1
|
Aguilera A, Almanza V, Haakonsson S, Palacio H, Benitez Rodas GA, Barros MUG, Capelo-Neto J, Urrutia R, Aubriot L, Bonilla S. Cyanobacterial bloom monitoring and assessment in Latin America. HARMFUL ALGAE 2023; 125:102429. [PMID: 37220982 DOI: 10.1016/j.hal.2023.102429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
Cyanobacterial blooms have serious adverse effects on human and environmental health. In Latin America, one of the main world's freshwater reserves, information on this phenomenon remains sparse. To assess the current situation, we gathered reports of cyanobacterial blooms and associated cyanotoxins in freshwater bodies from South America and the Caribbean (Latitude 22° N to 45° S) and compiled the regulation and monitoring procedures implemented in each country. As the operational definition of what is a cyanobacterial bloom remains controversial, we also analyzed the criteria used to determine the phenomena in the region. From 2000 to 2019, blooms were reported in 295 water bodies distributed in 14 countries, including shallow and deep lakes, reservoirs, and rivers. Cyanotoxins were found in nine countries and high concentrations of microcystins were reported in all types of water bodies. Blooms were defined according to different, and sometimes arbitrary criteria including qualitative (changes in water color, scum presence), quantitative (abundance), or both. We found 13 different cell abundance thresholds defining bloom events, from 2 × 103 to 1 × 107 cells mL-1. The use of different criteria hampers the estimation of bloom occurrence, and consequently the associated risks and economic impacts. The large differences between countries in terms of number of studies, monitoring efforts, public access to the data and regulations regarding cyanobacteria and cyanotoxins highlights the need to rethink cyanobacterial bloom monitoring, seeking common criteria. General policies leading to solid frameworks based on defined criteria are needed to improve the assessment of cyanobacterial blooms in Latin America. This review represents a starting point toward common approaches for cyanobacterial monitoring and risk assessment, needed to improve regional environmental policies.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
| | - Viviana Almanza
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Signe Haakonsson
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | | | - Gilberto A Benitez Rodas
- Laboratorio de Hidrobiología. Centro Multidisciplinario de Investigaciones Tecnológicas. Universidad Nacional de Asunción, Paraguay
| | - Mário U G Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil; Water Resources Management Company of Ceará, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Brazil
| | - Roberto Urrutia
- University of Concepcion, EULA Center, CRHIAM Center (ANID/FONDAP/15130015), Concepcion, Chile
| | - Luis Aubriot
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Sylvia Bonilla
- Phytoplankton physiology and ecology group. Limnology Division, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
2
|
Zheng L, Liu Y, Li R, Yang Y, Jiang Y. Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis) raciborskii: Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1984. [PMID: 36767351 PMCID: PMC9915880 DOI: 10.3390/ijerph20031984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii. However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii. Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yiming Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Méjean A, Lequin O, Ploux O. Identification of 7-Deoxy-desulfo-argino-cylindrospermopsin, the Missing Piece in Cylindrospermopsin Biosynthesis. J Am Chem Soc 2022; 144:14627-14637. [PMID: 35916199 DOI: 10.1021/jacs.2c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cylindrospermopsin, a major cyanotoxin, is produced by freshwater cyanobacteria. Its biosynthesis starts from arginine and glycine and involves five polyketide synthases and several tailoring enzymes. We report the identification of 7-deoxy-desulfo-argino-cylindrospermopsin in several cylindrospermopsin-producing cyanobacteria using mass spectrometry experiments. We have purified this new metabolite and established its structure by 1D and 2D NMR spectroscopy using scalar-based 1H-1H, 1H-13C, and 1H-15N as well as 2D 1H-1H ROESY correlation experiments. Using labeled arginines in isotopic incorporation experiments, we have shown that arginine is fully incorporated into 7-deoxy-desulfo-argino-cylindrospermopsin and that the uracil ring of cylindrospermopsin originates from the guanidino moiety of arginine, thus solving a long-standing puzzling question. CyrG and CyrH from the cylindrospermopsin-producing Oscillatoria sp. PCC 6506 were overproduced in Escherichia coli and purified to homogeneity. We showed that CyrG is a zinc-dependent hydrolase, homologous to adenosine deaminases, that transforms 7-deoxy-desulfo-argino-cylindrospermopsin into 7-deoxy-desulfo-cylindrospermopsin and ornithine, with the following kinetic parameters: KM = 0.21 ± 0.05 μM and kcat = 0.19 ± 0.02 min-1. CyrG contained 0.55 mol of zinc per mol of monomer but could be activated by FeII or CoII. CyrH contained almost no metal and showed no such activity even in the presence of excess metal. Using structure-based alignments and secondary structure predictions, we propose that the fifth and last polyketide synthase CyrF in cylindrospermopsin biosynthesis contains an unprecedented C-terminal domain homologous to N-acetyltransferases. We suggest that this domain catalyzes the condensation of the CyrF product with arginine to give 7-deoxy-desulfo-argino-cylindrospermopsin. This would be an unprecedented termination step for a polyketide synthase.
