1
|
Li H, Zhuang L, Cai H, Ni Y, Chu T, Chen L, Yu Y, Wang Y. Nitrosarchaeum haohaiensis sp. Nov. CL1 T: Isolation and Characterisation of a Novel Ammonia-Oxidising Archaeon From Aquatic Environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70100. [PMID: 40402825 PMCID: PMC12097351 DOI: 10.1111/1758-2229.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/24/2025]
Abstract
Following a 3.5-year enrichment cultivation period, a novel ammonia-oxidising archaeon (AOA), designated strain CL1T, was isolated from Yangshan Harbour (East China Sea). Strain CL1T demonstrates a maximum ammonia tolerance of up to 10 mM. Its optimal growth conditions include a pH range of 7-8, a salinity of 2%-3%, and a temperature range of 20°C-25°C. Under these conditions, strain CL1T achieved a maximum specific growth rate of 0.87 d-1, with cell yields estimated at 3.92 × 106 cells mL-1 μM ammonia-1. Genomic sequencing revealed that strain CL1T possesses a genome size of 1.63 megabases with a high completeness of 99.95%. Phylogenetic analysis based on the 16S rRNA gene and whole-genome data placed strain CL1T within the genus Nitrosarchaeum. The average nucleotide identity (ANI) between the genome of strain CL1T and its closest relative was 92.01%, confirming that strain CL1T represents a novel species within Nitrosarchaeum. Metabolic pathway analysis demonstrated that strain CL1T encodes key enzymes for ammonia oxidation, including ammonia monooxygenase (amoA, amoB, amoC) and copper oxidase, indicating its capacity for ammonia oxidation. Additionally, strain CL1T likely assimilates ammonia through the GS-GOGAT and GDH pathways. Consistent with the observation of extracellular vesicles (EVs) in strain CL1T via electron microscopy, genome annotation identified core genes associated with EVs function, such as vps4 and FtsZ. The isolation of strain CL1T provides a valuable model system for investigating its ammonia metabolism and exploring its ecological interactions with other AOA, ammonia-oxidising bacteria (AOB) and nitrite-oxidising bacteria (NOB), thereby contributing to a deeper understanding of nitrogen cycling mechanisms in aquatic environments.
Collapse
Affiliation(s)
- Hailing Li
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Lingqi Zhuang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Haoyun Cai
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Yimin Ni
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Ting Chu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Lanming Chen
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Yongxin Yu
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
| | - Yongjie Wang
- College of Food Science and TechnologyShanghai Ocean UniversityShanghaiChina
- Laboratory for Marine Biology and BiotechnologyQingdao Marine Science and Technology CenterQingdaoChina
| |
Collapse
|
2
|
Lee UJ, Gwak JH, Choi S, Jung MY, Lee TK, Ryu H, Imisi Awala S, Wanek W, Wagner M, Quan ZX, Rhee SK. " Ca. Nitrosocosmicus" members are the dominant archaea associated with plant rhizospheres. mSphere 2024; 9:e0082124. [PMID: 39530672 DOI: 10.1128/msphere.00821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Archaea catalyzing the first step of nitrification in the rhizosphere possibly have an influence on plant growth and development. In this study, we found a distinct archaeal community, dominated by ammonia-oxidizing archaea (AOA), associated with the root system of pepper (Capsicum anuum L.) and ginseng plants (Panax ginseng C.A. Mey.) compared to bulk soil not penetrated by roots. While the abundance of total AOA decreased in the rhizosphere soils, AOA related to "Candidatus Nitrosocosmicus," which harbor gene encoding manganese catalase (MnKat) in contrast to most other AOA, dominated the AOA community in the rhizosphere soils. For both plant species, the ratio of copy numbers of the AOA MnKat gene to the amoA gene (encoding the ammonia monooxygenase subunit A) was significantly higher in the rhizospheres than in bulk soils. In contrast to MnKat-negative strains from other AOA clades, the catalase activity of a representative isolate of "Ca. Nitrosocosmicus" was demonstrated. Members of this clade were enriched in H2O2-amended bulk soils, and constitutive expression of their MnKat gene was observed in both bulk and rhizosphere soils. Due to their abundance, "Ca. Nitrosocosmicus" members can be considered important players mediating the nitrification process in rhizospheres. The dominance of this MnKat-containing AOA in rhizospheres of agriculturally important plants hints at a previously overlooked AOA-plant interaction. IMPORTANCE Ammonia-oxidizing archaea (AOA) are widespread in terrestrial environments and outnumber other ammonia oxidizers in the rhizosphere, possibly exerting an influence on plant growth and development. However, little is known about the selection forces that shape their composition, functions, survival, and proliferation strategies in the rhizosphere. Here, we observed a distinct AOA community on root systems of two different plant species compared to bulk soil. Our results show that the "Ca. Nitrosocosmicus" clade, which possesses functional MnKat genes unlike most other AOA, dominated the rhizosphere soils. Moreover, members of this clade were enriched in H2O2-amended bulk soil, which mimics the ROS stress in root systems. While research on AOA-plant interactions in the rhizosphere is still in its infancy, these findings suggest that "Ca. Nitrosocosmicus" may be an important clade of AOA with potential AOA-plant interaction.
Collapse
Affiliation(s)
- Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seungyeon Choi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Man-Young Jung
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Zhe-Xue Quan
- School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Hazard C, Gubry-Rangin C, Prosser JI, Nicol GW. Nitrosotalea devaniterrae gen. nov., sp. nov. and Nitrosotalea sinensis sp. nov., two acidophilic ammonia oxidising archaea isolated from acidic soil, and proposal of the new order Nitrosotaleales ord. nov. within the class Nitrososphaeria of the phylum Nitrososphaerota. Int J Syst Evol Microbiol 2024; 74. [PMID: 39348174 DOI: 10.1099/ijsem.0.006387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Two obligately acidophilic, mesophilic and aerobic soil ammonia-oxidising archaea were isolated from a pH 4.5 arable sandy loam (UK) and pH 4.7 acidic sulphate paddy soil (PR China) and designated strains Nd1T and Nd2T, respectively. The strains shared more than 99 % 16S rRNA gene sequence identity and their genomes were both less than 2 Mb in length, sharing 79 % average nucleotide identity, 81 % average amino acid identity and a DNA G+C content of approximately 37 mol%. Both strains were chemolithotrophs that fixed carbon dioxide and gained energy by oxidising ammonia to nitrite, with no evidence of mixotrophic growth. Neither strain was capable of using urea as a source of ammonia. Both strains were non-motile in culture, although Nd1T does possess genes encoding flagella components and therefore may be motile under certain conditions. Cells of Nd1T were small angular rods 0.5-1 µm in length and grew at pH 4.2-5.6 and at 20-30 °C. Cells of Nd1T were small angular rods 0.5-1 µm in length and grew at pH 4.0-6.1 and at 20-42 °C. Nd1T and Nd2T are distinct with respect to genomic and physiological features and are assigned as the type strains for the species Nitrosotalea devaniterrae sp. nov. (type strain, Nd1T=NCIMB 15248T=DSM 110862T) and Nitrosotalea sinensis sp. nov. (type strain, Nd2T=NCIMB 15249T=DSM 110863T), respectively, within the genus Nitrosotalea gen. nov. The family Nitrosotaleaceae fam. nov. and order Nitrosotaleales ord. nov. are also proposed officially.
Collapse
Affiliation(s)
| | - Chaorong Ge
- Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Jenna Ross
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - Huaiying Yao
- Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, PR China
| | - Christina Hazard
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Cécile Gubry-Rangin
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - James I Prosser
- Institute of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, Scotland, UK
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| |
Collapse
|
4
|
Gao F, Li Y, Fan H, Luo D, Chapman SJ, Yao H. 15N-DNA stable isotope probing reveals niche differentiation of ammonia oxidizers in paddy soils. Appl Microbiol Biotechnol 2024; 108:342. [PMID: 38789552 PMCID: PMC11126484 DOI: 10.1007/s00253-024-13170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Chemoautotrophic canonical ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) and complete ammonia oxidizers (comammox Nitrospira) are accountable for ammonia oxidation, which is a fundamental process of nitrification in terrestrial ecosystems. However, the relationship between autotrophic nitrification and the active nitrifying populations during 15N-urea incubation has not been totally clarified. The 15N-labeled DNA stable isotope probing (DNA-SIP) technique was utilized in order to study the response from the soil nitrification process and the active nitrifying populations, in both acidic and neutral paddy soils, to the application of urea. The presence of C2H2 almost completely inhibited NO3--N production, indicating that autotrophic ammonia oxidation was dominant in both paddy soils. 15N-DNA-SIP technology could effectively distinguish active nitrifying populations in both soils. The active ammonia oxidation groups in both soils were significantly different, AOA (NS (Nitrososphaerales)-Alpha, NS-Gamma, NS-Beta, NS-Delta, NS-Zeta and NT (Ca. Nitrosotaleales)-Alpha), and AOB (Nitrosospira) were functionally active in the acidic paddy soil, whereas comammox Nitrospira clade A and Nitrosospira AOB were functionally active in the neutral paddy soil. This study highlights the effective discriminative effect of 15N-DNA-SIP and niche differentiation of nitrifying populations in these paddy soils. KEY POINTS: • 15N-DNA-SIP technology could effectively distinguish active ammonia oxidizers. • Comammox Nitrospira clade A plays a lesser role than canonical ammonia oxidizers. • The active groups in the acidic and neutral paddy soils were significantly different.
Collapse
Affiliation(s)
- Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
| | - Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Dan Luo
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | | | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China.
