1
|
Lurthy T, Gerin F, Rey M, Mercier PE, Comte G, Wisniewski-Dyé F, Prigent-Combaret C. Pseudomonas produce various metabolites displaying herbicide activity against broomrape. Microbiol Res 2025; 290:127933. [PMID: 39471583 DOI: 10.1016/j.micres.2024.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/01/2024]
Abstract
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation. Four Pseudomonas strains, two P. fluorescens JV391D17 and JV391D10, one P. chlororaphis JV395B and one P. ogarae F113 were cultivated using various carbon sources, including fructose, pyruvate, fumarate, and malate, to enhance the diversity of potential Orobanche growth inhibition (OGI)-specialized metabolites produced by Pseudomonas strains. Both global and targeted metabolomic approaches were utilized to identify specific OGI metabolites. Both carbon sources and Pseudomonas genetic diversity significantly influenced the production of OGI metabolites. P. chlororaphis JV395B and P. ogarae F113 produced unique OGI metabolites belonging to different chemical families, such as hydroxyphenazines and phloroglucinol compounds, respectively. Additionally, metabolomic analyses identified an unannotated potential OGI ion, M375T65. This ion was produced by all Pseudomonas strains but was found to be over-accumulated in JV395B, which likely explains its superior OGI activity. Then, greenhouse experiments were performed to evaluate the biocontrol efficacy of selected strains: they showed the efficacy of these strains, particularly JV395B, in reducing broomrape infestation in rapeseed. These findings suggest that certain Pseudomonas strains, through their metabolite production, can offer a sustainable biocontrol strategy against parasitic plants. This biocontrol activity can be optimized by environmental factors, such as carbon amendments. Ultimately, this approach presents a promising alternative to chemical herbicides.
Collapse
Affiliation(s)
- Tristan Lurthy
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Pierre-Edouard Mercier
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| | - Claire Prigent-Combaret
- Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France.
| |
Collapse
|
2
|
Yu X, Hu K, Geng X, Cao L, Zhou T, Lin X, Liu H, Chen J, Luo C, Qu S. The Mh-miR393a-TIR1 module regulates Alternaria alternata resistance of Malus hupehensis mainly by modulating the auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112008. [PMID: 38307352 DOI: 10.1016/j.plantsci.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyue Geng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hongcheng Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jingrui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changguo Luo
- Institute of Fruit Science, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Shi L, Zhu X, Qian T, Du J, Du Y, Ye J. Mechanism of Salt Tolerance and Plant Growth Promotion in Priestia megaterium ZS-3 Revealed by Cellular Metabolism and Whole-Genome Studies. Int J Mol Sci 2023; 24:15751. [PMID: 37958734 PMCID: PMC10647267 DOI: 10.3390/ijms242115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Approximately one-third of agricultural land worldwide is affected by salinity, which limits the productivity and sustainability of crop ecosystems. Plant-growth-promoting rhizobacteria (PGPR) are a potential solution to this problem, as PGPR increases crop yield through improving soil fertility and stress resistance. Previous studies have shown that Priestia megaterium ZS-3(ZS-3) can effectively help plants tolerate salinity stress. However, how ZS-3 regulates its metabolic adaptations in saline environments remains unclear. In this study, we monitored the metabolic rearrangement of compatibilisers in ZS-3 and combined the findings with genomic data to reveal how ZS-3 survives in stressful environments, induces plant growth, and tolerates stress. The results showed that ZS-3 tolerated salinity levels up to 9%. In addition, glutamate and trehalose help ZS-3 adapt to osmotic stress under low NaCl stress, whereas proline, K+, and extracellular polysaccharides regulate the osmotic responses of ZS-3 exposed to high salt stress. Potting experiments showed that applying the ZS-3 strain in saline and neutral soils could effectively increase the activities of soil acid phosphatase, urease, and invertase in both soils, thus improving soil fertility and promoting plant growth. In addition, strain ZS-3-GFP colonised the rhizosphere and leaves of Cinnamomum camphora well, as confirmed by confocal microscopy and resistance plate count analysis. Genomic studies and in vitro experiments have shown that ZS-3 exhibits a variety of beneficial traits, including plant-promoting, antagonistic, and other related traits (such as resistance to saline and heavy metal stress/tolerance, amino acid synthesis and transport, volatile compound synthesis, micronutrient utilisation, and phytohormone biosynthesis/regulatory potential). The results support that ZS-3 can induce plant tolerance to abiotic stresses. These data provide important clues to further reveal the interactions between plants and microbiomes, as well as the mechanisms by which micro-organisms control plant health.
