1
|
Shen J, Liu P, Zhang B, Ye B, Xu S, Su W, Chu X. Expanding the application of tyrosine: engineering microbes for the production of tyrosine and its derivatives. Front Bioeng Biotechnol 2025; 13:1519764. [PMID: 40343203 PMCID: PMC12058496 DOI: 10.3389/fbioe.2025.1519764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/09/2025] [Indexed: 05/11/2025] Open
Abstract
Aromatic compounds are widely used in the fields of medicine, chemical industry, and food, with a considerable market size. Tyrosine, an aromatic amino acid, boasts not only a wide range of applications but also serves as a valuable precursor for synthesizing a diverse array of high-value aromatic compounds. Amid growing concerns over environmental and resource challenges, the adoption of green, clean, and sustainable biotechnology for producing aromatic compounds is gaining increasing recognition as a viable alternative to traditional chemical synthesis and plant extraction methods. This article provides an overview of the current status of tyrosine biomanufacturing and explores the methods for generating derivatives, including resveratrol, levodopa, p-coumaric acid, caffeic acid, zosteric acid, tyrosol, hydroxytyrosol, tanshinol, naringenin, eriodictyol, and salidroside, using tyrosine as a primary raw material. Furthermore, this review examines the current challenges and outlines future directions for microbial fermentation for the production of tyrosine and its derivatives.
Collapse
Affiliation(s)
- Jian Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bangce Ye
- East China University of Science and Technology, Shanghai, China
| | - Shunqing Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Yin H, Li Y, Feng Y, Tian L, Li Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients 2024; 16:4237. [PMID: 39683630 DOI: 10.3390/nu16234237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Eriodictyol is a flavanone compound commonly found in several edible plants. Ultrasound-assisted extraction and high-performance liquid chromatography (HPLC) are commonly used methods for the separation and analysis of eriodictyol. Many studies show that some micro-organisms can produce eriodictyol as a host. What is more, eriodictyol has a wide range of health benefits, including skincare, neuroprotective, hypoglycemic, anti-inflammatory, and antioxidant activities. In addition, the therapeutic properties of eriodictyol are cardioprotective, hepatoprotective, anticancer, with protective effects on the lungs and kidneys, and so on. This review examines the extraction, biosynthesis, and health and therapeutic properties of the natural compound eriodictyol and its value in medicine and food.
Collapse
Affiliation(s)
- Haiaolong Yin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaxian Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yi Feng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Li
- School of Medicine, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
5
|
Yue M, Liu M, Gao S, Ren X, Zhou S, Rao Y, Zhou J. High-Level De Novo Production of (2 S)-Eriodictyol in Yarrowia Lipolytica by Metabolic Pathway and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4292-4300. [PMID: 38364826 DOI: 10.1021/acs.jafc.3c08861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid β-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.
Collapse
Affiliation(s)
- Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Zhang S, Liu J, Xiao Z, Tan X, Wang Y, Zhao Y, Jiang N, Shan Y. Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2 S)-Eriodictyol. J Fungi (Basel) 2024; 10:119. [PMID: 38392791 PMCID: PMC10890390 DOI: 10.3390/jof10020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
(2S)-eriodictyol (ERD) is a flavonoid widely found in citrus fruits, vegetables, and important medicinal plants with neuroprotective, cardioprotective, antidiabetic, and anti-obesity effects. However, the microbial synthesis of ERD is limited by complex metabolic pathways and often results in a low production performance. Here, we engineered Saccharomyces cerevisiae by fine-tuning the metabolism of the ERD synthesis pathway. The results showed that the ERD titer was effectively increased, and the intermediate metabolites levels were reduced. First, we successfully reconstructed the de novo synthesis pathway of p-coumaric acid in S. cerevisiae and fine-tuned the metabolic pathway using promoter engineering and terminator engineering for the high-level production of (2S)-naringenin. Subsequently, the synthesis of ERD was achieved by introducing the ThF3'H gene from Tricyrtis hirta. Finally, by multiplying the copy number of the ThF3'H gene, the production of ERD was further increased, reaching 132.08 mg L-1. Our work emphasizes the importance of regulating the metabolic balance to produce natural products in microbial cell factories.
Collapse
Affiliation(s)
- Siqi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Juan Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yongtong Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yifei Zhao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Ning Jiang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| |
Collapse
|
7
|
Yiakoumetti A, Hanko EKR, Zou Y, Chua J, Chromy J, Stoney RA, Valdehuesa KNG, Connolly JA, Yan C, Hollywood KA, Takano E, Breitling R. Expanding flavone and flavonol production capabilities in Escherichia coli. Front Bioeng Biotechnol 2023; 11:1275651. [PMID: 37920246 PMCID: PMC10619664 DOI: 10.3389/fbioe.2023.1275651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Flavones and flavonols are important classes of flavonoids with nutraceutical and pharmacological value, and their production by fermentation with recombinant microorganisms promises to be a scalable and economically favorable alternative to extraction from plant sources. Flavones and flavonols have been produced recombinantly in a number of microorganisms, with Saccharomyces cerevisiae typically being a preferred production host for these compounds due to higher yields and titers of precursor compounds, as well as generally improved ability to functionally express cytochrome P450 enzymes without requiring modification to improve their solubility. Recently, a rapid prototyping platform has been developed for high-value compounds in E. coli, and a number of gatekeeper (2S)-flavanones, from which flavones and flavonols can be derived, have been produced to high titers in E. coli using this platform. In this study, we extended these metabolic pathways using the previously reported platform to produce apigenin, chrysin, luteolin and kaempferol from the gatekeeper flavonoids naringenin, pinocembrin and eriodictyol by the expression of either type-I flavone synthases (FNS-I) or type-II flavone synthases (FNS-II) for flavone biosynthesis, and by the expression of flavanone 3-dioxygenases (F3H) and flavonol synthases (FLS) for the production of the flavonol kaempferol. In our best-performing strains, titers of apigenin and kaempferol reached 128 mg L-1 and 151 mg L-1 in 96-DeepWell plates in cultures supplemented with an additional 3 mM tyrosine, though titers for chrysin (6.8 mg L-1) from phenylalanine, and luteolin (5.0 mg L-1) from caffeic acid were considerably lower. In strains with upregulated tyrosine production, apigenin and kaempferol titers reached 80.2 mg L-1 and 42.4 mg L-1 respectively, without the further supplementation of tyrosine beyond the amount present in the rich medium. Notably, the highest apigenin, chrysin and luteolin titers were achieved with FNS-II enzymes, suggesting that cytochrome P450s can show competitive performance compared with non-cytochrome P450 enzymes in prokaryotes for the production of flavones.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Rainer Breitling
- Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Yan Y, Bai Y, Zheng X, Cai Y. Production of hydroxytyrosol through whole-cell bioconversion from L-DOPA using engineered Escherichia coli. Enzyme Microb Technol 2023; 169:110280. [PMID: 37413913 DOI: 10.1016/j.enzmictec.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Hydroxytyrosol (HT), a polyphenolic molecule of high value, is used in the nutraceutical, cosmetic, food, and livestock nutrition industries. As a natural product, HT is chemically manufactured or extracted from olives; nevertheless, the increasing demand mandates the exploration and development of alternative sources, such as heterologous production by recombinant bacteria. In order to achieve this purpose, we have molecularly modified Escherichia coli to carry two plasmids. For conversion of L-DOPA (Levodopa) into HT efficiently, it is necessary to enhance the expression of DODC (DOPA decarboxylase), ADH (alcohol dehydrogenases), MAO (Monoamine oxidase) and GDH (glucose dehydrogenases). The step that significantly affects the rate of ht biosynthesis is likely to be associated with the reaction facilitated by DODC enzymatic activity, as suggested by the result of in vitro catalytic experiment and HPLC. Then Pseudomonas putida, Sus scrofa, Homo sapiens and Levilactobacillus brevis DODC were taken into comparsion. The DODC from H. sapiens is superior to that of P. putida, S. scrofa or L. brevis for HT production. Seven promoters were introduced to increase the expression levels of catalase (CAT) to remove the byproduct H2O2 and optimized coexpression strains were obtained after screening. After the 10-hour operation, the optimized whole-cell biocatalyst produced HT at a maximum titer of 4.84 g/L with over 77.5% molar substrate conversion rate.
Collapse
Affiliation(s)
- Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Magadán-Corpas P, Ye S, Pérez-Valero Á, McAlpine PL, Valdés-Chiara P, Torres-Bacete J, Nogales J, Villar CJ, Lombó F. Optimized De Novo Eriodictyol Biosynthesis in Streptomyces albidoflavus Using an Expansion of the Golden Standard Toolkit for Its Use in Actinomycetes. Int J Mol Sci 2023; 24:8879. [PMID: 37240225 PMCID: PMC10219347 DOI: 10.3390/ijms24108879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Eriodictyol is a hydroxylated flavonoid displaying multiple pharmaceutical activities, such as antitumoral, antiviral or neuroprotective. However, its industrial production is limited to extraction from plants due to its inherent limitations. Here, we present the generation of a Streptomyces albidoflavus bacterial factory edited at the genome level for an optimized de novo heterologous production of eriodictyol. For this purpose, an expansion of the Golden Standard toolkit (a Type IIS assembly method based on the Standard European Vector Architecture (SEVA)) has been created, encompassing a collection of synthetic biology modular vectors (adapted for their use in actinomycetes). These vectors have been designed for the assembly of transcriptional units and gene circuits in a plug-and-play manner, as well as for genome editing using CRISPR-Cas9-mediated genetic engineering. These vectors have been used for the optimization of the eriodictyol heterologous production levels in S. albidoflavus by enhancing the flavonoid-3'-hydroxylase (F3'H) activity (by means of a chimera design) and by replacing three native biosynthetic gene clusters in the bacterial chromosome with the plant genes matBC (involved in extracellular malonate uptake and its intracellular activation into malonyl-CoA), therefore allowing more malonyl-CoA to be devoted to the heterologous production of plant flavonoids in this bacterial factory. These experiments have allowed an increase in production of 1.8 times in the edited strain (where the three native biosynthetic gene clusters have been deleted) in comparison with the wild-type strain and a 13 times increase in eriodictyol overproduction in comparison with the non-chimaera version of the F3'H enzyme.
Collapse
Affiliation(s)
- Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Suhui Ye
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Paula Valdés-Chiara
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnologia, CSIC, 28049 Madrid, Spain; (J.T.-B.); (J.N.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnologia, CSIC, 28049 Madrid, Spain; (J.T.-B.); (J.N.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (P.M.-C.); (S.Y.); (Á.P.-V.); (P.L.M.); (P.V.-C.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| |
Collapse
|
10
|
Lan HN, Liu RY, Liu ZH, Li X, Li BZ, Yuan YJ. Biological valorization of lignin to flavonoids. Biotechnol Adv 2023; 64:108107. [PMID: 36758651 DOI: 10.1016/j.biotechadv.2023.108107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Lignin is the most affluent natural aromatic biopolymer on the earth, which is the promising renewable source for valuable products to promote the sustainability of biorefinery. Flavonoids are a class of plant polyphenolic secondary metabolites containing the benzene ring structure with various biological activities, which are largely applied in health food, pharmaceutical, and medical fields. Due to the aromatic similarity, microbial conversion of lignin derived aromatics to flavonoids could facilitate flavonoid biosynthesis and promote the lignin valorization. This review thereby prospects a novel valorization route of lignin to high-value natural products and demonstrates the potential advantages of microbial bioconversion of lignin to flavonoids. The biodegradation of lignin polymers is summarized to identify aromatic monomers as momentous precursors for flavonoid synthesis. The biosynthesis pathways of flavonoids in both plants and strains are introduced and compared. After that, the key branch points and important intermediates are clearly discussed in the biosynthesis pathways of flavonoids. Moreover, the most significant enzyme reactions including Claisen condensation, cyclization and hydroxylation are demonstrated in the biosynthesis pathways of flavonoids. Finally, current challenges and potential future strategies are also discussed for transforming lignin into various flavonoids. The holistic microbial conversion routes of lignin to flavonoids could make a sustainable production of flavonoids and improve the feasibility of lignin valorization.
