1
|
Peroutka-Bigus N, Nielsen DW, Trachsel J, Mou KT, Sharma VK, Kudva IT, Loving CL. Phenotypic and genomic comparison of three human outbreak and one cattle-associated Shiga toxin-producing Escherichia coli O157:H7. Microbiol Spectr 2024; 12:e0414023. [PMID: 39254337 PMCID: PMC11451603 DOI: 10.1128/spectrum.04140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Escherichia coli O157:H7-adulterated food products are associated with disease outbreaks in humans. Although cattle feces are a source for E. coli O157:H7 contamination, it is unclear if human-associated outbreak isolates differentially colonize and shed in the feces of cattle from that of non-outbreak isolates. It is also unclear if phenotypes, such as biofilm formation, cell attachment, or toxin production, differentiate environmental E. coli O157:H7 isolates from those associated with human illness. The objective of this study was to compare the genotypes and phenotypes of a diverse set of E. coli O157:H7 isolates, with the intent of identifying differences that could inform cattle colonization and fecal shedding, along with virulence potential in humans. Isolates differed in attachment phenotypes on human Caco-2 cells and bovine-derived recto-anal junction squamous epithelial cells, with curli having a strong impact on attachment to the human-derived cell line. The prototypical E. coli O157 isolate EDL933 had the greatest expression of the adhesin gene iha, yet it had decreased expression of the virulence genes stx2, eae, and ehxA compared the lineage I/II isolates RM6067W and/or FRIK1989. Strong or weak biofilm production was not associated with significant differences in cattle colonization or shedding, suggesting biofilms may not play a major role in cattle colonization. No significant differences in cattle colonization and fecal shedding were detected, despite genomic and in vitro phenotypic differences. The outbreak isolate associated with the greatest incidence of hemolytic uremic syndrome, RM6067W, induced the greatest Vero cell cytotoxicity and had the greatest stx2 gene expression. IMPORTANCE Foodborne illness has major impacts on global health and imposes financial hardships on food industries. Escherichia coli serotype O157:H7 is associated with foodborne illness. Cattle feces are a source of E. coli O157:H7, and routine surveillance has led to an abundance of E. coli O157:H7 genomic data. The relationship between E. coli O157:H7 genome and phenotype is not clearly discerned for cattle colonization/shedding and improved understanding could lead to additional strategies to limit E. coli O157:H7 in the food chain. The goal of the research was to evaluate genomic and phenotypic attributes of E. coli O157:H7 associated with cattle colonization and shedding, environmental persistence, and human illness. Our results indicate variations in biofilm formation and in vitro cellular adherence was not associated with differences in cattle colonization or shedding. Overall, processes involved in cattle colonization and various phenotypes in relation to genotype are complex and remain not well understood.
Collapse
Affiliation(s)
- Nathan Peroutka-Bigus
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Daniel W. Nielsen
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Julian Trachsel
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Kathy T. Mou
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
- Oak Ridge Institute
for Science and Education, Agricultural Research Service Participation
Program, Oak Ridge,
Tennessee, USA
| | - Vijay K. Sharma
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Indira T. Kudva
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| | - Crystal L. Loving
- Food Safety and
Enteric Pathogens Research Unit, National Animal Disease Center,
Agricultural Research Service, USDA,
Ames, Iowa, USA
| |
Collapse
|
2
|
Choo KW, Mao L, Mustapha A. CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157:H7 in food products. Int J Food Microbiol 2023; 386:110026. [PMID: 36444789 DOI: 10.1016/j.ijfoodmicro.2022.110026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Escherichia coli O157:H7 is a foodborne pathogen that has become a serious global concern for food safety. Despite the application of different traditional biocontrol methods in the food industry, food borne disease outbreaks linked to this organism remain. Due to their high specificity, lytic bacteriophages are promising antimicrobial agents that could be utilized to control pathogens in foods. In this study, a novel Escherichia phage, CAM-21, was isolated from a dairy farm environment. CAM-21 showed targeted host specificity towards various serotypes of Shiga toxin-producing E. coli, including O157:H7, O26, O103, and O145. Morphological analyses revealed that CAM-21 has a polyhedron capsid and a contractile tail with a diameter of about 92.83 nm, and length of about 129.75 nm, respectively. CAM-21 showed a strong inhibitory effect on the growth of E. coli O157:H7, even at a multiplicity of infection (MOI) of as low as 0.001. Phage adsorption and one-step growth analysis indicated that the target pathogen was rapidly lysed by CAM-21 that exhibited a short latent time (20 min). Electron microscopic and genomic DNA analyses suggested that CAM-21 is a lytic phage, classified as a new species in the Tequatrovirus genus of the Myoviridae Family. Based on whole genome sequencing, CAM-21 has a double-stranded DNA with 166,962 bp, 265 open reading frames and 11 tRNA. The genome of CAM-21 did not encode toxins, virulence factors, antibiotic resistance, lysogeny or allergens. Phylogenetic and genomic comparative analyses suggested that CAM-21 is a T4-like phage species. The growth of E. coli O157:H7 was effectively controlled in milk, ground beef and baby spinach at MOIs of 1000 and 10,000. CAM-21 significantly (P ≤ 0.05) reduced the bacterial counts of the treated foods, ranging from 1.4-2.0 log CFU/mL in milk to 1.3-1.4 log CFU/g in ground beef and baby spinach. These findings suggest that the lytic phage, CAM-21, is a potential candidate for controlling E. coli O157:H7 contamination in foods.
