1016/j.freeradbiomed.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Nitric oxide (∗NO) is a key signalling molecule, produced enzymatically via ∗NO synthases (NOS) or following the stepwise reduction of nitrate to nitrite via oral bacteria. Exercise training upregulates NOS expression and improves systemic health, but its effect on oral health, and more particularly the oral microbiome, has not been investigated. We used an exercise training study design to investigate changes in the tongue dorsum microbiome, and in nitrate and nitrite levels in the saliva, plasma and muscle, before, during and after an exercise training period. Eleven untrained males (age 25 ± 5 years, mass 64.0 ± 11.2 kg, stature 171 ± 6 cm, V˙ O2peak 2.25 ± 0.42 l min-1) underwent 8-weeks of high-intensity interval training (HIIT), followed by 12-weeks of detraining. The tongue dorsum microbiome was examined using Pac-Bio long-read 16S rRNA sequencing. Nitrate and nitrite levels were quantified with high-performance liquid chromatography. Grouped nitrite-producing species did not change between any timepoints. However, HIIT led to changes in the microbiome composition, increasing the relative abundance of some, but not all, nitrite-producing species. These changes included a decrease in the relative abundance of nitrite-producing Rothia and a decrease in Neisseria, alongside changes in 6 other bacteria at the genus level (all p ≤ 0.05). At the species level, the abundance of 9 bacteria increased post-training (all p ≤ 0.05), 5 of which have nitrite-producing capacity, including Rothia mucilaginosa and Streptococcus salivarius. Post-detraining, 6 nitrite-producing species remained elevated relative to baseline. Nitrate increased in plasma (p = 0.03) following training. Nitrite increased in the saliva after training (p = 0.02) but decreased in plasma (p = 0.03) and muscle (p = 0.002). High-intensity exercise training increased the abundance of several nitrite-producing bacteria and altered nitrate and nitrite levels in saliva, plasma, and muscle. Post-detraining, several nitrite-producing bacteria remained elevated relative to baseline, but no significant differences were detected in nitrate or nitrite levels. Switching from a sedentary to an active lifestyle alters both the microbiome of the tongue and the bioavailability of nitrate and nitrite, with potential implications for oral and systemic health.
Collapse
Affiliation(s)
- Annabel Simpson
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Andrea M Pilotto
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Raffaele Mazzolari
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Bob T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - Miguel Carda-Diéguez
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | | | - Raul Bescos
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, England, UK
| | - Simone Porcelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - Chris Easton
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Fiona L Henriquez
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK
| | - Mia Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland, UK.
| |
Collapse
|
6
|
Ji Y, Sun H, Wang Y, Li Y, Piao R, Bu L, Xu H. Characterizing the oral and gastrointestinal microbiome associated with healthy aging: insights from long-lived populations in Northeastern China. GeroScience 2025; 47:2275-2292. [PMID: 39505797 PMCID: PMC11978580 DOI: 10.1007/s11357-024-01419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The oral and gastrointestinal (GI) tract microbiota in humans is susceptible to geographical influences and represents vital factors impacting healthy aging. The northeastern region of China, characterized by distinct dietary and climatic conditions, significantly influences the human microbiome composition. However, the microbial structure of the entire long-lived population in this area has not been evaluated. This study recruited a cohort of 142 individuals aged 55-102 residing in Northeast China, and their oral and gut microbiota were evaluated using full-length 16S rRNA gene amplicon sequencing. The results indicate that the oral and GI tract microbiota of long-lived individuals showed reduced microbial taxonomic richness and evenness compared to sub-longevity individuals. With aging, the core species experience a gradual decline in abundance, while subordinate species show an increase. The long-lived population exhibited a heightened ability to enrich beneficial bacteria including Akkermansia, Alistipes, Parabacteroides, and Eubacterium coprostanoligenes in the GI tract, which are associated with host metabolism and have the potential to act as probiotics, reducing the risks of unhealthy aging in the northeast population. Bifidobacterium sp. and Lactobacillus salivarius have been found to coexist in both the oral cavity and the GI tract of long-lived individuals. We hypothesize that beneficial bacterial taxa from the oral cavity colonize the GI tract more extensively in long-lived individuals compared to those with a shorter lifespan. These findings pave the way for identifying probiotic strains that can promote healthy aging in Northeast China.
Collapse
Affiliation(s)
- Yue Ji
- Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Hao Sun
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yingda Wang
- Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yanhui Li
- Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Rennv Piao
- Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Li Bu
- Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China.
| | - Hui Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Giambra V, Caldarelli M, Franza L, Rio P, Bruno G, di Iasio S, Mastrogiovanni A, Gasbarrini A, Gambassi G, Cianci R. The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views. Biomedicines 2025; 13:768. [PMID: 40299348 PMCID: PMC12024679 DOI: 10.3390/biomedicines13040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 04/30/2025] Open
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet's disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch-GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Laura Franza
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Department of Emergency Medicine, AOU Modena, 41125 Modena, Italy
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Gaja Bruno
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Serena di Iasio
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (V.G.)
| | - Andrea Mastrogiovanni
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (A.M.); (G.G.); (R.C.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| |
Collapse
|
8
|
Sun M, Li Q, Zhang F, Yao D, Huang W, Lv Q, Jiang H, Kong D, Ren Y, Chen S, Jiang Y, Liu P. The Genomic Characteristics of Potential Probiotics: Two Streptococcus salivarius Isolates from a Healthy Individual in China. Microorganisms 2025; 13:694. [PMID: 40142586 PMCID: PMC11945364 DOI: 10.3390/microorganisms13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The isolation and characterization of novel probiotics from dairy products, fermented foods, and the gut have gained significant attention. In particular, Streptococcus salivarius shows promise for use in oral probiotic preparations. In this study, we isolated two strains of S. salivarius-S.82.15 and S.82.20-from the oral cavity of a healthy individual. These strains exhibited distinct antimicrobial profiles. We thoroughly assessed the morphology and growth patterns of both strains and confirmed auto-aggregation and hemolytic activity. Through comprehensive genomic analysis, we found notable strain differences within the same bacterial species isolated from the same individual. Notably, the presence or absence of plasmids varied between the two strains. The genome of S.82.15 spans 2,175,688 bps and contains 1994 coding DNA sequences (CDSs), while S.82.20 has a genome size of 2,414,610 bps, a GC content of 40.62%, and 2276 annotated CDSs. Both strains demonstrated antibacterial activity against Group A Streptococcus (GAS), Micrococcus. luteus, and Porphyromonas gingivalis. To investigate the antibacterial properties further, we identified a gene cluster of salivaricin 9 on the plasmid of S.82.20 and a blp gene family on the chromosomes of both S.82.15 and S.82.20. Moreover, the gene expression of the blp family was upregulated when the isolated strains were co-cultured with GAS.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Feiran Zhang
- Division of Fifth, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ding Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Peng Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| |
Collapse
|
9
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
10
|
Gurung B, Courreges MC, Pollak J, Malgor R, Jiang L, Wang B, Wang S. Non-invasive treatment of Clostridioides difficile infection with a human-origin probiotic cocktail through gut microbiome-gut metabolome modulations. Front Microbiol 2025; 16:1555220. [PMID: 40078549 PMCID: PMC11897039 DOI: 10.3389/fmicb.2025.1555220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a leading cause of hospital-associated diarrhea, primarily due to gut dysbiosis following antibiotic use. Probiotics have been found to provide several benefits to hosts via modulation of the gut microbiota and their metabolites. However, till now, no conventional probiotics have been clearly proven to be an effective prophylactic option for CDI prevention. Therefore, more studies on developing specific probiotic candidates targeting CDI and improving diversity of probiotics administrated are needed. In this study, a human-origin highly diverse and highly targeted probiotic cocktail (Pro11) containing 11 various probiotic species was developed against C. difficile. Pro11 protected mice against CDI with lower clinical scores and higher survival rates, and inhibited C. difficile in vivo with less C. difficile burden and toxins production determined in colon. Histological analysis demonstrated that Pro11 strengthened gut barrier, reducing gut permeability (less secreted sCD14 in serum) and gut inflammation. In addition, gut microbiome analysis demonstrated that Pro11 increased gut microbiome diversity and beneficial species. Along with gut microbiome modulation, gut metabolites including butyrate, were significantly increased in the probiotics-fed group. Results from this study highlighted probiotics as a promising CDI therapy as gut microbiota modulators, which will lay the foundation for translating probiotics in mitigating CDI and other intestinal pathogens for clinical use.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Maria C. Courreges
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, United States
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
11
|
Tavano F, Napoli A, Gioffreda D, Palmieri O, Latiano T, Tardio M, di Mola FF, Grottola T, Büchler MW, Gentile M, Latiano A, Mazza T, Perri F. Could the Microbial Profiling of Normal Pancreatic Tissue from Healthy Organ Donors Contribute to Understanding the Intratumoral Microbiota Signature in Pancreatic Ductal Adenocarcinoma? Microorganisms 2025; 13:452. [PMID: 40005817 PMCID: PMC11858623 DOI: 10.3390/microorganisms13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with intratumoral microbiota changes. However, defining the normal pancreatic microbial composition remains a challenge. Herein, we tested the hypothesis that the microbial profiling of normal pancreatic tissue from healthy organ donors (HC) could help in determining the signature of microbiota in PDAC. Matched pairs of tumor and normal tissues from PDAC patients (n = 32) and normal pancreatic tissues from HC (n = 17) were analyzed by 16S rRNA gene sequencing. Dissimilarities in all the beta metrics emerged in both normal samples and tumor samples, compared to HC (Bray-Curtis dissimilarity and Jaccard distance: p = 0.002; weighted UniFrac distances: p = 0.42 and p = 0.012, respectively; unweighted UniFrac distance: p = 0.009); a trend toward a lower Faith's phylogenetic distance was found at the tumor level vs. HC (p = 0.08). Within PDAC, a lower Faith's phylogenetic distance (p = 0.003) and a significant unweighted UniFrac distance (p = 0.024) were observed in tumor samples vs. normal samples. We noted the presence of a decreased abundance of bacteria with potential beneficial effects (Jeotgalicoccus) and anticancer activity (Acinetobacter_guillouiae) in PDAC vs. HC; bacteria involved in immune homeostasis and suppression of tumor progression (Streptococcus_salivarius, Sphingomonas) were reduced, and those implicated in tumor initiation and development (Methylobacterium-Methylorubrum, g_Delftia) were enhanced in tumor samples vs. normal samples. Metagenomic functions involved in fatty acid synthesis were reduced in normal samples compared to HC, while peptidoglycan biosynthesis IV and L-rhamnose degradation were more abundant in tumor samples vs. normal samples. Future prospective studies on larger populations, also including patients in advanced tumor stages and considering all potential existing confounding factors, as well as further functional investigations, are needed to prove the role of microbiota-mediated pathogenicity in PDAC.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fabio Francesco di Mola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Tommaso Grottola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Innovative Technologies in Clinical Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Markus W. Büchler
- Botton-Champalimaud Pancreatic Cancer Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
12
|
Jang EY, Moon JH, Lee JH. Complete genome and transcriptome datasets of Streptococcus salivarius strains from healthy Korean subjects. Sci Data 2025; 12:296. [PMID: 39971934 PMCID: PMC11840143 DOI: 10.1038/s41597-025-04619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The oral microbiome plays a crucial role in maintaining health, with Streptococcus salivarius recognized for its beneficial probiotic functions, including inhibiting pathogenic bacteria and supporting immune regulation, particularly in healthy individuals. While research on S. salivarius has primarily focused on strains originating from non-Asian populations, particularly New Zealand, with some studies also reporting European strains, research on strains originating from Korea has been notably lacking. This dataset provides the complete genome sequences and transcriptomic profiles of 12 S. salivarius strains isolated from healthy Korean individuals. PacBio SMRTbell technology was employed for genome sequencing. Our dataset includes transcriptomic data that reveal functional gene expression patterns under standard growth conditions. The strains analyzed here are particularly valuable as each exhibits a unique interaction with Fusobacterium nucleatum, a pathogen associated with periodontal disease and colorectal cancer, collectively demonstrating diverse patterns of interaction. By offering comprehensive data on strain variation, this resource can serve as a valuable tool for research aimed at understanding and utilizing beneficial oral bacteria.