Collapse
Affiliation(s)
- Hai-Na Lan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ruo-Ying Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
11
|
Chen Y, Jin S, Zhang M, Hu Y, Wu KL, Chung A, Wang S, Tian Z, Wang Y, Wolynes PG, Xiao H. Unleashing the potential of noncanonical amino acid biosynthesis to create cells with precision tyrosine sulfation. Nat Commun 2022; 13:5434. [PMID: 36114189 PMCID: PMC9481576 DOI: 10.1038/s41467-022-33111-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 01/31/2023] Open
Abstract
Despite the great promise of genetic code expansion technology to modulate structures and functions of proteins, external addition of ncAAs is required in most cases and it often limits the utility of genetic code expansion technology, especially to noncanonical amino acids (ncAAs) with poor membrane internalization. Here, we report the creation of autonomous cells, both prokaryotic and eukaryotic, with the ability to biosynthesize and genetically encode sulfotyrosine (sTyr), an important protein post-translational modification with low membrane permeability. These engineered cells can produce site-specifically sulfated proteins at a higher yield than cells fed exogenously with the highest level of sTyr reported in the literature. We use these autonomous cells to prepare highly potent thrombin inhibitors with site-specific sulfation. By enhancing ncAA incorporation efficiency, this added ability of cells to biosynthesize ncAAs and genetically incorporate them into proteins greatly extends the utility of genetic code expansion methods.
Collapse
Affiliation(s)
- Yuda Chen
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shikai Jin
- grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Mengxi Zhang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yu Hu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Kuan-Lin Wu
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Anna Chung
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Shichao Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Zeru Tian
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Yixian Wang
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Peter G. Wolynes
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Physics, Rice University, 6100 Main Street, Houston, TX 77005 USA
| | - Han Xiao
- grid.21940.3e0000 0004 1936 8278Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005 USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005 USA
| |
Collapse
|
12
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
13
|
Thuan NH, Tatipamula VB, Viet TT, Tien NQD, Loc NH. Bioproduction of eriodictyol by Escherichia coli engineered co-culture. World J Microbiol Biotechnol 2022; 38:112. [DOI: 10.1007/s11274-022-03294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
14
|
Wu X, Liu J, Liu D, Yuwen M, Koffas MAG, Zha J. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum. Microb Cell Fact 2022; 21:86. [PMID: 35568867 PMCID: PMC9107716 DOI: 10.1186/s12934-022-01815-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background Eriodictyol is a bioactive flavonoid compound that shows potential applications in medicine development and food processing. Microbial synthesis of eriodictyol has been attracting increasing attention due to several benefits. In this study, we employed a GRAS strain Corynebacterium glutamicum as the host to produce eriodictyol directly from tyrosine. Results We firstly optimized the biosynthetic module of naringenin, the upstream intermediate for eriodictyol production, through screening of different gene orthologues. Next, to improve the level of the precursor malonyl-CoA necessary for naringenin production, we introduced matB and matC from Rhizobium trifolii into C. glutamicum to convert extracellular malonate to intracellular malonyl-CoA. This combinatorial engineering resulted in around 35-fold increase in naringenin production from tyrosine compared to the initial recombinant C. glutamicum. Subsequently, the hpaBC genes from E. coli encoding 4-hydroxyphenylacetate 3-hydroxylase were expressed in C. glutamicum to synthesize eriodictyol from naringenin. Further optimization of the biotransformation process parameters led to the production of 14.10 mg/L eriodictyol. Conclusions The biosynthesis of the ortho-hydroxylated flavonoid eriodictyol in C. glutamicum was achieved for the first time via functional expression of E. coli hpaBC, providing a baseline strain for biosynthesis of other complex flavonoids. Our study demonstrates the potential application of C. glutamicum as a host microbe for the biosynthesis of value-added natural compounds from tyrosine.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Jingyi Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Dan Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Miaomiao Yuwen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
15
|
Van Brempt M, Peeters AI, Duchi D, De Wannemaeker L, Maertens J, De Paepe B, De Mey M. Biosensor-driven, model-based optimization of the orthogonally expressed naringenin biosynthesis pathway. Microb Cell Fact 2022; 21:49. [PMID: 35346204 PMCID: PMC8962593 DOI: 10.1186/s12934-022-01775-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/15/2022] [Indexed: 12/30/2022] Open
Abstract
Background The rapidly expanding synthetic biology toolbox allows engineers to develop smarter strategies to tackle the optimization of complex biosynthetic pathways. In such a strategy, multi-gene pathways are subdivided in several modules which are each dynamically controlled to fine-tune their expression in response to a changing cellular environment. To fine-tune separate modules without interference between modules or from the host regulatory machinery, a sigma factor (σ) toolbox was developed in previous work for tunable orthogonal gene expression. Here, this toolbox is implemented in E. coli to orthogonally express and fine-tune a pathway for the heterologous biosynthesis of the industrially relevant plant metabolite, naringenin. To optimize the production of this pathway, a practical workflow is still imperative to balance all steps of the pathway. This is tackled here by the biosensor-driven screening, subsequent genotyping of combinatorially engineered libraries and finally the training of three different computer models to predict the optimal pathway configuration. Results The efficiency and knowledge gained through this workflow is demonstrated here by improving the naringenin production titer by 32% with respect to a random pathway library screen. Our best strain was cultured in a batch bioreactor experiment and was able to produce 286 mg/L naringenin from glycerol in approximately 26 h. This is the highest reported naringenin production titer in E. coli without the supplementation of pathway precursors to the medium or any precursor pathway engineering. In addition, valuable pathway configuration preferences were identified in the statistical learning process, such as specific enzyme variant preferences and significant correlations between promoter strength at specific steps in the pathway and titer. Conclusions An efficient strategy, powered by orthogonal expression, was applied to successfully optimize a biosynthetic pathway for microbial production of flavonoids in E. coli up to high, competitive levels. Within this strategy, statistical learning techniques were combined with combinatorial pathway optimization techniques and an in vivo high-throughput screening method to efficiently determine the optimal operon configuration of the pathway. This “pathway architecture designer” workflow can be applied for the fast and efficient development of new microbial cell factories for different types of molecules of interest while also providing additional insights into the underlying pathway characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01775-8.