Collapse
Affiliation(s)
- Lina Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Qian
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jiazhou Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Du
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (L.S.); (X.Z.); (T.Q.); (J.D.); (Y.D.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Abdelwahed S, Cherif H, Bejaoui B, Saadouli I, Hajji T, Ben Halim N, Ouertani A, Ouzari I, Cherif A, Mnif W, Mosbah A, Masmoudi AS. Microassay validation for bacterial IAA estimation as a new fine-tuned PGPR screening assay. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The detection and quantification of Indole -3 Acetic Acid (IAA) produced by Plant growth promoting rhizobacteria (PGPR) rely on a standard well-documented assay, which remains time-consuming, laborious, and costly. These drawbacks led to sway interest to economic and reliable assays. The aim of this work is to validate and standardize a fast, reliable, and cost-effective microassay to quantify IAA produced by bacteria with an easy microplate method. In order to validate the accuracy of the IAA microplate assay, bacterial samples from different genera were assayed using two methods: the conventional IAA estimation assay and the IAA micro- assay. The microassay shows a prominent reduction in used bacterial supernatant volume as well as Salkowski reagent volume of about 92.5%. It is considerably cheaper than the conventional one of around 56%. The newly performed microplate assay is 23 times faster. The result of IAA quantitative analysis for 13 bacterial strains showed that Bacillus muralis and Bacillus toyonensis produced the highest IAA concentration (23.64±0.003μg/ml and 23.35±0.006μg/ml, respectively). The obtained data from both methods were highly correlated with an R-value of 0.979. The microassay offers the ability to read the optical density of all samples simultaneously since used volumes of bacterial supernatants and Salkowski reagent were minimized to place the mixture in 96-well microplates, which reduces greatly required labor. Furthermore, the application of the IAA micro-plate assay reduces drastically the reagent waste and toxicity hazard of Salkowski reagent in the environment, thus, we can classify it as eco-friendly respecting the Green Chemistry concept according to Environmental Protection Agency (EPA). The IAA microassay is a, reliable, rapid and cost-effective and eco-friendly method to screen plant growth promoting potential of more than 23 bacterial strains by microplate. It could be an alternative for the conventional IAA assay as a routine research tool.
Collapse
Affiliation(s)
- Soukaina Abdelwahed
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Hanen Cherif
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Bilel Bejaoui
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Ilhem Saadouli
- Active Microorganisms and Biomolecules Laboratory (LMBA), Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Tarek Hajji
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Nizar Ben Halim
- Biomedical and Oncogenetic Genomics Laboratory (LR 16 IPT 05), Pasteur institute of Tunis, Tunis, Belvedere Tunisia
| | - Awatef Ouertani
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Imen Ouzari
- Active Microorganisms and Biomolecules Laboratory (LMBA), Faculty of Sciences of Tunis, Tunis, Tunisia
| | - Ameur Cherif
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Amor Mosbah
- Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia
| | | |
Collapse
|
5
|
Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria. Processes (Basel) 2020. [DOI: 10.3390/pr8091111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coal mining produces large quantities of discard that is stockpiled in large dumps. This stockpiled material, termed coal discard, poses an environmental threat emphasising the need for appropriate bioremediation. Here, metagenomic analysis of the 16S rRNA from ten coal-degrading strains previously isolated from coal slurry from discard dumps and from the rhizosphere of diesel-contaminated sites was used to establish genetic relatedness to known plant growth-promoting (PGP) bacteria in the NCBI database. Measurement of indole and ammonium production and solubilisation of P and K were used to screen bacteria for PGP characteristics. BLAST analysis revealed ≥ 99% homology of six isolates with reference PGP strains of Bacillus, Escherichia, Citrobacter, Serratia, Exiguobacterium and Microbacterium, while two strains showed 94% and 91% homology with Proteus. The most competent PGP strains were Proteus strain ECCN 20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b isolated from diesel-contaminated soil. In response to L-trp supplementation, the concentration of indolic compounds (measured as indole-3-acetic acid) increased. Production of ammonium and solubilisation of insoluble P by these strains was also apparent. Only Serratia strain ECCN 24b was capable of solubilising insoluble K. Production of indoles increased following exposure to increasing aliquots of coal discard, suggesting no negative effect of this material on indole production by these coal-degrading bacterial isolates and that these bacteria may indeed possess PGP characteristics.