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| |
Collapse
|
5
|
Peng L, Jia M, Li S, Wang X, Liang C, Xu Y. Developing antibiotics-based strategies to efficiently enrich ammonia-oxidizing archaea from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171479. [PMID: 38458444 DOI: 10.1016/j.scitotenv.2024.171479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
The effects of five antibiotics (i.e., ampicillin, streptomycin, carbenicillin, kanamycin and tetracycline) on ammonia-oxidizing archaea (AOA) enrichment from anoxic activated sludge were investigated. The combined use of five antibiotics during 90-day cultivation could selectively inhibit nitrite-oxidizing bacteria (NOB) and ammonia-oxidizing bacteria (AOB) with AOA unaffected, as evidenced by the nitrite accumulation ratio of 100 % and the proportion of AOA in ammonia-oxidizing microbes over 91 %. The alternative use of five antibiotics was the optimal approach to screening for AOA during 348-day cultivation, which inhibited AOB growth at a level equivalent to the combined use of five antibiotics (the AOB-amoA gene decreased by over 99.90 %), further promoted AOA abundance (the much higher AOA-amoA to AOB-amoA gene copy number ratio (1453.30) than that in the groups with the combined use of five antibiotics (192.94)), eliminated bacterial adaptation to antibiotics and reduced antibiotic-resistant bacteria to form Nitrocosmicus-dominant community (42.35 % in abundance).
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Mengwen Jia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Xi Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
6
|
Sakoula D, Schatteman A, Blom P, Jetten MSM, van Kessel MAHJ, Lehtovirta-Morley L, Lücker S. Activity-based labelling of ammonia- and alkane-oxidizing microorganisms including ammonia-oxidizing archaea. ISME COMMUNICATIONS 2024; 4:ycae092. [PMID: 39071849 PMCID: PMC11283641 DOI: 10.1093/ismeco/ycae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.
Collapse
Affiliation(s)
- Dimitra Sakoula
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Arne Schatteman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Pieter Blom
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Laura Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Abiola C, Gwak JH, Lee UJ, Awala SI, Jung MY, Park W, Rhee SK. Growth of soil ammonia-oxidizing archaea on air-exposed solid surface. ISME COMMUNICATIONS 2024; 4:ycae129. [PMID: 39544964 PMCID: PMC11561398 DOI: 10.1093/ismeco/ycae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Soil microorganisms often thrive as microcolonies or biofilms within pores of soil aggregates exposed to the soil atmosphere. However, previous studies on the physiology of soil ammonia-oxidizing microorganisms (AOMs), which play a critical role in the nitrogen cycle, were primarily conducted using freely suspended AOM cells (planktonic cells) in liquid media. In this study, we examined the growth of two representative soil ammonia-oxidizing archaea (AOA), Nitrososphaera viennensis EN76 and "Nitrosotenuis chungbukensis" MY2, and a soil ammonia-oxidizing bacterium, Nitrosomonas europaea ATCC 19718 on polycarbonate membrane filters floated on liquid media to observe their adaptation to air-exposed solid surfaces. Interestingly, ammonia oxidation activities of N. viennensis EN76 and "N. chungbukensis" MY2 were significantly repressed on floating filters compared to the freely suspended cells in liquid media. Conversely, the ammonia oxidation activity of N. europaea ATCC 19718 was comparable on floating filters and liquid media. N. viennensis EN76 and N. europaea ATCC 19718 developed microcolonies on floating filters. Transcriptome analysis of N. viennensis EN76 floating filter-grown cells revealed upregulation of unique sets of genes for cell wall and extracellular polymeric substance biosynthesis, ammonia oxidation (including ammonia monooxygenase subunit C (amoC3) and multicopper oxidases), and defense against H2O2-induced oxidative stress. These genes may play a pivotal role in adapting AOA to air-exposed solid surfaces. Furthermore, the floating filter technique resulted in the enrichment of distinct soil AOA communities dominated by the "Ca. Nitrosocosmicus" clade. Overall, this study sheds light on distinct adaptive mechanisms governing AOA growth on air-exposed solid surfaces.
Collapse
Affiliation(s)
- Christiana Abiola
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Ui-Ju Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Department of Science Education, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju 63243, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong, Seungbuk-Ku, Seoul 02841, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
8
|
Sieradzki ET, Nuccio EE, Pett-Ridge J, Firestone MK. Rhizosphere and detritusphere habitats modulate expression of soil N-cycling genes during plant development. mSystems 2023; 8:e0031523. [PMID: 37754554 PMCID: PMC10654102 DOI: 10.1128/msystems.00315-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Plant roots modulate microbial nitrogen (N) cycling by regulating the supply of root-derived carbon and nitrogen uptake. These differences in resource availability cause distinct micro-habitats to develop: soil near living roots, decaying roots, near both, or outside the direct influence of roots. While many environmental factors and genes control the microbial processes involved in the nitrogen cycle, most research has focused on single genes and pathways, neglecting the interactive effects these pathways have on each other. The processes controlled by these pathways determine consumption and production of N by soil microorganisms. We followed the expression of N-cycling genes in four soil microhabitats over a period of active root growth for an annual grass. We found that the presence of root litter and living roots significantly altered gene expression involved in multiple nitrogen pathways, as well as tradeoffs between pathways, which ultimately regulate N availability to plants.
Collapse
Affiliation(s)
- Ella T. Sieradzki
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, UC Merced, Merced, California, USA
- Innovative Genomics Institute, UC Berkeley, Berkeley, California, USA
| | - Mary K. Firestone
- Department of Environmental Science, Policy and Management, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
9
|
Zhao J, Rodriguez J, Martens-Habbena W. Fine-scale evaluation of two standard 16S rRNA gene amplicon primer pairs for analysis of total prokaryotes and archaeal nitrifiers in differently managed soils. Front Microbiol 2023; 14:1140487. [PMID: 36910167 PMCID: PMC9995467 DOI: 10.3389/fmicb.2023.1140487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
The advance of high-throughput molecular biology tools allows in-depth profiling of microbial communities in soils, which possess a high diversity of prokaryotic microorganisms. Amplicon-based sequencing of 16S rRNA genes is the most common approach to studying the richness and composition of soil prokaryotes. To reliably detect different taxonomic lineages of microorganisms in a single soil sample, an adequate pipeline including DNA isolation, primer selection, PCR amplification, library preparation, DNA sequencing, and bioinformatic post-processing is required. Besides DNA sequencing quality and depth, the selection of PCR primers and PCR amplification reactions arguably have the largest influence on the results. This study tested the performance and potential bias of two primer pairs, i.e., 515F (Parada)-806R (Apprill) and 515F (Parada)-926R (Quince) in the standard pipelines of 16S rRNA gene Illumina amplicon sequencing protocol developed by the Earth Microbiome Project (EMP), against shotgun metagenome-based 16S rRNA gene reads. The evaluation was conducted using five differently managed soils. We observed a higher richness of soil total prokaryotes by using reverse primer 806R compared to 926R, contradicting to in silico evaluation results. Both primer pairs revealed various degrees of taxon-specific bias compared to metagenome-derived 16S rRNA gene reads. Nonetheless, we found consistent patterns of microbial community variation associated with different land uses, irrespective of primers used. Total microbial communities, as well as ammonia oxidizing archaea (AOA), the predominant ammonia oxidizers in these soils, shifted along with increased soil pH due to agricultural management. In the unmanaged low pH plot abundance of AOA was dominated by the acid-tolerant NS-Gamma clade, whereas limed agricultural plots were dominated by neutral-alkaliphilic NS-Delta/NS-Alpha clades. This study stresses how primer selection influences community composition and highlights the importance of primer selection for comparative and integrative studies, and that conclusions must be drawn with caution if data from different sequencing pipelines are to be compared.
Collapse
Affiliation(s)
| | | | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
10
|
Göker M, Oren A. Proposal to include the categories kingdom and domain in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749690 DOI: 10.1099/ijsem.0.005650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Observations made after introduction of the phylum category into the International Code of Nomenclature of Prokaryotes (ICNP) indicate that the addition of a category should usually be conducted before informal names at that rank become widely used. It is thus investigated whether it would be beneficial to add further categories. An extrapolation from the number of names validly published under the ICNP at the distinct principal categories was conducted. This extrapolation indicated that two principal ranks above phylum rank would also harbour validly published names if the according categories were covered by the ICNP. The appropriate categories would be kingdom and domain, regarded as separate principal ranks. The benefit from introducing these ranks is confirmed by analysing the previous taxonomic activity above phylum level and the nomenclatural problems associated with this activity. An etymological examination of the way names of taxa above genus level are formed under distinct codes of nomenclature provides hints for implementing additional categories. According emendations of the ICNP are proposed to include kingdom and domain as a means of further stabilizing prokaryotic nomenclature.
