1
|
Hamchand R, Wang K, Song D, Palm NW, Crawford JM. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nat Commun 2024; 15:8902. [PMID: 39406708 PMCID: PMC11480411 DOI: 10.1038/s41467-024-53185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Virulent Klebsiella oxytoca strains are associated with gut and lung pathologies, yet our understanding of the molecular signals governing pathogenesis remains limited. Here, we characterized a family of K. oxytoca pyrazine and pyrazinone autoinducers and explored their roles in microbial and host signaling. We identified the human mucin capping sugar Neu5Ac as a selective elicitor of leupeptin, a protease inhibitor prevalent in clinical lung isolates of K. oxytoca, and leupeptin-derived pyrazinone biosynthesis. Additionally, we uncovered a separate pyrazine pathway, regulated by general carbohydrate metabolism, derived from a broadly conserved PLP-dependent enzyme. While both pyrazine and pyrazinone signaling induce iron acquisition responses, including enterobactin biosynthesis, pyrazinone signaling enhances yersiniabactin virulence factor production and selectively activates the proinflammatory human histamine receptor H4 (HRH4). Our findings suggest that the availability of specific carbohydrates delineates distinct autoinducer pathways in K. oxytoca that may have differential effects on bacterial virulence and host immune responses.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Kevin Wang
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Bacterial sialoglycosidases in Virulence and Pathogenesis. Pathogens 2019; 8:pathogens8010039. [PMID: 30909660 PMCID: PMC6471121 DOI: 10.3390/pathogens8010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Human oral microbiome and dysbiotic infections have been recently evidently identified. One of the major reasons for such dysbiosis is impairment of the immune system. Periodontitis is a chronic inflammatory disease affecting the tissues that surround and support the teeth. In the United States., approximately 65 million people are affected by this condition. Its occurrence is also associated with many important systemic diseases such as cardiovascular disease, rheumatoid arthritis, and Alzheimer’s disease. Among the most important etiologies of periodontitis is Porphyromonas gingivalis, a keystone bacterial pathogen. Keystone pathogens can orchestrate inflammatory disease by remodeling a normally benign microbiota causing imbalance between normal and pathogenic microbiota (dysbiosis). The important characteristics of P. gingivalis causing dysbiosis are its virulence factors which cause effective subversion of host defenses to its advantage allowing other pathogens to grow. Some of the mechanisms involved in these processes are still not well-understood. However, various microbial strategies target host sialoglycoproteins for immune dysregulation. In addition, the enzymes that break down sialoglycoproteins and sialoglycans are the “sialoglycoproteases”, resulting in exposed terminal sialic acid. This process could lead to pathogen-toll like receptor (TLR) interactions mediated through sialic acid receptor ligand mechanisms. Assessing the function of P. gingivalis sialoglycoproteases, could pave the way to designing carbohydrate analogues and sialic acid mimetics to serve as drug targets.
Collapse
|
3
|
Molecular Characterization of a Novel N-Acetylneuraminate Lyase from a Deep-Sea Symbiotic Mycoplasma. Mar Drugs 2018; 16:md16030080. [PMID: 29510563 PMCID: PMC5867624 DOI: 10.3390/md16030080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/01/2022] Open
Abstract
N-acetylneuraminic acid (Neu5Ac) based novel pharmaceutical agents and diagnostic reagents are highly required in medical fields. However, N-acetylneuraminate lyase(NAL)for Neu5Ac synthesis is not applicable for industry due to its low catalytic efficiency. In this study, we biochemically characterized a deep-sea NAL enzyme (abbreviated form: MyNal) from a symbiotic Mycoplasma inhabiting the stomach of a deep-sea isopod, Bathynomus jamesi. Enzyme kinetic studies of MyNal showed that it exhibited a very low Km for both cleavage and synthesis activities compared to previously described NALs. Though it favors the cleavage process, MyNal out-competes the known NALs with respect to the efficiency of Neu5Ac synthesis and exhibits the highest kcat/Km values. High expression levels of recombinant MyNal could be achieved (9.56 mol L−1 culture) with a stable activity in a wide pH (5.0–9.0) and temperature (40–60 °C) range. All these features indicated that the deep-sea NAL has potential in the industrial production of Neu5Ac. Furthermore, we found that the amino acid 189 of MyNal (equivalent to Phe190 in Escherichia coli NAL), located in the sugar-binding domain, GX189DE, was also involved in conferring its enzymatic features. Therefore, the results of this study improved our understanding of the NALs from different environments and provided a model for protein engineering of NAL for biosynthesis of Neu5Ac.