Collapse
Affiliation(s)
- Annick Méjean
- LIED, UMR 8236 CNRS, Université Paris Cité, 75205 Paris Cedex 13, France
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Olivier Ploux
- LIED, UMR 8236 CNRS, Université Paris Cité, 75205 Paris Cedex 13, France.,Chimie ParisTech, PSL, 75005 Paris, France
| |
Collapse
|
4
|
Tan F, Xiao P, Yang JR, Chen H, Jin L, Yang Y, Lin TF, Willis A, Yang J. Precision early detection of invasive and toxic cyanobacteria: A case study of Raphidiopsis raciborskii. HARMFUL ALGAE 2021; 110:102125. [PMID: 34887005 DOI: 10.1016/j.hal.2021.102125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Blooms of the toxic cyanobacterium, Raphidiopsis raciborskii (basionym Cylindrospermopsis raciborskii), are becoming a major environmental issue in freshwater ecosystems globally. Our precision prevention and early detection of R. raciborskii blooms rely upon the accuracy and speed of the monitoring method. A duplex digital PCR (dPCR) monitoring approach was developed and validated to detect the abundance and toxin-producing potential of R. raciborskii simultaneously in both laboratory spiked and environmental samples. Results of dPCR were strongly correlated with traditional real time quantitative PCR (qPCR) and microscopy for both laboratory and environmental samples. However, discrepancies between methods were observed when measuring R. raciborskii at low abundance (1 - 105 cells L - 1), with dPCR showing a higher precision compared to qPCR at low cell concentration. Furthermore, the dPCR assay had the highest detection rate for over two hundred environmental samples especially under low abundance conditions, followed by microscopy and qPCR. dPCR assay had the advantages of simple operation, time-saving, high sensitivity and excellent reproducibility. Therefore, dPCR would be a fast and precise monitoring method for the early warning of toxic bloom-forming cyanobacterial species and assessment of water quality risks, which can improve prediction and prevention of the impacts of harmful cyanobacterial bloom events in inland waters.
Collapse
Affiliation(s)
- Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jun R Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Engineering Research Center of Ecology and Agricultural Use of Wetland (Ministry of Education), College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yigang Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Anusuya Willis
- Australian National Algae Culture Collection, CSIRO, Hobart 7000, Tasmania, Australia
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Huo D, Gan N, Geng R, Cao Q, Song L, Yu G, Li R. Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins. HARMFUL ALGAE 2021; 109:102106. [PMID: 34815019 DOI: 10.1016/j.hal.2021.102106] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial blooms, which refer to the massive growth of harmful cyanobacteria, have altered the global freshwater ecosystems during the past decades. China has the largest population in the world, and it is suffering from the harmful effect of water eutrophication and cyanobacterial blooms along with rapid development of the economy and society. Research on cyanobacterial blooms and cyanotoxins in China have been overwhelmingly enhanced and emphasized during the past decades. In the present review, the research on cyanobacterial blooms in China is generally introduced, including the history of cyanobacterial bloom studies, the diversity of the bloom-forming cyanobacteria species (BFCS), and cyanotoxin studies in China. Most studies have focused on Microcystis, its blooms, and microcystins. Newly emerging blooms with the dominance of non-Microcystis BFCS have been gradually expanding to wide regions in China. Understanding the basic features of these non-Microcystis BFCS and their blooms, including their diversity, occurrence, physio-ecology, and harmful metabolites, will provide direction on future studies of cyanobacterial blooms in China.
Collapse
Affiliation(s)
- Da Huo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Nanqin Gan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Ruozhen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 400049, PR China
| | - Qi Cao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325000, PR China.
| |
Collapse
|
6
|
Dreher TW, Davis EW, Mueller RS, Otten TG. Comparative genomics of the ADA clade within the Nostocales. HARMFUL ALGAE 2021; 104:102037. [PMID: 34023075 DOI: 10.1016/j.hal.2021.102037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The ADA clade of Nostocales cyanobacteria, a group that is prominent in current harmful algal bloom events, now includes over 40 genome sequences with the recent addition of sixteen novel sequenced genomes (Dreher et al., Harmful Algae, 2021). Fourteen genomes are complete (closed), enabling highly detailed assessments of gene content and genome architecture. ADA genomes contain 5 rRNA operons, genes expected to support a photoautotrophic and diazotrophic lifestyle, and a varied array of genes for the synthesis of bioactive secondary metabolites. Genes for the production of the taste-and-odor compound geosmin and the four major classes of cyanotoxins - anatoxin-a, cylindrospermopsin, microcystin and saxitoxin - are represented in members of the ADA clade. Notably, the gene array for the synthesis of cylindrospermopsin by Dolichospermum sp. DET69 was located on a plasmid, raising the possibility of facile horizontal transmission. However, genes supporting independent conjugative transfer of this plasmid are lacking. Further, analysis of genomic loci containing this and other cyanotoxin gene arrays shows evidence that these arrays have long-term stability and do not appear to be genomic islands easily capable of horizontal transmission to other cells. There is considerable diversity in the gene complements of individual ADA genomes, including the variable presence of physiologically important genes: genomes in three species-level subclades lack the gas vesicle genes that facilitate a planktonic lifestyle, and, surprisingly, the genome of Cuspidothrix issatschenkoi CHARLIE-1, a reported diazotroph, lacks the genes for nitrogen fixation. Notably, phylogenetically related genomes possess limited synteny, indicating a prominent role for chromosome rearrangements during ADA strain evolution. The genomes contain abundant insertion sequences and repetitive transposase genes, which could be the main drivers of genome rearrangement through active transposition and homologous recombination. No prophages were found, and no evidence of viral infection was observed in the bloom population samples from which the genomes discussed here were derived. Phages thus seem to have a limited influence on ADA evolution.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA.
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA.
| |
Collapse
|
7
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
8
|
Gin KYH, Sim ZY, Goh KC, Kok JWK, Te SH, Tran NH, Li W, He Y. Novel cyanotoxin-producing Synechococcus in tropical lakes. WATER RESEARCH 2021; 192:116828. [PMID: 33508721 DOI: 10.1016/j.watres.2021.116828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Picocyanobacteria are small cyanobacteria, being about 0.8-1.5 µm in size. They are present in freshwater environments all over the world and are known to cause harmful algal blooms, although their effects are not well understood. Algal blooms are important to manage because they threaten freshwater resources, with potentially severe effects on ecological and human health. There is also increased urgency due to urbanization and climate change trends which are expected to exacerbate these bloom dynamics. These changes are expected to especially favour picocyanobacteria groups, emphasizing the need for better characterization of their effects in the environment. In this study, we report the discovery that Synechococcus sp. could produce cylindrospermopsin (CYN) and anatoxin-a (ATX). This ability had never been previously reported for this species. Their toxin genes were also partial compared to other major producers such as Raphidiopsis sp. and Anabaena sp., demonstrating potentially unique synthesis pathways that provides insight into the various mechanisms of genetic variation that drives toxin synthesis. The Synechococcus sp. strains were found to produce about 9.0 × 10-5-6.8 × 10-4 fg CYN cell-1 and 4.7 × 10-4-1.5 × 10-2 fg ATX cell-1. The potential for Synechococcus sp. to be toxic highlights a global concern due to its widespread distribution, and through environmental trends that increasingly favour its productivity within freshwater systems around the world.