Collapse
Affiliation(s)
- Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124 Braunschweig, Germany
| | - Aharon Oren
- The Hebrew University of Jerusalem, The Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, 9190401 Jerusalem, Israel
| |
Collapse
|
11
|
Melcher M, Hodgskiss LH, Mardini MA, Schleper C, Rittmann SKMR. Analysis of biomass productivity and physiology of Nitrososphaera viennensis grown in continuous culture. Front Microbiol 2023; 14:1076342. [PMID: 36876066 PMCID: PMC9978112 DOI: 10.3389/fmicb.2023.1076342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Microbial ammonia oxidation is the first and usually rate limiting step in nitrification and is therefore an important step in the global nitrogen cycle. Ammonia-oxidizing archaea (AOA) play an important role in nitrification. Here, we report a comprehensive analysis of biomass productivity and the physiological response of Nitrososphaera viennensis to different ammonium and carbon dioxide (CO2) concentrations aiming to understand the interplay between ammonia oxidation and CO2 fixation of N. viennensis. The experiments were performed in closed batch in serum bottles as well as in batch, fed-batch, and continuous culture in bioreactors. A reduced specific growth rate (μ) of N. viennensis was observed in batch systems in bioreactors. By increasing CO2 gassing μ could be increased to rates comparable to that of closed batch systems. Furthermore, at a high dilution rate (D) in continuous culture (≥ 0.7 of μmax) the biomass to ammonium yield (Y(X/NH3)) increased up to 81.7% compared to batch cultures. In continuous culture, biofilm formation at higher D prevented the determination of D crit. Due to changes in Y(X/NH3) and due to biofilm, nitrite concentration becomes an unreliable proxy for the cell number in continuous cultures at D towards μmax. Furthermore, the obscure nature of the archaeal ammonia oxidation prevents an interpretation in the context of Monod kinetics and thus the determination of K S. Our findings indicate that the physiological response of N. viennensis might be regulated with different enzymatic make-ups, according to the ammonium catalysis rate. We reveal novel insights into the physiology of N. viennensis that are important for biomass production and the biomass yield of AOA. Moreover, our study has implications to the field of archaea biology and microbial ecology by showing that bioprocess technology and quantitative analysis can be applied to decipher environmental factors affecting the physiology and productivity of AOA.
Collapse
Affiliation(s)
- Michael Melcher
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Logan H Hodgskiss
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Mohammad Anas Mardini
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Arkeon GmbH, Tulln a.d. Donau, Austria.,Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Almeida PIND, Jesus HED, Pereira PHF, Vieira CED, Bianchini A, Martins CDMG, Santos HFD. The microbial profile of rivers and lagoons three years after the impact of the world's largest mining disaster (Fundão dam, Brazil). ENVIRONMENTAL RESEARCH 2023; 216:114710. [PMID: 36334830 DOI: 10.1016/j.envres.2022.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The collapse of the Fundão tailings dam (Minas Gerais, Brazil) was the largest environmental disaster in Brazil's history and in the world mining industry. This disaster carried approximately 55 million m3 of iron ore tailings along the rivers and the lagoons of the Doce river basin. Although multiple studies assessed the impact on microbial communities in those rivers and lagoons right after the dam rupture, it is not known whether the microbiome in those environments remains impacted years after the disaster. Assessing the microbiome is very important to evaluate impacts and evaluate the health of the environment, due to the several ecological roles played by microorganisms. Here, we evaluated the impact of the dam failure on water and sediment bacteriome and archaeome by high-throughput next-generation sequencing. Samples were taken from two rivers and six lagoons during the dry and rainy seasons approximately three years post disturbance. The results showed a large number and abundance of microbial groups associated with the presence of heavy metals and mine tailings sediments. Some of these microorganisms were also reported in large abundance in the impacted rivers shortly after the Fundão dam rupture. Among the most abundant microorganisms in the Doce River, we can highlight the bacteria hgcI clade and the archaea Nitrososphera sp. in the water, and the bacteria Anaerolineaceae sp. in the sediment. These results suggest that the microbiome of the rivers and the lagoons in the Doce river basin remains severely impacted by the Fundão tailings dam failure even three years after the disaster. The presence of those microorganisms can also help to assess the occurrence of the Fundão dam sediment in other environments.
Collapse
Affiliation(s)
- Pedro Ivo Neves de Almeida
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Carlos Eduardo Delfino Vieira
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Camila De Martinez Gaspar Martins
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, FURG. Av. Itália, S/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF, St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
13
|
Liu B, Lin W, Huang S, Sun Q, Yin H, Luo J. Removal of Mg 2+ inhibition benefited the growth and isolation of ammonia-oxidizing bacteria: An inspiration from bacterial interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155923. [PMID: 35577082 DOI: 10.1016/j.scitotenv.2022.155923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) play an important role in the global nitrogen cycle and have broad applications in the nitrogen removal from wastewater. However, the AOB species are sensitive to environmental factors and usually form tight relationships with other microbes, making the AOB isolation and maintenance are difficult and time-consuming. In this study, the relationship that occurred between AOB and their bacterial partners was found to be able to improve the ammonia oxidation; during the co-cultivation, the magnesium ions (Mg2+) with removal rate as high as 36.7% was removed from culture medium by the concomitant bacterial species, which was regarded as the main reason for improving ammonia oxidation. During the pure cultivation of AOB isolate, when the concentration of Mg2+ reduced to low levels, the ammonia-oxidizing activity was more than 5 times and the amoA gene expression was more than 12 times higher than that grown in the initial culture medium. Based on a newly designed culture medium, the ammonia oxidation of AOB isolate grown in liquid culture was significantly promoted and the visible AOB colonies with much more number and larger diameter were observed to form on agar plates. With the addition of high concentration of calcium carbonate (CaCO3), AOB colonies could be easily and specifically identified by following the hydrolytic zones that formed around AOB colonies. Another AOB isolates were successively obtained from different samples and within a short time, suggesting the feasibility and effectivity of this culture medium and strategy on the AOB isolation from environments.
Collapse
Affiliation(s)
- Buchan Liu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weitie Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Shenxi Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Qiuyun Sun
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Hao Yin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jianfei Luo
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China; MOE Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
14
|
Zhao H, Zhang L. Metagenome-assembled Genomes of Six Novel Ammonia-oxidizing Archaea (AOA) from Agricultural Upland Soil. Microbes Environ 2022; 37. [PMID: 35965098 PMCID: PMC9530722 DOI: 10.1264/jsme2.me22035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA), key players in agricultural upland soil nitrification, convert soil ammonium to nitrite. The microbial oxidation of ammonia to nitrite is an important part of the global biogeochemical nitrogen cycle. In the present study, we recovered six novel AOA metagenome-assembled genomes (MAGs) containing genes for carbon (C) fixation and nitrogen (N) metabolism by using a deep shotgun metagenomic sequencing strategy. We also found that these AOA MAGs possessed cobalamin synthesis genes, suggesting that AOA are vitamin suppliers in agricultural upland soil. Collectively, the present results deepen our understanding of the metabolic potential and phylogeny of AOA in agroecosystems.
Collapse
Affiliation(s)
- Huicheng Zhao
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| | - Linqi Zhang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| |
Collapse
|
15
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies. Extremophiles 2021; 26:3. [PMID: 34878610 DOI: 10.1007/s00792-021-01252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022]
Abstract
Glacial and kettle lakes in the high-altitude Himalayas are unique habitats with significant scope for microbial ecology. The present study provides insights into bacterial community structure and function of the sediments of two high-altitude lakes using 16S amplicon and whole-genome shotgun (WGS) metagenomics. Microbial communities in the sediments of Parvati kund (glacial lake) and Bhoot ground (kettle lake) majorly consist of bacteria and a small fraction of archaea and eukaryota. The bacterial population has an abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, and Verrucomicrobia. Despite the common phyla, the sediments from each lake have a distinct distribution of bacterial and archaeal taxa. The analysis of the WGS metagenomes at the functional level provides a broad picture of microbial community metabolism of key elements and suggested chemotrophs as the major primary producers. In addition, the findings also revealed that polyhydroxyalkanoates (PHA) are a crucial stress adaptation molecule. The abundance of PHA metabolism in Alpha- and Betaproteobacteria and less representation in other bacterial and archaeal classes in both metagenomes was disclosed. The metagenomic insights provided an incisive view of the microbiome from Himalayan lake's sediments. It has also opened the scope for further bioprospection from virgin Himalayan niches.
Collapse
|
17
|
Moreras-Marti A, Fox-Powell M, Zerkle AL, Stueeken E, Gazquez F, Brand HEA, Galloway T, Purkamo L, Cousins CR. Volcanic controls on the microbial habitability of Mars-analogue hydrothermal environments. GEOBIOLOGY 2021; 19:489-509. [PMID: 34143931 DOI: 10.1111/gbi.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO2 -rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S0 ) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH < 3) waters with high concentrations of SO42- and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration.
Collapse
Affiliation(s)
- Arola Moreras-Marti
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
- AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Eva Stueeken
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Fernando Gazquez
- Water Resources and Environmental Geology Research Group, Department of Biology and Geology, University of Almería, Almería, Spain
| | | | - Toni Galloway
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | | - Claire R Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
18
|
Competition of Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments. Appl Environ Microbiol 2021; 87:e0103821. [PMID: 34347515 DOI: 10.1128/aem.01038-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the environment, nutrients are rarely available in constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen. We investigated the competition between highly enriched cultures of an AOA (AOA-AC1) and an AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis spp. and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. Is79, belonged to the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). Growth experiments in batch cultures showed that AOB-G5-7 had higher growth rates than AOA-AC1 at higher ammonium concentrations. During chemostat competition experiments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition between AOA and AOB was determined by the initial ammonium concentrations. AOA-AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of 50 μM and AOB-G5-7 at 500 μM. These findings indicate that, during direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are in strong accordance with environmental survey data suggesting that AOA are mainly responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB dominate under eutrophic conditions. Importance Nitrification is an important process in the global nitrogen cycle. The first step - ammonia oxidation to nitrite - can be carried out by Ammonia-oxidizing Archaea (AOA) and Ammonia-oxidizing Bacteria (AOB). In many natural environments, these ammonia oxidizers coexist. Therefore, it is important to understand the population dynamics in response to increasing ammonium concentrations. Here, we study the competition between AOA and AOB enriched from freshwater systems. The results demonstrate that AOA are more abundant in systems with low ammonium availabilities and AOB when the ammonium availability increases. These results will help to predict potential shifts in community composition of ammonia oxidizers in the environment due to changes in ammonium availability.