Collapse
Affiliation(s)
- Kai Wen Choo
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Liang Mao
- Food Science Program, University of Missouri, Columbia, United States of America
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, United States of America.
| |
Collapse
|
3
|
Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods 2021; 10:foods10092072. [PMID: 34574181 PMCID: PMC8468451 DOI: 10.3390/foods10092072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial disease outbreaks related to fresh produce consumption, including leafy green vegetables, have increased in recent years. Where contamination occurs, pathogen persistence may represent a risk for consumers' health. This study analysed the survival of E. coli and L. innocua on lettuce plants watered with contaminated irrigation water via a single irrigation event and within stored irrigation water. Separate lettuce plants (Lactuca sativa var. capitata) were irrigated with water spiked with Log10 7 cfu/mL of each of the two strains and survival assessed via direct enumeration, enrichment and qPCR. In parallel, individual 20 L water microcosms were spiked with Log10 7 cfu/mL of the individual strains and sampled at similar time points. Both strains were observed to survive on lettuce plants up to 28 days after inoculation. Direct quantification by culture methods showed a Log10 4 decrease in the concentration of E. coli 14 days after inoculation, and a Log10 3 decrease in the concentration of L. innocua 10 days after inoculation. E. coli was detected in water samples up to 7 days after inoculation and L. innocua was detected up to 28 days by direct enumeration. Both strains were recovered from enriched samples up to 28 days after inoculation. These results demonstrate that E. coli and L. innocua strains are able to persist on lettuce after a single contamination event up until the plants reach a harvestable state. Furthermore, the persistence of E. coli and L. innocua in water for up to 28 days after inoculation illustrates the potential for multiple plant contamination events from stored irrigation water, emphasising the importance of ensuring that irrigation water is of a high quality.
Collapse
|
4
|
Barth SA, Weber M, Schaufler K, Berens C, Geue L, Menge C. Metabolic Traits of Bovine Shiga Toxin-Producing Escherichia Coli (STEC) Strains with Different Colonization Properties. Toxins (Basel) 2020; 12:toxins12060414. [PMID: 32580365 PMCID: PMC7354573 DOI: 10.3390/toxins12060414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle harbor Shiga toxin-producing Escherichia coli (STEC) in their intestinal tract, thereby providing these microorganisms with an ecological niche, but without this colonization leading to any clinical signs. In a preceding study, genotypic characterization of bovine STEC isolates unveiled that their ability to colonize cattle persistently (STECper) or only sporadically (STECspo) is more closely associated with the overall composition of the accessory rather than the core genome. However, the colonization pattern could not be unequivocally linked to the possession of classical virulence genes. This study aimed at assessing, therefore, if the presence of certain phenotypic traits in the strains determines their colonization pattern and if these can be traced back to distinctive genetic features. STECspo strains produced significantly more biofilm than STECper when incubated at lower temperatures. Key substrates, the metabolism of which showed a significant association with colonization type, were glyoxylic acid and L-rhamnose, which were utilized by STECspo, but not or only by some STECper. Genomic sequences of the respective glc and rha operons contained mutations and frameshifts in uptake and/or regulatory genes, particularly in STECper. These findings suggest that STECspo conserved features leveraging survival in the environment, whereas the acquisition of a persistent colonization phenotype in the cattle reservoir was accompanied by the loss of metabolic properties and genomic mutations in the underlying genetic pathways.
Collapse
Affiliation(s)
- Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
- Correspondence: ; Tel.: +49-3641-804-2270; Fax: +49-3641-804-2482
| | - Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Katharina Schaufler
- Free University Berlin, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- University of Greifswald, Pharmaceutical Microbiology, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| |
Collapse
|
5
|
Antunes P, Novais C, Peixe L. Food-to-Humans Bacterial Transmission. Microbiol Spectr 2020; 8:10.1128/microbiolspec.mtbp-0019-2016. [PMID: 31950894 PMCID: PMC10810214 DOI: 10.1128/microbiolspec.mtbp-0019-2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Microorganisms vehiculated by food might benefit health, cause minimal change within the equilibrium of the host microbial community or be associated with foodborne diseases. In this chapter we will focus on human pathogenic bacteria for which food is conclusively demonstrated as their transmission mode to human. We will describe the impact of foodborne diseases in public health, the reservoirs of foodborne pathogens (the environment, human and animals), the main bacterial pathogens and food vehicles causing human diseases, and the drivers for the transmission of foodborne diseases related to the food-chain, host or bacteria features. The implication of food-chain (foodborne pathogens and commensals) in the transmission of resistance to antibiotics relevant to the treatment of human infections is also evidenced. The multiplicity and interplay of drivers related to intensification, diversification and globalization of food production, consumer health status, preferences, lifestyles or behaviors, and bacteria adaptation to different challenges (stress tolerance and antimicrobial resistance) from farm to human, make the prevention of bacteria-food-human transmission a modern and continuous challenge. A global One Health approach is mandatory to better understand and minimize the transmission pathways of human pathogens, including multidrug-resistant pathogens and commensals, through food-chain.