Collapse
Affiliation(s)
- Maarten Van Brempt
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Andries Ivo Peeters
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Dries Duchi
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lien De Wannemaeker
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Jo Maertens
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Marjan De Mey
- Centre For Synthetic Biology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
16
|
Liu J, Tian M, Wang Z, Xiao F, Huang X, Shan Y. Production of hesperetin from naringenin in an engineered Escherichia coli consortium. J Biotechnol 2022; 347:67-76. [DOI: 10.1016/j.jbiotec.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
17
|
Sun J, Sun W, Zhang G, Lv B, Li C. High efficient production of plant flavonoids by microbial cell factories: Challenges and opportunities. Metab Eng 2022; 70:143-154. [DOI: 10.1016/j.ymben.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022]
|
18
|
Zhang Q, Zeng W, Xu S, Zhou J. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2021; 342:125978. [PMID: 34598073 DOI: 10.1016/j.biortech.2021.125978] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Acetyl-CoA is a kind of important cofactor that is involved in many metabolic pathways. It serves as the precursor for many interesting commercial products, such as terpenes, flavonoids and anthraquinones. However, the insufficient supply of acetyl-CoA limits biosynthesis of its derived compounds in the intracellular. In this review, we outlined metabolic pathways involved in the catabolism and anabolism of acetyl-CoA, as well as some important derived products. We examined several strategies for the enhanced supply of acetyl-CoA, and provided insight into pathways that generate acetyl-CoA to balance metabolism, which can be harnessed to improve the titer, yield and productivities of interesting products in Saccharomyces cerevisiae and other eukaryotic microorganisms. We believe that peroxisomal fatty acid β-oxidation could be an attractive strategy for enhancing the supply of acetyl-CoA.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
20
|
Wang Z, Huang X, Liu J, Xiao F, Tian M, Ding S, Shan Y. Screening and heterologous expression of flavone synthase and flavonol synthase to catalyze hesperetin to diosmetin. Biotechnol Lett 2021; 43:2161-2183. [PMID: 34514540 DOI: 10.1007/s10529-021-03184-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/04/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES In this study, 44 flavone synthases (FNS) and flavonol synthases (FLS) from different origins were collected. The instability index and conserved domain of the enzymes were analyzed through bioinformatics analysis, the results of which allowed us to screen suitable enzymes for constructing recombinant Escherichia coli. Defective enzymes were selected as controls. RESULTS Native- and sodium dodecyl sulfate-polyacrylamide gel electrophoresis were conducted to isolate the heterologously expressed proteins. Liquid chromatography-mass spectrometry, 1H nuclear magnetic resonance, and ultra-performance liquid chromatography were performed to qualitatively and quantitatively analyze the products. The cellular transformation results showed that recombinant E. coli catalyzed the synthesis of diosmetin from hesperetin, and in vitro catalysis showed that heterologously expressed FNS/FLS played a catalytic role in this reaction. AnFNS (from Angelica archangelica) showed the highest substrate conversion (38.80% for cellular transformation, 12.93% for in vitro catalysis). CONCLUSIONS The catalytic capacity of FNS/FLS from different origins exhibited the expected results, indicating that bioinformatics analysis is useful for screening enzymes. In addition, the catalytic properties of AnFNS and CaFLS (from Camellia sinensis) differed significantly, although these enzymes are structurally similar. Based on this difference, C-2 was predicted as the key site for FNS/FLS catalytic synthesis of diosmetin rather than C-3.
Collapse
Affiliation(s)
- Zhen Wang
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Xu Huang
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Juan Liu
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Feiyao Xiao
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Miaomiao Tian
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China
| | - Shenghua Ding
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China. .,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China. .,Hunan Province International Joint Laboratory On Fruits & Vegetables Processing, Quality and Safety, Changsha, 410125, People's Republic of China.
| | - Yang Shan
- Longping Branch Graduate School of Hunan University, Changsha, 410125, People's Republic of China. .,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, People's Republic of China. .,Hunan Province International Joint Laboratory On Fruits & Vegetables Processing, Quality and Safety, Changsha, 410125, People's Republic of China.
| |
Collapse
|
21
|
Evolution-aided engineering of plant specialized metabolism. ABIOTECH 2021; 2:240-263. [PMID: 36303885 PMCID: PMC9590541 DOI: 10.1007/s42994-021-00052-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
The evolution of new traits in living organisms occurs via the processes of mutation, recombination, genetic drift, and selection. These processes that have resulted in the immense biological diversity on our planet are also being employed in metabolic engineering to optimize enzymes and pathways, create new-to-nature reactions, and synthesize complex natural products in heterologous systems. In this review, we discuss two evolution-aided strategies for metabolic engineering-directed evolution, which improves upon existing genetic templates using the evolutionary process, and combinatorial pathway reconstruction, which brings together genes evolved in different organisms into a single heterologous host. We discuss the general principles of these strategies, describe the technologies involved and the molecular traits they influence, provide examples of their use, and discuss the roadblocks that need to be addressed for their wider adoption. A better understanding of these strategies can provide an impetus to research on gene function discovery and biochemical evolution, which is foundational for improved metabolic engineering. These evolution-aided approaches thus have a substantial potential for improving our understanding of plant metabolism in general, for enhancing the production of plant metabolites, and in sustainable agriculture.
Collapse
|
22
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli. Metab Eng 2021; 67:41-52. [PMID: 34052445 DOI: 10.1016/j.ymben.2021.05.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
Metabolic heterogeneity and dynamic changes in metabolic fluxes are two inherent characteristics of microbial fermentation that limit the precise control of metabolisms, often leading to impaired cell growth and low productivity. Dynamic metabolic engineering addresses these challenges through the design of multi-layered and multi-genetic dynamic regulation network (DRN) that allow a single cell to autonomously adjust metabolic flux in response to its growth and metabolite accumulation conditions. Here, we developed a growth coupled NCOMB (Naringenin-Coumaric acid-Malonyl-CoA-Balanced) DRN with systematic optimization of (2S)-naringenin and p-coumaric acid-responsive regulation pathways for real-time control of intracellular supply of malonyl-CoA. In this scenario, the acyl carrier protein was used as a novel critical node for fine-tuning malonyl-CoA consumption instead of direct repression of fatty acid synthase commonly employed in previous studies. To do so, we first engineered a multi-layered DRN enabling single cells to concurrently regulate acpH, acpS, acpT, acs, and ACC in malonyl-CoA catabolic and anabolic pathways. Next, the NCOMB DRN was optimized to enhance the synergies between different dynamic regulation layers via a biosensor-based directed evolution strategy. Finally, a high producer obtained from NCOMB DRN approach yielded a 8.7-fold improvement in (2S)-naringenin production (523.7 ± 51.8 mg/L) with a concomitant 20% increase in cell growth compared to the base strain using static strain engineering approach, thus demonstrating the high efficiency of this system for improving pathway production.