Collapse
Affiliation(s)
- Eun-Young Jang
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Li Y, Mai Y, Jiao Y, Yuan Y, Qu Y, Zhang Y, Wang M, Zhang W, Lu X, Lin Z, Liang C, Li J, Mao T, Xie C. Alterations in the Tongue Coating Microbiome in Patients With Diarrhea-Predominant Irritable Bowel Syndrome: A Cross-Sectional Study. APMIS 2025; 133:e70001. [PMID: 39895585 DOI: 10.1111/apm.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The gut microbiota plays a critical role in the occurrence and development of IBS-D, however, IBS-D-associated tongue coating microbiome dysbiosis has not yet been clearly defined. To address this, we analyzed the structure and composition of the tongue coating microbiome in 23 IBS-D patients and 12 healthy controls using 16S rRNA high-throughput sequencing analysis. The 16S rRNA sequencing results revealed that the overall observed OTUs of tongue coating microbiome in IBS-D patients exhibited a significant decrease compared with the healthy controls. Alpha diversity analysis showed that the diversity and community richness were significantly reduced in IBS-D patients, and PCoA revealed a distinct clustering of tongue coating microbiome between the IBS-D patients and healthy controls. Microbial comparisons at the genus level showed that the abundance of Veillonella, Prevotella in IBS-D patients was higher than those in healthy controls, while Streptococcus, Haemophilus, Granulicatella, and Rothia were significantly reduced compared with the healthy volunteers. Functional analysis results showed significant differences in 88 functional metabolic pathways between the IBS-D patients and the healthy controls, including fatty acid biosynthesis. These findings identified the structure, composition, functionality of tongue coating microbiome in IBS-D patients, and hold promise the potential for therapeutic targets during IBS-D management.
Collapse
Affiliation(s)
- Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Mai
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengdao Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chengtao Liang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
14
|
Pham TAV, Nguyen MD. Subgingival 0.75% boric acid vs 1% povidone-iodine adjunctive to subgingival instrumentation in stage II and III periodontitis-A double-blind randomized clinical trial. Int J Dent Hyg 2025; 23:133-142. [PMID: 38764161 DOI: 10.1111/idh.12819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/21/2024]
Abstract
PURPOSE To compare the effects of subgingival irrigation with 0.75% boric acid (BA) and 1% povidone-iodine (PVP-I) as an adjunct to scaling and root planing (SRP) on clinical and microbiologic parameters in the management of patients with periodontitis after a 12-month follow-up. METHODS Sixty systemically healthy individuals diagnosed with periodontitis were included in this double-blind randomised clinical trial. The patients were randomly allocated to treatment groups: (1) SRP plus 0.75% BA and (2) SRP plus 1% PVP-I. Whole-mouth periodontals were clinically examined, and the counts of bacteria including Aggregatibacter actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tannerella forsythia (Tf), Solobacterium moorei (Sm) and Streptococcus salivarius (Ss) were tested by real-time polymerase chain reaction (PCR). RESULTS All periodontal parameters and the counts of Aa, Fn, Pg, Td, Tf, Sm and Ss in both groups showed statistically significant reductions at T3, T6 and T12 compared to T0. Whole-mouth or moderate or severe PD and CAL improvements were significantly found in the 0.75% BA group compared to the 1% PVP-I group at T3, T6 and T12. The reduction in Aa or Fn and the reduction in Ss were significantly higher in the 0.75% BA group at T6 and T12 than in the 1% PVP-I group. CONCLUSION This study shows that subgingival irrigation with 0.75% BA may be an alternative to 1% PVP-I because it promotes greater PD reductions and CAL gain, particularly up to 12 months after treatment.
Collapse
Affiliation(s)
- Thuy Anh Vu Pham
- School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh Duc Nguyen
- School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Hospital of Odonto-Stomatology, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
Franović B, Čandrlić M, Blašković M, Renko I, Komar Milas K, Markova-Car EP, Mohar Vitezić B, Gabrić D, Gobin I, Vranić SM, Perić Kačarević Ž, Peloza OC. The Microbial Diversity and Biofilm Characteristics of d-PTFE Membranes Used for Socket Preservation: A Randomized Controlled Clinical Trial. J Funct Biomater 2025; 16:40. [PMID: 39997574 PMCID: PMC11856730 DOI: 10.3390/jfb16020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Understanding microbial colonization on different membranes is critical for guided bone regeneration procedures such as socket preservation, as biofilm formation may affect healing and clinical outcomes. This randomized controlled clinical trial (RCT) investigates, for the first time, the microbiome of two different high-density polytetrafluoroethylene (d-PTFE) membranes that are used in socket preservation on a highly molecular level and in vivo. METHODS This RCT enrolled 39 participants, with a total of 48 extraction sites, requiring subsequent implant placement. Sites were assigned to two groups, each receiving socket grafting with a composite bone graft (50% autogenous bone, 50% bovine xenograft) and covered by either a permamem® (group P) or a Cytoplast™ (group C). The membranes were removed after four weeks and analyzed using scanning electron microscopy (SEM) for bacterial adherence, qPCR for bacterial species quantification, and next-generation sequencing (NGS) for microbial diversity and composition assessment. RESULTS The four-week healing period was uneventful in both groups. The SEM analysis revealed multispecies biofilms on both membranes, with membranes from group C showing a denser extracellular matrix compared with membranes from group P. The qPCR analysis indicated a higher overall bacterial load on group C membranes. The NGS demonstrated significantly higher alpha diversity on group C membranes, while beta diversity indicated comparable microbiota compositions between the groups. CONCLUSION This study highlights the distinct microbial profiles of two d-PTFE membranes during the four-week socket preservation period. Therefore, the membrane type and design do, indeed, influence the biofilm composition and microbial diversity. These findings may have implications for healing outcomes and the risk of infection in the dental implant bed and should therefore be further explored.
Collapse
Affiliation(s)
- Barbara Franović
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
- Doctoral School of Biomedicine and Health, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia
| | - Marija Čandrlić
- Department of Integrative Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia;
| | - Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešmirova ulica 40/42, 51000 Rijeka, Croatia;
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia
| | - Ira Renko
- Laboratory for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ulica 6, 10000 Zagreb, Croatia;
- Center for Gut Microbiome, 10000 Zagreb, Croatia
| | - Katarina Komar Milas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia;
- Interdisciplinary University Study of Molecular Biosciences, J.J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| | - Elitza Petkova Markova-Car
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Bojana Mohar Vitezić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia; (B.M.V.); (I.G.)
- Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Dragana Gabrić
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia;
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia; (B.M.V.); (I.G.)
| | - Sabina Mahmutović Vranić
- Department of Microbiology, Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena21, 31000 Osijek, Croatia
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| |
Collapse
|
16
|
Chen H, Xia X, Shi K, Xie T, Sun X, Xu Z, Ge X. Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity. Microorganisms 2025; 13:194. [PMID: 39858962 PMCID: PMC11767967 DOI: 10.3390/microorganisms13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Radiation-induced skin toxicity, resulting from ionizing or nonionizing radiation, is a common skin disorder. However, the underlying relationship between skin microbiota and radiation-induced skin toxicity remains largely unexplored. Herein, we uncover the microbiota-skin interaction based on a genome-wide association study (GWAS) featuring 150 skin microbiota and three types of skin microenvironment. Summary datasets of human skin microbiota were extracted from the GWAS catalog database, and summary datasets of radiation-induced skin toxicity from the FinnGen biobank. Mendelian Randomization (MR) analysis was leveraged to sort out the causal link between skin microbiota and radiation-induced skin toxicity. We identified 33 causal connections between human skin microbiota and radiation-induced skin toxicity, including 19 positive and 14 negative causative directions. Among these potential associations, the genus Staphylococcus could serve as a common risk factor for radiation-induced skin toxicity, especially for radiodermatitis. And Streptococcus salivarius was identified as a potential protective factor against radiation-induced skin toxicity. Additional analysis indicated no pleiotropy, heterogeneity, or reverse causal relationship in the results. We comprehensively assessed potential associations of skin microbiota with radiation-induced skin toxicity and identified several suggestive links. Our results provide promising targets for the prevention and treatment of radiation-induced skin toxicity.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Xiaojie Xia
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Kexin Shi
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Tianyi Xie
- Department of Neuroscience, Kenneth P. Dietrich School of Arts & Science, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Xinchen Sun
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| | - Zhipeng Xu
- Department of Urology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China
| | - Xiaolin Ge
- Department of Radiation Oncology, The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China; (H.C.); (X.X.); (K.S.); (X.S.)
| |
Collapse
|
17
|
Al-Akel FC, Chiperi LE, Eszter VK, Bacârea A. Streptococcus salivarius Role as a Probiotic in Children's Health and Disease Prophylaxis-A Systematic Review. Life (Basel) 2024; 14:1613. [PMID: 39768321 PMCID: PMC11676405 DOI: 10.3390/life14121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND This systematic review aimed to synthesize the existing evidence on the use of Streptococcus salivarius (S. salivarius) probiotics as prophylactic or therapeutic tools for pediatric oral, dental, and respiratory diseases. METHODS A comprehensive search was carried out across multiple databases using the following terms: S. salivarius, probiotic, children, pediatric. RESULTS The systematic literature search identified 613 publications, which were meticulously screened, and, ultimately, 15 suitable citations were included in this systematic review. Three strains of S. salivarius (M18, K-12, 24SMB) were used, and they all demonstrated positive benefits in pediatric pathology. CONCLUSIONS Administration of S. salivarius has benefits, is effective, and is convenient (cost-effective) in pediatric prophylaxis. Oral administration as a chewable tablet or powder of S. salivarius M18 for 3 months is able to reduce the incidence of black stains, plaque, and tooth decay in children. S. salivarius K-12 treatment decreased the occurrence of pharyngeal, recurrent, and streptococcal disease, and the benefits also extend to a reduction of nonstreptococcal diseases, including tracheitis, viral pharyngitis, rhinitis, flu, laryngitis, acute otitis media, and enteritis. Administration of S. salivarius 24SMB as an intranasal spray was able to reduce the risk of acute otitis media in children prone to this condition.
Collapse
Affiliation(s)
- Flavia Cristina Al-Akel
- Physiopathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (F.C.A.-A.); (A.B.)
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, 540136 Targu Mures, Romania
| | - Lacramioara Eliza Chiperi
- Department of Pediatric Cardiology, Emergency Institute for Cardiovascular Diseases and Heart Transplant, 540136 Targu Mures, Romania
- Pediatrics Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania
| | - Vas Krisztina Eszter
- Department of Laboratory Medicine, County Hospital, 530173 Miercurea Ciuc, Romania;
| | - Anca Bacârea
- Physiopathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540142 Targu Mures, Romania; (F.C.A.-A.); (A.B.)
- Department of Laboratory Medicine, Emergency County Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
18
|
Brockhausen I, Falconer D, Sara S. Relationships between bacteria and the mucus layer. Carbohydr Res 2024; 546:109309. [PMID: 39549591 DOI: 10.1016/j.carres.2024.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The mucus layer on epithelial cells is an essential barrier, as well as a nutrient-rich niche for bacteria, forming a dynamic, functional and symbiotic ecosystem and first line of defense against invading pathogens. Particularly bacteria in biofilms are very difficult to eradicate. The extensively O-glycosylated mucins are the main glycoproteins in mucus that interact with microbes. For example, mucins act as adhesion receptors and nutritional substrates for gut bacteria. Mucins also play important roles in immune responses, and they control the composition of the microbiome, primarily due to the abundance of complex O-glycans. In inflammation or infection, the structures of mucin O-glycans can change and thus affect mucin function, impact biofilm formation and the induction of virulence pathways in bacteria. In turn, bacteria can support host cell growth, mucin production and can stimulate changes in the host immune system and responses leading to healthy tissue function. The external polysaccharides of bacteria are critical for controlling adhesion and biofilm formation. It is therefore important to understand the relationships between the mucus layer and microbes, the mechanisms and regulation of the biosynthesis of mucins, of bacterial surface polysaccharides, and adhesins. This knowledge can provide biomarkers, vaccines and help to develop new approaches for improved therapies, including antibiotic treatments.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Dylan Falconer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Sara
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Gupta U, Dey P. The oral microbial odyssey influencing chronic metabolic disease. Arch Physiol Biochem 2024; 130:831-847. [PMID: 38145405 DOI: 10.1080/13813455.2023.2296346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Since the oral cavity is the gateway to the gut, oral microbes likely hold the potential to influence metabolic disease by affecting the gut microbiota. METHOD A thorough review of literature has been performed to link the alterations in oral microbiota with chronic metabolic disease by influencing the gut microbiota. RESULT A strong correlation exists between abnormalities in oral microbiota and several systemic disorders, such as cardiovascular disease, diabetes, and obesity, which likely initially manifest as oral diseases. Ensuring adequate oral hygiene practices and cultivating diverse oral microflora are crucial for the preservation of general well-being. Oral bacteria have the ability to establish and endure in the gastrointestinal tract, leading to the development of prolonged inflammation and activation of the immune system. Oral microbe-associated prophylactic strategies could be beneficial in mitigating metabolic diseases. CONCLUSION Oral microbiota can have a profound impact on the gut microbiota and influence the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Upasana Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
20
|
Pei XM, Zhou LX, Tsang MW, Tai WCS, Wong SCC. The Oral Microbial Ecosystem in Age-Related Xerostomia: A Critical Review. Int J Mol Sci 2024; 25:12815. [PMID: 39684528 PMCID: PMC11640827 DOI: 10.3390/ijms252312815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Xerostomia is a widespread condition among the elderly, impacting as many as 50% of individuals within this demographic. This review aims to analyze the association between age-related xerostomia and the oral microbial ecosystem. Xerostomia not only induces discomfort but also heightens the susceptibility to oral diseases, including dental caries and infections. The oral microbial ecosystem, characterized by a dynamic equilibrium of microorganisms, is integral to the maintenance of oral health. Dysbiosis, defined as a microbial imbalance, can further aggravate oral health complications in those suffering from xerostomia. This review investigates the composition, diversity, and functionality of the oral microbiota in elderly individuals experiencing xerostomia, emphasizing the mechanisms underlying dysbiosis and its ramifications for both oral and systemic health. A comprehensive understanding of these interactions is vital for the formulation of effective management and prevention strategies aimed at enhancing the quality of life for older adults.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 997700, China (W.C.-S.T.)
| |
Collapse
|
21
|
Teng NMY, Malfettone A, Dalby MJ, Kiu R, Seki D, Robinson T, Gion M, Bermejo B, Pérez-García JM, Prat A, Vázquez RM, Llombart-Cussac A, Curigliano G, Schmid P, Barroso-Sousa R, Mancino M, Shimizu E, Rodríguez-Morató J, Mina L, Hall LJ, Robinson SD, Cortés J. Profiling the gut and oral microbiota of hormone receptor-positive, HER2-negative metastatic breast cancer patients receiving pembrolizumab and eribulin. MICROBIOME RESEARCH REPORTS 2024; 4:4. [PMID: 40207279 PMCID: PMC11977384 DOI: 10.20517/mrr.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/11/2025]
Abstract
Aim: Changes in host-associated microbial communities (i.e., the microbiota) may modulate responses to checkpoint blockade immunotherapy. In the KELLY phase II study (NCT03222856), we previously demonstrated that pembrolizumab [anti-programmed cell death protein 1 (PD-1)] combined with eribulin (plus microtubule-targeting chemotherapy) showed encouraging antitumor activity in patients with hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (mBC) who had received prior treatments. Methods: A total of 58 fecal and 67 saliva samples were prospectively collected from a subset of 28 patients at baseline (BL), after three treatment cycles, and end of treatment. Shotgun metagenomics, 16S rRNA gene amplicon sequencing, and bioinformatics and statistical approaches were used to characterize fecal and oral microbiota profiles. Results: Treatment caused no substantial perturbations in gut or oral microbiota, suggesting minimal drug-related microbial toxicity. Bacteroides and Faecalibacterium were the dominant gut microbiota genera, while Prevotella and Streptococcus were present in both oral and gut samples, highlighting potential gut-oral microbial interactions. Additionally, clinical benefit (CB) appeared to be associated with gut-associated Bacteroides fragilis (B. fragilis) and a BL oral abundance of Streptococcus ≥ 30%. Notably, B. fragilis NCTC 9343 supernatant induced dose-dependent lactate dehydrogenase (LDH) release from the MCF-7 (HR-positive/HER2-negative) BC cell line. Conclusion: These findings suggest that specific gut and oral microbiota may modulate the effectiveness of combinatory anti-BC therapies, potentially through the action of microbial metabolites.