Collapse
|
6
|
Duca DR, Glick BR. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 2020; 104:8607-8619. [PMID: 32875364 DOI: 10.1007/s00253-020-10869-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 11/28/2022]
Abstract
Numerous studies have reported the stimulation of plant growth following inoculation with an IAA-producing PGPB. However, the specific mode of IAA production by the PGPB is rarely elucidated. In part, this is due to the overwhelming complexity of IAA biosynthesis and regulation. The promiscuity of the enzymes implicated in IAA biosynthesis adds another element of complexity when attempting to decipher their role in IAA biosynthesis. To date, the majority of research on IAA biosynthesis describes three separate pathways classified in terms of their intermediates-indole acetonitrile (IAN), indole acetamide (IAM), and indole pyruvic acid (IPA). Each of these pathways is mediated by a set of enzymes, many of which are traditionally assumed to exist for that specific catalytic role. This lends the possibility of missing other, novel, enzymes that may also incidentally serve that function. Some of these pathways are constitutively expressed, while others are inducible. Some enzymes involved in IAA biosynthesis are known to be regulated by IAA or by IAA precursors, as well as by a multitude of environmental cues. This review aims to provide an update to our current understanding of the biosynthesis and regulation of IAA in bacteria. KEY POINTS: • IAA produced by PGPB improves bacterial stress tolerance and promotes plant growth. • Bacterial IAA biosynthesis is convoluted; multiple interdependent pathways. • Biosynthesis of IAA is regulated by IAA, IAA-precursors, and environmental factors.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
7
|
Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:948-964. [PMID: 31923320 DOI: 10.1111/tpj.14677] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Liyu Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Cong Sheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
8
|
Athinuwat D, Brooks S. The OmpA Gene of Xanthomonas axonopodis pv. glycines is Involved in Pathogenesis of Pustule Disease on Soybean. Curr Microbiol 2019; 76:879-887. [PMID: 31089795 DOI: 10.1007/s00284-019-01702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
The goal of this study was to elucidate the role of the outer membrane protein A (ompA) gene of Xanthomonas axonopodis pv. glycines in bacterial pustule pathogenesis of soybean. An ompA mutant of X. axonopodis pv. glycines KU-P-SW005 was shown to significantly decrease cellulase, pectate lyase, and polysaccharide production. The production of these proteins in the ompA mutant was approximately five times lower than that of the wildtype. The ompA mutant also exhibited modified biofilm development. More importantly, the mutant reduced disease severity to the soybean. Ten days after inoculation, the virulence rating of the susceptible soybean cv. SJ4 inoculated with the ompA mutant was 11.23%, compared with 87.98% for the complemented ompA mutant. Production of cellulase, pectate lyase, polysaccharide was restored, biofilm, and pustule numbers were restored in the complemented ompA mutant that did not differ from the wild type. Taken together, these data suggest that OmpA-mediated invasion plays an important role in protein secretion during pathogenesis to soybean.
Collapse
Affiliation(s)
- Dusit Athinuwat
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathumthani, Thailand.
| | - Siraprapa Brooks
- School of Science, Mae Fah Luang University, Chaing Rai, 57100, Thailand
| |
Collapse
|
9
|
Methods for Detecting Biocontrol and Plant Growth-Promoting Traits in Rhizobacteria. METHODS IN RHIZOSPHERE BIOLOGY RESEARCH 2019. [DOI: 10.1007/978-981-13-5767-1_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiol Res 2018; 209:21-32. [PMID: 29580619 DOI: 10.1016/j.micres.2018.02.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/31/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants.
Collapse
Affiliation(s)
- Muhammad Numan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| | - Samina Bashir
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Yasmin Khan
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Roqayya Mumtaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Zabta Khan Shinwari
- Qarshi Research International and Vice Chancellor of Qarshi University, Lahore, Pakistan.
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman
| | - Ajmal Khan
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| | - Ahmed Al-Harrasi
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkatal Al Mauz, Nizwa 616, Oman.
| |
Collapse
|
11
|
Kunkel BN, Harper CP. The roles of auxin during interactions between bacterial plant pathogens and their hosts. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:245-254. [PMID: 29272462 DOI: 10.1093/jxb/erx447] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogens have evolved several strategies to manipulate the biology of their hosts to facilitate colonization, growth to high levels in plant tissue, and production of disease. One of the less well known of these strategies is the synthesis of plant hormones and hormone analogs, and there is growing evidence that modulation of host hormone signaling is important during pathogenesis. Several plant pathogens produce the auxin indole-3-acetic acid (IAA) and/or virulence factors that modulate host auxin signaling. Auxin is well known for being involved in many aspects of plant growth and development, but recent findings have revealed that elevated IAA levels or enhanced auxin signaling can also promote disease development in some plant-pathogen interactions. In addition to stimulating plant cell growth during infection by gall-forming bacteria, auxin and auxin signaling can antagonize plant defense responses. Auxin can also act as a microbial signaling molecule to impact the biology of some pathogens directly. In this review, we summarize recent progress towards elucidating the roles that auxin production, modification of host auxin signaling, and direct effects of auxin on pathogens play during pathogenesis, with emphasis on the impacts of auxin on interactions with bacterial pathogens.