Collapse
|
24
|
Tong Y, Lyu Y, Xu S, Zhang L, Zhou J. Optimum chalcone synthase for flavonoid biosynthesis in microorganisms. Crit Rev Biotechnol 2021; 41:1194-1208. [PMID: 33980085 DOI: 10.1080/07388551.2021.1922350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.
Collapse
Affiliation(s)
- Yingjia Tong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
25
|
Zhao W, Ruan J, Wang Q, Du G, Zhou J, Liu S. Metabolic pathway optimization through fusion with self-assembling amphipathic peptides. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Bhatia S, Lal A, Singh S, Franco F. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.314044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
|
27
|
Gao S, Xu X, Zeng W, Xu S, Lyv Y, Feng Y, Kai G, Zhou J, Chen J. Efficient Biosynthesis of (2 S)-Eriodictyol from (2 S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution. ACS Synth Biol 2020; 9:3288-3297. [PMID: 33226782 DOI: 10.1021/acssynbio.0c00346] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The compound (2S)-eriodictyol is an important flavonoid that can be derived from (2S)-naringenin through flavonoid 3'-hydroxylase (F3'H) catalyzation. F3'H is a cytochrome P450 enzyme that requires a cytochrome P450 reductase (CPR) to function. However, P450s have limited applications in industrial scale biosynthesis, owing to their low activity. Here, an efficient SmF3'H and a matched SmCPR were identified from Silybum marianum. To improve the efficiency of SmF3'H, we established a high-throughput detection method for (2S)-eriodictyol, in which the promoter combination of SmF3'H and SmCPR were optimized in Saccharomyces cerevisiae. The results revealed that SmF3'H/SmCPR should be expressed by using promoters with similar and strong expression levels. Furthermore, directed evolution was applied to further improve the efficiency of SmF3'H/SmCPR. With the optimized promoter and mutated combinations SmF3'HD285N/SmCPRI453V, the (2S)-eriodictyol titer was improved to 3.3 g/L, the highest titer in currently available reports. These results indicated that S. cerevisiae is an ideal platform for functional expression of flavonoid related P450 enzymes.
Collapse
Affiliation(s)
- Song Gao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyv
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yue Feng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Sheng H, Sun X, Yan Y, Yuan Q, Wang J, Shen X. Metabolic Engineering of Microorganisms for the Production of Flavonoids. Front Bioeng Biotechnol 2020; 8:589069. [PMID: 33117787 PMCID: PMC7576676 DOI: 10.3389/fbioe.2020.589069] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Flavonoids are a class of secondary metabolites found in plant and fungus. They have been widely used in food, pharmaceutical, and nutraceutical industries owing to their significant biological activities, such as antiaging, antioxidant, anti-inflammatory, and anticancer. However, the traditional approaches for the production of flavonoids including chemical synthesis and plant extraction involved hazardous materials and complicated processes and also suffered from low product titer and yield. Microbial synthesis of flavonoids from renewable biomass such as glucose and xylose has been considered as a sustainable and environmentally friendly method for large-scale production of flavonoids. Recently, construction of microbial cell factories for efficient biosynthesis of flavonoids has gained much attention. In this article, we summarize the recent advances in microbial synthesis of flavonoids including flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. We put emphasis on developing pathway construction and optimization strategies to biosynthesize flavonoids and to improve their titer and yield. Then, we discuss the current challenges and future perspectives on successful strain development for large-scale production of flavonoids in an industrial level.
Collapse
Affiliation(s)
- Huakang Sheng
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yajun Yan
- College of Engineering, University of Georgia, Athens, GA, United States
| | - Qipeng Yuan
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jia Wang
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Raesource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Chrzanowski G. Saccharomyces Cerevisiae-An Interesting Producer of Bioactive Plant Polyphenolic Metabolites. Int J Mol Sci 2020; 21:ijms21197343. [PMID: 33027901 PMCID: PMC7582661 DOI: 10.3390/ijms21197343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Secondary phenolic metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. These compounds play an essential role in plant defense mechanisms and an important role in the pharmaceutical, cosmetics, food, and agricultural industries. Despite the vast chemical diversity of natural compounds, their content in plants is very low, and, as a consequence, this eliminates the possibility of the production of these interesting secondary metabolites from plants. Therefore, microorganisms are widely used as cell factories by industrial biotechnology, in the production of different non-native compounds. Among microorganisms commonly used in biotechnological applications, yeast are a prominent host for the diverse secondary metabolite biosynthetic pathways. Saccharomyces cerevisiae is often regarded as a better host organism for the heterologous production of phenolic compounds, particularly if the expression of different plant genes is necessary.
Collapse
Affiliation(s)
- Grzegorz Chrzanowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
30
|
Dunstan MS, Robinson CJ, Jervis AJ, Yan C, Carbonell P, Hollywood KA, Currin A, Swainston N, Feuvre RL, Micklefield J, Faulon JL, Breitling R, Turner N, Takano E, Scrutton NS. Engineering Escherichia coli towards de novo production of gatekeeper (2 S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synth Biol (Oxf) 2020; 5:ysaa012. [PMID: 33195815 PMCID: PMC7644443 DOI: 10.1093/synbio/ysaa012] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Natural plant-based flavonoids have drawn significant attention as dietary supplements due to their potential health benefits, including anti-cancer, anti-oxidant and anti-asthmatic activities. Naringenin, pinocembrin, eriodictyol and homoeriodictyol are classified as (2S)-flavanones, an important sub-group of naturally occurring flavonoids, with wide-reaching applications in human health and nutrition. These four compounds occupy a central position as branch point intermediates towards a broad spectrum of naturally occurring flavonoids. Here, we report the development of Escherichia coli production chassis for each of these key gatekeeper flavonoids. Selection of key enzymes, genetic construct design and the optimization of process conditions resulted in the highest reported titers for naringenin (484 mg/l), improved production of pinocembrin (198 mg/l) and eriodictyol (55 mg/l from caffeic acid), and provided the first example of in vivo production of homoeriodictyol directly from glycerol (17 mg/l). This work provides a springboard for future production of diverse downstream natural and non-natural flavonoid targets.