Collapse
Affiliation(s)
- Nancy MY Teng
- Gut Microbes&Health, Quadram Institute Bioscience, Norwich NR4 7UQ, UK
| | - Andrea Malfettone
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
| | - Matthew J Dalby
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B12 2TT, UK
| | - Raymond Kiu
- Gut Microbes&Health, Quadram Institute Bioscience, Norwich NR4 7UQ, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B12 2TT, UK
| | - David Seki
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food&Health Technical University of Munich, Freising D-80333, Germany
| | - Tim Robinson
- Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - María Gion
- Medical Onology Department, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Begoña Bermejo
- Medical Oncology, Hospital Clínico de Valencia, INCLIVA, CIBERONC, Medicine Department, Universidad de Valencia, Valencia 46010, Spain
| | - José Manuel Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirón Group, Barcelona 08017, Spain
| | - Aleix Prat
- Medical Oncology Department, Hospital Clínic y Provincial de Barcelona, Barcelona 08036, Spain
| | | | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
- Department of medical oncology, Hospital Arnau de Vilanova, FISABIO, Valencia 46800, Spain
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, University of Milano, Milano 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano 20122, Italy
| | - Peter Schmid
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK
| | | | - Mario Mancino
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
| | - Eileen Shimizu
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
| | | | - Leonardo Mina
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
| | - Lindsay J Hall
- Gut Microbes&Health, Quadram Institute Bioscience, Norwich NR4 7UQ, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B12 2TT, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food&Health Technical University of Munich, Freising D-80333, Germany
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stephen D Robinson
- Gut Microbes&Health, Quadram Institute Bioscience, Norwich NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Barcelona 08005, Spain
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirón Group, Barcelona 08017, Spain
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid 28670, Spain
| |
Collapse
|
22
|
Koohi-Moghadam M, Watt RM, Leung WK. Multi-site analysis of biosynthetic gene clusters from the periodontitis oral microbiome. J Med Microbiol 2024; 73. [PMID: 39378072 DOI: 10.1099/jmm.0.001898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Background. Bacteria significantly influence human health and disease, with bacterial biosynthetic gene clusters (BGCs) being crucial in the microbiome-host and microbe-microbe interactions.Gap statement. Despite extensive research into BGCs within the human gut microbiome, their roles in the oral microbiome are less understood.Aim. This pilot study utilizes high-throughput shotgun metagenomic sequencing to examine the oral microbiota in different niches, particularly focusing on the association of BGCs with periodontitis.Methodology. We analysed saliva, subgingival plaque and supragingival plaque samples from periodontitis patients (n=23) and controls (n=16). DNA was extracted from these samples using standardized protocols. The high-throughput shotgun metagenomic sequencing was then performed to obtain comprehensive genetic information from the microbial communities present in the samples.Results. Our study identified 10 742 BGCs, with certain clusters being niche-specific. Notably, aryl polyenes and bacteriocins were the most prevalent BGCs identified. We discovered several 'novel' BGCs that are widely represented across various bacterial phyla and identified BGCs that had different distributions between periodontitis and control subjects. Our systematic approach unveiled the previously unexplored biosynthetic pathways that may be key players in periodontitis.Conclusions. Our research expands the current metagenomic knowledge of the oral microbiota in both healthy and periodontally diseased states. These findings highlight the presence of novel biosynthetic pathways in the oral cavity and suggest a complex network of host-microbe and microbe-microbe interactions, potentially influencing periodontal disease. The BGCs identified in this study pave the way for future investigations into the role of small-molecule-mediated interactions within the human oral microbiota and their impact on periodontitis.
Collapse
Affiliation(s)
- Mohamad Koohi-Moghadam
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, PR China
| | - Rory M Watt
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Keung Leung
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
23
|
Saki N, Hadi H, Keikhaei B, Mirzaei A, Purrahman D. Gut microbiome composition and dysbiosis in immune thrombocytopenia: A review of literature. Blood Rev 2024; 67:101219. [PMID: 38862311 DOI: 10.1016/j.blre.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by excessive reticuloendothelial platelet destruction and inadequate compensatory platelet production. However, the pathogenesis of ITP is relatively complex, and its exact mechanisms and etiology have not been definitively established. The gut microbiome, namely a diverse community of symbiotic microorganisms residing in the gastrointestinal system, affects health through involvement in human metabolism, immune modulation, and maintaining physiological balance. Emerging evidence reveals that the gut microbiome composition differs in patients with ITP compared to healthy individuals, which is related with platelet count, disease duration, and response to treatment. These findings suggest that the microbiome and metabolome profiles of individuals could unveil a new pathway for aiding diagnosis, predicting prognosis, assessing treatment response, and formulating personalized therapeutic approaches for ITP. However, due to controversial reports, definitive conclusions cannot be drawn, and further investigations are needed.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hakimeh Hadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bijan Keikhaei
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
24
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
25
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z, Cao H. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight. Front Immunol 2024; 15:1430001. [PMID: 39131163 PMCID: PMC11310172 DOI: 10.3389/fimmu.2024.1430001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory illness of the bowels, leading to a substantial burden on both society and patients due to its high incidence and recurrence. The pathogenesis of IBD is multifaceted, partly attributed to the imbalance of immune responses toward the gut microbiota. There is a correlation between the severity of the disease and the imbalance in the oral microbiota, which has been discovered in recent research highlighting the role of oral microbes in the development of IBD. In addition, various oral conditions, such as angular cheilitis and periodontitis, are common extraintestinal manifestations (EIMs) of IBD and are associated with the severity of colonic inflammation. However, it is still unclear exactly how the oral microbiota contributes to the pathogenesis of IBD. This review sheds light on the probable causal involvement of oral microbiota in intestinal inflammation by providing an overview of the evidence, developments, and future directions regarding the relationship between oral microbiota and IBD. Changes in the oral microbiota can serve as markers for IBD, aiding in early diagnosis and predicting disease progression. Promising advances in probiotic-mediated oral microbiome modification and antibiotic-targeted eradication of specific oral pathogens hold potential to prevent IBD recurrence.
Collapse
Affiliation(s)
- Aili Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Wei
- Department of Orthodontics, Tianjin Stomatological Hospital School of Medicine, Nankai University, Tianjin, China
- Tianjin Key laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Jatoth BS, Rahman Z, Dandekar MP, Venkataraman R, Shivalingegowda RK, Manuel GG. Safety Assessment of Streptococcus salivarius UBSS-01 in Rats and Double-Blind Placebo-Controlled Study in Healthy Individuals. Int J Toxicol 2024; 43:387-406. [PMID: 38676502 DOI: 10.1177/10915818241247527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Streptococcus salivarius is a common, harmless, and prevalent member of the oral microbiota in humans. In the present study, the safety of S. salivarius UBSS-01 was evaluated using in silico methods and preclinical and clinical studies. In an acute toxicity study, rats were administered with 5 g/kg (500 × 109 CFU) S. salivarius UBSS-01. The changes in phenotypic behaviors and hematological, biochemical, electrolytes, and urine analyses were monitored. No toxicity was observed at 14 days post-treatment. The no observable effects limit (NOEL) of S. salivarius UBSS-01 was >5 g/kg in rats. In a 28-day repeat dose toxicity study, rats were administered S. salivarius UBSS-01 once daily at doses of 0.1, 0.5, and 1 g/kg (10, 50, and 100 billion CFU/kg, respectively) body weight. S. salivarius UBSS-01 did not influence any of the hematology parameters and clinical chemistry parameters in plasma and serum samples after 28-day repeated administration. No structural abnormality was observed in the histological examination of organs. Whole genome analysis revealed the absence of virulence factors or genes that may transmit antibiotic resistance. In the double-blind study with 60 human participants (aged 18-60 years), consumption of S. salivarius UBSS-01 for 30 days was found to be safe and results were comparable with placebo treatment These findings indicate that S. salivarius UBSS-01 may be safe for human consumption.
Collapse
Affiliation(s)
- Bindhu S Jatoth
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Venkataraman
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| | - Ravi K Shivalingegowda
- Department of Otorhinolaryngology and Head & Neck Surgery, Adichunchanagiri Institute of Medical Sciences, B. G. Nagara, India
| | - Gloriya G Manuel
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B. G. Nagara, India
| |
Collapse
|
27
|
Mantri A, Klümpen L, Seel W, Krawitz P, Stehle P, Weber B, Koban L, Plassmann H, Simon MC. Beneficial Effects of Synbiotics on the Gut Microbiome in Individuals with Low Fiber Intake: Secondary Analysis of a Double-Blind, Randomized Controlled Trial. Nutrients 2024; 16:2082. [PMID: 38999830 PMCID: PMC11243043 DOI: 10.3390/nu16132082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Insufficient dietary fiber intake can negatively affect the intestinal microbiome and, over time, may result in gut dysbiosis, thus potentially harming overall health. This randomized controlled trial aimed to improve the gut microbiome of individuals with low dietary fiber intake (<25 g/day) during a 7-week synbiotic intervention. The metabolically healthy male participants (n = 117, 32 ± 10 y, BMI 25.66 ± 3.1 kg/m2) were divided into two groups: one receiving a synbiotic supplement (Biotic Junior, MensSana AG, Forchtenberg, Germany) and the other a placebo, without altering their dietary habits or physical activity. These groups were further stratified by their dietary fiber intake into a low fiber group (LFG) and a high fiber group (HFG). Stool samples for microbiome analysis were collected before and after intervention. Statistical analysis was performed using linear mixed effects and partial least squares models. At baseline, the microbiomes of the LFG and HFG were partially separated. After seven weeks of intervention, the abundance of SCFA-producing microbes significantly increased in the LFG, which is known to improve gut health; however, this effect was less pronounced in the HFG. Beneficial effects on the gut microbiome in participants with low fiber intake may be achieved using synbiotics, demonstrating the importance of personalized synbiotics.