Collapse
Affiliation(s)
- Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Zhi Yang Sim
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Kwan Chien Goh
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Jerome Wai Kit Kok
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shu Harn Te
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Wenxuan Li
- National University of Singapore Environmental Research Institute, National University of Singapore, 1 Create Way, #15-02, Singapore 138602, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Méjean A, Ploux O. Biosynthesis of Cylindrospermopsin in Cyanobacteria: Characterization of CyrJ the Sulfotransferase. JOURNAL OF NATURAL PRODUCTS 2021; 84:408-416. [PMID: 33439646 DOI: 10.1021/acs.jnatprod.0c01089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
7-Deoxy-desulfo-cylindrospermopsin was purified at small-scale from the supernatant of a culture of the cyanobacterium Oscillatoria sp. PCC 10702. This metabolite was obtained in a pure form using a three-step chromatographic procedure, and its identity was confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). LC-MS quantification showed that this metabolite was excreted in the culture medium of Oscillatoria sp. PCC 10702. Isotopic incorporation studies using [2-13C,15N]glycine, a cylindrospermopsin precursor, and Oscillatoria sp. PCC 10702 cells showed that glycine was incorporated into 7-deoxy-desulfo-cylindrospermopsin, 7-deoxy-cylindrospermopsin, 7-epi-cylindrospermopsin, and cylindrospermopsin. The isotopic incorporation rate was consistent with the following metabolic flux: 7-deoxy-desulfo-cylindrospermopsin → 7-deoxy-cylindrospermopsin → 7-epi-cylindrospermopsin and cylindrospermopsin. We have cloned the cyrJ gene into an expression vector and overproduced the putative sulfotransferase CyrJ in Escherichia coli. The purified protein CyrJ catalyzed, in vitro, the transfer of a sulfonate group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to 7-deoxy-desulfo-cylindrospermopsin to give 7-deoxy-cylindrospermopsin. Kinetic analysis afforded the following apparent constants: KM app. (PAPS) = 0.12 μM, Vmax app. = 20 nM/min, KM app. (7-deoxy-desulfo-cylindrospermopsin) = 0.12 μM, and KI app. (7-deoxy-desulfo-cylindrospermopsin) = 4.1 μM. Preliminary data suggested that CyrJ catalyzed the reaction through a ternary-complex kinetic mechanism. All these data confirmed that CyrJ catalyzed a sulfotransfer during the penultimate step of the biosynthesis of cylindrospermopsin.
Collapse
Affiliation(s)
- Annick Méjean
- LIED, UMR 8236 CNRS, Université de Paris, 75205 Paris, Cedex 13, France
| | - Olivier Ploux
- LIED, UMR 8236 CNRS, Université de Paris, 75205 Paris, Cedex 13, France
- Chimie ParisTech, PSL, 75005 Paris, France
| |
Collapse
|
10
|
Vico P, Bonilla S, Cremella B, Aubriot L, Iriarte A, Piccini C. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data. Mol Phylogenet Evol 2020; 148:106824. [PMID: 32294544 DOI: 10.1016/j.ympev.2020.106824] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Bruno Cremella
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay; Laboratory of Environmental Analysis, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
11
|
Jiang Y, Chen Y, Yang S, Li R. Phylogenetic relationships and genetic divergence of paralytic shellfish toxin- and cylindrospermopsin- producing Cylindrospermopsis and raphidiopsis. HARMFUL ALGAE 2020; 93:101792. [PMID: 32307073 DOI: 10.1016/j.hal.2020.101792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Cylindrospermopsis and Raphidiopsis (C/R group) are closely related species responsible for cyanobacterial blooms worldwide. Paralytic shellfish toxins (PSTs) and cylindrospermopsins (CYNs) have been identified in different C/R group strains. However, the evolutionary relationship between PST- and CYN-producing strains has not been systematically evaluated. In this study, C/R group strains and their toxin biosynthesis genes were evaluated by phylogenetic analysis and sequence comparison. None of the tested strains are able to produce PSTs and CYNs simultaneously. The C/R group strains were clustered into five clades, including two non-toxic, two CYN-producing and one PST-producing clades. A high degree of similarity was observed for rpoC1 (> 96%) and ITS-L (> 97%) sequences within each clade with the exception of the ITS-L (87% to 100%) region in CYN-producing R. curvata, which has been shown to contain variable sequence insertions. Genomic analysis revealed that sxtY and sxtZ could be found in both toxic and non-toxic strains. The transposase gene IS4 was only observed in strains from the PST-producing clade. The sxt and cyr gene clusters share five gene families with similar functions. The amino acid sequences of the adenylyl-sulfate kinase genes, sxtO and cyrN, are more similar (45% to 81%) than other pairs of genes (8.0% to 40%). SxtO and CyrN proteins from C/R group strains forms an independent clade on the phylogenetic tree with a high degree of sequence similarity (78% to 100%). In conclusion, PST- and CYN- producing C/R group species can be classified into different clades based on their phylogenetic profile. The sxtO and cyrN genes have probably diverged from a single ancestral adenylyl-sulfate kinase gene, and may be specifically used for toxin biosynthesis in C/R group species.