Collapse
Affiliation(s)
- Mark S Dunstan
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Christopher J Robinson
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Adrian J Jervis
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Cunyu Yan
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Pablo Carbonell
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Katherine A Hollywood
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Andrew Currin
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Neil Swainston
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Rosalind Le Feuvre
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jean-Loup Faulon
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
- MICALIS, INRA-AgroParisTech, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | - Rainer Breitling
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nicholas Turner
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Eriko Takano
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester aaSynthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
31
|
Li Z, Wang H, Ding D, Liu Y, Fang H, Chang Z, Chen T, Zhang D. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. ACTA ACUST UNITED AC 2020; 47:525-535. [DOI: 10.1007/s10295-020-02288-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Abstract
The shikimate pathway is indispensable for the biosynthesis of natural products with aromatic moieties. These products have wide current and potential applications in food, cosmetics and medicine, and consequently have great commercial value. However, compounds extracted from various plants or synthesized from petrochemicals no longer satisfy the requirements of contemporary industries. As a result, an increasing number of studies has focused on this pathway to enable the biotechnological manufacture of natural products, especially in E. coli. Furthermore, the development of synthetic biology, systems metabolic engineering and high flux screening techniques has also contributed to improving the biosynthesis of high-value compounds based on the shikimate pathway. Here, we review approaches based on a combination of traditional and new metabolic engineering strategies to increase the metabolic flux of the shikimate pathway. In addition, applications of this optimized pathway to produce aromatic amino acids and a range of natural products is also elaborated. Finally, this review sums up the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Zhu Li
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huiying Wang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Dongqin Ding
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| | - Yongfei Liu
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huan Fang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Zhishuai Chang
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Tao Chen
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Dawei Zhang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|
32
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
33
|
Wu X, Zha J, Koffas MAG. Microbial production of bioactive chemicals for human health. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Hernández-Guzmán C, Prado-Barragán A, Gimeno M, Román-Guerrero A, Rutiaga-Quiñones OM, Rocha Guzmán NE, Huerta-Ochoa S. Whole-cell bioconversion of naringenin to high added value hydroxylated compounds using Yarrowia lipolytica 2.2ab in surface and liquid cultures. Bioprocess Biosyst Eng 2020; 43:1219-1230. [PMID: 32144595 DOI: 10.1007/s00449-020-02316-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
The bioconversion process of bioactive naringenin by whole-cells of Yarrowia lipolytica 2.2ab for the production of increased value-added compounds is successfully achieved in surface and liquid cultures. This approach is an alternative to the commercial production of these bioactive compounds from vegetable sources, which are limited due to their low concentrations and the complexity of the purification processes. The experimentation rendered seven value-added compounds in both surface and liquid bioconversion cultures. Some of the compounds produced have not been previously reported as products from the bioconversion processes, such as the case of ampelopsin. Biosynthetic pathways were suggested for the naringenin bioconversion using whole-cells of Y. lipolytica 2.2ab. Finally, the extracts obtained from the naringenin bioconversion in liquid cultures showed higher percentage of inhibition of DPPH· and ABTS· radicals up to 32.88 and 2.08 times, respectively, compared to commercial naringenin.
Collapse
Affiliation(s)
- Christian Hernández-Guzmán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, P.A. 55-535, 09340, Mexico City, Mexico
| | - Arely Prado-Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, P.A. 55-535, 09340, Mexico City, Mexico
| | - Miquel Gimeno
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, P.A. 55-535, 09340, Mexico City, Mexico
| | - Olga Miriam Rutiaga-Quiñones
- Departamento de Química-Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Durango, Durango, Mexico
| | - Nuria Elizabeth Rocha Guzmán
- Departamento de Química-Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Durango, Durango, Mexico
| | - Sergio Huerta-Ochoa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Iztapalapa, P.A. 55-535, 09340, Mexico City, Mexico.
| |
Collapse
|
35
|
Lv Y, Marsafari M, Koffas M, Zhou J, Xu P. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth Biol 2019; 8:2514-2523. [PMID: 31622552 DOI: 10.1021/acssynbio.9b00193] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plants possess myriads of secondary metabolites with a broad spectrum of health-promoting benefits. To date, plant extraction is still the primary route to produce high-value natural products which inherently suffers from economics and scalability issues. Heterologous expression of plant biosynthetic gene clusters in microbial host is considered as a feasible approach to overcoming these limitations. Oleaginous yeast produces a large amount of lipid bodies, the abundant membrane structure and the lipophilic environment provide the ideal environment for the regioselectivity and stereoselectivity of many plant-derived P450 enzymes. In this work, we used modular method to construct, characterize, and optimize the flavonoid pathways in Yarrowia lipolytica. We also evaluated various precursor biosynthetic routes and unleashed the metabolic potential of Y. lipolytica to produce flavonoids and hydroxylated flavonoids. Specifically, we have identified that chalcone synthase (CHS) and cytochrome P450 reductases (CPR) were the bottlenecks of hydroxylated flavonoid production. We determined the optimal gene copy number of CHS and CPR to be 5 and 2, respectively. We further removed precursor pathway limitations by expressing genes associated with chorismate and malonyl-CoA supply. With pH and carbon-nitrogen ratio (C/N) optimization, our engineered strain produced 252.4 mg/L naringenin, 134.2 mg/L eriodictyol, and 110.5 mg/L taxifolin from glucose in shake flasks. Flavonoid and its hydroxylated derivatives are most prominently known as antioxidant and antiaging agents. These findings demonstrate our ability to harness the oleaginous yeast as the microbial workhorse to expand nature's biosynthetic potential, enabling us to bridge the gap between drug discovery and natural product manufacturing.