Collapse
Affiliation(s)
- Aakash Mantri
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Linda Klümpen
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| | - Waldemar Seel
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, 53127 Bonn, Germany
| | - Peter Stehle
- Institute of Nutrition and Food Science, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, 53115 Bonn, Germany
- Center for Economics and Neuroscience, University of Bonn, 53113 Bonn, Germany
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Lyon, France
- Institut Européen d‘Administration des Affaires (INSEAD), 77300 Paris, France
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), 75013 Paris, France
| | - Hilke Plassmann
- Lyon Neuroscience Research Center (CRNL), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Claude Bernard Lyon 1, 69500 Lyon, France
- Institut Européen d‘Administration des Affaires (INSEAD), 77300 Paris, France
| | - Marie-Christine Simon
- Institute of Nutrition and Food Science, Nutrition and Microbiota, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
28
|
Tony-Odigie A, Dalpke AH, Boutin S, Yi B. Airway commensal bacteria in cystic fibrosis inhibit the growth of P. aeruginosa via a released metabolite. Microbiol Res 2024; 283:127680. [PMID: 38520837 DOI: 10.1016/j.micres.2024.127680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
In cystic fibrosis (CF), Pseudomonas aeruginosa infection plays a critical role in disease progression. Although multiple studies suggest that airway commensals might be able to interfere with pathogenic bacteria, the role of the distinct commensals in the polymicrobial lung infections is largely unknown. In this study, we aimed to identify airway commensal bacteria that may inhibit the growth of P. aeruginosa. Through a screening study with more than 80 CF commensal strains across 21 species, more than 30 commensal strains from various species have been identified to be able to inhibit the growth of P. aeruginosa. The underlying mechanisms were investigated via genomic, metabolic and functional analysis, revealing that the inhibitory commensals may affect the growth of P. aeruginosa by releasing a large amount of acetic acid. The data provide information about the distinct roles of airway commensals and provide insights into novel strategies for controlling airway infections.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany; University of Lübeck, Department of Infectious Diseases and Microbiology, Lübeck, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Mahdizade Ari M, Mirkalantari S, Darban-Sarokhalil D, Darbandi A, Razavi S, Talebi M. Investigating the antimicrobial and anti-inflammatory effects of Lactobacillus and Bifidobacterium spp. on cariogenic and periodontitis pathogens. Front Microbiol 2024; 15:1383959. [PMID: 38881669 PMCID: PMC11177620 DOI: 10.3389/fmicb.2024.1383959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background The use of probiotics is emerging as an innovative approach to managing oral health issues and mediating the immune system. The current study assessed the in vitro impacts of non-orally isolated probiotics on periodontitis and tooth decay pathogens. Methods Briefly, the persistence of probiotics in exposure to oral cavity enzymes, hydrogen peroxide, and saliva samples was examined. It was also investigated the biofilm formation and aggregation ability of probiotics, the adherence of probiotics in human gingival fibroblast cell (HGFC) lines and molar teeth samples, and the potential of probiotics to co-aggregate with oral pathogens. Additionally, the current study evaluated the effects of live probiotics on virulence gene expression, biofilm production of main oral pathogens, and changes in inflammation markers. Results The probiotics remained alive when exposed to enzymes in the oral cavity, hydrogen peroxide, and saliva at baseline, 1, 3, and 5 h after incubation at 37°C (p-value <0.05). Probiotics demonstrated to produce biofilm and aggregation, as well as adherence to HGFCs and maxillary molars (p-value >0.05). They showed significant co-aggregation with oral pathogens, which were recorded as 65.57% for B. bifidum 1001 with S. mutans, 50.06% for B. bifidum 1005 with P. gingivalis, 35.6% for L. plantarum 156 with F. nucleatum, and 18.7% for B. longum 1044 with A. actinomycetemcomitans after 8 h of incubation. A balance between pro-inflammatory and anti-inflammatory cytokines, along with inhibition of biofilm formation and changes in virulence gene transcripts, were observed. However, most of these changes were not statistically significant (p-value >0.05). Conclusion This study demonstrated the direct link between adhesiveness, aggregation, and biofilm formation with probiotic antibacterial activity. In addition to the careful selection of suitable probiotic strains, the concentration and origin of probiotic isolates should be considered.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Mohr AE, Sweazea KL, Bowes DA, Jasbi P, Whisner CM, Sears DD, Krajmalnik-Brown R, Jin Y, Gu H, Klein-Seetharaman J, Arciero KM, Gumpricht E, Arciero PJ. Gut microbiome remodeling and metabolomic profile improves in response to protein pacing with intermittent fasting versus continuous caloric restriction. Nat Commun 2024; 15:4155. [PMID: 38806467 PMCID: PMC11133430 DOI: 10.1038/s41467-024-48355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
The gut microbiome (GM) modulates body weight/composition and gastrointestinal functioning; therefore, approaches targeting resident gut microbes have attracted considerable interest. Intermittent fasting (IF) and protein pacing (P) regimens are effective in facilitating weight loss (WL) and enhancing body composition. However, the interrelationships between IF- and P-induced WL and the GM are unknown. The current randomized controlled study describes distinct fecal microbial and plasma metabolomic signatures between combined IF-P (n = 21) versus a heart-healthy, calorie-restricted (CR, n = 20) diet matched for overall energy intake in free-living human participants (women = 27; men = 14) with overweight/obesity for 8 weeks. Gut symptomatology improves and abundance of Christensenellaceae microbes and circulating cytokines and amino acid metabolites favoring fat oxidation increase with IF-P (p < 0.05), whereas metabolites associated with a longevity-related metabolic pathway increase with CR (p < 0.05). Differences indicate GM and metabolomic factors play a role in WL maintenance and body composition. This novel work provides insight into the GM and metabolomic profile of participants following an IF-P or CR diet and highlights important differences in microbial assembly associated with WL and body composition responsiveness. These data may inform future GM-focused precision nutrition recommendations using larger sample sizes of longer duration. Trial registration, March 6, 2020 (ClinicalTrials.gov as NCT04327141), based on a previous randomized intervention trial.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Devin A Bowes
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Judith Klein-Seetharaman
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA
| | | | - Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, Saratoga Springs, NY, USA.
- School of Health and Rehabilitation Sciences, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
El-Salhy M, Hatlebakk JG. Factors Underlying the Difference in Response to Fecal Microbiota Transplantation Between IBS Patients with Severe and Moderate Symptoms. Dig Dis Sci 2024; 69:1336-1344. [PMID: 38446309 PMCID: PMC11026185 DOI: 10.1007/s10620-024-08369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Previous studies showed that patients with Severe IBS respond better to fecal microbiota transplantation (FMT) than do those with Moderate IBS. AIMS The present study aimed to determine the effects of the transplant dose, route of administering it and repeating FMT on this difference. METHODS This study included 186 patients with IBS randomized 1:1:1 into groups with a 90-g transplant administered once to the colon (LI), once to the duodenum (SI), or twice to the distal duodenum twice (repeated SI). The patients provided a fecal sample and were asked to complete three questionnaires at baseline and at 3, 6, and 12 months after FMT. The fecal bacteria composition and Dysbiosis index were analyzed using 16 S rRNA gene PCR DNA amplification/probe hybridization covering regions V3-V9. RESULTS There was no difference in the response rates between severe IBS and moderate IBS for SI and repeated SI at all observation intervals after FMT. In the LI group, the response rate at 3 months after FMT was higher for moderate IBS than for severe IBS. The levels of Dorea spp. were higher and those of Streptococcus salivarius subsp. Thermophilus, Alistipes spp., Bacteroides and Prevotella spp., Parabacteroides johnsoni and Parabacteroides spp. were lower in moderate IBS than in severe IBS. CONCLUSIONS There was no difference in the response to FMT between severe and moderate IBS when a 90-g transplant was administered to the small intestine. The difference in the bacterial profile between severe and moderate IBS may explain the difference in symptoms between these patients. ( www. CLINICALTRIALS gov : NCT04236843).
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Research and Innovation, Helse Fonna, Tysevegen 64, Stord, 1654, Norway.