Collapse
Affiliation(s)
- Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | |
Collapse
|
12
|
Actinomycetes benefaction role in soil and plant health. Microb Pathog 2017; 111:458-467. [DOI: 10.1016/j.micpath.2017.09.036] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 11/18/2022]
|
13
|
Tian X, Shi Y, Geng L, Chu H, Zhang J, Song F, Duan J, Shu C. Template Preparation Affects 16S rRNA High-Throughput Sequencing Analysis of Phyllosphere Microbial Communities. FRONTIERS IN PLANT SCIENCE 2017; 8:1623. [PMID: 29018461 PMCID: PMC5622981 DOI: 10.3389/fpls.2017.01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/05/2017] [Indexed: 06/01/2023]
Abstract
Phyllosphere microbial communities are highly diverse and have important ecological implications; in that context, bacterial identification based on 16S rRNA genes is an important research issue. In studies of phyllosphere microbial communities, microporous filtration and centrifugation are used to collect microorganism samples, but it is unclear which one has a better collection efficiency. In this study, we compared these two microorganism collection methods and investigated the effects of the DNA extraction process on the estimation of microbial community composition and organization. The following four treatments were examined: (A) filtration, resuspension, and direct PCR; (B) filtration, DNA isolation, and PCR; (C) centrifugation, resuspension, and direct PCR; (D) centrifugation, DNA isolation, and PCR. Our results showed that the percentage of chloroplast sequence contaminants was affected by the DNA extraction process. The bacterial compositions clearly differed between treatments A and C, suggesting that the collection method has an influence on the determination of community structure. Compared with treatments B and D, treatments A and C resulted in higher Shannon index values, indicating that the DNA extraction process might reduce the observed phyllosphere microbial alpha diversity. However, with respect to community structure, treatments B and D yielded very similar results, suggesting that the DNA extraction process erases the effect of the collection method. Our findings provide key information to ensure accurate estimates of diversity and community composition in studies of phyllosphere microorganisms.
Collapse
Affiliation(s)
- Xiaoyan Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Life Sciences, Shaanxi Normal University, Linfen, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangyan Duan
- School of Life Sciences, Shaanxi Normal University, Linfen, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. SPRINGERPLUS 2016; 5:1596. [PMID: 27652169 PMCID: PMC5026986 DOI: 10.1186/s40064-016-3286-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/11/2016] [Indexed: 12/29/2022]
Abstract
To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ18O and δ15N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.
Collapse
Affiliation(s)
- Keiji Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan ; Center for Environmental Science in Saitama, Kazo, Saitama 347-0115 Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Wataru Suda
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562 Japan
| | - Shigeki Yamamura
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Takejiro Takamatsu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Akio Takenaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Masami Kanao Koshikawa
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Seiji Hayashi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Mirai Watanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| |
Collapse
|
15
|
Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:627-37. [PMID: 26849835 DOI: 10.1111/plb.12441] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 05/13/2023]
Abstract
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.
Collapse
Affiliation(s)
- S Venkatachalam
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - K Ranjan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - R Prasanna
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - B Ramakrishnan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S Thapa
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - A Kanchan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
16
|
Li W, Wang F, Wang J, Fan F, Zhu J, Yang J, Liu F, Zhong W. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice. PLoS One 2015; 10:e0119867. [PMID: 25786239 PMCID: PMC4364752 DOI: 10.1371/journal.pone.0119867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The hormone auxin plays an important role not only in the growth and development of rice, but also in its defense responses. We've previously shown that the P450 gene CYP71Z2 enhances disease resistance to pathogens through regulation of phytoalexin biosynthesis in rice, though it remains unclear if auxin is involved in this process or not. METHODOLOGY AND PRINCIPAL FINDINGS The expression of CYP71Z2 was induced by Xanthomonas oryzae pv. oryzae (Xoo) inoculation was analyzed by qRT-PCR, with GUS histochemical staining showing that CYP71Z2 expression was limited to roots, blades and nodes. Overexpression of CYP71Z2 in rice durably and stably increased resistance to Xoo, though no significant difference in disease resistance was detected between CYP71Z2-RNA interference (RNAi) rice and wild-type. Moreover, IAA concentration was determined using the HPLC/electrospray ionization/tandem mass spectrometry system. The accumulation of IAA was significantly reduced in CYP71Z2-overexpressing rice regardless of whether plants were inoculated or not, whereas it was unaffected in CYP71Z2-RNAi rice. Furthermore, the expression of genes related to IAA, expansin and SA/JA signaling pathways was suppressed in CYP71Z2-overexpressing rice with or without inoculation. CONCLUSIONS AND SIGNIFICANCE These results suggest that CYP71Z2-mediated resistance to Xoo may be via suppression of IAA signaling in rice. Our studies also provide comprehensive insight into molecular mechanism of resistance to Xoo mediated by IAA in rice. Moreover, an available approach for understanding the P450 gene functions in interaction between rice and pathogens has been provided.