Collapse
Affiliation(s)
- Yongkun Lv
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Monireh Marsafari
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
36
|
Xiong T, Jiang J, Bai Y, Fan TP, Zhao Y, Zheng X, Cai Y. Biosynthesis of D-danshensu from L-DOPA using engineered Escherichia coli whole cells. Appl Microbiol Biotechnol 2019; 103:6097-6105. [PMID: 31187210 DOI: 10.1007/s00253-019-09947-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 10/26/2022]
Abstract
D-Danshensu (D-DSS), a traditional Chinese medicine, is used to treat cardiovascular and cerebrovascular diseases. However, current isolation protocols for D-DSS both natural and synthetic are not ideal; therefore, in this study, we have developed a whole-cell biotransformation method to produce D-DSS from L-DOPA. This was done by co-expressing L-amino acid deaminase (aadL), D-lactate dehydrogenase (ldhD), and glucose dehydrogenase (gdh). To begin to optimize the production of D-DSS, varying copy number plasmids were used to express each of the required genes. The resulting strain, Escherichia coli ALG7, which strongly overexpressed aadL, ldhD, and weakly overexpressed gdh, yielded a 378% increase in D-DSS production compared to E. coli ALG1. Furthermore, the optimal reaction conditions for the production of D-DSS were found to be a pH of 7.5, temperature at 35 °C, and 50 g/L wet cells for 12 h. Under these optimized conditions, the D-DSS amount achieved 119.1 mM with an excellent ee (> 99.9%) and a productivity of 9.9 mM/h.
Collapse
Affiliation(s)
- Tianzhen Xiong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jing Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Ye Zhao
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
37
|
|
38
|
Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4975775. [PMID: 29771352 DOI: 10.1093/femsyr/foy046] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anthocyanins (ACNs) are plant secondary metabolites responsible for most of the red, purple and blue colors of flowers, fruits and vegetables. They are increasingly used in the food and beverage industry as natural alternative to artificial colorants. Production of these compounds by fermentation of microorganisms would provide an attractive alternative. In this study, Saccharomyces cerevisiae was engineered for de novo production of the three basic anthocyanins, as well as the three main trans-flavan-3-ols. Enzymes from different plant sources were screened and efficient variants found for most steps of the biosynthetic pathway. However, the anthocyanidin synthase was identified as a major obstacle to efficient production. In yeast, this enzyme converts the majority of its natural substrates leucoanthocyanidins into the off-pathway flavonols. Nonetheless, de novo biosynthesis of ACNs was shown for the first time in yeast and for the first time in a single microorganism. It provides a framework for optimizing the activity of anthocyanidin synthase and represents an important step towards sustainable industrial production of these highly relevant molecules in yeast.
Collapse
Affiliation(s)
- Michael Eichenberger
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland.,Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Anders Hansson
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Lara Dürr
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| | - Michael Naesby
- Evolva SA, Duggingerstrasse 23, 4153 Reinach, Switzerland
| |
Collapse
|
39
|
Lv Y, Edwards H, Zhou J, Xu P. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica. ACS Synth Biol 2019; 8:568-576. [PMID: 30695641 DOI: 10.1021/acssynbio.8b00535] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conventional plasmid-based gene expression tends to introduce genetic instability and gene copy number variations that lead to degenerated production. The limited number of auxotrophic markers in Yarrowia lipolytica also restricts our ability to perform iterative genetic modifications and manipulate long gene clusters. To overcome these limitations, we combined the high recombination efficiency of the Cre-loxP system and the high integration rate of 26s rDNA, and developed a versatile framework to iteratively integrate multicopy metabolic pathways in Y. lipolytica. We demonstrated the efficient genome integration of a plant-derived flavonoid pathway at random sites with multiple copies. Transient expression of Cre recombinase enabled efficient marker removal and allowed for the next round of genome integration. Investigating the recombination events demonstrated that the iterative integration is happening at sufficiently high rates (more than 80%) without disrupting the previous integration. Both the flavonoid precursor pathway and the plant-derived cytochrome c P450 enzymes were functionally integrated to improve flavonoid and hydroxylated flavonoid production. The engineered strains produced 71.2 mg/L naringenin, 54.2 mg/L eriodyctiol, and 48.1 mg/L taxifolin. The reported work provides a versatile platform to iteratively integrate functional gene clusters at high copy numbers. This work may streamline and expand our capability to build efficient microbial cell factories for high-value natural products and commodity chemical production in Y. lipolytica.
Collapse
Affiliation(s)
- Yongkun Lv
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu China
| | - Harley Edwards
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu China
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
40
|
Zhou S, Lyu Y, Li H, Koffas MA, Zhou J. Fine‐tuning the (2
S
)‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnol Bioeng 2019; 116:1392-1404. [DOI: 10.1002/bit.26941] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shenghu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Yunbin Lyu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
| | - Mattheos A.G. Koffas
- Department of Chemical and Biological EngineeringRensselaer Polytechnic Institute Troy New York
- Department of Biological SciencesRensselaer Polytechnic Institute Troy New York
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of BiotechnologyJiangnan UniversityWuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation TechnologyJiangnan UniversityWuxi Jiangsu China
- Jiangsu Provisional Research Center for Bioactive Product Processing TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|
41
|
Yang J, Wen L, Jiang Y, Yang B. Natural Estrogen Receptor Modulators and Their Heterologous Biosynthesis. Trends Endocrinol Metab 2019; 30:66-76. [PMID: 30527917 DOI: 10.1016/j.tem.2018.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022]
Abstract
Estrogen receptors (ERs) are transcription factors highly involved in physiological development and metabolism in the human body. They also play important roles in the treatment of cancer and metabolic diseases. Chemicals that interact with ERs can be used to treat diseases and maintain health. Phytoestrogens are natural chemicals that have been documented to possess significant ER modulatory activities. However, since phytoestrogens usually exist at low quantities in nature, heterologous biosynthesis techniques have quickly developed in recent years in order meet the demands for needed therapeutic amounts. In this review, the performance of phytoestrogens as ER modulators is described along with recent advances in biosynthesis techniques.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Production of methylparaben in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:91-99. [DOI: 10.1007/s10295-018-2102-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Abstract
Since the 1930s, parabens have been employed widely as preservatives in food, pharmaceutical, and personal care products. These alkyl esters of benzoic acid occur naturally in a broad range of plant species, where they are thought to enhance overall fitness through disease resistance and allelopathy. Current manufacture of parabens relies on chemical synthesis and the processing of 4-hydroxybenzoate as a precursor. A variety of bio-based production platforms have targeted 4-hydroxybenzoate for a greener alternative to chemical manufacturing, but parabens have yet to be made in microbes. Here, we deploy the plant enzyme benzoic acid carboxyl methyltransferase together with four additional recombinant enzymes to produce methylparaben in Escherichia coli. The feasibility of a tyrosine-dependent route to methylparaben is explored, establishing a framework for linking paraben production to emerging high-tyrosine E. coli strains. However, our use of a unique plant enzyme for bio-based methylparaben biosynthesis is potentially applicable to any microbial system engineered for the manufacture of 4-hydroxybenzoate.