Collapse
Affiliation(s)
- Patrícia Antunes
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Machado-Moreira B, Monteiro S, Santos R, Martinez-Murcia A, Rajkovic A, Smigic N, Richards KG, Abram F, Burgess CM. Impact of beef extract used for sample concentration on the detection of Escherichia coli DNA in water samples via qPCR. J Microbiol Methods 2019; 168:105786. [PMID: 31770538 DOI: 10.1016/j.mimet.2019.105786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022]
Abstract
There is increasing interest in methodologies for the simultaneous concentration and detection of multiple targets in individual samples. The aim of this study was to investigate the potential presence of E. coli DNA in beef extract powder used as part of a procedure to concentrate water samples for the simultaneous detection of bacteria, viruses and protozoa. DNA from E. coli was detected in five out of six beef extract lots tested, demonstrating the limitations of its inclusion when being used in assays that will be used for the detection of E. coli in water samples. Further work is required to clarify if this phenomenon also occurs for other microorganisms of interest in water.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | - Silvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Andreja Rajkovic
- Department of Food Safety and Food Quality Management, University of Belgrade-Faculty of Agriculture, Serbia; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University; Belgium
| | - Nada Smigic
- Department of Food Safety and Food Quality Management, University of Belgrade-Faculty of Agriculture, Serbia
| | - Karl G Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
7
|
Bezanson G, Mader D, Fillmore S, Bach S, Delaquis P. Reaction of Surrogate Escherichia coli Serotype O157:H7 and Non-O157 Strains to Nutrient Starvation: Variation in Phenotype and Transcription of Stress Response Genes and Behavior on Lettuce Plants in the Field. J Food Prot 2019; 82:1988-2000. [PMID: 31644333 DOI: 10.4315/0362-028x.jfp-19-072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preharvest contamination with bacteria borne by irrigation water may result in leafy vegetables serving as vehicles for transmission of Shiga toxin-producing Escherichia coli (STEC) to humans. The influence of starvation-associated stress on the behavior of non-toxin-producing strains of E. coli serotype O157:H7 and serotypes O26, O103, O111, and O145 was examined subsequent to their introduction to the phyllosphere of field-grown romaine lettuce as inocula simulating starved (96 h in sterile deionized water) and nutrient-depleted (24 h broth culture) cells. As with E. coli O157:H7, leaf populations of the non-O157 strains declined rapidly during the first 72 h postinoculation, displaying the biphasic decay curve typical of serotype O157:H7 isolates. Preinoculation treatment appeared not to influence decay rates greatly (P > 0.5), but strain-specific differences (persistence period and attachment proficiency) indicated that serotype O103:H2 strain PARC445 was a better survivor. Also assessed was the impact of preinoculation treatment on phenotypes key to leaf colonization and survival and the expression of starvation stress-associated genes. The 96-h starvation period enhanced biofilm formation in one strain but reduced motility and autoinducer 2 formation in all five study strains relative to those characteristics in stationary-phase cells. Transcription of rpoS, dps, uspA, and gapA was reduced significantly (P < 0.05) in starvation-stressed cells relative to that for exponential- and stationary-phase cultures. Strain-specific differences were observed; serotype O103:H2 PARC445 had greater downturns than did serotype O157:H7 and other non-O157 strains. Within this particular cohort, the behavior of the representative serotype O157:H7 strain, PARC443 (ATCC 700728), was not predictive of behavior of non-O157 members of this STEC group.
Collapse
Affiliation(s)
- Greg Bezanson
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J
| | - David Mader
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J
| | - Susan Bach
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, 2701 Grand Valley Road, Brandon, Manitoba, Canada R7A 5Y3
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia, Canada V0H 1Z0
| |
Collapse
|
8
|
Machado-Moreira B, Richards K, Brennan F, Abram F, Burgess CM. Microbial Contamination of Fresh Produce: What, Where, and How? Compr Rev Food Sci Food Saf 2019; 18:1727-1750. [PMID: 33336968 DOI: 10.1111/1541-4337.12487] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023]
Abstract
Promotion of healthier lifestyles has led to an increase in consumption of fresh produce. Such foodstuffs may expose consumers to increased risk of foodborne disease, as often they are not subjected to processing steps to ensure effective removal or inactivation of pathogenic microorganisms before consumption. Consequently, reports of ready-to-eat fruit and vegetable related disease outbreak occurrences have increased substantially in recent years, and information regarding these events is often not readily available. Identifying the nature and source of microbial contamination of these foodstuffs is critical for developing appropriate mitigation measures to be implemented by food producers. This review aimed to identify the foodstuffs most susceptible to microbial contamination and the microorganisms responsible for disease outbreaks from information available in peer-reviewed scientific publications. A total of 571 outbreaks were identified from 1980 to 2016, accounting for 72,855 infections and 173 deaths. Contaminated leafy green vegetables were responsible for 51.7% of reported outbreaks. Contaminated soft fruits caused 27.8% of infections. Pathogenic strains of Escherichia coli and Salmonella, norovirus, and hepatitis A accounted for the majority of cases. Large outbreaks resulted in particular biases such as the observation that contaminated sprouted plants caused 31.8% of deaths. Where known, contamination mainly occurred via contaminated seeds, water, and contaminated food handlers. There is a critical need for standardized datasets regarding all aspects of disease outbreaks, including how foodstuffs are contaminated with pathogenic microorganisms. Providing food business operators with this knowledge will allow them to implement better strategies to improve safety and quality of fresh produce.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | - Karl Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Fiona Brennan
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National Univ. of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
9
|
A Clonal Shiga Toxin–Producing Escherichia coli O121:H19 Population Exhibits Diverse Carbon Utilization Patterns. Foodborne Pathog Dis 2019; 16:384-393. [DOI: 10.1089/fpd.2018.2567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
10
|
Harrand AS, Kovac J, Carroll LM, Guariglia-Oropeza V, Kent DJ, Wiedmann M. Assembly and Characterization of a Pathogen Strain Collection for Produce Safety Applications: Pre-growth Conditions Have a Larger Effect on Peroxyacetic Acid Tolerance Than Strain Diversity. Front Microbiol 2019; 10:1223. [PMID: 31231329 PMCID: PMC6558390 DOI: 10.3389/fmicb.2019.01223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Effective control of foodborne pathogens on produce requires science-based validation of interventions and control strategies, which typically involves challenge studies with a set of bacterial strains representing the target pathogens or appropriate surrogates. In order to facilitate these types of studies, a produce-relevant strain collection was assembled to represent strains from produce outbreaks or pre-harvest environments, including Listeria monocytogenes (n = 11), Salmonella enterica (n = 23), shiga-toxin producing Escherichia coli (STEC) (n = 13), and possible surrogate organisms (n = 8); all strains were characterized by whole genome sequencing (WGS). Strain diversity was assured by including the 10 most common S. enterica serotypes, L. monocytogenes lineages I-IV, and E. coli O157 as well as selected "non-O157" STEC serotypes. As it has previously been shown that strains and genetic lineages of a pathogen may differ in their ability to survive different stress conditions, a subset of representative strains for each "pathogen group" (e.g., Salmonella, STEC) was selected and assessed for survival of exposure to peroxyacetic acid (PAA) using strains pre-grown under different conditions including (i) low pH, (ii) high salt, (iii) reduced water activity, (iv) different growth phases, (v) minimal medium, and (vi) different temperatures (21°C, 37°C). The results showed that across the three pathogen groups pre-growth conditions had a larger effect on bacterial reduction after PAA exposure as compared to strain diversity. Interestingly, bacteria exposed to salt stress (4.5% NaCl) consistently showed the least reduction after exposure to PAA; however, for STEC, strains pre-grown at 21°C were as tolerant to PAA exposure as strains pre-grown under salt stress. Overall, our data suggests that challenge studies conducted with multi-strain cocktails (pre-grown under a single specific condition) may not necessarily reflect the relevant phenotypic range needed to appropriately assess different intervention strategies.