Collapse
Affiliation(s)
- Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Jinyan Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weigong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, China
| |
Collapse
|
17
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Abstract
An indole-biotransforming strain MA was identified asLysinibacillus xylanilyticuson the basis of the 16S rRNA gene sequencing. It transforms indole completely from the broth culture in the presence of an additional carbon source (i.e., sodium succinate). Gas-chromatography-mass spectrometry identified indole-3-acetamide, indole-3-acetic acid, and 3-methylindole as transformation products. Tryptophan-2-monooxygenase activity was detected in the crude extracts of indole-induced cells of strain MA, which confirms the formation of indole-3-acetamide from tryptophan in the degradation pathway of indole. On the basis of identified metabolites and enzyme assay, we have proposed a new transformation pathway for indole degradation. Indole was first transformed to indole-3-acetamide via tryptophan. Indole-3-acetamide was then transformed to indole-3-acetic acid that was decarboxylated to 3-methylindole. This is the first report of a 3-methylindole synthesis via the degradation pathway of indole.
Collapse
|
19
|
Arora PK, Bae H. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography. Int J Anal Chem 2014; 2014:239641. [PMID: 25548566 PMCID: PMC4274814 DOI: 10.1155/2014/239641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 11/22/2022] Open
Abstract
Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
20
|
Lisitskaya TB, Trosheva TD. Microorganisms stimulating plant growth for sustainable agriculture. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363213130252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Yang DL, Yang Y, He Z. Roles of plant hormones and their interplay in rice immunity. MOLECULAR PLANT 2013; 6:675-85. [PMID: 23589608 DOI: 10.1093/mp/sst056] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
Collapse
Affiliation(s)
- Dong-Lei Yang
- The Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
22
|
Giordano PR, Chaves AM, Mitkowski NA, Vargas JM. Identification, Characterization, and Distribution of Acidovorax avenae subsp. avenae Associated with Creeping Bentgrass Etiolation and Decline. PLANT DISEASE 2012; 96:1736-1742. [PMID: 30727271 DOI: 10.1094/pdis-04-12-0377-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial etiolation and decline caused by Acidovorax avenae subsp. avenae is an emerging disease of creeping bentgrass (Agrostis stolonifera) in and around the transition zone, a unique area of turfgrass culture between cool and warm regions of the United States. It is suspected that the disease has been present for many years, although diagnosis of the first occurrence was not reported until 2010. Solicitation of samples from golf courses in 2010 and 2011 was undertaken to investigate the prevalence and dissemination of Acidovorax avenae subsp. avenae on creeping bentgrass. At least 21 isolates from 13 states associated with these outbreaks on golf courses were confirmed as A. avenae subsp. avenae by pathogenicity assays and 16S rDNA sequence analysis at two independent locations. Pathogenicity testing of bacterial isolates from creeping bentgrass samples exhibiting heavy bacterial streaming confirmed A. avenae subsp. avenae as the only bacterium to cause significant disease symptoms and turfgrass decline. Host range inoculations revealed isolates of A. avenae subsp. avenae to be pathogenic on all Agrostis stolonifera cultivars tested, with slight but significant differences in disease severity on particular cultivars. Other turfgrass hosts tested were only mildly susceptible to Acidovorax avenae subsp. avenae infection. This study initiated research on A. avenae subsp. avenae pathogenicity causing a previously uncharacterized disease of creeping bentgrass putting greens in the United States.
Collapse
Affiliation(s)
- Paul R Giordano
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing 48824
| | - Arielle M Chaves
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston 02881
| | - Nathaniel A Mitkowski
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston 02881
| | - Joseph M Vargas
- Department of Plant, Soil and Microbial Sciences, Michigan State University
| |
Collapse
|
23
|
Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. THE NEW PHYTOLOGIST 2012; 196:520-534. [PMID: 22924530 DOI: 10.1111/j.1469-8137.2012.04275.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/07/2012] [Indexed: 05/04/2023]
Abstract
Beneficial effects elicited by the root endophyte Piriformospora indica are widely known, but the mechanism by which these are achieved is still unclear. It is proposed that phytohormones produced by the fungal symbiont play a crucial role in the interaction with the plant roots. Biochemical analyses of the underlying biosynthetic pathways for auxin production have shown that, on tryptophan feeding, P. indica can produce the phytohormones indole-3-acetic acid (IAA) and indole-3-lactate (ILA) through the intermediate indole-3-pyruvic acid (IPA). Time course transcriptional analyses after exposure to tryptophan designated the piTam1 gene as a key player. A green fluorescence protein (GFP) reporter study and transcriptional analysis of colonized barley roots showed that piTam1 is induced during the biotrophic phase. Piriformospora indica strains in which the piTam1 gene was silenced via an RNA interference (RNAi) approach were compromised in IAA and ILA production and displayed reduced colonization of barley (Hordeum vulgare) roots in the biotrophic phase, but the elicitation of growth promotion was not affected compared with the wild-type situation. Our results suggest that IAA is involved in the establishment of biotrophy in P. indica-barley symbiosis and might represent a compatibility factor in this system.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Lars M Voll
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Jörg Hofmann
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Monica Sharma
- Department of Mycology and Plant Pathology, Dr. YSP UHF, Nauni, Solan, HP, India
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
24
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
25
|
Chatnaparat T, Prathuangwong S, Ionescu M, Lindow SE. XagR, a LuxR homolog, contributes to the virulence of Xanthomonas axonopodis pv. glycines to soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1104-17. [PMID: 22746827 DOI: 10.1094/mpmi-01-12-0008-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.