Collapse
|
43
|
Zhang Z, He Y, Huang Y, Ding L, Chen L, Liu Y, Nie Y, Zhang X. Development and Optimization of an In Vitro Multienzyme Synthetic System for Production of Kaempferol from Naringenin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8272-8279. [PMID: 30019587 DOI: 10.1021/acs.jafc.8b01299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An in vitro multienzyme synthetic system was developed and optimized to efficiently produce kaempferol in a single reaction tube. Two key genes, Atf3h and Atfls1, in the biosynthetic pathway of kaempferol were cloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The recombinant proteins were purified through affinity chromatography and showed activities of flavanone 3-hydroxylase and flavonol synthase, respectively, followed by development of an in vitro synthetic system for producing kaempferol. The system contains 8.2 mM α-ketoglutaric acid, 0.01 mM ferrous ion, 0.4% sodium ascorbate, 25 μg/mL of each recombinant enzyme, and 10% glycerol in 100 mM Tris-HCl (pH 7.2). When the reaction was carried out at 40 °C for 40-50 min, the yield of kaempferol was 37.55 ± 1.62 mg/L and the conversion rate from NRN to KMF was 55.89% ± 2.74%. Overall, this system provides a promising and efficient approach to produce kaempferol economically.
Collapse
Affiliation(s)
- Zhiping Zhang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yanzhi He
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yue Huang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Li Ding
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Lei Chen
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yaxian Liu
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yesen Nie
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Xinyue Zhang
- College of Bioscience and Biotechnology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China , Yangzhou University (26116120), Yangzhou , Jiangsu 225009 , China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety , Yangzhou University , Yangzhou , Jiangsu 225009 , China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , China
| |
Collapse
|
44
|
Khlifi R, Dhaouefi Z, Maatouk M, Sassi A, Boudhiba N, Ioannou I, Ghedira K, Chekir-Ghedira L, Kilani-Jaziri S. Heat treatment improves the immunomodulatory and cellular antioxidant behavior of a natural flavanone: Eriodictyol. Int Immunopharmacol 2018; 61:317-324. [DOI: 10.1016/j.intimp.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
|
45
|
Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:1575-1585. [DOI: 10.1007/s00253-018-8747-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
46
|
Kotopka BJ, Li Y, Smolke CD. Synthetic biology strategies toward heterologous phytochemical production. Nat Prod Rep 2018; 35:902-920. [DOI: 10.1039/c8np00028j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This review summarizes the recent progress in heterologous phytochemical biosynthetic pathway reconstitution in plant, bacteria, and yeast, with a focus on the synthetic biology strategies applied in these engineering efforts.
Collapse
Affiliation(s)
| | - Yanran Li
- Department of Chemical and Environmental Engineering
- Riverside
- USA
| | - Christina D. Smolke
- Department of Bioengineering
- Stanford University
- Stanford
- USA
- Chan Zuckerberg Biohub
| |
Collapse
|
47
|
Chouhan S, Sharma K, Zha J, Guleria S, Koffas MAG. Recent Advances in the Recombinant Biosynthesis of Polyphenols. Front Microbiol 2017; 8:2259. [PMID: 29201020 PMCID: PMC5696593 DOI: 10.3389/fmicb.2017.02259] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/01/2017] [Indexed: 01/29/2023] Open
Abstract
Plants are the source of various natural compounds with pharmaceutical and nutraceutical importance which have shown numerous health benefits with relatively fewer side effects. However, extraction of these compounds from native producers cannot meet the ever-increasing demands of the growing population due to, among other things, the limited production of the active compound(s). Their production depends upon the metabolic demands of the plant and is also subjected to environmental conditions, abundance of crop species and seasonal variations. Moreover, their extraction from plants requires complex downstream processing and can also lead to the extinction of many useful plant varieties. Microbial engineering is one of the alternative approaches which can meet the global demand for natural products in an eco-friendly manner. Metabolic engineering of microbes or pathway reconstruction using synthetic biology tools and novel enzymes lead to the generation of a diversity of compounds (like flavonoids, stilbenes, anthocyanins etc.) and their natural and non-natural derivatives. Strain and pathway optimization, pathway regulation and tolerance engineering have produced microbial cell factories into which the metabolic pathway of plants can be introduced for the production of compounds of interest on an industrial scale in an economical and eco-friendly way. While microbial production of phytochemicals needs to further increase product titer if it is ever to become a commercial success. The present review covers the advancements made for the improvement of microbial cell factories in order to increase the product titer of recombinant polyphenolic compounds.
Collapse
Affiliation(s)
- Sonam Chouhan
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Kanika Sharma
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Jian Zha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sanjay Guleria
- Natural Product Laboratory, Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
48
|
Recent advances in microbial production of aromatic natural products and their derivatives. Appl Microbiol Biotechnol 2017; 102:47-61. [DOI: 10.1007/s00253-017-8599-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/02/2023]
|
49
|
Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H. Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Fact 2017; 16:165. [PMID: 28950867 PMCID: PMC5615808 DOI: 10.1186/s12934-017-0774-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. METHODS In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. RESULTS Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. CONCLUSIONS The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.
Collapse
Affiliation(s)
- Lijin Duan
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wentao Ding
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaozhi Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jing Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Erbing Hua
- Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
50
|
Zhang W, Liu H, Li X, Liu D, Dong XT, Li FF, Wang EX, Li BZ, Yuan YJ. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng Life Sci 2017; 17:1021-1029. [PMID: 32624852 DOI: 10.1002/elsc.201700039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/20/2017] [Accepted: 05/08/2017] [Indexed: 12/31/2022] Open
Abstract
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co-culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co-culture system by metabolic engineering. In addition, the critical gene of 4-coumaroyl-CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi-copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co-culture system, which was nearly eight fold to that of the mono-culture of yeast. This is the first time for the biosynthesis of naringenin in the co-culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Duo Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Xiu-Tao Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Fei-Fei Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - En-Xu Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology Tianjin University Tianjin P.R. China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin P.R. China
| |
Collapse
|