Collapse
|
4
|
First functional and mutational analysis of group 3 N-acetylneuraminate lyases from Lactobacillus antri and Lactobacillus sakei 23K. PLoS One 2014; 9:e96976. [PMID: 24817128 PMCID: PMC4016182 DOI: 10.1371/journal.pone.0096976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/15/2014] [Indexed: 01/17/2023] Open
Abstract
N-acetyl neuraminate lyases (NALs) catalyze the reversible aldol cleavage of N-acetyl neuraminic acid (Neu5Ac) to pyruvate and N-acetyl-D-mannosamine (ManNAc). Previous phylogenetic studies divided NALs into four different groups. Groups 1 and 2 have been well characterized at both kinetic and molecular levels, but no NAL from group 3 has been studied to date. In this work, a functional characterization of two group 3 members was performed using the recombinant NALs from Lactobacillus antri and Lactobacillus sakei 23K, revealing an optimal pH of between 6.0 and 7.0, low stability at basic pHs (>8.0), low optimal temperatures and, especially, low catalytic efficiency compared with their counterparts in group 1 and 2. The mutational analysis carried out showed that a plausible molecular reason for the low activity shown by Lactobacillus antri and Lactobacillus sakei 23k NALs compared with group 1 and 2 NALs could be the relatively small sugar-binding pocket they contain. A functional divergence analysis concluding that group 3 is more closely related to group 2 than to group 1.
Collapse
|
5
|
Xiao S, Li R, Diao H, Zhao F, Ye X. Progesterone receptor-mediated regulation of N-acetylneuraminate pyruvate lyase (NPL) in mouse uterine luminal epithelium and nonessential role of NPL in uterine function. PLoS One 2013; 8:e65607. [PMID: 23741500 PMCID: PMC3669229 DOI: 10.1371/journal.pone.0065607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022] Open
Abstract
N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl(−/−) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl(−/−) females from mating with WT males. Npl(−/−)xNpl(−/−) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl(−/−), indicating no compensatory upregulation in the D3.5 Npl(−/−) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development.
Collapse
Affiliation(s)
- Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Reproductive Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
García García MI, Sola Carvajal A, García Carmona F, Sánchez Ferrer Á. Characterization of a novel N-acetylneuraminate lyase from Staphylococcus carnosus TM300 and its application to N-acetylneuraminic acid production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:7450-7456. [PMID: 22803763 DOI: 10.1021/jf3014102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The possibility of incorporating N-acetylneuraminic acid (Neu5Ac) in infant formulas and other functional foods has opened up the need to synthesize N-acetylneuraminic acid using N-acetylneuraminate lyases (NALs) by reversible aldol condensation of pyruvate and N-acetyl-d-mannosamine. Until now, NALs have been cloned from pathogenic microorganisms; however, this Article describes the expression and characterization of an N-acetylneuraminate lyase from the Staphylococcus carnosus TM300, a GRAS microorganism used in fermented meat. ScNAL showed a high level of expression in E. coli (403 mg L(-1) culture). This, combined with its simple two-step purification procedure, the highest recovery described to date (86%), its kinetic parameters, which are in the same order of magnitude as best reported NALs, and its optimum pH and temperature, make ScNAL a promising and cheap biocatalyst. To confirm its biotechnological potential, the Neu5Ac was synthesized in 3 h in simple industrial working conditions with a high degree of conversion (94%).