Collapse
Affiliation(s)
- Yongguang Jiang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shimin Yang
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
12
|
Stefanova K, Radkova M, Uzunov B, Gärtner G, Stoyneva-Gärtner M. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Innsbruck University, Innsbruck, Austria
| | | |
Collapse
|
13
|
Whole-Genome Sequence of Toxic Freshwater Cyanobacterium Chrysosporum ovalisporum Strain UAM-MAO. Microbiol Resour Announc 2018; 7:MRA00819-18. [PMID: 30533719 PMCID: PMC6256650 DOI: 10.1128/mra.00819-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete nucleotide sequence of Chrysosporum ovalisporum UAM-MAO, a filamentous, cylindrospermopsin-producing cyanobacterium involved in bloom forming in freshwater systems worldwide. It was isolated from an artificial pond in Madrid, Spain. The genome sequence contains 336 contigs, consisting of 7,478,035 bp and 2,851 putative protein-coding genes.
Collapse
|
14
|
Characterization of CyrI, the hydroxylase involved in the last step of cylindrospermopsin biosynthesis: Binding studies, site-directed mutagenesis and stereoselectivity. Arch Biochem Biophys 2018; 647:1-9. [DOI: 10.1016/j.abb.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
|
15
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
16
|
Liyanage HM, Magana Arachchi DN, Chandrasekaran NV. Genetic divergence among toxic and non-toxic cyanobacteria of the dry zone of Sri Lanka. SPRINGERPLUS 2016; 5:2026. [PMID: 27995003 PMCID: PMC5125326 DOI: 10.1186/s40064-016-3680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/11/2016] [Indexed: 12/20/2022]
Abstract
Sri Lanka has rich cyanobacterial diversity, however, only few studies have been conducted to identify the potential toxin producers in water bodies used for human consumption. As the detection of cyanotoxin is vital in water quality management, a study was done by employing 16S rRNA gene to explore the genetic divergence, phylogenetic relationships and potential toxin producing cyanobacteria in reservoirs and well waters in the dry zone of Sri Lanka. Forty five, 16S rRNA gene sequences were assayed and phylogenetic tree was constructed. Among 45 isolates, 20 isolates were classified as unidentified cyanobacteria and considered as novel cyanobacterial genera. Of 25 identified isolates, seven isolates were identified up to species level. With 16S rRNA phylogeny, 20 unidentified cyanobacterial isolates were able to place on their taxonomic positions up to order level. Results revealed that water samples understudy had vast cyanobacterial diversity with potential microcystin (MC) and cylindrospermopsin (CYN) producers and eleven clusters clearly demonstrated five cyanobacterial orders with more than 90% similarity irrespective to their toxicity which showed the suitability of 16S rRNA gene for taxonomic differentiation. Sixteen isolates had the potential to produce MC and two isolates to produce CYN. Findings of the study confirm the rich cyanobacterial diversity and the divergence among the potential cyanotoxin producers in the dry zone water bodies of Sri Lanka.
Collapse
Affiliation(s)
- Harshini M Liyanage
- National Institute of Fundamental Studies (NIFS), Hantana Road, Kandy, 20000 Sri Lanka
| | | | | |
Collapse
|
17
|
Paerl HW, Otten TG, Joyner AR. Moving towards adaptive management of cyanotoxin-impaired water bodies. Microb Biotechnol 2016; 9:641-51. [PMID: 27418325 PMCID: PMC4993183 DOI: 10.1111/1751-7915.12383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
The cyanobacteria are a phylum of bacteria that have played a key role in shaping the Earth's biosphere due to their pioneering ability to perform oxygenic photosynthesis. Throughout their history, cyanobacteria have experienced major biogeochemical changes accompanying Earth's geochemical evolution over the past 2.5+ billion years, including periods of extreme climatic change, hydrologic, nutrient and radiation stress. Today, they remain remarkably successful, exploiting human nutrient over‐enrichment as nuisance “blooms.” Cyanobacteria produce an array of unique metabolites, the functions and biotic ramifications of which are the subject of diverse ecophysiological studies. These metabolites are relevant from organismal and ecosystem function perspectives because some can be toxic and fatal to diverse biota, including zooplankton and fish consumers of algal biomass, and high‐level consumers of aquatic food sources and drinking water, including humans. Given the long history of environmental extremes and selection pressures that cyanobacteria have experienced, it is likely that that these toxins serve ecophysiological functions aimed at optimizing growth and fitness during periods of environmental stress. Here, we explore the molecular and ecophysiological mechanisms underlying cyanotoxin production, with emphasis on key environmental conditions potentially controlling toxin production. Based on this information, we offer potential management strategies for reducing cyanotoxin potentials in natural waters; for cyanotoxins with no clear drivers yet elucidated, we highlight the data gaps and research questions that are still lacking. We focus on the four major classes of toxins (anatoxins, cylindrospermopsins, microcystins and saxitoxins) that have thus far been identified as relevant from environmental health perspectives, but caution there may be other harmful metabolites waiting to be elucidated.
Collapse
Affiliation(s)
- Hans W Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Timothy G Otten
- Bend Genetics, LLC, 87 Scripps Drive, Ste. 301, Sacramento, CA, USA
| | - Alan R Joyner
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA
| |
Collapse
|
18
|
Liyanage HM, Arachchi DNM, Abeysekara T, Guneratne L. Toxicology of freshwater cyanobacteria. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:137-168. [PMID: 27229761 DOI: 10.1080/10590501.2016.1193923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many chemical contaminants in drinking water have been shown to cause adverse health effects in humans after prolonged exposure. Cyanobacteria are one of the most potent and diverse groups of photosynthetic prokaryotes. One key component of cyanobacterial success in the environment is the production of potent toxins as secondary metabolites, which have been responsible for numerous adverse health impacts in humans. Anthropogenic activities have led to the increase of eutrophication in freshwater bodies' worldwide, causing cyanobacterial blooms to become more frequent. The present article will discuss about harmful cyanobacteria and their toxicology with special references to microcystin, nodularin, and cylindrospermopsin.