Collapse
Affiliation(s)
| | - Jasna Kovac
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Laura M. Carroll
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | | - David J. Kent
- Department of Statistical Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Sharma VK, Akavaram S, Schaut RG, Bayles DO. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 2019; 20:196. [PMID: 30849935 PMCID: PMC6408774 DOI: 10.1186/s12864-019-5568-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. Results The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32–33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. Conclusions These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, MS 36, P.O. Box 117, Oak Ridge, TN, 37831, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, Iowa, USA
| |
Collapse
|
12
|
Chen AI, Goulian M. A network of regulators promotes dehydration tolerance in Escherichia coli. Environ Microbiol 2018; 20:1283-1295. [PMID: 29457688 DOI: 10.1111/1462-2920.14074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 02/12/2018] [Indexed: 01/09/2023]
Abstract
The ability to survive conditions of low water activity is critical for the survival of many bacteria in the environment and facilitates disease transmission through food and contaminated surfaces. However, the molecular mechanisms that enable bacteria to withstand this condition remain poorly understood. Here we describe a network of regulators in Escherichia coli that are important for this bacterium to survive dehydration. We found that the transcriptional regulator DksA and the general stress response regulator RpoS play a critical role. From a plasmid genomic library screen, we identified two additional regulators, Crl and ArcZ, that promote dehydration tolerance through modulation of RpoS. We also found that LexA, RecA and ArcA contribute to survival. Our results identify key regulators that enable E. coli to tolerate dehydration and suggest a hierarchical network is involved in protection against cellular damage associated with this stress.
Collapse
Affiliation(s)
- Annie I Chen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Goulian
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
George AS, Cox CE, Desai P, Porwollik S, Chu W, de Moraes MH, McClelland M, Brandl MT, Teplitski M. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot. Appl Environ Microbiol 2018; 84:e01913-17. [PMID: 29247060 PMCID: PMC5812938 DOI: 10.1128/aem.01913-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/07/2017] [Indexed: 11/20/2022] Open
Abstract
Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.
Collapse
Affiliation(s)
- Andrée S George
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Clayton E Cox
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Marcos H de Moraes
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Maria T Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida-IFAS, Gainesville, Florida, USA
| |
Collapse
|
14
|
Ravva SV, Sarreal CZ, Cooley MB. Expression of Curli by Escherichia coli O157:H7 Strains Isolated from Patients during Outbreaks Is Different from Similar Strains Isolated from Leafy Green Production Environments. Front Cell Infect Microbiol 2017; 6:189. [PMID: 28066724 PMCID: PMC5167686 DOI: 10.3389/fcimb.2016.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
We previously reported that the strains of Escherichia coli O157:H7 (EcO157) that survived longer in austere soil environment lacked expression of curli, a fitness trait linked with intestinal colonization. In addition, the proportion of curli-positive variants of EcO157 decreased with repeated soil exposure. Here we evaluated 84 and 176 clinical strains from outbreaks and sporadic infections in the US, plus 211 animal fecal and environmental strains for curli expression. These shiga-toxigenic strains were from 328 different genotypes, as characterized by multi-locus variable-number tandem-repeat analysis (MLVA). More than half of the fecal strains (human and animal) and a significant proportion of environmental isolates (82%) were found to lack curli expression. EcO157 strains from several outbreaks linked with the consumption of contaminated apple juice, produce, hamburgers, steak, and beef were also found to lack curli expression. Phylogenetic analysis of fecal strains indicates curli expression is distributed throughout the population. However, a significant proportion of animal fecal isolates (84%) gave no curli expression compared to human fecal isolates (58%). In addition, analysis of environmental isolates indicated nearly exclusive clustering of curli expression to a single branch of the minimal spanning tree. This indicates that curli expression depends primarily upon the type of environmental exposure and the isolation source, although genotypic differences also contribute to clonal variation in curli. Furthermore, curli-deficient phenotype appears to be a selective trait for survival of EcO157 in agricultural environments.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture Albany, CA, USA
| |
Collapse
|
15
|
The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 2016; 221:37-53. [PMID: 26803272 DOI: 10.1016/j.ijfoodmicro.2015.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/24/2022]
Abstract
In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products.