Collapse
Affiliation(s)
- María Inmaculada García García
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Campus Espinardo, E-30100 Murcia, Spain
| | | | | | | |
Collapse
|
7
|
Molecular characterization of a novel N-acetylneuraminate lyase from Lactobacillus plantarum WCFS1. Appl Environ Microbiol 2011; 77:2471-8. [PMID: 21317263 DOI: 10.1128/aem.02927-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-d-mannosamine (ManNAc). In nature, N-acetylneuraminate lyase occurs mainly in pathogens. However, this paper describes how an N-acetylneuraminate lyase was cloned from the human gut commensal Lactobacillus plantarum WCFS1 (LpNAL), overexpressed, purified, and characterized for the first time. This novel enzyme, which reaches a high expression level (215 mg liter(-1) culture), shows similar catalytic efficiency to the best NALs previously described. This homotetrameric enzyme (132 kDa) also shows high stability and activity at alkaline pH (pH > 9) and good temperature stability (60 to 70°C), this last feature being further improved by the presence of stabilizing additives. These characteristics make LpNAL a promising biocatalyst. When its sequence was compared with that of other, related (real and putative) NALs described in the databases, it was seen that NAL enzymes could be divided into four structural groups and three subgroups. The relation of these subgroups with human and other mammalian NALs is also discussed.
Collapse
|
8
|
An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Appl Microbiol Biotechnol 2009; 86:481-9. [DOI: 10.1007/s00253-009-2302-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
9
|
Wang TH, Chen YY, Pan HH, Wang FP, Cheng CH, Lee WC. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins. BMC Biotechnol 2009; 9:63. [PMID: 19586552 PMCID: PMC2722590 DOI: 10.1186/1472-6750-9-63] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 07/09/2009] [Indexed: 11/29/2022] Open
Abstract
Background Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST) at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D), and the other with five contiguous arginine residues (5R). Results Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP) that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc). Conclusion Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.
Collapse
Affiliation(s)
- Tzu-Hsien Wang
- Department of Chemical Engineering, National Chung Cheng University, Chiayi 621, Taiwan.
| | | | | | | | | | | |
Collapse
|
10
|
Pasteurella multocida sialic acid aldolase: a promising biocatalyst. Appl Microbiol Biotechnol 2008; 79:963-70. [PMID: 18521592 DOI: 10.1007/s00253-008-1506-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/06/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Sialic acid aldolases or N-acetylneuraminate lyases (NanAs) catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) to form pyruvate and N-acetyl-D: -mannosamine (ManNAc). A capillary electrophoresis assay was developed to directly characterize the activities of NanAs in both Neu5Ac cleavage and Neu5Ac synthesis directions. The assay was used to obtain the pH profile and the kinetic data of a NanA cloned from Pasteurella multocida P-1059 (PmNanA) and a previously reported recombinant Escherichia coli K12 NanA (EcNanA). Both enzymes are active in a broad pH range of 6.0-9.0 in both reaction directions and have similar kinetic parameters. Substrates specificity studies showed that 5-O-methyl-ManNAc, a ManNAc derivative, can be used efficiently as a substrate by PmNanA, but not efficiently by EcNanA, for the synthesis of 8-O-methyl Neu5Ac. In addition, PmNanA (250 mg l(-1) culture) has a higher expression level (2.5-fold) than EcNanA (94 mg l(-1) culture). The higher expression level and a broader substrate tolerance make PmNanA a better catalyst than EcNanA for the chemoenzymatic synthesis of sialic acids and their derivatives.