Collapse
|
19
|
Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME JOURNAL 2021; 16:272-283. [PMID: 34316016 PMCID: PMC8692354 DOI: 10.1038/s41396-021-01064-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.
Collapse
|
20
|
Yang Y, Herbold CW, Jung MY, Qin W, Cai M, Du H, Lin JG, Li X, Li M, Gu JD. Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration. WATER RESEARCH 2021; 191:116798. [PMID: 33444853 DOI: 10.1016/j.watres.2020.116798] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 05/04/2023]
Abstract
Recent studies indicate that ammonia-oxidizing archaea (AOA) may play an important role in nitrogen removal by wastewater treatment plants (WWTPs). However, our knowledge of the mechanisms employed by AOA for growth and survival in full-scale WWTPs is still limited. Here, metagenomic and metatranscriptomic analyses combined with a laboratory cultivation experiment revealed that three active AOAs (WS9, WS192, and WS208) belonging to family Nitrososphaeraceae were active in the deep oxidation ditch (DOD) of a full-scale WWTP treating landfill leachate, which is configured with three continuous aerobic-anoxic (OA) modules with low-intensity aeration (≤ 1.5 mg/L). AOA coexisted with AOB and complete ammonia oxidizers (Comammox), while the ammonia-oxidizing microbial (AOM) community was unexpectedly dominated by the novel AOA strain WS9. The low aeration, long retention time, and relatively high inputs of ammonium and copper might be responsible for the survival of AOA over AOB and Comammox, while the dominance of WS9, specifically may be enhanced by substrate preference and uniquely encoded retention strategies. The urease-negative WS9 is specifically adapted for ammonia acquisition as evidenced by the high expression of an ammonium transporter, whereas two metabolically versatile urease-positive AOA strains (WS192 and WS208) can likely supplement ammonia needs with urea. This study provides important information for the survival and application of the eutrophic Nitrososphaeraceae AOA and advances our understanding of archaea-dominated ammonia oxidation in a full-scale wastewater treatment system.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Craig W Herbold
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Man-Young Jung
- Division of Biology Education, Department of Science Education, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, South Korea; Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Faculty of Science Education, Jeju National University, Jeju 6324, South Korea
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle, Washington, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Huan Du
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China.
| |
Collapse
|
21
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
22
|
Production and Excretion of Polyamines To Tolerate High Ammonia, a Case Study on Soil Ammonia-Oxidizing Archaeon " Candidatus Nitrosocosmicus agrestis". mSystems 2021; 6:6/1/e01003-20. [PMID: 33594004 PMCID: PMC8573960 DOI: 10.1128/msystems.01003-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ammonia tolerance is a universal characteristic among the ammonia-oxidizing bacteria (AOB); in contrast, the known species of ammonia-oxidizing archaea (AOA) have been regarded as ammonia sensitive, until the identification of the genus “Candidatus Nitrosocosmicus.” However, the mechanism of its ammonia tolerance has not been reported. In this study, the AOA species “Candidatus Nitrosocosmicus agrestis,” obtained from agricultural soil, was determined to be able to tolerate high concentrations of NH3 (>1,500 μM). In the genome of this strain, which was recovered from metagenomic data, a full set of genes for the pathways of polysaccharide metabolism, urea hydrolysis, arginine synthesis, and polyamine synthesis was identified. Among them, the genes encoding cytoplasmic carbonic anhydrase (CA) and a potential polyamine transporter (drug/metabolite exporter [DME]) were found to be unique to the genus “Ca. Nitrosocosmicus.” When “Ca. Nitrosocosmicus agrestis” was grown with high levels of ammonia, the genes that participate in CO2/HCO3− conversion, glutamate/glutamine syntheses, arginine synthesis, polyamine synthesis, and polyamine excretion were significantly upregulated, and the polyamines, including putrescine and spermidine, had significant levels of production. Based on genome analysis, gene expression quantification, and polyamine determination, we propose that the production and excretion of polyamines is probably one of the reasons for the ammonia tolerance of “Ca. Nitrosocosmicus agrestis,” and even of the genus “Ca. Nitrosocosmicus.” IMPORTANCE Ammonia tolerance of AOA is usually much lower than that of the AOB, which makes the AOB rather than AOA a predominant ammonia oxidizer in agricultural soils, contributing to global N2O emission. Recently, some AOA species from the genus “Ca. Nitrosocosmicus” were also found to have high ammonia tolerance. However, the reported mechanism for the ammonia tolerance is very rare and indeterminate for AOB and for AOA species. In this study, an ammonia-tolerant AOA strain of the species “Ca. Nitrosocosmicus agrestis” was identified and its potential mechanisms for ammonia tolerance were explored. This study will be of benefit for determining more of the ecological role of AOA in agricultural soils or other environments.
Collapse
|
23
|
Liang D, Ouyang Y, Tiemann L, Robertson GP. Niche Differentiation of Bacterial Versus Archaeal Soil Nitrifiers Induced by Ammonium Inhibition Along a Management Gradient. Front Microbiol 2020; 11:568588. [PMID: 33281763 PMCID: PMC7689314 DOI: 10.3389/fmicb.2020.568588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Soil nitrification, mediated mainly by ammonia oxidizing archaea (AOA) and bacteria (AOB), converts ammonium (NH4+) to nitrite (NO2−) and thence nitrate (NO3−). To better understand ecological differences between AOA and AOB, we investigated the nitrification kinetics of AOA and AOB under eight replicated cropped and unmanaged ecosystems (including two fertilized natural systems) along a long-term management intensity gradient in the upper U.S. Midwest. For five of eight ecosystems, AOB but not AOA exhibited Haldane kinetics (inhibited by high NH4+ additions), especially in perennial and successional systems. In contrast, AOA predominantly exhibited Michaelis-Menten kinetics, suggesting greater resistance to high nitrogen inputs than AOB. These responses suggest the potential for NH4+-induced niche differentiation between AOA and AOB. Additionally, long-term fertilization significantly enhanced maximum nitrification rates (Vmax) in the early successional systems for both AOA and AOB, but not in the deciduous forest systems. This was likely due to pH suppression of nitrification in the acidic forest soils, corroborated by a positive correlation of Vmax with soil pH but not with amoA gene abundance. Results also demonstrated that soil nitrification potentials were relatively stable, as there were no seasonal differences. Overall, results suggest that (1) NH4+ inhibition of AOB but not AOA could be another factor contributing to niche differentiation between AOA and AOB in soil, and (2) nitrification by both AOA and AOB can be significantly promoted by long-term nitrogen inputs.
Collapse
Affiliation(s)
- Di Liang
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| | - Yang Ouyang
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Lisa Tiemann
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - G Philip Robertson
- Department of Plant, Soil and Microbial Sciences and Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States.,W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
| |
Collapse
|
24
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
25
|
He X, Ji G. Responses of AOA and AOB activity and DNA/cDNA community structure to allylthiourea exposure in the water level fluctuation zone soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15233-15244. [PMID: 32072408 DOI: 10.1007/s11356-020-07952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Ammonia oxidation is mainly performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Allylthiourea (ATU) has been found to specifically inhibit ammonia oxidation. However, the effect of ATU on AOA and AOB transcription has been infrequently studied. In the present study, we examined the responses of AOA and AOB activity and DNA/cDNA community structure to ATU exposure. The ammonia oxidation activity in the 100-mg/L ATU group was 4.3% of that in the control group after 7 days. When exposed to ATU, the gene abundance of AOA was favored compared with that of AOB, and there were no statistically significant differences in the abundance of AOB amoA in DNA and cDNA between the two groups. Compared with the control group, the gene abundance of AOA significantly increased by 5.23 times, while the transcription of AOA significantly decreased by 0.70 times. Moreover, the transcriptional ratio of AOA in the ATU group was only 0.05 times as high as that in the control group. ATU selectively affected AOB and completely inhibited Nitrosomonas europaea and Bacterium amoA.22.HaldeII.kultur at the genetic level. Under ATU exposure, all AOA clusters were transcribed, but three AOB clusters were not transcribed. Our results indicated that the ammonia oxidation potential of the soil of water level fluctuation areas, based on ATU inhibition, was associated mainly with AOA amoA gene abundance and AOB community shifts in DNA and cDNA.
Collapse
Affiliation(s)
- Xiangjun He
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
26
|
Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, Sikorski J, Egert M, Dannenmann M, Pester M. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol 2019; 22:212-228. [PMID: 31657089 DOI: 10.1111/1462-2920.14840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 μM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.