Collapse
Affiliation(s)
- H M Liyanage
- a National Institute of Fundamental Studies , Kandy , Sri Lanka
| | | | - T Abeysekara
- b Nephrology and Transplantation Unit, Teaching Hospital , Kandy , Sri Lanka
| | - L Guneratne
- c Renal Care & Research Centre, District Hospital , Girandurukotte , Sri Lanka
| |
Collapse
|
19
|
Pacheco ABF, Guedes IA, Azevedo SMFO. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins (Basel) 2016; 8:toxins8060172. [PMID: 27338471 PMCID: PMC4926139 DOI: 10.3390/toxins8060172] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023] Open
Abstract
The wide distribution of cyanobacteria in aquatic environments leads to the risk of water contamination by cyanotoxins, which generate environmental and public health issues. Measurements of cell densities or pigment contents allow both the early detection of cellular growth and bloom monitoring, but these methods are not sufficiently accurate to predict actual cyanobacterial risk. To quantify cyanotoxins, analytical methods are considered the gold standards, but they are laborious, expensive, time-consuming and available in a limited number of laboratories. In cyanobacterial species with toxic potential, cyanotoxin production is restricted to some strains, and blooms can contain varying proportions of both toxic and non-toxic cells, which are morphologically indistinguishable. The sequencing of cyanobacterial genomes led to the description of gene clusters responsible for cyanotoxin production, which paved the way for the use of these genes as targets for PCR and then quantitative PCR (qPCR). Thus, the quantification of cyanotoxin genes appeared as a new method for estimating the potential toxicity of blooms. This raises a question concerning whether qPCR-based methods would be a reliable indicator of toxin concentration in the environment. Here, we review studies that report the parallel detection of microcystin genes and microcystin concentrations in natural populations and also a smaller number of studies dedicated to cylindrospermopsin and saxitoxin. We discuss the possible issues associated with the contradictory findings reported to date, present methodological limitations and consider the use of qPCR as an indicator of cyanotoxin risk.
Collapse
Affiliation(s)
- Ana Beatriz F Pacheco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Iame A Guedes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21949-902, Brazil.
| |
Collapse
|
20
|
Barón-Sola Á, Campo FFD, Sanz-Alférez S. Dynamics of Cylindrospermopsin Production and Toxin Gene Expression in <i>Aphanizomenon ovalisporum</i>. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.65037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Bohunická M, Mareš J, Hrouzek P, Urajová P, Lukeš M, Šmarda J, Komárek J, Gaysina LA, Strunecký O. A combined morphological, ultrastructural, molecular, and biochemical study of the peculiar family Gomontiellaceae (Oscillatoriales) reveals a new cylindrospermopsin-producing clade of cyanobacteria. JOURNAL OF PHYCOLOGY 2015; 51:1040-54. [PMID: 26987000 DOI: 10.1111/jpy.12354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/12/2015] [Indexed: 05/11/2023]
Abstract
Members of the morphologically unusual cyanobacterial family Gomontiellaceae were studied using a polyphasic approach. Cultured strains of Hormoscilla pringsheimii, Starria zimbabweënsis, Crinalium magnum, and Crinalium epipsammum were thoroughly examined, and the type specimen of the family, Gomontiella subtubulosa, was investigated. The results of morphological observations using both light microscopy and transmission electron microscopy were consistent with previous reports and provided evidence for the unique morphological and ultrastructural traits of this family. Analysis of the 16S rRNA gene confirmed the monophyletic origin of non-marine repre-sentatives of genera traditionally classified into this family. The family was phylogenetically placed among other groups of filamentous cyanobacterial taxa. The presence of cellulose in the cell wall was analyzed and confirmed in all cultured Gomontiellaceae members using Fourier transform infrared spectroscopy and fluorescence microscopy. Evaluation of toxins produced by the studied strains revealed the hepatotoxin cylindrospermopsin (CYN) in available strains of the genus Hormoscilla. Production of this compound in both Hormoscilla strains was detected using high-performance liquid chromatography in tandem with high resolution mass spectrometry and confirmed by positive PCR amplification of the cyrJ gene from the CYN biosynthetic cluster. To our knowledge, this is the first report of CYN production by soil cyanobacteria, establishing a previously unreported CYN-producing lineage. This study indicates that cyanobacteria of the family Gomontiellaceae form a separate but coherent cluster defined by numerous intriguing morphological, ultrastructural, and biochemical features, and exhibiting a toxic potential worthy of further investigation.
Collapse
Affiliation(s)
- Markéta Bohunická
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
- Centre for Phycology, Institute of Botany of the CAS, v.v.i., Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| | - Jan Mareš
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
- Centre for Phycology, Institute of Botany of the CAS, v.v.i., Dukelská 135, Třeboň, CZ-379 82, Czech Republic
- Institute of Hydrobiology, Biology Centre of the CAS, v.v.i., Na Sádkách 7, České Budějovice, CZ-370 05, Czech Republic
| | - Pavel Hrouzek
- Center Algatech, Institute of Microbiology of the CAS, v.v.i., Opatovický mlýn, Třeboň, CZ-379 81, Czech Republic
| | - Petra Urajová
- Center Algatech, Institute of Microbiology of the CAS, v.v.i., Opatovický mlýn, Třeboň, CZ-379 81, Czech Republic
| | - Martin Lukeš
- Center Algatech, Institute of Microbiology of the CAS, v.v.i., Opatovický mlýn, Třeboň, CZ-379 81, Czech Republic
| | - Jan Šmarda
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno-Bohunice, CZ-625 00, Czech Republic
| | - Jiří Komárek
- Centre for Phycology, Institute of Botany of the CAS, v.v.i., Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| | - Lira A Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450000 Ufa, Okt'yabrskoi revolucii 3a, Republic of Bashkortostan, Russian Federation
| | - Otakar Strunecký
- Centre for Phycology, Institute of Botany of the CAS, v.v.i., Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| |
Collapse
|
22
|
Rastogi RP, Madamwar D, Incharoensakdi A. Bloom Dynamics of Cyanobacteria and Their Toxins: Environmental Health Impacts and Mitigation Strategies. Front Microbiol 2015; 6:1254. [PMID: 26635737 PMCID: PMC4646972 DOI: 10.3389/fmicb.2015.01254] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are ecologically one of the most prolific groups of phototrophic prokaryotes in both marine and freshwater habitats. Both the beneficial and detrimental aspects of cyanobacteria are of considerable significance. They are important primary producers as well as an immense source of several secondary products, including an array of toxic compounds known as cyanotoxins. Abundant growth of cyanobacteria in freshwater, estuarine, and coastal ecosystems due to increased anthropogenic eutrophication and global climate change has created serious concern toward harmful bloom formation and surface water contamination all over the world. Cyanobacterial blooms and the accumulation of several cyanotoxins in water bodies pose severe ecological consequences with high risk to aquatic organisms and global public health. The proper management for mitigating the worldwide incidence of toxic cyanobacterial blooms is crucial for maintenance and sustainable development of functional ecosystems. Here, we emphasize the emerging information on the cyanobacterial bloom dynamics, toxicology of major groups of cyanotoxins, as well as a perspective and integrative approach to their management.