Collapse
|
26
|
Fu J, Wang S. Insights into auxin signaling in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2011; 2:74. [PMID: 22639609 PMCID: PMC3355572 DOI: 10.3389/fpls.2011.00074] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/17/2011] [Indexed: 05/17/2023]
Abstract
The phytohormone auxin has been known to be a regulator of plant growth and development ever since its discovery. Recent studies on plant-pathogen interactions identify auxin as a key character in pathogenesis and plant defense. Like plants, diverse pathogens possess the capacity to synthesize indole-3-acetic acid (IAA), the major form of auxin in plants. The emerging knowledge on auxin-signaling components, auxin metabolic processes, and indole-derived phytoalexins in plant responses to pathogen invasion has provided putative mechanisms of IAA in plant susceptibility and resistance to non-gall- or tumor-inducing pathogens.
Collapse
Affiliation(s)
- Jing Fu
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Shiping Wang, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China. e-mail:
| |
Collapse
|
27
|
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. PLANT PHYSIOLOGY 2011; 155:589-602. [PMID: 21071600 PMCID: PMC3075746 DOI: 10.1104/pp.110.163774] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 11/10/2010] [Indexed: 05/18/2023]
Abstract
Breeding crops with the quality of broad-spectrum disease resistance using genetic resources is one of the principal goals of crop improvement. However, the molecular mechanism of broad-spectrum resistance remains largely unknown. Here, we show that GH3-2, encoding an indole-3-acetic acid (IAA)-amido synthetase, mediates a broad-spectrum resistance to bacterial Xanthomonas oryzae pv oryzae and Xanthomonas oryzae pv oryzicola and fungal Magnaporthe grisea in rice (Oryza sativa). IAA, the major form of auxin in rice, results in rice more vulnerable to the invasion of different types of pathogens, which is at least partly due to IAA-induced loosening of the cell wall, the natural protective barrier of plant cells to invaders. X. oryzae pv oryzae, X. oryzae pv oryzicola, and M. grisea secrete IAA, which, in turn, may induce rice to synthesize its own IAA at the infection site. IAA induces the production of expansins, the cell wall-loosening proteins, and makes rice vulnerable to pathogens. GH3-2 is likely contributing to a minor quantitative trait locus for broad-spectrum resistance. Activation of GH3-2 inactivates IAA by catalyzing the formation of an IAA-amino acid conjugate, which results in the suppression of expansin genes. Thus, GH3-2 mediates basal resistance by suppressing pathogen-induced IAA accumulation. It is expected that, regulated by a pathogen-induced strong promoter, GH3-2 alone may be used for breeding rice with a broad-spectrum disease resistance.
Collapse
|
28
|
Salkowski's reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci Biotechnol Biochem 2010; 74:2202-8. [PMID: 21071871 DOI: 10.1271/bbb.100360] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhizobacteria isolated from wild dipterocarp saplings in Central Kalimantan, Indonesia, were subjected to Salkowski's reagent test, which is often used in detecting indolic substances. Among 69 isolates grown in a low-nitrogen medium supplemented with L-tryptophan (TRP), culture fluids of 29 strains were positive to the test, in which 17 bacteria turned red and other 10 pink. All the red type rhizobacteria actively converted TRP into tryptophol (TOL), while some yielded indole-3-acetic acid (IAA) with TOL production. They also showed a capacity to decompose gallotannin into pyrogallol via gallic acid. On the other hand, an active IAA-producing Serratia sp. CK67, and three Fe-solubilizing Burkholderia spp. CK28, CK43, and Citrobacter sp. CK42, were all involved in pink type rhizobacteria, which were more effective, oxidative TRP-degraders than the red type rhizobacteria. Thus, Salkowski's reagent test should be a useful primary index in the screening of functional rhizobacteria in peatland ecosystem.