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
32
|
Li J, Zheng G, Jiang D, Deng C, Zhang Y, Ma Y, Su J. Mendelian randomization analysis reveals a causal effect of Streptococcus salivarius on diabetic retinopathy through regulating host fasting glucose. J Cell Mol Med 2024; 28:e18200. [PMID: 38506069 PMCID: PMC10951888 DOI: 10.1111/jcmm.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic retinopathy (DR) is one of leading causes of vision loss in adults with increasing prevalence worldwide. Increasing evidence has emphasized the importance of gut microbiome in the aetiology and development of DR. However, the causal relationship between gut microbes and DR remains largely unknown. To investigate the causal associations of DR with gut microbes and DR risk factors, we employed two-sample Mendelian Randomization (MR) analyses to estimate the causal effects of 207 gut microbes on DR outcomes. Inputs for MR included Genome-wide Association Study (GWAS) summary statistics of 207 taxa of gut microbes (the Dutch Microbiome Project) and 21 risk factors for DR. The GWAS summary statistics data of DR was from the FinnGen Research Project. Data analysis was performed in May 2023. We identified eight bacterial taxa that exhibited significant causal associations with DR (FDR < 0.05). Among them, genus Collinsella and species Collinsella aerofaciens were associated with increased risk of DR, while the species Bacteroides faecis, Burkholderiales bacterium_1_1_47, Ruminococcus torques, Streptococcus salivarius, genus Burkholderiales_noname and family Burkholderiales_noname showed protective effects against DR. Notably, we found that the causal effect of species Streptococcus salivarius on DR was mediated through the level of host fasting glucose, a well-established risk factor for DR. Our results reveal that specific gut microbes may be causally linked to DR via mediating host metabolic risk factors, highlighting potential novel therapeutic or preventive targets for DR.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Gongwei Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Dingping Jiang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Chunyu Deng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Yaru Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Yunlong Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
| | - Jianzhong Su
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- Department of Biomedical Informatics, Institute of Biomedical Big DataWenzhou Medical UniversityWenzhouChina
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision and Brain HealthWenzhouChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
33
|
Zhang LN, Tan JT, Ng HY, Liao YS, Zhang RQ, Chan KH, Hung IFN, Lam TTY, Cheung KS. Association between Gut Microbiota Composition and Long-Term Vaccine Immunogenicity following Three Doses of CoronaVac. Vaccines (Basel) 2024; 12:365. [PMID: 38675747 PMCID: PMC11055114 DOI: 10.3390/vaccines12040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Neutralizing antibody level wanes with time after COVID-19 vaccination. We aimed to study the relationship between baseline gut microbiota and immunogenicity after three doses of CoronaVac. METHODS This was a prospective cohort study recruiting three-dose CoronaVac recipients from two centers in Hong Kong. Blood samples were collected at baseline and one year post-first dose for virus microneutralization (vMN) assays to determine neutralization titers. The primary outcome was high immune response (defined as with vMN titer ≥ 40). Shotgun DNA metagenomic sequencing of baseline fecal samples identified potential bacterial species and metabolic pathways using Linear Discriminant Analysis Effect Size (LEfSe) analysis. Univariate and multivariable logistic regression models were used to identify high response predictors. RESULTS In total, 36 subjects were recruited (median age: 52.7 years [IQR: 47.9-56.4]; male: 14 [38.9%]), and 18 had low immune response at one year post-first dose vaccination. Eubacterium rectale (log10LDA score = 4.15, p = 0.001; relative abundance of 1.4% vs. 0, p = 0.002), Collinsella aerofaciens (log10LDA score = 3.31, p = 0.037; 0.39% vs. 0.18%, p = 0.038), and Streptococcus salivarius (log10LDA score = 2.79, p = 0.021; 0.05% vs. 0.02%, p = 0.022) were enriched in low responders. The aOR of high immune response with E. rectale, C. aerofaciens, and S. salivarius was 0.03 (95% CI: 9.56 × 10-4-0.32), 0.03 (95% CI: 4.47 × 10-4-0.59), and 10.19 (95% CI: 0.81-323.88), respectively. S. salivarius had a positive correlation with pathways enriched in high responders like incomplete reductive TCA cycle (log10LDA score = 2.23). C. aerofaciens similarly correlated with amino acid biosynthesis-related pathways. These pathways all showed anti-inflammation functions. CONCLUSION E. rectale,C. aerofaciens, and S. salivarius correlated with poorer long-term immunogenicity following three doses of CoronaVac.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Jing-Tong Tan
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ho-Yu Ng
- School of Clinical Medicine, The University of Hong Kong, Hong Kong
| | - Yun-Shi Liao
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Rui-Qi Zhang
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwok-Hung Chan
- Centre for Immunology & Infection Limited, 17W Hong Kong Science & Technology Parks, Hong Kong
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
34
|
Tsvetanova F. The Plethora of Microbes with Anti-Inflammatory Activities. Int J Mol Sci 2024; 25:2980. [PMID: 38474227 DOI: 10.3390/ijms25052980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation, which has important functions in human defense systems and in maintaining the dynamic homeostasis of the body, has become a major risk factor for the progression of many chronic diseases. Although the applied medical products alleviate the general status, they still exert adverse effects in the long term. For this reason, the solution should be sought in more harmless and affordable agents. Microorganisms offer a wide range of active substances with anti-inflammatory properties. They confer important advantages such as their renewable and inexhaustible nature. This review aims to provide the most recent updates on microorganisms of different types and genera, being carriers of anti-inflammatory activity.
Collapse
Affiliation(s)
- Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
35
|
Iwase SC, Osawe S, Happel AU, Gray CM, Holmes SP, Blackburn JM, Abimiku A, Jaspan HB. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. Microbiol Spectr 2024; 12:e0319023. [PMID: 38230936 PMCID: PMC10846250 DOI: 10.1128/spectrum.03190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid vaccine responses. We evaluated the gut microbiota of 82 South African (61 iHEU and 21 iHUU) and 196 Nigerian (141 iHEU and 55 iHUU) infants at <1 and 15 weeks of life by 16S rRNA gene sequencing. Anti-tetanus antibodies were measured by enzyme-linked immunosorbent assay at matched time points. Gut microbiota in the 278 included infants and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants, who were exclusively breastfed, drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among South African infants, even when limiting the analysis to exclusively breastfed infants. The Least Absolute Shrinkage and Selection Operator regression suggested that HIV exposure and gut microbiota were independently associated with tetanus titers at week 15, and that high passively transferred antibody levels, as seen in the Nigerian cohort, may mitigate these effects. In conclusion, in two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and setting, but both specific gut microbes and HIV exposure independently predicted humoral tetanus vaccine responses.IMPORTANCEGut microbiota plays an essential role in immune system development. Since infants HIV-exposed and uninfected (iHEU) are more vulnerable to infectious diseases than unexposed infants, we explored the impact of HIV exposure on gut microbiota and its association with vaccine responses. This study was conducted in two African countries with rapidly increasing numbers of iHEU. Infant HIV exposure did not substantially affect gut microbial succession, but geographic location had a strong effect. However, both the relative abundance of specific gut microbes and HIV exposure were independently associated with tetanus titers, which were also influenced by baseline tetanus titers (maternal transfer). Our findings provide insight into the effect of HIV exposure, passive maternal antibody, and gut microbiota on infant humoral vaccine responses.
Collapse
Affiliation(s)
- Saori C. Iwase
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sophia Osawe
- Institute of Human Virology-Nigeria, Abuja, Nigeria
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Alash'le Abimiku
- Institute of Human Virology-Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Heather B. Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| |
Collapse
|
36
|
Yanagida M, Hosoi Y, Kawano T, Otake Y, Yamanaka Y, Baba T, Ito M. Noniatrogenic Meningitis Caused by Streptococcus salivarius Associated with Early Esophageal Cancer and Early Gastric Cancer. Intern Med 2024; 63:457-460. [PMID: 37344440 PMCID: PMC10901718 DOI: 10.2169/internalmedicine.1304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
Streptococcus salivarius is part of the normal oral cavity and gastrointestinal tract microflora and an unusual cause of acute bacterial meningitis. We herein report an 81-year-old man with S. salivarius meningitis, which led to a diagnosis of early esophageal cancer and early gastric cancer. S. salivarius infection may occur through the gastrointestinal mucosa when it is disrupted in association with early gastrointestinal cancer. To our knowledge, this is the first report describing S. salivarius meningitis associated with multiple early gastrointestinal cancers in the absence of other sources of infection.
Collapse
Affiliation(s)
| | - Yasushi Hosoi
- Department of Neurology, Hamamatsu Medical Center, Japan
| | | | - Yusuke Otake
- Department of Neurology, Hamamatsu Medical Center, Japan
| | | | - Takeshi Baba
- Department of Pathology, Hamamatsu Medical Center, Japan
| | - Michiko Ito
- Department of Neurology, Hamamatsu Medical Center, Japan
| |
Collapse
|
37
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
38
|
Adnan D, Trinh JQ, Sharma D, Alsayid M, Bishehsari F. Early-onset Colon Cancer Shows a Distinct Intestinal Microbiome and a Host-Microbe Interaction. Cancer Prev Res (Phila) 2024; 17:29-38. [PMID: 37967575 PMCID: PMC10842926 DOI: 10.1158/1940-6207.capr-23-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
The incidence rate of colorectal cancer in younger adults has been rising in developed countries. This trend may be attributed to environmental exposures as a result of lifestyle changes. Many of the lifestyle factors that promote colorectal cancer can also affect the gut microbiome, which may be associated with colorectal cancer risks. The role of the microbiome in the ongoing rise of early-onset colorectal cancer is unknown. Here, we aimed to investigate age-related differences in the gut microbiome of patients with colorectal cancer and healthy individuals by examining both the fecal and tumor microbiomes. We utilized the publicly accessible data on fecal shotgun metagenomics from CuratedMetagenomeData and TCGA via the GDC Data Portal. Comparison of 701 colorectal cancer and 693 controls revealed that microbial features were age dependent, with a significant difference in species enrichment between early-onset (<50 years) and late-onset (>65 years) patients with colorectal cancer. Analysis of the tumor-associated microbiome in a separate dataset of 85 patients with colorectal cancer verified age-specific differences in taxon abundance between early- and late-onset patients with colorectal cancer. Finally, using host gene expression data, we found a stronger microbe-host interaction in early- vs. late-onset colorectal cancers. Altogether, these findings indicate that microbial features were age-dependent with stronger microbial-host interactions at the tumor site in early-onset colorectal cancers, suggesting a direct role of microbes in tumorigenesis via interaction with cancer-related pathways in this age group. PREVENTION RELEVANCE Early-onset colorectal cancer is on the rise, presumably because of changes in environmental exposures. Lifestyle changes may contribute to colorectal cancer via alterations in gut microbes. Here, we show that microbial association with colorectal cancer is age-dependent, and microbe interactions with tumor pathways are stronger in young versus older colorectal cancers.