Collapse
Affiliation(s)
- Rajesh P. Rastogi
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel UniversityAnand, India
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn UniversityBangkok, Thailand
| |
Collapse
|
23
|
McGregor GB, Sendall BC. Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. JOURNAL OF PHYCOLOGY 2015; 51:109-119. [PMID: 26986262 DOI: 10.1111/jpy.12256] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/15/2014] [Indexed: 06/05/2023]
Abstract
Three populations of the freshwater filamentous cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck have been putatively identified from north-eastern Australia and found to produce the potent cyanotoxin cylindrospermopsin (CYN) and its analog deoxy-cylindrospermopsin (deoxy-CYN). We investigated the phylogeny and toxicology of strains and mats isolated from two of these populations using a combination of molecular and morphological techniques. Morphologically the strains corresponded to the type description, however, the frequency of false-branching was low, and variable over time. Strains and mat samples from both sites were positive for the cyrF and cyrJ genes associated with CYN biosynthesis. Phylogenetic analysis of these genes from Australian L. wollei sequences and comparable cyanobacterial sequences revealed that the genes in L. wollei were more closely related to homologous genes in Oscillatoria sp. PCC 6506 than to homologs in Nostocalean CYN-producers. These data suggest a common evolutionary origin of CYN biosynthesis in L. wollei and Oscillatoria. In both the 16S rRNA and nifH phylogenies, the Australian L. wollei strains formed well-supported clades with United States L. wollei (= Plectonema wollei) strains. Pair-wise sequence similarities within the 16S rRNA clade containing all eleven L. wollei strains were high, ranging from 97% to 100%. This group was distantly related (<92% nucleotide similarity) to other taxa within the group previously considered under the genus Lyngbya sensu lato (C. Agardh ex Gomont). Collectively, these results suggest that this toxigenic group is evolutionarily distinct and sufficiently distant as to be considered a separate genus, which we have described as Microseira gen. nov. and hence transfer to it the type M. wollei comb. nov.
Collapse
Affiliation(s)
- Glenn B McGregor
- Queensland Department of Science, Information Technology, Innovation and the Arts, GPO Box 5078, Brisbane, Qld, 4102, Australia
| | - Barbara C Sendall
- Department of Health, Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, Qld, 4108, Australia
| |
Collapse
|
24
|
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. WATER RESEARCH 2014; 66:320-337. [PMID: 25222334 DOI: 10.1016/j.watres.2014.08.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
25
|
Preußel K, Chorus I, Fastner J. Nitrogen limitation promotes accumulation and suppresses release of cylindrospermopsins in cells of Aphanizomenon sp. Toxins (Basel) 2014; 6:2932-47. [PMID: 25271784 PMCID: PMC4210877 DOI: 10.3390/toxins6102932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/29/2014] [Accepted: 09/12/2014] [Indexed: 12/05/2022] Open
Abstract
As the biosynthesis of cylindrospermopsin (CYN) is assumed to depend on nitrogen availability, this study investigated the impact of nitrogen availability on intra- and extracellular CYN and deoxy-CYN (D-CYN) contents in three Aphanizomenon strains from temperate waters. Nitrogen deficient (−N) cultures showed a prolonged growth phase and intracellular toxin accumulation by a factor of 2–6. In contrast, cultures with additional nitrate supply (+N) did not accumulate CYN within the cells. Instead, the maximum conceivable CYN release estimated for dead cells (identified by SYTOX® Green staining) was much lower than the concentrations of dissolved CYN actually observed, suggesting these cultures actively release CYN from intact cells. Furthermore, we found remarkably altered proportions of CYN to D-CYN: as batch cultures grew, the proportion of D-CYN increased by up to 40% in +N medium, whereas D-CYN remained constant or decreased slightly in −N medium. Since +N cultures showed similar toxin patterns as −P cultures with increased extracellular CYNs and higher proportion of D-CYN we conclude that nitrogen limitation may affect the way the cells economize resources, especially the yield from phosphorus pools, and that this has an impact on CYN production and release. For water management, these result imply that nutrient availability not only determines the abundance of potentially CYN-producing cyanobacteria, but also the amount of extracellular CYNs (challenging drinking-water treatment) as well as the ratio of D-CYN to CYN (affecting toxicity).
Collapse
Affiliation(s)
- Karina Preußel
- Federal Environment Agency, Schichauweg 58, 12307 Berlin, Germany.
| | - Ingrid Chorus
- Federal Environment Agency, Schichauweg 58, 12307 Berlin, Germany.
| | - Jutta Fastner
- Federal Environment Agency, Schichauweg 58, 12307 Berlin, Germany.
| |
Collapse
|
26
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Boopathi T, Ki JS. Impact of environmental factors on the regulation of cyanotoxin production. Toxins (Basel) 2014; 6:1951-78. [PMID: 24967641 PMCID: PMC4113735 DOI: 10.3390/toxins6071951] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins.