Collapse
|
29
|
Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic Acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 2010; 57:535-8. [PMID: 16348419 PMCID: PMC182744 DOI: 10.1128/aem.57.2.535-538.1991] [Citation(s) in RCA: 626] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a new assay that differentiates between indoleacetic acid (IAA)-producing and -nonproducing bacteria on a colony plate lift. Medium supplemented with 5 mM L-tryptophan is inoculated with isolates of interest, overlaid with a nitrocellulose membrane, and then incubated until bacterial colonies reach 1 to 2 mm in diameter. The membrane is removed to a filter paper saturated with Salkowski reagent and incubated until distinct red haloes form around the colonies. The colorimetric reaction to IAA is limited to a region immediately surrounding each colony, is specific to isolates producing IAA, occurs within 1 h after the membrane is placed in the reagent, and is sensitive to as little as 50 pmol of IAA in a 2-mm spot. We have used this assay for quantifying epiphytic and endophytic populations of IAA-producing isolates of Pseudomonas syringae subsp. savastanoi and for detecting IAA-producing colonies of other pseudomonads and Erwinia herbicola. The assay provides a rapid and convenient method to screen large numbers of bacteria.
Collapse
Affiliation(s)
- J M Bric
- Department of Plant Pathology, University of California, Davis, California 95616
| | | | | |
Collapse
|
30
|
Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 2010; 61:793-6. [PMID: 16534942 PMCID: PMC1388360 DOI: 10.1128/aem.61.2.793-796.1995] [Citation(s) in RCA: 536] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the sensitivity and the specificity of three versions of the Salkowski colorimetric technique. Two of these allowed the detection of indoleacetic acid (IAA) over a low range of concentrations (0.5 to 20 (mu)g/ml), while the third permitted the detection of IAA over a range of higher concentrations (5 to 200 (mu)g/ml). Overall, the three formulations reacted not only with auxin (IAA) but also with indolepyruvic acid and indoleacetamide. Therefore, these techniques appear to be specific for IAA, indolepyruvic acid, and indoleacetamide rather than for IAA alone.
Collapse
|
31
|
Howden AJM, Rico A, Mentlak T, Miguet L, Preston GM. Pseudomonas syringae pv. syringae B728a hydrolyses indole-3-acetonitrile to the plant hormone indole-3-acetic acid. MOLECULAR PLANT PATHOLOGY 2009; 10:857-65. [PMID: 19849791 PMCID: PMC6640395 DOI: 10.1111/j.1364-3703.2009.00595.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nitrilase enzymes catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have been identified in plants, bacteria and fungi. There is mounting evidence to support a role for nitrilases in plant-microbe interactions, but the activity of these enzymes in plant pathogenic bacteria remains unexplored. The genomes of the plant pathogenic bacteria Pseudomonas syringae pv. syringae B728a and Pseudomonas syringae pv. tomato DC3000 contain nitrilase genes with high similarity to characterized bacterial arylacetonitrilases. In this study, we show that the nitrilase of P. syringae pv. syringae B728a is an arylacetonitrilase, which is capable of hydrolysing indole-3-acetonitrile to the plant hormone indole-3-acetic acid, and allows P. syringae pv. syringae B728a to use indole-3-acetonitrile as a nitrogen source. This enzyme may represent an additional mechanism for indole-3-acetic acid biosynthesis by P. syringae pv. syringae B728a, or may be used to degrade and assimilate aldoximes and nitriles produced during plant secondary metabolism. Nitrilase activity was not detected in P. syringae pv. tomato DC3000, despite the presence of a homologous nitrilase gene. This raises the interesting question of why nitrilase activity has been retained in P. syringae pv. syringae B728a and not in P. syringae pv. tomato DC3000.