Collapse
Affiliation(s)
- Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jonathan Q. Trinh
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA
| | - Muhammad Alsayid
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Mathieu E, Léjard V, Ezzine C, Govindin P, Morat A, Giat M, Lapaque N, Doré J, Blottière HM. An Insight into Functional Metagenomics: A High-Throughput Approach to Decipher Food-Microbiota-Host Interactions in the Human Gut. Int J Mol Sci 2023; 24:17630. [PMID: 38139456 PMCID: PMC10744307 DOI: 10.3390/ijms242417630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Our understanding of the symbiotic relationship between the microbiota and its host has constantly evolved since our understanding that the "self" was not only defined by our genetic patrimony but also by the genomes of bugs living in us. The first culture-based methods highlighted the important functions of the microbiota. However, these methods had strong limitations and did not allow for a full understanding of the complex relationships that occur at the interface between the microbiota and the host. The recent development of metagenomic approaches has been a groundbreaking step towards this understanding. Its use has provided new insights and perspectives. In the present chapter, we will describe the advances of functional metagenomics to decipher food-microbiota and host-microbiota interactions. This powerful high-throughput approach allows for the assessment of the microbiota as a whole (including non-cultured bacteria) and enabled the discovery of new signaling pathways and functions involved in the crosstalk between food, the gut microbiota and its host. We will present the pipeline and highlight the most important studies that helped to develop the field. To conclude, we will emphasize the most recent developments and hot topics in functional metagenomics.
Collapse
Affiliation(s)
- Elliot Mathieu
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Véronique Léjard
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Chaima Ezzine
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Pauline Govindin
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Aurélien Morat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Margot Giat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Nantes Université, INRAE, UMR 1280, PhAN, 44000 Nantes, France
| |
Collapse
|
40
|
Baty JJ, Stoner SN, McDaniel MS, Huffines JT, Edmonds SE, Evans NJ, Novak L, Scoffield JA. An oral commensal attenuates Pseudomonas aeruginosa-induced airway inflammation and modulates nitrite flux in respiratory epithelium. Microbiol Spectr 2023; 11:e0219823. [PMID: 37800950 PMCID: PMC10715204 DOI: 10.1128/spectrum.02198-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Respiratory infections are a leading cause of morbidity and mortality in people with cystic fibrosis (CF). These infections are polymicrobial in nature with overt pathogens and other colonizing microbes present. Microbiome data have indicated that the presence of oral commensal bacteria in the lungs is correlated with improved outcomes. We hypothesize that one oral commensal, Streptococcus parasanguinis, inhibits CF pathogens and modulates the host immune response. One major CF pathogen is Pseudomonas aeruginosa, a Gram-negative, opportunistic bacterium with intrinsic drug resistance and an arsenal of virulence factors. We have previously shown that S. parasanguinis inhibits P. aeruginosa in vitro in a nitrite-dependent manner through the production of reactive nitrogen intermediates. In this study, we demonstrate that while this mechanism is evident in a cell culture model of the CF airway, an alternative mechanism by which S. parasanguinis may improve outcomes for people with CF is through immunomodulation.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa S. McDaniel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joshua T. Huffines
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara E. Edmonds
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas J. Evans
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lea Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Kim J, Lee S, Moodley Y, Yagnik L, Birnie D, Dwivedi G. The role of the host-microbiome and metabolomics in sarcoidosis. Am J Physiol Cell Physiol 2023; 325:C1336-C1353. [PMID: 37746695 DOI: 10.1152/ajpcell.00316.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Sarcoidosis is a complex inflammatory fibrotic disease that affects multiple organ systems. It is characterized by the infiltration of lymphocytes and mononuclear phagocytes, which form non-caseating granulomas in affected organs. The lungs and intrathoracic lymph nodes are the most commonly affected organs. The underlying cause of sarcoidosis is unknown, but it is believed to occur in genetically predisposed individuals who are exposed to pathogenic organisms, environmental contaminants, or self and non-self-antigens. Recent research has suggested that the microbiome may play a role in the development of respiratory conditions, including sarcoidosis. Additionally, metabolomic studies have identified potential biomarkers for monitoring sarcoidosis progression. This review will focus on recent microbiome and metabolomic findings in sarcoidosis, with the goal of shedding light on the pathogenesis and possible diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Junwoo Kim
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yuben Moodley
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Internal Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Lokesh Yagnik
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Internal Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - David Birnie
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Cardiology, Department of Medicine, University of Ottawa, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Division of Cardiology, Department of Medicine, University of Ottawa, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
42
|
Liu Y, Huang Y, He Q, Dou Z, Zeng M, Wang X, Li S. From heart to gut: Exploring the gut microbiome in congenital heart disease. IMETA 2023; 2:e144. [PMID: 38868221 PMCID: PMC10989834 DOI: 10.1002/imt2.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 06/14/2024]
Abstract
Congenital heart disease (CHD) is a prevalent birth defect and a significant contributor to childhood mortality. The major characteristics of CHD include cardiovascular malformations and hemodynamical disorders. However, the impact of CHD extends beyond the circulatory system. Evidence has identified dysbiosis of the gut microbiome in patients with CHD. Chronic hypoxia and inflammation associated with CHD affect the gut microbiome, leading to alterations in its number, abundance, and composition. The gut microbiome, aside from providing essential nutrients, engages in direct interactions with the host immune system and indirect interactions via metabolites. The abnormal gut microbiome or its products can translocate into the bloodstream through an impaired gut barrier, leading to an inflammatory state. Metabolites of the gut microbiome, such as short-chain fatty acids and trimethylamine N-oxide, also play important roles in the development, treatment, and prognosis of CHD. This review discusses the role of the gut microbiome in immunity, gut barrier, neurodevelopment, and perioperative period in CHD. By fostering a better understanding of the cross-talk between CHD and the gut microbiome, this review aims to contribute to improve clinical management and outcomes for CHD patients.
Collapse
Affiliation(s)
- Yuze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuan Huang
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Qiyu He
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zheng Dou
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Min Zeng
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xu Wang
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Shoujun Li
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
43
|
Také A, Uojima H, Sakaguchi Y, Gotoh K, Satoh T, Hidaka H, Horio K, Mizokami M, Hayashi S, Kusano C. Impact of liver fibrosis on the relative abundance of a urease-positive Streptococcus salivarius group from saliva in patients with chronic liver disease. Hepatol Res 2023; 53:998-1007. [PMID: 37279155 DOI: 10.1111/hepr.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
AIM We performed genomic analysis to study the relative abundance of a urease-positive Streptococcus salivarius group isolated from the saliva of patients with chronic liver disease. METHODS Male and female patients with chronic liver disease aged over 20 years were included. First, we assessed the frequency and type of the S. salivarius group isolated from oral saliva using molecular biology techniques based on 16S rRNA and dephospho-coenzyme A kinase gene sequencing. Next, we assessed the correlation between the urease positivity rate in the S. salivarius group isolated from oral saliva and liver fibrosis based on chronic liver disease. Urease-positive strains were identified by the urease test using urea broth (Difco, Franklin Lakes, NJ, USA). Liver fibrosis was evaluated by the liver stiffness measurement value based on magnetic resonance elastography. RESULTS A total of 45 patients identified using the multiplex polymerase chain reaction for the 16S rRNA gene were tested using the multiplex polymerase chain reaction for the dephospho-coenzyme A kinase gene. Confirming the strains detected in each of the 45 patients, urease-positive S. salivarius was detected in 28 patients (62%), urease-negative S. salivarius in 25 patients (56%), and urease-positive Streptococcus vestibularis in 12 patients (27%). There was no patient with urease-negative S. vestibularis. The urease-positive rate of the S. salivarius group in the cirrhosis and non-cirrhosis groups were 82.2% and 39.2%, respectively. The liver cirrhosis group had a higher urease positivity rate than the non-cirrhotic group (p < 0.001). CONCLUSIONS Liver fibrosis influences the frequency of a urease-positive S. salivarius group isolated from oral saliva.