Collapse
|
16
|
The Polymorphic Aggregative Phenotype of Shiga Toxin-Producing Escherichia coli O111 Depends on RpoS and Curli. Appl Environ Microbiol 2015; 82:1475-1485. [PMID: 26712542 DOI: 10.1128/aem.03935-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O111 is an emerging non-O157:H7 serotype of Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic-case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and M. T. Brandl, Foodborne Pathog Dis 12:235-243, 2015, http://dx.doi.org/10.1089/fpd.2014.1887). We show here the natural occurrence of nonaggregative variants in single STEC O111 strains. These variants do not produce curli fimbriae and lack RpoS function but synthesize cellulose. The deletion of csgBAC or rpoS in an aggregative outbreak strain abolished aggregate formation, which was rescued when curli biogenesis or RpoS function, respectively, was restored. Complementation of a nonaggregative variant with RpoS also conferred curli production and aggregation. These observations were supported by Western blotting with an anti-CsgA antibody. Immunomicroscopy revealed that curli were undetectable on the cells of the nonaggregative variant and the RpoS mutant but were present in large quantities in the intercellular matrix of the assemblages formed by aggregative strains. Sequence analysis of rpoS in the aggregative strain and its variant showed a single substitution of threonine for asparagine at amino acid 124. Our results indicate that the multicellular behavior of STEC O111 is RpoS dependent via positive regulation of curli production. Aggregation may confer a fitness advantage in O111 outbreak strains under stressful conditions in hydrodynamic environments along the food production chain and in the host, while the occurrence of nonaggregative variants may allow the cell population to adapt to conditions benefiting a planktonic lifestyle.
Collapse
|
17
|
An Environmental Shiga Toxin-Producing Escherichia coli O145 Clonal Population Exhibits High-Level Phenotypic Variation That Includes Virulence Traits. Appl Environ Microbiol 2015; 82:1090-1101. [PMID: 26637597 DOI: 10.1128/aem.03172-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) serotype O145 is one of the major non-O157 serotypes associated with severe human disease. Here we examined the genetic diversity, population structure, virulence potential, and antimicrobial resistance profiles of environmental O145 strains recovered from a major produce production region in California. Multilocus sequence typing analyses revealed that sequence type 78 (ST-78), a common ST in clinical strains, was the predominant genotype among the environmental strains. Similarly, all California environmental strains belonged to H28, a common H serotype in clinical strains. Although most environmental strains carried an intact fliC gene, only one strain retained swimming motility. Diverse stx subtypes were identified, including stx1a, stx2a, stx2c, and stx2e. Although no correlation was detected between the stx genotype and Stx1 production, high Stx2 production was detected mainly in strains carrying stx2a only and was correlated positively with the cytotoxicity of Shiga toxin. All environmental strains were capable of producing enterohemolysin, whereas only 10 strains were positive for anaerobic hemolytic activity. Multidrug resistance appeared to be common, as nearly half of the tested O145 strains displayed resistance to at least two different classes of antibiotics. The core virulence determinants of enterohemorrhagic E. coli were conserved in the environmental STEC O145 strains; however, there was large variation in the expression of virulence traits among the strains that were highly related genotypically, implying a trend of clonal divergence. Several cattle isolates exhibited key virulence traits comparable to those of the STEC O145 outbreak strains, emphasizing the emergence of hypervirulent strains in agricultural environments.
Collapse
|
18
|
Escherichia coli survival in, and release from, white-tailed deer feces. Appl Environ Microbiol 2014; 81:1168-76. [PMID: 25480751 DOI: 10.1128/aem.03295-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes.
Collapse
|
19
|
Malham SK, Rajko-Nenow P, Howlett E, Tuson KE, Perkins TL, Pallett DW, Wang H, Jago CF, Jones DL, McDonald JE. The interaction of human microbial pathogens, particulate material and nutrients in estuarine environments and their impacts on recreational and shellfish waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2145-2155. [PMID: 25043898 DOI: 10.1039/c4em00031e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anthropogenic activities have increased the load of faecal bacteria, pathogenic viruses and nutrients in rivers, estuaries and coastal areas through point and diffuse sources such as sewage discharges and agricultural runoff. These areas are used by humans for both commercial and recreational activities and are therefore protected by a range of European Directives. If water quality declines in these zones, significant economic losses can occur. Identifying the sources of pollution, however, is notoriously difficult due to the ephemeral nature of discharges, their diffuse source, and uncertainties associated with transport and transformation of the pollutants through the freshwater-marine interface. Further, significant interaction between nutrients, microorganisms and particulates can occur in the water column making prediction of the fate and potential infectivity of human pathogenic organisms difficult to ascertain. This interaction is most prevalent in estuarine environments due to the formation of flocs (suspended sediment) at the marine-freshwater interface. A range of physical, chemical and biological processes can induce the co-flocculation of microorganisms, organic matter and mineral particles resulting in pathogenic organisms becoming potentially protected from a range of biotic (e.g. predation) and abiotic stresses (e.g. UV, salinity). These flocs contain and retain macro- and micro- nutrients allowing the potential survival, growth and transfer of pathogenic organisms to commercially sensitive areas (e.g. beaches, shellfish harvesting waters). The flocs can either be transported directly to the coastal environment or can become deposited in the estuary forming cohesive sediments where pathogens can survive for long periods. Especially in response to storms, these sediments can be subsequently remobilised releasing pulses of potential pathogenic organisms back into the water column leading to contamination of marine waters long after the initial contamination event occurred. Further work, however, is still required to understand and predict the potential human infectivity of pathogenic organisms alongside the better design of early warning systems and surveillance measures for risk assessment purposes.
Collapse
Affiliation(s)
- Shelagh K Malham
- Centre for Applied Marine Science, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ravva SV, Cooley MB, Sarreal CZ, Mandrell RE. Fitness of Outbreak and Environmental Strains of Escherichia coli O157:H7 in Aerosolizable Soil and Association of Clonal Variation in Stress Gene Regulation. Pathogens 2014; 3:528-48. [PMID: 25438010 PMCID: PMC4243427 DOI: 10.3390/pathogens3030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Airborne dust from feedlots is a potential mechanism of contamination of nearby vegetable crops with Escherichia coli O157:H7 (EcO157). We compared the fitness of clinical and environmental strains of EcO157 in <45 µm soil from a spinach farm. Differences in survival were observed among the 35 strains with D-values (days for 90% decreases) ranging from 1–12 days. Strains that survived longer, generally, were from environmental sources and lacked expression of curli, a protein associated with attachment and virulence. Furthermore, the proportion of curli-positive (C+) variants of EcO157 strains decreased with repeated soil exposure and the strains that were curli-negative (C−) remained C− post-soil exposure. Soil exposure altered expression of stress-response genes linked to fitness of EcO157, but significant clonal variation in expression was measured. Mutations were detected in the stress-related sigma factor, rpoS, with a greater percentage occurring in parental strains of clinical origin prior to soil exposure. We speculate that these mutations in rpoS may confer a differential expression of genes, associated with mechanisms of survival and/or virulence, and thus may influence the fitness of EcO157.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Michael B Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Chester Z Sarreal
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| | - Robert E Mandrell
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, CA 94710, USA.