Collapse
Affiliation(s)
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 110-743, Korea.
| |
Collapse
|
28
|
Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins (Basel) 2014; 6:1896-915. [PMID: 24956074 PMCID: PMC4073136 DOI: 10.3390/toxins6061896] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/31/2014] [Accepted: 06/09/2014] [Indexed: 11/16/2022] Open
Abstract
Different environmental nitrogen sources play selective roles in the development of cyanobacterial blooms and noxious effects are often exacerbated when toxic cyanobacteria are dominant. Cylindrospermopsis raciborskii CS-505 (heterocystous, nitrogen fixing) and Raphidiopsis brookii D9 (non-N2 fixing) produce the nitrogenous toxins cylindrospermopsin (CYN) and paralytic shellfish toxins (PSTs), respectively. These toxin groups are biosynthesized constitutively by two independent putative gene clusters, whose flanking genes are target for nitrogen (N) regulation. It is not yet known how or if toxin biosynthetic genes are regulated, particularly by N-source dependency. Here we show that binding boxes for NtcA, the master regulator of N metabolism, are located within both gene clusters as potential regulators of toxin biosynthesis. Quantification of intra- and extracellular toxin content in cultures at early stages of growth under nitrate, ammonium, urea and N-free media showed that N-sources influence neither CYN nor PST production. However, CYN and PST profiles were altered under N-free medium resulting in a decrease in the predicted precursor toxins (doCYN and STX, respectively). Reduced STX amounts were also observed under growth in ammonium. Quantification of toxin biosynthesis and transport gene transcripts revealed a constitutive transcription under all tested N-sources. Our data support the hypothesis that PSTs and CYN are constitutive metabolites whose biosynthesis is correlated to cyanobacterial growth rather than directly to specific environmental conditions. Overall, the constant biosynthesis of toxins and expression of the putative toxin-biosynthesis genes supports the usage of qPCR probes in water quality monitoring of toxic cyanobacteria.
Collapse
Affiliation(s)
- Karina Stucken
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Uwe John
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Allan Cembella
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Katia Soto-Liebe
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Mónica Vásquez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| |
Collapse
|
29
|
Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A, Burford MA, Neilan BA. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genomics 2014; 15:83. [PMID: 24476316 PMCID: PMC3922686 DOI: 10.1186/1471-2164-15-83] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cylindrospermopsis raciborskii is an invasive filamentous freshwater cyanobacterium, some strains of which produce toxins. Sporadic toxicity may be the result of gene deletion events, the horizontal transfer of toxin biosynthesis gene clusters, or other genomic variables, yet the evolutionary drivers for cyanotoxin production remain a mystery. Through examining the genomes of toxic and non-toxic strains of C. raciborskii, we hoped to gain a better understanding of the degree of similarity between these strains of common geographical origin, and what the primary differences between these strains might be. Additionally, we hoped to ascertain why some cyanobacteria possess the cylindrospermopsin biosynthesis (cyr) gene cluster and produce toxin, while others do not. It has been hypothesised that toxicity or lack thereof might confer a selective advantage to cyanobacteria under certain environmental conditions. RESULTS In order to examine the fundamental differences between toxic and non-toxic C. raciborskii strains, we sequenced the genomes of two closely related isolates, CS-506 (CYN+) and CS-509 (CYN-) sourced from different lakes in tropical Queensland, Australia. These genomes were then compared to a third (reference) genome from C. raciborskii CS-505 (CYN+). Genome sizes were similar across all three strains and their G + C contents were almost identical. At least 2,767 genes were shared among all three strains, including the taxonomically important rpoc1, ssuRNA, lsuRNA, cpcA, cpcB, nifB and nifH, which exhibited 99.8-100% nucleotide identity. Strains CS-506 and CS-509 contained at least 176 and 101 strain-specific (or non-homologous) genes, respectively, most of which were associated with DNA repair and modification, nutrient uptake and transport, or adaptive measures such as osmoregulation. However, the only significant genetic difference observed between the two strains was the presence or absence of the cylindrospermopsin biosynthesis gene cluster. Interestingly, we also identified a cryptic secondary metabolite gene cluster in strain CS-509 (CYN-) and a second cryptic cluster common to CS-509 and the reference strain, CS-505 (CYN+). CONCLUSIONS Our results confirm that the most important factor contributing to toxicity in C. raciborskii is the presence or absence of the cyr gene cluster. We did not identify any other distally encoded genes or gene clusters that correlate with CYN production. The fact that the additional genomic differences between toxic and non-toxic strains were primarily associated with stress and adaptation genes suggests that CYN production may be linked to these physiological processes.
Collapse
Affiliation(s)
- Rati Sinha
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Leanne A Pearson
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Timothy W Davis
- Australian Rivers Institute, Griffith University, 4111 Nathan, Queensland, Australia
| | - Julia Muenchhoff
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Ryanbi Pratama
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| | - Aaron Jex
- Faculty of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 4111 Nathan, Queensland, Australia
| | - Brett A Neilan
- School of Biotechnology and Bimolecular Sciences, University of New South Wales, 2052 Sydney, NSW, Australia
| |
Collapse
|
30
|
Davis TW, Orr PT, Boyer GL, Burford MA. Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle. HARMFUL ALGAE 2014; 31:18-25. [PMID: 28040107 DOI: 10.1016/j.hal.2013.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 05/06/2023]
Abstract
Many harmful cyanobacterial genera have strains that can produce potent toxins and other biologically active compounds that present a risk to the health of humans and other animals that consume or contact contaminated water. Cylindrospermopsins (CYNs) are produced by several species of cyanobacteria including Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju. Previous studies have used filtration methods to separate between the particulate and dissolved CYNs pools. Filtration may lyse cells and thus overestimate the dissolved CYNs pool. Here we employed a novel passive sampling technique to measure the proportion of dissolved CYNs in two Australian strains of C. raciborskii over the growth cycle while minimizing potential overestimation of the dissolved CYNs pool. We simultaneously compared the ratios of the two major CYNs produced by Australian strains of C. raciborskii: cylindrospermopsin (CYN) and deoxy-CYN in the particulate and dissolved pools. CYNs stayed within the cells during log phase but accumulated in the water column during stationary and senescent phases. The proportion of deoxy-CYN to CYN differed between strains but increased in both as cells aged. We conclude that while active release or leaking of CYNs from actively growing cells does occur, CYNs in the water column were primarily a result of cell lysis during stationary phase or due to other environmental stressors. The production of CYN and deoxy-CYN were a constitutive process and both the concentration of, ratio between, and release of CYN and deoxy-CYN were strain dependent. Future studies must account for the genetic diversity of CYN producers when investigating the production of CYNs in natural systems.