Collapse
|
11
|
Mitsakos V, Dobson RC, Pearce FG, Devenish SR, Evans GL, Burgess BR, Perugini MA, Gerrard JA, Hutton CA. Inhibiting dihydrodipicolinate synthase across species: Towards specificity for pathogens? Bioorg Med Chem Lett 2008; 18:842-4. [DOI: 10.1016/j.bmcl.2007.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 01/28/2023]
|
12
|
Xu P, Qiu JH, Zhang YN, Chen J, Wang PG, Yan B, Song J, Xi RM, Deng ZX, Ma CQ. Efficient Whole-Cell Biocatalytic Synthesis ofN-Acetyl-D-neuraminic Acid. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700094] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Wang TH, Lee WC. Production of 2-keto-3-deoxy-d-glycero-d-galacto-nonopyranulosonic acid (KDN) using fusion protein of N-acetyl-d-neuraminic acid aldolase. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2005.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Puente-Polledo L, Reglero A, González-Clemente C, Rodríguez-Aparicio LB, Ferrero MA. Biochemical conditions for the production of polysialic acid by Pasteurella haemolytica A2. Glycoconj J 1998; 15:855-61. [PMID: 10052589 DOI: 10.1023/a:1006902931032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The capsular polysaccharide of Pasteurella haemolytica A2 consists of a linear polymer of N-acetylneuraminic acid (Neu5Ac) with alpha(2-8) linkages. When the bacterium was grown at 37 degrees C for 90 h in 250 ml shake flasks at 200 rpm in Brain heart infusion broth (BHIB), it accumulated, attaining a level of 60 microg/ml. Release of this polymer was strictly regulated by the growth temperature, and above 40 degrees no production was detected. The pathway for the biosynthesis of this sialic acid capsular polymer was also examined in P. haemolytica A2 and was seen to involve the sequential presence of three enzymatic activities: Neu5Ac lyase activity, which synthesizes Neu5Ac by condensation of Nacetyl-D-mannosamine and pyruvate with apparent Km values of 91 mM and 73 mM, respectively; a CMP-Neu5Ac synthetase, which catalyzes the production of CMP-Neu5Ac from Neu5Ac and CTP with apparent Km values of 2 mM and 0.5 mM, respectively, and finally a membrane-associated polysialyltransferase, which catalyzes the incorporation of sialic acid from CMP-Neu5Ac into polymeric products with an apparent CMP-Neu5Ac Km of 250 microM.
Collapse
Affiliation(s)
- L Puente-Polledo
- Departamento de Bioquímica y Biología Molecular, Universidad de León, Spain
| | | | | | | | | |
Collapse
|
15
|
Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS, Piercey JE, Ramlakhan D, Todd M, Dawson MJ. An efficient process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase. Enzyme Microb Technol 1997; 20:393-400. [PMID: 9084208 DOI: 10.1016/s0141-0229(96)00180-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N-acetyl-D-neuraminic acid (Neu5Ac) aldolase (EC 4.1.3.3) has bee reported for synthesis of Neu5Ac,1-5 but there are no reports of processes which do not have significant drawbacks for large-scale operation. Here, Neu5Ac aldolase from an overexpressing recombinant strain of Escherichia coli has been used to develop an immobilized enzyme process for production of Neu5Ac. The enzyme was immobilized onto Eupergit-C and could be reused many times in the reaction. Base-catalyzed epimerization of N-acetyl-D-glucosamine (GlcNAc) yielded GlcNAc/N-acetyl-D-mannosamine (ManNAc) mixtures (c 4:1) which could be used directly in the aldolase reaction; however, inhibition of the enzyme by GlcNAc limited the concentration of ManNAc which could be used in the reaction by this approach. This necessitated the addition of a large molar excess of pyruvate (five- to seven-fold) to drive the equilibrium over to Neu5Ac; nevertheless, a method has been developed to remove the excess pyruvate effectively by complexation with bisulfite, thus allowing Neu5Ac to be recovered by absorption onto an anion-exchange resin. In a second approach, a method has been developed to enrich GlcNAc/ManNAc mixtures for ManNAc. ManNAc can be used at high concentrations in the reaction, thus obviating the need to use a large molar excess of pyruvate. Neu5Ac can be isolated from such reaction mixtures by a simple crystallization. This work shows the importance of integrated process solutions for the effective scale-up of biotransformation reactions.