Collapse
Affiliation(s)
- Janina Herber
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Benjamin Frommeyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Dietmar Straile
- Limnological Institute, University of Konstanz, Mainaustraße 252, Constance, 78464, Germany
| | - Allison Kolar
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Johannes Sikorski
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Michael Dannenmann
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, Braunschweig, 38106, Germany
| |
Collapse
|
27
|
Smith MW, Herfort L, Rivers AR, Simon HM. Genomic Signatures for Sedimentary Microbial Utilization of Phytoplankton Detritus in a Fast-Flowing Estuary. Front Microbiol 2019; 10:2475. [PMID: 31749780 PMCID: PMC6848030 DOI: 10.3389/fmicb.2019.02475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023] Open
Abstract
In fast-flowing, river-dominated estuaries, “hotspots” of microbial biogeochemical cycling can be found within areas of extended water retention. Lateral bays located off of the North and South channels of the Columbia River estuary are proposed to be such hotspots. Previous metagenomic studies on water samples indicated that these regions function both as sources and sinks of biogenic particles, with potential to impact organic matter fluxes in the estuary. To extend this work, we analyzed 11 sediment metagenomes from three disparate bays: the freshwater Cathlamet Bay, and the brackish Youngs Bay and more saline Baker Bay located nearer the mouth to the south and north of the main channel, respectively. Samples were collected from upper layers of sediments in August of 2011 and 2013 for DNA extraction and metagenome sequencing. All metagenomes were dominated by bacterial sequences, although diatom sequences as high as 26% of the total annotated sequences were observed in the higher salinity samples. Unsupervised 2D hierarchical clustering analysis resulted in the eleven metagenome samples clustered into four groups by microbial taxonomic composition, with Bacteroides, diatom, and phage levels driving most of the grouping. Results of functional gene clustering further indicated that diatom bloom degradation stage (early vs. late) was an important factor. While the Flavobacteriia and Cytophagia classes were well represented in metagenomes containing abundant diatoms, taxa from the Bacteroidia class, along with certain members of the Sphingobacteriia class, were particularly abundant in metagenomes representing later stages of diatom decomposition. In contrast, the sediment metagenomes with low relative abundance of diatom and Bacteroidetes sequences appeared to have a metabolic potential biased toward microbial growth under nutrient limitation. While differences in water salinity clearly also influenced the microbial community composition and metabolic potential, our results highlight a central role for allochthonous labile organic matter (i.e., diatom detritus), in shaping bacterial taxonomic and functional properties in the Columbia River estuary lateral bay sediments. These results suggest that in fast-flowing, river-dominated estuaries, sediment microbial communities in areas of extended water retention, such as the lateral bays, may contribute disproportionately to estuarine organic matter degradation and recycling.
Collapse
Affiliation(s)
- Maria W Smith
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States
| | - Lydie Herfort
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| | - Adam R Rivers
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Holly M Simon
- Center for Coastal Margin Observation & Prediction, Oregon Health & Science University, Portland, OR, United States.,Institute of Environmental Health, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
28
|
Bale NJ, Palatinszky M, Rijpstra WIC, Herbold CW, Wagner M, Sinninghe Damsté JS. Membrane Lipid Composition of the Moderately Thermophilic Ammonia-Oxidizing Archaeon " Candidatus Nitrosotenuis uzonensis" at Different Growth Temperatures. Appl Environ Microbiol 2019; 85:e01332-19. [PMID: 31420340 PMCID: PMC6805073 DOI: 10.1128/aem.01332-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
"Candidatus Nitrosotenuis uzonensis" is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (cren') were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and cren' increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the "Ca Nitrosotenuis uzonensis" cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of "Ca Nitrosotenuis uzonensis" demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high cren' content.IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. "Ca Nitrosotenuis uzonensis" is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of "Ca Nitrosotenuis uzonensis" cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.
Collapse
Affiliation(s)
- Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Marton Palatinszky
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - W Irene C Rijpstra
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Wang S, Zheng X, Xia H, Shi D, Fan J, Wang P, Yan Z. Archaeal community variation in the Qinhuangdao coastal aquaculture zone revealed by high-throughput sequencing. PLoS One 2019; 14:e0218611. [PMID: 31226149 PMCID: PMC6588238 DOI: 10.1371/journal.pone.0218611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 11/18/2022] Open
Abstract
The differences in archaeal diversity and community composition in the sediments and waters of the Qinhuangdao coastal aquaculture zone were investigated. Furthermore, the associations between dominant archaeal taxa with geographic and environmental variables were evaluated. High-throughput sequencing of archaeal 16S rRNA genes yielded a total of 176,211 quality-filtered reads and 1,178 operational taxonomic units (OTUs) overall. The most abundant phylum and class among all communities were Thaumarchaeota and Nitrososphaeria, respectively. Beta diversity analysis indicated that community composition was divided into two groups according to the habitat type (i.e., sediments or waters). Only 9.8% OTUs were shared by communities from the two habitats, while 73.9% and 16.3% of the OTUs were unique to sediment or water communities, respectively. Furthermore, the relative abundances of the dominant OTUs differed with habitat type. Investigations of relationships between dominant OTUs and environmental variables indicated that some dominant OTUs were more sensitive to variation in environmental factors, which could be due to individual taxonomic differences in lifestyles and biological processes. Overall, the investigation of archaeal community variation within the Qinhuangdao coastal aquaculture zone provides an important baseline understanding of the microbial ecology in this important ecosystem.
Collapse
Affiliation(s)
- Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Huijuan Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Di Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Pengyuan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
30
|
Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int J Syst Evol Microbiol 2019; 69:1892-1902. [PMID: 30938665 DOI: 10.1099/ijsem.0.003360] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mesophilic, neutrophilic and aerobic marine ammonia-oxidizing archaea, designated strains NF5T and D3CT, were isolated from coastal surface water of the Northern Adriatic Sea. Cells were straight small rods 0.20-0.25 µm wide and 0.49-2.00 µm long. Strain NF5T possessed archaella as cell appendages. Glycerol dibiphytanyl glycerol tetraethers with zero to four cyclopentane moieties (GDGT-0 to GDGT-4) and crenarchaeol were the major core lipids. Menaquinone MK6 : 0 was the major respiratory quinone. Both isolates gained energy by oxidizing ammonia (NH3) to nitrite (NO2-) and used bicarbonate as a carbon source. Strain D3CT was able use urea as a source of ammonia for energy production and growth. Addition of hydrogen peroxide (H2O2) scavengers (catalase or α-keto acids) was required to sustain growth. Optimal growth occurred between 30 and 32 °C, pH 7.1 and 7.3 and between 34 and 37‰ salinity. The cellular metal abundance ranking of both strains was Fe>Zn>Cu>Mn>Co. The genomes of strains NF5T and D3CT have a DNA G+C content of 33.4 and 33.8 mol%, respectively. Phylogenetic analyses of 16S rRNA gene sequences revealed that both strains are affiliated with the class Nitrososphaeria, sharing ~85 % 16S rRNA gene sequence identity with Nitrososphaera viennensis EN76T. The two isolates are separated by phenotypic and genotypic characteristics and are assigned to distinct species within the genus Nitrosopumilus gen. nov. according to average nucleotide identity thresholds of their closed genomes. Isolates NF5T (=JCM 32270T =NCIMB 15114T) and D3CT (=JCM 32271T =DSM 106147T =NCIMB 15115T) are type strains of the species Nitrosopumilusadriaticus sp. nov. and Nitrosopumiluspiranensis sp. nov., respectively.
Collapse
Affiliation(s)
- Barbara Bayer
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Jana Vojvoda
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Carolina Reyes
- 2Department of Environmental Geosciences, Environmental Science Research Network, University of Vienna, Vienna, Austria
| | - Maria Pinto
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- 1Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Vienna, Austria.,3Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
31
|
Liao B, Yan X, Zhang J, Chen M, Li Y, Huang J, Lei M, He H, Wang J. Microbial community composition in alpine lake sediments from the Hengduan Mountains. Microbiologyopen 2019; 8:e00832. [PMID: 30848090 PMCID: PMC6741133 DOI: 10.1002/mbo3.832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
Microbial communities in sediments play an important role in alpine lake ecosystems. However, the microbial diversity and community composition of alpine lake sediments from the Hengduan Mountains remain largely unknown. Therefore, based on the Illumina MiSeq platform, high‐throughput sequencing analysis of the 16S rRNA gene was performed on 15 alpine lake sediments collected at different locations in the Hengduan Mountains. The abundance‐based coverage estimate (ACE), Chao1, and Shannon indices indicated that the microbial abundance and diversity of these sediments were high. There are some differences in the composition of microbial communities among sediments. However, in general, Proteobacteria accounted for the largest proportion of all sediments (22.3%–67.6%) and was the dominant phylum. Followed by Bacteroidetes, Acidobacteria, Chloroflexi, and Planctomycetes. In addition, the operational taxonomic unit (OTU) interactions network had modular structures and suggested more cooperation than competition in the microbial community. Besides, we also found that temperature has a significant contribution to the sample–environment relationship. This study revealed the diversity and composition of microbial communities in alpine lake sediments from the Hengduan Mountains, and describe the correlation between microbial community structure and different environmental variables.
Collapse
Affiliation(s)
- Binqiang Liao
- School of Life Science Central South University, Changsha, China
| | - Xiaoxin Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, China
| | - Jiang Zhang
- School of Life Science Central South University, Changsha, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, China
| | - Yanling Li
- Key Laboratory of Plateau Lake Ecology and Environment Change, Institute of Plateau Lake Ecology and Pollution Management, School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Jiafeng Huang
- School of Life Science Central South University, Changsha, China
| | - Ming Lei
- School of Life Science Central South University, Changsha, China
| | - Hailun He
- School of Life Science Central South University, Changsha, China
| | - Jun Wang
- School of Life Science Central South University, Changsha, China.,Sanway Gene Technology Inc., Changsha, China
| |
Collapse
|
32
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
33
|
Kimble JC, Winter AS, Spilde MN, Sinsabaugh RL, Northup DE. A potential central role of Thaumarchaeota in N-Cycling in a semi-arid environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA. FEMS Microbiol Ecol 2018; 94:5079639. [PMID: 30165514 PMCID: PMC6669814 DOI: 10.1093/femsec/fiy173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
Low biomass and productivity of arid-land caves with limited availability of nitrogen (N) raises the question of how microbes acquire and cycle this essential element. Caves are ideal environments for investigating microbial functional capabilities, as they lack phototrophic activity and have near constant temperatures and high relative humidity. From the walls of Fort Stanton Cave (FSC), multicolored secondary mineral deposits of soil-like material low in fixed N, known as ferromanganese deposits (FMD), were collected. We hypothesized that within FMD samples we would find the presence of microbial N cycling genes and taxonomy related to N cycling microorganisms. Community DNA were sequenced using Illumina shotgun metagenomics and 16S rRNA gene sequencing. Results suggest a diverse N cycle encompassing several energetic pathways including nitrification, dissimilatory nitrate reduction and denitrification. N cycling genes associated with assimilatory nitrate reduction were also identified. Functional gene sequences and taxonomic findings suggest several bacterial and archaeal phyla potentially play a role in nitrification pathways in FSC and FMD. Thaumarchaeota, a deep-branching archaeal division, likely play an essential and possibly dominant role in the oxidation of ammonia. Our results provide genomic evidence for understanding how microbes are potentially able to acquire and cycle N in a low-nutrient subterranean environment.