| |
Collapse
|
21
|
Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol 2014; 44:108-18. [PMID: 25084652 DOI: 10.1016/j.fm.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023]
Abstract
We previously reported significantly different acid resistance between curli variants derived from the same Escherichia coli O157:H7 strain, although the curli fimbriae were not associated with this phenotypic divergence. Here we investigated the underlying molecular mechanism by examining the genes encoding the common transcriptional regulators of curli biogenesis and acid resistance. rpoS null mutations were detected in all curli-expressing variants of the 2006 spinach-associated outbreak strains, whereas a wild-type rpoS was present in all curli-deficient variants. Consequently curli-expressing variants were much more sensitive to various stress challenges than curli-deficient variants. This loss of general stress fitness appeared solely to be the result of rpoS mutation since the stress resistances could be restored in curli-expressing variants by a functional rpoS. Comparative transcriptomic analyses between the curli variants revealed a large number of differentially expressed genes, characterized by the enhanced expression of metabolic genes in curli-expressing variants, but a marked decrease in transcription of genes related to stress resistances. Unlike the curli-expressing variants of the 1993 US hamburger-associated outbreak strains (Applied Environmental Microbiology 78: 7706-7719), all curli-expressing variants of the 2006 spinach-associated outbreak strains carry a functional rcsB gene, suggesting an alternative mechanism governing intra-strain phenotypic divergence in E. coli O157:H7.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA.
| | - Jacqueline W Louie
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
22
|
Martínez-Vaz BM, Fink RC, Diez-Gonzalez F, Sadowsky MJ. Enteric pathogen-plant interactions: molecular connections leading to colonization and growth and implications for food safety. Microbes Environ 2014; 29:123-35. [PMID: 24859308 PMCID: PMC4103518 DOI: 10.1264/jsme2.me13139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/19/2014] [Indexed: 11/12/2022] Open
Abstract
Leafy green vegetables have been identified as a source of foodborne illnesses worldwide over the past decade. Human enteric pathogens, such as Escherichia coli O157:H7 and Salmonella, have been implicated in numerous food poisoning outbreaks associated with the consumption of fresh produce. An understanding of the mechanisms responsible for the establishment of pathogenic bacteria in or on vegetable plants is critical for understanding and ameliorating this problem as well as ensuring the safety of our food supply. While previous studies have described the growth and survival of enteric pathogens in the environment and also the risk factors associated with the contamination of vegetables, the molecular events involved in the colonization of fresh produce by enteric pathogens are just beginning to be elucidated. This review summarizes recent findings on the interactions of several bacterial pathogens with leafy green vegetables. Changes in gene expression linked to the bacterial attachment and colonization of plant structures are discussed in light of their relevance to plant-microbe interactions. We propose a mechanism for the establishment and association of enteric pathogens with plants and discuss potential strategies to address the problem of foodborne illness linked to the consumption of leafy green vegetables.
Collapse
Affiliation(s)
| | - Ryan C. Fink
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN 55108, USA
| | | | - Michael J. Sadowsky
- Biotechnology Institute, University of Minnesota, St Paul, MN 55108, USA
- Department of Soil, Water and Climate, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
23
|
Honjoh KI, Mishima T, Kido N, Shimamoto M, Miyamoto T. Investigation of Routes of Salmonella Contamination Via Soils and the Use of Mulch for Contamination Control during Lettuce Cultivation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype. PLoS One 2013; 8:e80871. [PMID: 24324640 PMCID: PMC3851777 DOI: 10.1371/journal.pone.0080871] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/17/2013] [Indexed: 12/22/2022] Open
Abstract
Main Objectives Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. Experimental Design Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey’s multiple comparison testing procedure. Most Important Discoveries and Significance The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth.
Collapse
|
25
|
Marvasi M, Cox CE, Xu Y, Noel JT, Giovannoni JJ, Teplitski M. Differential regulation of Salmonella typhimurium genes involved in O-antigen capsule production and their role in persistence within tomato fruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:793-800. [PMID: 23489058 DOI: 10.1094/mpmi-09-12-0208-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enteric pathogens, including non-typhoidal Salmonella spp. and enterovirulent Escherichia coli, are capable of persisting and multiplying within plants. Yet, little is still known about the mechanisms of these interactions. This study identified the Salmonella yihT gene (involved in synthesis of the O-antigen capsule) as contributing to persistence in immature tomato fruit. Deletion of yihT reduced competitive fitness of S. enterica sv. Typhimurium in green (but not ripe, regardless of color) tomato fruit by approximately 3 logs. The yihT recombinase-based in vivo expression technology (RIVET) reporter was strongly activated in unripe tomato fruit, and fitness of the mutant inversely correlated with the level of the yihT gene expression. Expression of yihT in mature tomato fruit was low, and yihT did not affect competitive fitness within mature fruit. To better understand the molecular basis of the phenotype, behaviors of the yihT RIVET reporter and the yihT mutant were tested in tomato fruit defective in ethylene signaling. These experiments suggest a role for functional ethylene-mediated signaling in the persistence of Salmonella spp. within tomato fruit. Furthermore, jasmonic acid and its precursors strongly reduced expression of yihT.