Collapse
Affiliation(s)
- M Mahmoudian
- Glaxo Wellcome Research and Development, Medicines Research Centre, Stevenage, Herts, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamamoto K, Kawakami B, Kawamura Y, Kawai K. Serratia liquefaciens as a new host superior for overproduction and purification using the N-acetylneuraminate lyase gene of Escherichia coli. Anal Biochem 1997; 246:171-5. [PMID: 9073353 DOI: 10.1006/abio.1997.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Serratia liquefaciens was screened as a host strain for effective gene expression and easy purification of the target protein. A model gene, N-acetylneuraminate lyase gene (nanA), fused with the promoter region of Escherichia coli lac operon successfully overproduced the protein independently from the inducer. Since S. liquefaciens grew at lower temperature than E. coli and its proteins were more heat sensitive than those of E. coli, simple incubation at 60 degrees C could inactivate most enzymes but the nanA protein. Subsequent column works for purification, then, became simple and rapid.
Collapse
Affiliation(s)
- K Yamamoto
- Tsuruga Institute of Biotechnology, Toyobo Co., Ltd., Fukui, Japan
| | | | | | | |
Collapse
|
17
|
Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids ☆. NEW COMPREHENSIVE BIOCHEMISTRY 1997; 29. [PMCID: PMC7147860 DOI: 10.1016/s0167-7306(08)60624-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechls-Universität zu Kiel, Germany
| | - Johannis P. Kamerling
- Bijuoet Center, Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| |
Collapse
|
18
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
19
|
Aisaka K, Igarashi A, Yamaguchi K, Uwajima T. Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. Biochem J 1991; 276 ( Pt 2):541-6. [PMID: 1646603 PMCID: PMC1151125 DOI: 10.1042/bj2760541] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
N-Acetylneuraminate lyase produced by Escherichia coli was purified and crystallized from a genetically engineered strain (E. coli SF8/pNAL1). The enzyme showed apparent molecular masses of 105,000 Da on gel filtration and 35,000 Da on SDS/PAGE, suggesting that the enzyme is a trimer. The apparent optimum pH and temperature were found to be 6.5-7.0 and 80 degrees C respectively. The Km values for N-acetylneuraminate and N-glycollylneuraminate were 3.3 and 3.3 mM respectively. The enzyme was inhibited by reduction with NaBH4 in the presence of the substrate, indicating that the enzyme belongs to the Schiff-base-forming Class I aldolases. The enzyme was strongly inhibited by Cu2+ ions, p-chloromercuribenzoate and N-bromosuccinimide, and also inhibited competitively by the reaction product, pyruvate, and its structurally related compounds, dihydroxyacetone and DL-glyceraldehyde.
Collapse
Affiliation(s)
- K Aisaka
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., Japan
| | | | | | | |
Collapse
|
20
|
Uwajima T. Production and properties of microbial enzymes participating in polyamine and sialic acid metabolisms and their analytical applications to monitoring tumor cell growth. Trends Analyt Chem 1989. [DOI: 10.1016/0165-9936(89)85064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
|
22
|
Hyperproduction of N-acetylneuraminate lyase by the gene-cloned strain ofEscherichia coli. Biotechnol Lett 1987. [DOI: 10.1007/bf01033201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Schauer R, Stoll S, Zbiral E, Schreiner E, Brandstetter HH, Vasella A, Baumberger F. Interaction ofN-acetyl-4-, 7-, 8- or 9-deoxyneuraminic acids andN-acetyl-4-, 7- or 8-mono-epi- and-7,8-di-epineuraminic acids withN-acetylneuraminate lyase. Glycoconj J 1987. [DOI: 10.1007/bf01048369] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|