1
|
Saïdi F, Mahanta U, Panda A, Kezzo AA, Jolivet NY, Bitazar R, John G, Martinez M, Mellouk A, Calmettes C, Chang YW, Sharma G, Islam ST. Bacterial Outer Membrane Polysaccharide Export (OPX) Proteins Occupy Three Structural Classes with Selective β-Barrel Porin Requirements for Polymer Secretion. Microbiol Spectr 2022; 10:e0129022. [PMID: 36200915 PMCID: PMC9603273 DOI: 10.1128/spectrum.01290-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022] Open
Abstract
Secretion of high-molecular-weight polysaccharides across the bacterial envelope is ubiquitous, as it enhances prokaryotic survival in (a)biotic settings. Such polymers are often assembled by Wzx/Wzy- or ABC transporter-dependent schemes implicating outer membrane (OM) polysaccharide export (OPX) proteins in cell-surface polymer translocation. In the social predatory bacterium Myxococcus xanthus, the exopolysaccharide (EPS) pathway WzaX, major spore coat (MASC) pathway WzaS, and biosurfactant polysaccharide (BPS) pathway WzaB were herein found to be truncated OPX homologues of Escherichia coli Wza lacking OM-spanning α-helices. Comparative genomics across all bacteria (>91,000 OPX proteins identified and analyzed), complemented with cryo-electron tomography cell-envelope analyses, revealed such "truncated" WzaX/S/B architecture to be the most common among three defined OPX-protein structural classes independent of periplasm thickness. Fold recognition and deep learning revealed the conserved M. xanthus proteins MXAN_7418/3226/1916 (encoded beside wzaX/S/B, respectively) to be integral OM β-barrels, with structural homology to the poly-N-acetyl-d-glucosamine synthase-dependent pathway porin PgaA. Such bacterial porins were identified near numerous genes for all three OPX protein classes. Interior MXAN_7418/3226/1916 β-barrel electrostatics were found to match properties of their associated polymers. With MXAN_3226 essential for MASC export, and MXAN_7418 herein shown to mediate EPS translocation, we have designated this new secretion machinery component "Wzp" (i.e., Wz porin), with the final step of M. xanthus EPS/MASC/BPS secretion across the OM now proposed to be mediated by WzpX/S/B (i.e., MXAN_7418/3226/1916). Importantly, these data support a novel and widespread secretion paradigm for polysaccharide biosynthesis pathways in which those containing OPX components that cannot span the OM instead utilize β-barrel porins to mediate polysaccharide transport across the OM. IMPORTANCE Diverse bacteria assemble and secrete polysaccharides that alter their physiologies through modulation of motility, biofilm formation, and host immune system evasion. Most such pathways require outer membrane (OM) polysaccharide export (OPX) proteins for sugar-polymer transport to the cell surface. In the prototypic Escherichia coli Group-1-capsule biosynthesis system, eight copies of this canonical OPX protein cross the OM with an α-helix, forming a polysaccharide-export pore. Herein, we instead reveal that most OPX proteins across all bacteria lack this α-helix, raising questions as to the manner by which most secreted polysaccharides actually exit cells. In the model developmental bacterium Myxococcus xanthus, we show this process to depend on OPX-coupled OM-spanning β-barrel porins, with similar porins encoded near numerous OPX genes in diverse bacteria. Knowledge of the terminal polysaccharide secretion step will enable development of antimicrobial compounds targeted to blocking polymer export from outside the cell, thus bypassing any requirements for antimicrobial compound uptake by the cell.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Adyasha Panda
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Ahmad A. Kezzo
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y. Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Razieh Bitazar
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Gavin John
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Salim T. Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Saïdi F, Bitazar R, Bradette NY, Islam ST. Bacterial Glycocalyx Integrity Impacts Tolerance of Myxococcus xanthus to Antibiotics and Oxidative-Stress Agents. Biomolecules 2022; 12:571. [PMID: 35454160 PMCID: PMC9029694 DOI: 10.3390/biom12040571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
The presence of an exopolysaccharide (EPS) layer surrounding bacterial cells, termed a "glycocalyx", confers protection against toxic molecules. However, the effect of glycocalyx integrity on the tolerance to such agents is poorly understood. Using a modified disc-diffusion assay, we tested the susceptibility to a panel of antibiotics and oxidative stress-inducing compounds of various mutant strains of the social predatory Gram-negative soil bacterium Myxococcus xanthus; the selected mutants were those that manifest different physical states of their respective EPS glycocalyces. While the overall presence of an EPS layer was indeed beneficial for tolerance, the integrity of this layer was also found to affect the susceptibility of the bacterium to killing; however, this finding was not universal, and instead was dependent on the specific compound tested. Thus, the integrity of the cell-surface EPS glycocalyx plays an important role in the tolerance of M. xanthus to harmful compounds.