Collapse
Affiliation(s)
- Jason C Kimble
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ara S Winter
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael N Spilde
- Institute of Meteoritics, MSC03-2050, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert L Sinsabaugh
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
34
|
"Candidatus Nitrosotenuis aquarius," an Ammonia-Oxidizing Archaeon from a Freshwater Aquarium Biofilter. Appl Environ Microbiol 2018; 84:AEM.01430-18. [PMID: 29959256 DOI: 10.1128/aem.01430-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022] Open
Abstract
Ammonia is a metabolic waste product excreted by aquatic organisms that causes toxicity when it accumulates. Aquaria and aquaculture systems therefore use biological filters that promote the growth of nitrifiers to convert ammonia to nitrate. Ammonia-oxidizing bacteria (AOB) have been isolated from aquarium biofilters and are available as commercial supplements, but recent evidence suggests that ammonia-oxidizing archaea (AOA) are abundant in aquarium biofilters. In this study, we report the cultivation and closed genome sequence of the novel AOA representative "Candidatus Nitrosotenuis aquarius," which was enriched from a freshwater aquarium biofilter. "Ca Nitrosotenuis aquarius" oxidizes ammonia stoichiometrically to nitrite with a concomitant increase in thaumarchaeotal cells and a generation time of 34.9 h. "Ca Nitrosotenuis aquarius" has an optimal growth temperature of 33°C, tolerates up to 3 mM NH4Cl, and grows optimally at 0.05% salinity. Transmission electron microscopy revealed that "Ca Nitrosotenuis aquarius" cells are rod shaped, with a diameter of ∼0.4 μm and length ranging from 0.6 to 3.6 μm. In addition, these cells possess surface layers (S-layers) and multiple proteinaceous appendages. Phylogenetically, "Ca Nitrosotenuis aquarius" belongs to the group I.1a Thaumarchaeota, clustering with environmental sequences from freshwater aquarium biofilters, aquaculture systems, and wastewater treatment plants. The complete 1.70-Mbp genome contains genes involved in ammonia oxidation, bicarbonate assimilation, flagellum synthesis, chemotaxis, S-layer production, defense, and protein glycosylation. Incubations with differential inhibitors indicate that "Ca Nitrosotenuis aquarius"-like AOA contribute to ammonia oxidation within the aquarium biofilter from which it originated.IMPORTANCE Nitrification is a critical process for preventing ammonia toxicity in engineered biofilter environments. This work describes the cultivation and complete genome sequence of a novel AOA representative enriched from a freshwater aquarium biofilter. In addition, despite the common belief in the aquarium industry that AOB mediate ammonia oxidation, the present study suggests an in situ role for "Ca Nitrosotenuis aquarius"-like AOA in freshwater aquarium biofilters.
Collapse
|
35
|
Ammonia oxidizers in the sea-surface microlayer of a coastal marine inlet. PLoS One 2018; 13:e0202636. [PMID: 30125317 PMCID: PMC6101417 DOI: 10.1371/journal.pone.0202636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 08/07/2018] [Indexed: 11/19/2022] Open
Abstract
Planktonic archaea are thought to play an important role in ammonia oxidation in marine environments. Data on the distribution, abundance, and diversity of ammonia oxidizers in the coastal sea-surface microlayer (SML) are lacking, despite previous reports of high abundance of Thaumarchaeota in the SML of estuaries and freshwater lakes. Here, we failed to detect the presence of ammonia-oxidizing bacteria in any of our samples taken from a semi-enclosed marine inlet in Japan. Therefore, we shifted our focus to examine the archaeal community composition as well as the Thaumarchaeota marine group I (MG-I) and ammonia monooxygenase subunit A (amoA) gene copy numbers and composition in the SML and corresponding underlying water (UW, 20 cm). amoA gene copy numbers obtained by quantitative PCR were consistent with the typical values observed in the surface waters of oceanic and coastal environments where nitrification activity has been detected, but the copy numbers were two- to three-fold less than those reported from the surface layers and UW of high mountain lakes. Both amoA and MG-I 16S rRNA gene copy numbers were significantly negatively correlated with chlorophyll-a and transparent exopolymer particle concentrations in the SML. Communities of archaea and ammonia-oxidizing archaea in SML samples collected during low wind conditions (≤5 m s–1) differed the most from those in UW samples, whereas the communities in SML samples collected during high wind conditions were similar to the UW communities. In the SML, low ratios of amoA to MG-I 16S rRNA genes were observed, implying that most of the SML Thaumarchaeota lacked amoA. To our knowledge, our results provide the first comparison of ammonia-oxidizing communities in the coastal SML with those in the UW.
Collapse
|
36
|
Jung MY, Islam MA, Gwak JH, Kim JG, Rhee SK. Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil. Int J Syst Evol Microbiol 2018; 68:3084-3095. [PMID: 30124400 DOI: 10.1099/ijsem.0.002926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic, chemolithoautotrophic, neutrophilic and aerobic ammonia-oxidizing archaeon, designated strain MY1T, was isolated from agricultural soil. Microscopic observation revealed short, rod-shaped cells with a diameter of 0.3-0.5 µm and length of 0.6-1.0 µm. The isolate had no flagella and pili, and possessed no genes associated with archaeal flagella synthesis. The major membrane lipids consisted mainly of the glycerol dibiphytanyl glycerol tetraether (GDGT) lipids GDGT-0 to GDGT-4 and crenarchaeol. The major intact polar lipids (IPLs) were determined as hexose plus phosphohexose IPL and dihexose IPL. Strain MY1T obtains energy by aerobically oxidizing ammonia and carbon by fixing CO2. An optimal growth was observed at 25 °C, at pH 7 and with 0.2-0.4 % (w/v) salinity that corresponds with its terrestrial habitat. The addition of α-keto acids was necessary to stimulate growth. The strain tolerated ammonium and nitrite concentrations up to 10 and 5 mM, respectively. The MY1T genome has a DNA G+C content of 32.7 mol%. Phylogenetic analysis based on the 16S rRNA gene showed that strain MY1T belongs to the family Nitrosopumilaceaeof the phylum Thaumarchaeota, sharing the highest 16S rRNA gene sequence similarity (96.6-97.1 %) with marine isolates of the genus Nitrosopumilus. The average nucleotide identity was 78 % between strain MY1T and Nitrosopumilus maritimus SCM1T, indicating distant relatedness. Based on the phenotypic, phylogenetic and genomic analyses, it was concluded that strain MY1T belongs to the novel genus Nitrosarchaeum, under which the name Nitrosarchaeum koreense sp. nov. is proposed as the type species. The type strain is MY1T (=JCM 31640T=KCTC 4249T).
Collapse
Affiliation(s)
- Man-Young Jung
- 1Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea.,2Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Md Arafat Islam
- 1Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- 1Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Jong-Geol Kim
- 1Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Sung-Keun Rhee
- 1Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
37
|
Daebeler A, Herbold CW, Vierheilig J, Sedlacek CJ, Pjevac P, Albertsen M, Kirkegaard RH, de la Torre JR, Daims H, Wagner M. Cultivation and Genomic Analysis of " Candidatus Nitrosocaldus islandicus," an Obligately Thermophilic, Ammonia-Oxidizing Thaumarchaeon from a Hot Spring Biofilm in Graendalur Valley, Iceland. Front Microbiol 2018; 9:193. [PMID: 29491853 PMCID: PMC5817080 DOI: 10.3389/fmicb.2018.00193] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the Nitrosocaldus clade, group 1.1b and group 1.1a Thaumarchaeota in terrestrial high-temperature habitats, only one enrichment culture of an AOA thriving above 50°C has been reported and functionally analyzed. In this study, we physiologically and genomically characterized a newly discovered thaumarchaeon from the deep-branching Nitrosocaldaceae family of which we have obtained a high (∼85%) enrichment from biofilm of an Icelandic hot spring (73°C). This AOA, which we provisionally refer to as "Candidatus Nitrosocaldus islandicus," is an obligately thermophilic, aerobic chemolithoautotrophic ammonia oxidizer, which stoichiometrically converts ammonia to nitrite at temperatures between 50 and 70°C. "Ca. N. islandicus" encodes the expected repertoire of enzymes proposed to be required for archaeal ammonia oxidation, but unexpectedly lacks a nirK gene and also possesses no identifiable other enzyme for nitric oxide (NO) generation. Nevertheless, ammonia oxidation by this AOA appears to be NO-dependent as "Ca. N. islandicus" is, like all other tested AOA, inhibited by the addition of an NO scavenger. Furthermore, comparative genomics revealed that "Ca. N. islandicus" has the potential for aromatic amino acid fermentation as its genome encodes an indolepyruvate oxidoreductase (iorAB) as well as a type 3b hydrogenase, which are not present in any other sequenced AOA. A further surprising genomic feature of this thermophilic ammonia oxidizer is the absence of DNA polymerase D genes - one of the predominant replicative DNA polymerases in all other ammonia-oxidizing Thaumarchaeota. Collectively, our findings suggest that metabolic versatility and DNA replication might differ substantially between obligately thermophilic and other AOA.