Collapse
Affiliation(s)
- Timothy W Davis
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia.
| | - Philip T Orr
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia; Seqwater, PO Box 16146, City East, Qld 4002, Australia
| | - Gregory L Boyer
- Chemistry Department, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia
| |
Collapse
|
31
|
de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1979-2003. [PMID: 24056894 DOI: 10.1039/c3em00353a] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
Collapse
Affiliation(s)
- Armah A de la Cruz
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PLoS One 2013; 8:e74238. [PMID: 24015317 PMCID: PMC3756036 DOI: 10.1371/journal.pone.0074238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.
Collapse
|
33
|
Barón-Sola A, Gutiérrez-Villanueva MA, Del Campo FF, Sanz-Alférez S. Characterization of Aphanizomenon ovalisporum amidinotransferase involved in cylindrospermopsin synthesis. Microbiologyopen 2013; 2:447-58. [PMID: 23533111 PMCID: PMC3684758 DOI: 10.1002/mbo3.78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 12/03/2022] Open
Abstract
An increasing abundance of Aphanizomenon ovalisporum in water bodies from diverse world regions has been reported in the last few years, with the majority of the isolated strains producing the toxin cylindrospermopsin (CYN), leading to a rise in ecological and health risks. The understanding of CYN synthesis is crucial in the control of CYN production. An amidinotransferase (AMDT) seems to be the first enzyme involved in the synthesis of CYN. In this study, we have cloned and overexpressed the aoaA gene from the constitutive CYN producer A. ovalisporum UAM-MAO. The recombinant purified AoaA was characterized, confirming that it is an l-arginine:glycine AMDT. It shows an optimal activity between 32 and 37°C, at pH from 8 to 9. The activity exhibits a mixed (ping-pong/sequential) kinetic mechanism, and is inhibited by the reaction product guanidine acetate (GAA) in a noncompetitive manner. Mg2+ stimulates AoaA activity while Co2+ and Mn2+ inhibit it. AoaA conserves the critical residues of the catalytic site and substrate specificity of AMDTs, as the previously reported AMDT from Cylindrospermopsis raciborskii Cyr. Both proteins can be included in a new group of prokaryotic AMDTs involved in CYN production.
Collapse
Affiliation(s)
- Angel Barón-Sola
- Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
34
|
Soto-Liebe K, López-Cortés XA, Fuentes-Valdes JJ, Stucken K, Gonzalez-Nilo F, Vásquez M. In silico analysis of putative paralytic shellfish poisoning toxins export proteins in cyanobacteria. PLoS One 2013; 8:e55664. [PMID: 23457475 PMCID: PMC3574068 DOI: 10.1371/journal.pone.0055664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Paralytic shellfish poisoning toxins (PSTs) are a family of more than 30 natural alkaloids synthesized by dinoflagellates and cyanobacteria whose toxicity in animals is mediated by voltage-gated Na+ channel blocking. The export of PST analogues may be through SxtF and SxtM, two putative MATE (multidrug and toxic compound extrusion) family transporters encoded in PSTs biosynthetic gene cluster (sxt). sxtM is present in every sxt cluster analyzed; however, sxtF is only present in the Cylindrospermopsis-Raphidiopsis clade. These transporters are energetically coupled with an electrochemical gradient of proton (H+) or sodium (Na+) ions across membranes. Because the functional role of PSTs remains unknown and methods for genetic manipulation in PST-producing organisms have not yet been developed, protein structure analyses will allow us to understand their function. By analyzing the sxt cluster of eight PST-producing cyanobacteria, we found no correlation between the presence of sxtF or sxtM and a specific PSTs profile. Phylogenetic analyses of SxtF/M showed a high conservation of SxtF in the Cylindrospermopsis-Raphidiopsis clade, suggesting conserved substrate affinity. Two domains involved in Na+ and drug recognition from NorM proteins (MATE family) of Vibrio parahaemolyticus and V. cholerae are present in SxtF/M. The Na+ recognition domain was conserved in both SxtF/M, indicating that Na+ can maintain the role as a cation anti-transporter. Consensus motifs for toxin binding differed between SxtF and SxtM implying differential substrate binding. Through protein modeling and docking analysis, we found that there is no marked affinity between the recognition domain and a specific PST analogue. This agrees with our previous results of PST export in R. brookii D9, where we observed that the response to Na+ incubation was similar to different analogues. These results reassert the hypothesis regarding the involvement of Na+ in toxin export, as well as the motifs L398XGLQD403 (SxtM) and L390VGLRD395 (SxtF) in toxin recognition.
Collapse
Affiliation(s)
| | - Xaviera A. López-Cortés
- Nanobiotechnology Division at University of Talca, Fraunhofer Chile Research Foundation - Center for Systems Biotechnology, Talca, Chile
| | | | - Karina Stucken
- Institute of Molecular Evolution Heinrich-Heine, Universität Düsseldorf, Düsseldorf, Germany
| | - Fernando Gonzalez-Nilo
- Universidad Andres Bello, Center for Bioinformatics and Integrative Biology, Santiago, Chile
| | - Mónica Vásquez
- Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
35
|
Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013; 37:23-43. [DOI: 10.1111/j.1574-6976.2012.12000.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/27/2022] Open
|