Collapse
Affiliation(s)
- Massimiliano Marvasi
- Soil and Water Science Department, Genetics Institute Rm330E, 2033 Mowry Rd, University of Florida-IFAS, Gainesville 32611, USA
| | | | | | | | | | | |
Collapse
|
26
|
Uhlich GA, Chen CY, Cottrell BJ, Hofmann CS, Dudley EG, Strobaugh TP, Nguyen LH. Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157: H7. MICROBIOLOGY-SGM 2013; 159:1586-1596. [PMID: 23744902 DOI: 10.1099/mic.0.066118-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Biofilm formation in Escherichia coli is a tightly controlled process requiring the expression of adhesive curli fibres and certain polysaccharides such as cellulose. The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export proteins and the diguanylate cyclase adrA, which indirectly activates cellulose production. CsgD itself is highly regulated by two sigma factors (RpoS and RpoD), multiple DNA-binding proteins, small regulatory RNAs and several GGDEF/EAL proteins acting through c-di-GMP. One such transcription factor MlrA binds the csgD promoter to enhance the RpoS-dependent transcription of csgD. Bacteriophage, often carrying the stx1 gene, utilize an insertion site in the proximal mlrA coding region of E. coli serotype O157 : H7 strains, and the loss of mlrA function would be expected to be the major factor contributing to poor curli and biofilm expression in that serotype. Using a bank of 55 strains of serotype O157 : H7, we investigated the consequences of bacteriophage insertion. Although curli/biofilm expression was restored in many of the prophage-bearing strains by a wild-type copy of mlrA on a multi-copy plasmid, more than half of the strains showed only partial or no complementation. Moreover, the two strains carrying an intact mlrA were found to be deficient in biofilm formation. However, RpoS mutations that attenuated or inactivated RpoS-dependent functions such as biofilm formation were found in >70 % of the strains, including the two strains with an intact mlrA. We conclude that bacteriophage interruption of mlrA and RpoS mutations provide major obstacles limiting curli expression and biofilm formation in most serotype O157 : H7 strains.
Collapse
Affiliation(s)
- Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| | - Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| | - Christopher S Hofmann
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| | - Edward G Dudley
- Department of Food Science, Penn State University, University Park, PA, USA
| | - Terence P Strobaugh
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| | - Ly-Huong Nguyen
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, USA
| |
Collapse
|
27
|
Amarillas L, Chaidez C, Lugo Y, León-Félix J. Complete Genome Sequence of Escherichia coli O157:H7 Bacteriophage phiJLA23 Isolated in Mexico. GENOME ANNOUNCEMENTS 2013; 1:e00219-12. [PMID: 23469347 PMCID: PMC3587941 DOI: 10.1128/genomea.00219-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/18/2013] [Indexed: 11/20/2022]
Abstract
The bacteriophage phiJLA23 was isolated from an animal feces sample and lytic activity was demonstrated against the Escherichia coli O157:H7 strain. We report the complete nucleotide sequence of bacteriophage phiJLA23, information which may be useful for determining whether this phage is a candidate for biocontrol or another biotechnological application.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Microbiología Ambiental y de Alimentos, Centro de Investigación en Alimentación y Desarrollo A. C., Sinaloa, México
- Departamento de Biología Molecular del Instituto de Investigación Lightbourn A. C., Chihuahua, México
| | - Cristobal Chaidez
- Laboratorio de Microbiología Ambiental y de Alimentos, Centro de Investigación en Alimentación y Desarrollo A. C., Sinaloa, México
| | - Yadira Lugo
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Josefina León-Félix
- Laboratorio de Microbiología Ambiental y de Alimentos, Centro de Investigación en Alimentación y Desarrollo A. C., Sinaloa, México
| |
Collapse
|
28
|
van Hoek AH, Aarts HJ, Bouw E, van Overbeek WM, Franz E. The role ofrpoSinEscherichia coliO157 manure-amended soil survival and distribution of allelic variations among bovine, food and clinical isolates. FEMS Microbiol Lett 2012; 338:18-23. [DOI: 10.1111/1574-6968.12024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/27/2022] Open
Affiliation(s)
- Angela H.A.M. van Hoek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Henk J.M. Aarts
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - El Bouw
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Wendy M. van Overbeek
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment; Centre for Infectious Disease Control; Laboratory for Zoonoses and Environmental Microbiology; Bilthoven; The Netherlands
| |
Collapse
|
29
|
Wu W, Zhang J, Zheng M, Zhong Y, Yang J, Zhao Y, Wu W, Ye W, Wen J, Wang Q, Lu J. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS One 2012; 7:e48999. [PMID: 23145045 PMCID: PMC3492178 DOI: 10.1371/journal.pone.0048999] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Background An aptamer based biosensor (aptasensor) was developed and evaluated for rapid colorimetric detection of Escherichia coli (E. coli) O157:H7. Methodology/Principal Findings The aptasensor was assembled by modifying the truncated lipopolysaccharides (LPS)-binding aptamer on the surface of nanoscale polydiacetylene (PDA) vesicle using peptide bonding between the carboxyl group of the vesicle and the amine group of the aptamer. Molecular recognition between E. coli O157:H7 and aptamer at the interface of the vesicle lead to blue-red transition of PDA which was readily visible to the naked eyes and could be quantified by colorimetric responses (CR). Confocal laser scanning microscope (CLSM) and transmission electron microscopy (TEM) was used to confirm the specific interactions between the truncated aptamer and E. coli O157:H7. The aptasensor could detect cellular concentrations in a range of 104∼ 108 colony-forming units (CFU)/ml within 2 hours and its specificity was 100% for detection of E. coli O157:H7. Compared with the standard culture method, the correspondent rate was 98.5% for the detection of E. coli O157:H7 on 203 clinical fecal specimens with our aptasensor. Conclusions The new aptasensor represents a significant advancement in detection capabilities based on the combination of nucleic acid aptamer with PDA vesicle, and offers a specific and convenient screening method for the detection of pathogenic bacteria. This technic could also be applied in areas from clinical analysis to biological terrorism defense, especially in low-resource settings.