Collapse
Affiliation(s)
- Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Craig W. Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Julia Vierheilig
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Christopher J. Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Rasmus H. Kirkegaard
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - José R. de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Lavergne C, Hugoni M, Hubas C, Debroas D, Dupuy C, Agogué H. Diel Rhythm Does Not Shape the Vertical Distribution of Bacterial and Archaeal 16S rRNA Transcript Diversity in Intertidal Sediments: a Mesocosm Study. MICROBIAL ECOLOGY 2018; 75:364-374. [PMID: 28779296 DOI: 10.1007/s00248-017-1048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
In intertidal sediments, circadian oscillations (i.e., tidal and diel rhythms) and/or depth may affect prokaryotic activity. However, it is difficult to distinguish the effect of each single force on active community changes in these natural and complex intertidal ecosystems. Therefore, we developed a tidal mesocosm to control the tidal rhythm and test whether diel fluctuation or sediment depth influence active prokaryotes in the top 10 cm of sediment. Day- and nighttime emersions were compared as they are expected to display contrasting conditions through microphytobenthic activity in five different sediment layers. A multiple factor analysis revealed that bacterial and archaeal 16S ribosomal RNA (rRNA) transcript diversity assessed by pyrosequencing was similar between day and night emersions. Potentially active benthic Bacteria were highly diverse and influenced by chlorophyll a and phosphate concentrations. While in oxic and suboxic sediments, Thaumarchaeota Marine Group I (MGI) was the most active archaeal phylum, suggesting the importance of the nitrogen cycle in muddy sediments, in anoxic sediments, the mysterious archaeal C3 group dominated the community. This work highlighted that active prokaryotes organize themselves vertically within sediments independently of diel fluctuations suggesting adaptation to physicochemical-specific conditions associated with sediment depth.
Collapse
Affiliation(s)
- C Lavergne
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
- School of Biochemical Engineering, Pontificia Universidad Católica Valparaíso, Avenida Brasil, 2085, Valparaíso, Chile.
| | - M Hugoni
- CNRS, UMR5557 Ecologie Microbienne, Université Lyon 1, INRA, UMR1418, 69220, Villeurbanne Cedex, France
| | - C Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA, Sorbonne Universités, UPMC Univ Paris 6, CNRS 7208, IRD 207, UCN, UA, Station de Biologie Marine, 29900, Concarneau, France
| | - D Debroas
- Clermont Université, Université Blaise Pascal, LMGE, BP 10448, 63000, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, 63171, Aubière, France
| | - C Dupuy
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - H Agogué
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
39
|
Year-Round Shotgun Metagenomes Reveal Stable Microbial Communities in Agricultural Soils and Novel Ammonia Oxidizers Responding to Fertilization. Appl Environ Microbiol 2018; 84:AEM.01646-17. [PMID: 29101194 DOI: 10.1128/aem.01646-17] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/29/2017] [Indexed: 11/20/2022] Open
Abstract
The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for a better understanding of nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points during 1 year from two depths (0 to 5 and 20 to 30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty loam) with similar cropping histories. Although the microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural aquatic ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed a less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (are more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies.IMPORTANCE Even though the impact of agricultural management on the microbial community structure has been recognized, an understanding of the dynamics of individual microbial populations and what functions each population carries are limited. Yet, this information is important for a better understanding of nutrient cycling, with potentially important implications for preserving nitrogen in soils and sustainability. Here, we show that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic than their marine counterparts previously studied.
Collapse
|
40
|
Herbold CW, Lehtovirta‐Morley LE, Jung M, Jehmlich N, Hausmann B, Han P, Loy A, Pester M, Sayavedra‐Soto LA, Rhee S, Prosser JI, Nicol GW, Wagner M, Gubry‐Rangin C. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol 2017; 19:4939-4952. [PMID: 29098760 PMCID: PMC5767755 DOI: 10.1111/1462-2920.13971] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/22/2017] [Indexed: 01/08/2023]
Abstract
Obligate acidophilic members of the thaumarchaeotal genus Candidatus Nitrosotalea play an important role in nitrification in acidic soils, but their evolutionary and physiological adaptations to acidic environments are still poorly understood, with only a single member of this genus (Ca. N. devanaterra) having its genome sequenced. In this study, we sequenced the genomes of two additional cultured Ca. Nitrosotalea strains, extracted an almost complete Ca. Nitrosotalea metagenome-assembled genome from an acidic fen, and performed comparative genomics of the four Ca. Nitrosotalea genomes with 19 other archaeal ammonia oxidiser genomes. Average nucleotide and amino acid identities revealed that the four Ca. Nitrosotalea strains represent separate species within the genus. The four Ca. Nitrosotalea genomes contained a core set of 103 orthologous gene families absent from all other ammonia-oxidizing archaea and, for most of these gene families, expression could be demonstrated in laboratory culture or the environment via proteomic or metatranscriptomic analyses respectively. Phylogenetic analyses indicated that four of these core gene families were acquired by the Ca. Nitrosotalea common ancestor via horizontal gene transfer from acidophilic representatives of Euryarchaeota. We hypothesize that gene exchange with these acidophiles contributed to the competitive success of the Ca. Nitrosotalea lineage in acidic environments.
Collapse
Affiliation(s)
- Craig W. Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network Chemistry meets Microbiology, University of ViennaViennaAustria
| | - Laura E. Lehtovirta‐Morley
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichNR4 7TJUK
- School of Biological SciencesUniversity of Aberdeen, Cruickshank Building, St Machar DriveAberdeenAB24 3UUUK
| | - Man‐Young Jung
- Department of MicrobiologyChungbuk National University, 1 Chungdae‐ro, Seowon‐GuCheongju 362‐763South Korea
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz‐Centre for Environmental Research‐UFZLeipzig 04318Germany
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network Chemistry meets Microbiology, University of ViennaViennaAustria
| | - Ping Han
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network Chemistry meets Microbiology, University of ViennaViennaAustria
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network Chemistry meets Microbiology, University of ViennaViennaAustria
| | - Michael Pester
- Department of MicroorganismsLeibniz Institute DSMZ ‐ German Collection of Microorganisms and Cell Cultures Inhoffenstr. 7BBraunschweig 38124Germany
| | - Luis A. Sayavedra‐Soto
- Department of Botany and Plant PathologyOregon State University, 2082 Cordley HallCorvallisOR 97331‐2902USA
| | - Sung‐Keun Rhee
- Department of MicrobiologyChungbuk National University, 1 Chungdae‐ro, Seowon‐GuCheongju 362‐763South Korea
| | - James I. Prosser
- School of Biological SciencesUniversity of Aberdeen, Cruickshank Building, St Machar DriveAberdeenAB24 3UUUK
| | - Graeme W. Nicol
- Laboratoire Ampère, École Centrale de Lyon, L'Université de Lyon, 36 avenue Guy de Collongue69134 Ecully CEDEXFrance
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch Network Chemistry meets Microbiology, University of ViennaViennaAustria
| | - Cécile Gubry‐Rangin
- School of Biological SciencesUniversity of Aberdeen, Cruickshank Building, St Machar DriveAberdeenAB24 3UUUK
| |
Collapse
|
41
|
Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, Amin SA, Walker CB, Urakawa H, Könneke M, Devol AH, Moffett JW, Armbrust EV, Jensen GJ, Ingalls AE, Stahl DA. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol 2017; 67:5067-5079. [PMID: 29034851 DOI: 10.1099/ijsem.0.002416] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four mesophilic, neutrophilic, and aerobic marine ammonia-oxidizing archaea, designated strains SCM1T, HCA1T, HCE1T and PS0T, were isolated from a tropical marine fish tank, dimly lit deep coastal waters, the lower euphotic zone of coastal waters, and near-surface sediment in the Puget Sound estuary, respectively. Cells are straight or slightly curved small rods, 0.15-0.26 µm in diameter and 0.50-1.59 µm in length. Motility was not observed, although strain PS0T possesses genes associated with archaeal flagella and chemotaxis, suggesting it may be motile under some conditions. Cell membranes consist of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, with crenarchaeol as the major component. Strain SCM1T displays a single surface layer (S-layer) with p6 symmetry, distinct from the p3-S-layer reported for the soil ammonia-oxidizing archaeon Nitrososphaera viennensis EN76T. Respiratory quinones consist of fully saturated and monounsaturated menaquinones with 6 isoprenoid units in the side chain. Cells obtain energy from ammonia oxidation and use carbon dioxide as carbon source; addition of an α-keto acid (α-ketoglutaric acid) was necessary to sustain growth of strains HCA1T, HCE1T, and PS0T. Strain PS0T uses urea as a source of ammonia for energy production and growth. All strains synthesize vitamin B1 (thiamine), B2 (riboflavin), B6 (pyridoxine), and B12 (cobalamin). Optimal growth occurs between 25 and 32 °C, between pH 6.8 and 7.3, and between 25 and 37 ‰ salinity. All strains have a low mol% G+C content of 33.0-34.2. Strains are related by 98 % or greater 16S rRNA gene sequence identity, sharing ~85 % 16S rRNA gene sequence identity with Nitrososphaera viennensis EN76T. All four isolates are well separated by phenotypic and genotypic characteristics and are here assigned to distinct species within the genus Nitrosopumilus gen. nov. Isolates SCM1T (=ATCC TSD-97T =NCIMB 15022T), HCA1T (=ATCC TSD-96T), HCE1T (=ATCC TSD-98T), and PS0T (=ATCC TSD-99T) are type strains of the species Nitrosopumilusmaritimus sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., respectively. In addition, we propose the family Nitrosopumilaceae fam. nov. and the order Nitrosopumilales ord. nov. within the class Nitrososphaeria.