Collapse
Affiliation(s)
- Fares Saïdi
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Razieh Bitazar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicholas Y. Bradette
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| | - Salim T. Islam
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Institut Pasteur International Network, Laval, QC H7V 1B7, Canada; (F.S.); (R.B.); (N.Y.B.)
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Saïdi F, Jolivet NY, Lemon DJ, Nakamura A, Belgrave AM, Garza AG, Veyrier FJ, Islam ST. Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. Mol Microbiol 2021; 116:1151-1172. [PMID: 34455651 DOI: 10.1111/mmi.14803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - David J Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Arnaldo Nakamura
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Akeisha M Belgrave
- Integrated Sciences Program, Harrisburg University of Science & Technology, Harrisburg, Pennsylvania, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Frédéric J Veyrier
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Salim T Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Sharma G, Yao AI, Smaldone GT, Liang J, Long M, Facciotti MT, Singer M. Global gene expression analysis of the Myxococcus xanthus developmental time course. Genomics 2020; 113:120-134. [PMID: 33276008 DOI: 10.1016/j.ygeno.2020.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
To accurately identify the genes and pathways involved in the initiation of the Myxococcus xanthus multicellular developmental program, we have previously reported a method of growing vegetative populations as biofilms within a controllable environment. Using a modified approach to remove up to ~90% rRNAs, we report a comprehensive transcriptional analysis of the M. xanthus developmental cycle while comparing it with the vegetative biofilms grown in rich and poor nutrients. This study identified 1522 differentially regulated genes distributed within eight clusters during development. It also provided a comprehensive overview of genes expressed during a nutrient-stress response, specific development time points, and during development initiation and regulation. We identified several differentially expressed genes involved in key central metabolic pathways suggesting their role in regulating myxobacterial development. Overall, this study will prove an important resource for myxobacterial researchers to delineate the regulatory and functional pathways responsible for development from those of the general nutrient stress response.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America; Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Andrew I Yao
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Gregory T Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Matt Long
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Marc T Facciotti
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
5
|
Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, Espinosa L, Morrone C, Brasseur G, Guillemot JF, Benarouche A, Bridot JL, Ravicoularamin G, Cagna A, Gauthier C, Singer M, Fierobe HP, Mignot T, Mauriello EMF. Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. PLoS Biol 2020; 18:e3000728. [PMID: 32516311 PMCID: PMC7310880 DOI: 10.1371/journal.pbio.3000728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated β-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity. A study of the social bacterium Myxococcus xanthus reveals that the bacteria preferentially secrete specific polysaccharides within distinct zones of a swarm to facilitate spreading across a surface.
Collapse
Affiliation(s)
- Salim T. Islam
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| | - Israel Vergara Alvarez
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Fares Saïdi
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Evgeny Vinogradov
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Castrese Morrone
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | - Gokulakrishnan Ravicoularamin
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Alain Cagna
- Teclis Scientific, Civrieux d’Azergue, France
| | - Charles Gauthier
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
| | - Henri-Pierre Fierobe
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| |
Collapse
|
6
|
Whitfield DL, Sharma G, Smaldone GT, Singer M. Peripheral rods: a specialized developmental cell type in Myxococcus xanthus. Genomics 2019; 112:1588-1597. [PMID: 31605730 DOI: 10.1016/j.ygeno.2019.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023]
Abstract
In response to nutrient deprivation, the ubiquitous Gram-negative soil bacterium Myxococcus xanthus undergoes a well-characterized developmental response, resulting in the formation of a multicellular fruiting body. The center of the fruiting body consists of myxospores; surrounding this structure are rod-shaped peripheral cells. Unlike spores, the peripheral rods are a metabolically active cell type that inhabits nutrient-deprived environments. The survival characteristics exhibited by peripheral rods, protection from oxidative stress and heat shock, are common survival characteristics exhibited by cells in stationary phase including modifications to morphology and metabolism. Vegetative M. xanthus cells undergo a number of physiological changes during the transition into stationary phase similar to other proteobacteria. In M. xanthus, stationary-phase cells are not considered a component of the developmental response and occur when cells are grown on nutrient-rich plates or in dispersed aqueous media. However, this cell type is not routinely studied and little of its physiology is known. Similarities between these two stress-induced cell types led to the question of whether peripheral rods are actually a distinct developmental cell type or simply cells in stationary phase. In this study, we examine the transcriptome of peripheral rods and its relationship to development. This work demonstrates that peripheral rods are in fact a distinct developmentally differentiated cell type. Although peripheral rods and stationary phase cells display similar characteristics, each transcriptomic pattern is unique and quite different from that of any other M. xanthus cell type.
Collapse
Affiliation(s)
- Damion L Whitfield
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| | - Gaurav Sharma
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Gregory T Smaldone
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| | - Mitchell Singer
- Dept. of Microbiology and Molecular Genetics, University of California, Davis, CA, USA.
| |
Collapse
|