Collapse
Affiliation(s)
- Wenhe Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Meiqin Zheng
- Department of Clinical Laboratory Medicine, The Affiliated Eye Hospital of Wenzhou Medical College, Wenzhou, People’s Republic of China
| | - Yuhong Zhong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Yuhong Zhao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Wenping Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Wei Ye
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, People’s Republic of China
- * E-mail: (QW); (JXL)
| | - Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (QW); (JXL)
| |
Collapse
|
30
|
RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains. Appl Environ Microbiol 2012; 78:7706-19. [PMID: 22923406 DOI: 10.1128/aem.02157-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Curli are adhesive fimbriae of Enterobactericaeae and are involved in surface attachment, cell aggregation, and biofilm formation. We reported previously that curli-producing (C(+)) variants of E. coli O157:H7 (EcO157) were much more acid sensitive than their corresponding curli-deficient (C(-)) variants; however, this difference was not linked to the curli fimbriae per se. Here, we investigated the underlying molecular basis of this phenotypic divergence. We identified large deletions in the rcsB gene of C(+) variants isolated from the 1993 U.S. hamburger-associated outbreak strains. rcsB encodes the response regulator of the RcsCDB two-component signal transduction system, which regulates curli biogenesis negatively but acid resistance positively. Further comparison of stress fitness revealed that C(+) variants were also significantly more sensitive to heat shock but were resistant to osmotic stress and oxidative damage, similar to C(-) variants. Transcriptomics analysis uncovered a large number of differentially expressed genes between the curli variants, characterized by enhanced expression in C(+) variants of genes related to biofilm formation, virulence, catabolic activity, and nutrient uptake but marked decreases in transcription of genes related to various types of stress resistance. Supplying C(+) variants with a functional rcsB restored resistance to heat shock and acid challenge in cells but blocked curli production, confirming that inactivation of RcsB in C(+) variants was the basis of fitness segregation within the EcO157 population. This study provides an example of how genome instability of EcO157 promotes intrapopulation diversification, generating subpopulations carrying an array of distinct phenotypes that may confer the pathogen with survival advantages in diverse environments.
Collapse
|
31
|
Zaragoza WJ, Noel JT, Teplitski M. Spontaneous non-rdar mutations increase fitness of Salmonella in plants. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:453-458. [PMID: 23760832 DOI: 10.1111/j.1758-2229.2012.00364.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/31/2012] [Indexed: 06/02/2023]
Abstract
Proliferation of human enteric pathogens within alternate hosts, like plants, leads to temporal changes in gene expression and also selects for the phenotypic variants of the enterics that are presumed to be more fit within plants. Human enteric pathogens recovered from produce-borne outbreaks exhibit peculiar phenotypes, for example many of them do not display the rdar (red dry and rough) phenotype. The non-rdar phenotype results from mutations in cellulose and/or curli synthesis or regulation. How often these mutants arise, and whether they are more fit within plants is not entirely clear. We addressed this hypothesis by sequentially passaging the type strain of Salmonella enterica sv. Typhimurium ATCC14028 through tomatoes. Two spontaneous mutants defective in their ability to form red dry and rough colonies were further characterized. Even though attachment of the mutants to tomato surfaces was modestly reduced, they were 5- to 50-fold more competitive than the wild-type inside tomato fruits. Because the mutants were outcompeted by the wild-type on common laboratory media, and not in tomatoes, the lack of the rdar phenotype is probably beneficial within tomatoes. Recombinase-based in vivo expression tests indicate that the agfB and yihT genes were regulated differently in the mutants, although the corresponding mutations cannot fully account for the increased competitive fitness of the mutants. One of the variants has a mutated rpoS, which also reduced the expression of a SPI-5 effector encoded by sopB. A survey of the Salmonella strains recovered from produce outbreaks revealed that some were similarly non-rdar, likely containing rpoS mutations. This report indicates that the 'perfect storm' scenario, typically used to model outbreaks of produce-borne gastroenteritis, needs to account for the ability of the pathogen to rapidly evolve and adapt to the crop production environments.
Collapse
Affiliation(s)
- William J Zaragoza
- Department of Microbiology and Cell Science, University of Florida-IFAS, Gainesville, Florida, USA
| | | | | |
Collapse
|
32
|
Evolutionary silence of the acid chaperone protein HdeB in enterohemorrhagic Escherichia coli O157:H7. Appl Environ Microbiol 2011; 78:1004-14. [PMID: 22179243 DOI: 10.1128/aem.07033-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH < 3) in Escherichia coli and Shigella spp. Here we investigated the roles of HdeA and HdeB in the survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, the acid protections conferred by HdeA and HdeB in EHEC O145 were significant: loss of HdeA and HdeB led to over 100- to 1,000-fold reductions in acid survival, depending on the growth condition of prechallenge cells. However, this protection was much less in E. coli O157:H7 strains. Deletion of hdeB did not affect the acid survival of cells, and deletion of hdeA led to less than a 5-fold decrease in survival. Sequence analysis of the hdeAB operon revealed a point mutation at the putative start codon of the hdeB gene in all 26 E. coli O157:H7 strains analyzed, which shifted the ATG start codon to ATA. This mutation correlated with the lack of HdeB in E. coli O157:H7; however, the plasmid-borne O157-hdeB was able to restore partially the acid resistance in an E. coli O145ΔhdeAB mutant, suggesting the potential function of O157-HdeB as an acid chaperone. We conclude that E. coli O157:H7 strains have evolved acid survival strategies independent of the HdeA/B chaperones and are more acid resistant than nonpathogenic K-12 for cells grown under nonfavorable culturing conditions such as in Luria-Bertani no-salt broth at 28°C. These results suggest a divergent evolution of acid resistance mechanisms within E. coli.
Collapse
|