Collapse
Affiliation(s)
- Wei Qin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Rasika Ramdasi
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Julia N Kobelt
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Willm Martens-Habbena
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- Department of Microbiology and Cell Science and Fort Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Florida, FL, USA
| | - Anthony D Bertagnolli
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shady A Amin
- Department of Chemistry, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Christopher B Walker
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Hidetoshi Urakawa
- Department of Marine and Ecological Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Martin Könneke
- Marine Archaea Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Allan H Devol
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - James W Moffett
- Departments of Biological Sciences and Earth Sciences and Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | | | - Grant J Jensen
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E, Ingalls AE, Stahl DA. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:250-256. [PMID: 28211189 DOI: 10.1111/1758-2229.12525] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Recent studies point to the importance of oxygen (O2 ) in controlling the distribution and activity of marine ammonia-oxidizing archaea (AOA), one of the most abundant prokaryotes in the ocean. The AOA are associated with regions of low O2 tension in oceanic oxygen minimum zones (OMZs), and O2 availability is suggested to influence their production of the ozone-depleting greenhouse gas nitrous oxide (N2 O). We show that marine AOA available in pure culture sustain high ammonia oxidation activity at low μM O2 concentrations, characteristic of suboxic regions of OMZs (<10 µM O2 ), and that atmospheric concentrations of O2 may inhibit the growth of some environmental populations. We quantify the increasing N2 O production by marine AOA with decreasing O2 tensions, consistent with the plausibility of an AOA contribution to the accumulation of N2 O at the oxic-anoxic redox boundaries of OMZs. Variable sensitivity to peroxide also suggests that endogenous or exogenous reactive oxygen species are of importance in determining the environmental distribution of some populations.
Collapse
Affiliation(s)
- Wei Qin
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Kelley A Meinhardt
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James W Moffett
- Departments of Biological Sciences and Earth Sciences and Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Allan H Devol
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
43
|
Effect of Sewage and Industrial Effluents on Bacterial and Archaeal Communities of Creek Sediments in the Taihu Basin. WATER 2017. [DOI: 10.3390/w9060373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, Weckwerth W, Schleper C. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci U S A 2016; 113:E7937-E7946. [PMID: 27864514 PMCID: PMC5150414 DOI: 10.1073/pnas.1601212113] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile "Ca. Nitrosotalea devanaterra" revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and "Ca Nitrosopelagicus brevis" proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs.
Collapse
Affiliation(s)
- Melina Kerou
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Pierre Offre
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Luis Valledor
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Sophie S Abby
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Michael Melcher
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Matthias Nagler
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria
| | - Wolfram Weckwerth
- Vienna Metabolomics Center, University of Vienna, A-1090 Vienna, Austria
| | - Christa Schleper
- Department of Ecogenomics and Systems Biology, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
45
|
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:983-992. [PMID: 27700018 DOI: 10.1111/1758-2229.12477] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, Utrecht, 3508, TA, The Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Heeji Hong
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ok-Ja Si
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Melina Kerou
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| |
Collapse
|
46
|
Shakoor A, Abdullah M, Yousaf B, Amina, Ma Y. Atmospheric emission of nitric oxide and processes involved in its biogeochemical transformation in terrestrial environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016:10.1007/s11356-016-7823-6. [PMID: 27771880 DOI: 10.1007/s11356-016-7823-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Nitric oxide (NO) is an intra- and intercellular gaseous signaling molecule with a broad spectrum of regulatory functions in biological system. Its emissions are produced by both natural and anthropogenic sources; however, soils are among the most important sources of NO. Nitric oxide plays a decisive role in environmental-atmospheric chemistry by controlling the tropospheric photochemical production of ozone and regulates formation of various oxidizing agents such as hydroxyl radical (OH), which contributes to the formation of acid of precipitates. Consequently, for developing strategies to overcome the deleterious impact of NO on terrestrial ecosystem, it is mandatory to have reliable information about the exact emission mechanism and processes involved in its transformation in soil-atmospheric system. Although the formation process of NO is a complex phenomenon and depends on many physicochemical characteristics, such as organic matter, soil pH, soil moisture, soil temperature, etc., this review provides comprehensive updates about the emission characteristics and biogeochemical transformation mechanism of NO. Moreover, this article will also be helpful to understand the processes involved in the consumption of NO in soils. Further studies describing the functions of NO in biological system are also discussed.
Collapse
Affiliation(s)
- Awais Shakoor
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Abdullah
- State-Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Amina
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Ma
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
47
|
Villanueva L, Schouten S, Damsté JSS. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the ‘lipid divide’. Environ Microbiol 2016; 19:54-69. [DOI: 10.1111/1462-2920.13361] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Villanueva
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
| | - Stefan Schouten
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
- Faculty of GeosciencesUtrecht UniversityP.O. Box 80.021Utrecht3508 TA The Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and BiogeochemistryNIOZ, Royal Netherlands Institute for Sea Research, and Utrecht UniversityP.O. Box 591790AB Den Burg Texel The Netherlands
- Faculty of GeosciencesUtrecht UniversityP.O. Box 80.021Utrecht3508 TA The Netherlands
| |
Collapse
|
48
|
A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep 2016; 6:23747. [PMID: 27030530 PMCID: PMC4814877 DOI: 10.1038/srep23747] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) are recently found to participate in the ammonia removal processes in wastewater treatment plants (WWTPs), similar to their bacterial counterparts. However, due to lack of cultivated AOA strains from WWTPs, their functions and contributions in these systems remain unclear. Here we report a novel AOA strain SAT1 enriched from activated sludge, with its physiological and genomic characteristics investigated. The maximal 16S rRNA gene similarity between SAT1 and other reported AOA strain is 96% (with “Ca. Nitrosotenuis chungbukensis”), and it is affiliated with Wastewater Cluster B (WWC-B) based on amoA gene phylogeny, a cluster within group I.1a and specific for activated sludge. Our strain is autotrophic, mesophilic (25 °C–33 °C) and neutrophilic (pH 5.0–7.0). Its genome size is 1.62 Mb, with a large fragment inversion (accounted for 68% genomic size) inside. The strain could not utilize urea due to truncation of the urea transporter gene. The lack of the pathways to synthesize usual compatible solutes makes it intolerant to high salinity (>0.03%), but could adapt to low salinity (0.005%) environments. This adaptation, together with possibly enhanced cell-biofilm attachment ability, makes it suitable for WWTPs environment. We propose the name “Candidatus Nitrosotenuis cloacae” for the strain SAT1.
Collapse
|
49
|
Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016; 92:fiw057. [PMID: 26976843 PMCID: PMC4830249 DOI: 10.1093/femsec/fiw057] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 11/13/2022] Open
Abstract
Studies of the distribution of ammonia oxidising archaea (AOA) and bacteria (AOB) suggest distinct ecological niches characterised by ammonia concentration and pH, arising through differences in substrate affinity and ammonia tolerance. AOA form five distinct phylogenetic clades, one of which, the 'Nitrososphaera sister cluster', has no cultivated isolate. A representative of this cluster, named 'Candidatus Nitrosocosmicus franklandus', was isolated from a pH 7.5 arable soil and we propose a new cluster name:'Nitrosocosmicus' While phylogenetic analysis of amoA genes indicates its association with the Nitrososphaera sister cluster, analysis of 16S rRNA genes provided no support for a relative branching that is consistent with a 'sister cluster', indicating placement within a lineage of the order Nitrososphaerales 'Ca.N. franklandus' is capable of ureolytic growth and its tolerances to nitrite and ammonia are higher than in other AOA and similar to those of typical soil AOB. Similarity of other growth characteristics of 'Ca.N. franklandus' with those of typical soil AOB isolates reduces support for niche differentiation between soil AOA and AOB and suggests that AOA have a wider physiological diversity than previously suspected. In particular, the high ammonia tolerance of 'Ca.N. franklandus' suggests potential contributions to nitrification in fertilised soils.
Collapse
Affiliation(s)
- Laura E Lehtovirta-Morley
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Jenna Ross
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Linda Hink
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Eva B Weber
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Cécile Gubry-Rangin
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Cécile Thion
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - James I Prosser
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| | - Graeme W Nicol
- Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, University of Aberdeen, Aberdeen AB24 3UU, UK
| |
Collapse
|
50
|
Malonic semialdehyde reductase from the archaeon Nitrosopumilus maritimus is involved in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle. Appl Environ Microbiol 2014; 81:1700-7. [PMID: 25548047 DOI: 10.1128/aem.03390-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The recently described ammonia-oxidizing archaea of the phylum Thaumarchaeota are highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes of Thaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeon Nitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases from Chloroflexus aurantiacus and Metallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM; Vmax, 86.9 μmol min(-1) mg(-1) of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM; Vmax, 18.5 μmol min(-1) mg(-1) of protein). Homologues of N. maritimus malonic semialdehyde reductase can be found in the genomes of all Thaumarchaeota sequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle.
Collapse
|