Collapse
Affiliation(s)
- Akira Také
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Haruki Uojima
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Satoh
- Division of Hematology, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan
| | - Hisashi Hidaka
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazue Horio
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masashi Mizokami
- Department of Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Shunji Hayashi
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Chika Kusano
- Department of Gastroenterology, Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
44
|
Chang YH, Yanckello LM, Chlipala GE, Green SJ, Aware C, Runge A, Xing X, Chen A, Wenger K, Flemister A, Wan C, Lin AL. Prebiotic inulin enhances gut microbial metabolism and anti-inflammation in apolipoprotein E4 mice with sex-specific implications. Sci Rep 2023; 13:15116. [PMID: 37704738 PMCID: PMC10499887 DOI: 10.1038/s41598-023-42381-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
Gut dysbiosis has been identified as a crucial factor of Alzheimer's disease (AD) development for apolipoprotein E4 (APOE4) carriers. Inulin has shown the potential to mitigate dysbiosis. However, it remains unclear whether the dietary response varies depending on sex. In the study, we fed 4-month-old APOE4 mice with inulin for 16 weeks and performed shotgun metagenomic sequencing to determine changes in microbiome diversity, taxonomy, and functional gene pathways. We also formed the same experiments with APOE3 mice to identify whether there are APOE-genotype dependent responses to inulin. We found that APOE4 female mice fed with inulin had restored alpha diversity, significantly reduced Escherichia coli and inflammation-associated pathway responses. However, compared with APOE4 male mice, they had less metabolic responses, including the levels of short-chain fatty acids-producing bacteria and the associated kinases, especially those related to acetate and Erysipelotrichaceae. These diet- and sex- effects were less pronounced in the APOE3 mice, indicating that different APOE variants also play a significant role. The findings provide insights into the higher susceptibility of APOE4 females to AD, potentially due to inefficient energy production, and imply the importance of considering precision nutrition for mitigating dysbiosis and AD risk in the future.
Collapse
Affiliation(s)
- Ya-Hsuan Chang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Lucille M Yanckello
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - George E Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, 60612, USA
| | - Chetan Aware
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Amelia Runge
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Xin Xing
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
- Department of Computer Science, University of Kentucky, Lexington, KY, 40506, USA
| | - Anna Chen
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Kathryn Wenger
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Abeoseh Flemister
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA
| | - Caixia Wan
- Department of Biological and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Ai-Ling Lin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA.
- NextGen Precision Health, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
45
|
El-Salhy M. Intestinal bacteria associated with irritable bowel syndrome and chronic fatigue. Neurogastroenterol Motil 2023; 35:e14621. [PMID: 37246923 DOI: 10.1111/nmo.14621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
The etiology of irritable bowel syndrome (IBS) is unknown. Abnormal intestinal bacterial profiles and low bacterial diversity appear to play important roles in the pathophysiology of IBS. This narrative review was designed to present recent observations made relating to fecal microbiota transplantation (FMT), which implicate possible roles of 11 intestinal bacteria in the pathophysiology of IBS. The intestinal abundances of nine of these bacteria increased after FMT in patients with IBS, and these increases were inversely correlated with IBS symptoms and fatigue severity. These bacteria were Alistipes spp., Faecalibacterium prausnitzii, Eubacterium biforme, Holdemanella biformis, Prevotella spp., Bacteroides stercoris, Parabacteroides johnsonii, Bacteroides zoogleoformans, and Lactobacillus spp. The intestinal abundances of two bacteria were decreased in patients with IBS after FMT and were correlated with the severity of IBS symptoms and fatigue (Streptococcus thermophilus and Coprobacillus cateniformis). Ten of these bacteria are anaerobic and one (Streptococcus thermophilus) is facultative anaerobic. Several of these bacteria produce short-chain fatty acids, especially butyrate, which is used as an energy source by large intestine epithelial cells. Moreover, it modulates the immune response and hypersensitivity of the large intestine and decreases intestinal cell permeability and intestinal motility. These bacteria could be used as probiotics to improve these conditions. Protein-rich diets could increase the intestinal abundance of Alistipes, and plant-rich diet could increase the intestinal abundance of Prevotella spp., and consequently improve IBS and fatigue.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Gastroenterology, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
- Department of Research and Innovation, Helse Fonna, Stord, Norway
| |
Collapse
|
46
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
47
|
Thompson KN, Bonham KS, Ilott NE, Britton GJ, Colmenero P, Bullers SJ, McIver LJ, Ma S, Nguyen LH, Filer A, Brough I, Pearson C, Moussa C, Kumar V, Lam LH, Jackson MA, Pawluk A, Kiriakidis S, Taylor PC, Wedderburn LR, Marsden B, Young SP, Littman DR, Faith JJ, Pratt AG, Bowness P, Raza K, Powrie F, Huttenhower C. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci Transl Med 2023; 15:eabn4722. [PMID: 37494472 DOI: 10.1126/scitranslmed.abn4722] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.
Collapse
Affiliation(s)
- Kelsey N Thompson
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kevin S Bonham
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Graham J Britton
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Colmenero
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lauren J McIver
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Long H Nguyen
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Filer
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
| | - India Brough
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Caroline Moussa
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Vinod Kumar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Matthew A Jackson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - April Pawluk
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Serafim Kiriakidis
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, UCLH, and GOSH, Chesterfield S41 7TD, UK
- NIHR Great Ormond Street Biomedical Research Centre, University College London, London WC1N 1EH, UK
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Brian Marsden
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Stephen P Young
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Dan R Littman
- Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jeremiah J Faith
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Research into Inflammatory Arthritis Centre Versus Arthritis, Newcastle Birmingham, Glasgow, and Oxford, Chesterfield S41 7TD, UK
- Department of Rheumatology, Musculoskeletal Services Directorate, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Curtis Huttenhower
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
48
|
Iwase SC, Jaspan HB, Happel AU, Holmes SP, Abimiku A, Osawe S, Gray CM, Blackburn JM. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. RESEARCH SQUARE 2023:rs.3.rs-3112263. [PMID: 37461449 PMCID: PMC10350179 DOI: 10.21203/rs.3.rs-3112263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Introduction Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid (TT) vaccine responses. Methods We evaluated gut microbiota by 16S rRNA gene sequencing in 278 South African and Nigerian infants during the first and at 15 weeks of life and measured antibodies against TT vaccine by enzyme-linked immunosorbent assay (ELISA) at matched time points. Results Infant gut microbiota and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among EBF South African infants. Lasso regression suggested that HIV exposure and gut microbiota were independently associated with TT vaccine responses at week 15, and that high passive antibody levels may mitigate these effects. Conclusion In two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and country, but both specific gut microbes and HIV exposure independently predicted humoral vaccine responses.
Collapse
|
49
|
Barbour A, Smith L, Oveisi M, Williams M, Huang RC, Marks C, Fine N, Sun C, Younesi F, Zargaran S, Orugunty R, Horvath TD, Haidacher SJ, Haag AM, Sabharwal A, Hinz B, Glogauer M. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc Natl Acad Sci U S A 2023; 120:e2219392120. [PMID: 37216534 PMCID: PMC10235938 DOI: 10.1073/pnas.2219392120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Lantibiotics are ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are produced by bacteria. Interest in this group of natural products is increasing rapidly as alternatives to conventional antibiotics. Some human microbiome-derived commensals produce lantibiotics to impair pathogens' colonization and promote healthy microbiomes. Streptococcus salivarius is one of the first commensal microbes to colonize the human oral cavity and gastrointestinal tract, and its biosynthesis of RiPPs, called salivaricins, has been shown to inhibit the growth of oral pathogens. Herein, we report on a phosphorylated class of three related RiPPs, collectively referred to as salivaricin 10, that exhibit proimmune activity and targeted antimicrobial properties against known oral pathogens and multispecies biofilms. Strikingly, the immunomodulatory activities observed include upregulation of neutrophil-mediated phagocytosis, promotion of antiinflammatory M2 macrophage polarization, and stimulation of neutrophil chemotaxis-these activities have been attributed to the phosphorylation site identified on the N-terminal region of the peptides. Salivaricin 10 peptides were determined to be produced by S. salivarius strains found in healthy human subjects, and their dual bactericidal/antibiofilm and immunoregulatory activity may provide new means to effectively target infectious pathogens while maintaining important oral microbiota.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - McKinley Williams
- Department of Biology, College of Science, Texas A&M University, College Station, TX 77843
| | - Ruo Chen Huang
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Cara Marks
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Sina Zargaran
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | | | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX 77030
| | - Amarpreet Sabharwal
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
50
|
Stoner SN, Baty JJ, Novak L, Scoffield JA. Commensal colonization reduces Pseudomonas aeruginosa burden and subsequent airway damage. Front Cell Infect Microbiol 2023; 13:1144157. [PMID: 37305417 PMCID: PMC10248150 DOI: 10.3389/fcimb.2023.1144157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa dominates the complex polymicrobial cystic fibrosis (CF) airway and is a leading cause of death in persons with CF. Interestingly, oral streptococcal colonization has been associated with stable CF lung function. The most abundant streptococcal species found in stable patients, Streptococcus salivarius, has been shown to downregulate pro-inflammatory cytokines in multiple colonization models. However, no studies have demonstrated how S. salivarius potentially improves lung function. Our lab previously demonstrated that the P. aeruginosa exopolysaccharide Psl promotes S. salivarius biofilm formation in vitro, suggesting a possible mechanism by which S. salivarius is incorporated into the CF airway microbial community. In this study, we demonstrate that co-infection of rats leads to enhanced S. salivarius colonization and reduced P. aeruginosa colonization. Histological scores for tissue inflammation and damage are lower in dual-infected rats compared to P. aeruginosa infected rats. Additionally, pro-inflammatory cytokines IL-1β, IL-6, CXCL2, and TNF-α are downregulated during co-infection compared to P. aeruginosa single-infection. Lastly, RNA sequencing of cultures grown in synthetic CF sputum revealed that P. aeruginosa glucose metabolism genes are downregulated in the presence of S. salivarius, suggesting a potential alteration in P. aeruginosa fitness during co-culture. Overall, our data support a model in which S. salivarius colonization is promoted during co-infection with P. aeruginosa, whereas P. aeruginosa airway bacterial burden is reduced, leading to an attenuated host inflammatory response.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Scoffield
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|