Collapse
Affiliation(s)
- Andrew J M Howden
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | |
Collapse
|
32
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
33
|
Suda W, Nagasaki A, Shishido M. Powdery Mildew-Infection Changes Bacterial Community Composition in the Phyllosphere. Microbes Environ 2009; 24:217-23. [DOI: 10.1264/jsme2.me09114] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wataru Suda
- Graduate School of Horticulture, Chiba University
| | | | | |
Collapse
|
34
|
Pseudomonas savastanoi pv. savastanoi contains two iaaL paralogs, one of which exhibits a variable number of a trinucleotide (TAC) tandem repeat. Appl Environ Microbiol 2008; 75:1030-5. [PMID: 19098222 DOI: 10.1128/aem.01572-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, Pseudomonas savastanoi pv. savastanoi isolates were demonstrated to contain two iaaL paralogs, which are both chromosomally located in most strains. Comparative analysis of iaaL nucleotide sequences amplified from these two paralogs revealed that one paralog, iaaL(Psn), is 100% identical to iaaL from P. savastanoi pv. nerii, while the other paralog, iaaL(Psv), exhibited 93% identity to iaaL from Pseudomonas syringae pv. tomato (iaaL(Pto)). A 3-nucleotide motif (TAC) comprised of 3 to 15 repeats, which remained stable after propagation of the strains in olive plants, was found in iaaL(Psv). Based on the observed nucleotide sequence variations, a restriction fragment length polymorphism assay was developed that allowed differentiation among iaaL(Psn), iaaL(Psv), and iaaL(Pto)(.) In addition, reverse transcriptase PCR on total RNA from P. savastanoi pv. savastanoi strains demonstrated that both iaaL(Psv) and iaaL(Psn) containing 14 or fewer TAC repeats are transcribed. Capillary electrophoresis analysis of PCR-amplified DNA fragments containing the TAC repeats from iaaL(Psv) allowed the differentiation of P. savastanoi pv. savastanoi isolates.
Collapse
|
35
|
Ouzari H, Khsairi A, Raddadi N, Jaoua L, Hassen A, Zarrouk M, Daffonchio D, Boudabous A. Diversity of auxin-producing bacteria associated toPseudomonas savastanoi-induced olive knots. J Basic Microbiol 2008; 48:370-7. [DOI: 10.1002/jobm.200800036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution. Cell Microbiol 2008; 10:2339-54. [PMID: 18671824 DOI: 10.1111/j.1462-5822.2008.01215.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium has evolved sophisticated strategies to perceive and transduce plant-derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole-3-acetic acid (IAA) and gamma-amino butyric acid (GABA), profoundly affect Agrobacterium-plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum-quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum-sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross-talk in plant signalling networks, also act as cross-kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross-talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co-evolutionary balance.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang X, Xiong Y, DeFraia C, Schmelz E, Mou Z. The Arabidopsis MAP kinase kinase 7: A crosstalk point between auxin signaling and defense responses? PLANT SIGNALING & BEHAVIOR 2008; 3:272-4. [PMID: 19704652 PMCID: PMC2634200 DOI: 10.4161/psb.3.4.5230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 05/09/2023]
Abstract
Plant-pathogen interaction induces a complex host response that coordinates various signaling pathways through multiple signal molecules. Besides the well-documented signal molecules salicylic acid (SA), ethylene and jasmonic acid, auxin is emerging as an important player in this response. We recently characterized an Arabidopsis activation-tagged mutant, bud1, in which the expression of the MAP kinase kinase 7 (AtMKK7) gene is increased. The bud1 mutant plants accumulate elevated levels of SA and display constitutive pathogenesis-related (PR) gene expression and enhanced resistance to pathogens. Additionally, increased expression of AtMKK7 in the bud1 mutant causes deficiency in polar auxin transport, indicating that AtMKK7 negatively regulates auxin signaling. Based on these results, we hypothesized that AtMKK7 may serve as a crosstalk point between auxin signaling and defense responses. Here we show that increased expression of AtMKK7 in bud1 results in a significant reduction in free auxin (indole-3-acetic acid) levels in the mutant plants. We propose three possible mechanisms to explain how AtMKK7 coordinates the growth hormone auxin and the defense signal molecule SA in the bud1 mutant plants. We suggest that AtMKK7 may play a role in cell death and propose that AtMPK3 and AtMPK6 may function downstream of AtMKK7.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science; University of Florida; Gainesville, Florida USA
| | - Yuqing Xiong
- Department of Microbiology and Cell Science; University of Florida; Gainesville, Florida USA
| | - Christopher DeFraia
- Department of Microbiology and Cell Science; University of Florida; Gainesville, Florida USA
| | - Eric Schmelz
- Center of Medical, Agricultural and Veterinary Entomology; United States Department of Agriculture; Agricultural Research Service; Chemistry Research Unit; Gainesville, Florida USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science; University of Florida; Gainesville, Florida USA
| |
Collapse
|
38
|
Suda W, Oto M, Amachi S, Shinoyama H, Shishido M. A Direct Method to Isolate DNA from Phyllosphere Microbial Communities without Disrupting Leaf Tissues. Microbes Environ 2008; 23:248-52. [DOI: 10.1264/jsme2.23.248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wataru Suda
- Graduate School of Horticulture, Chiba University
| | - Michiei Oto
- Department of Biotechnology, Tokyo Technical College
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University
| | | | | |
Collapse
|
39
|
Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc Natl Acad Sci U S A 2007; 104:20131-6. [PMID: 18056646 DOI: 10.1073/pnas.0704901104] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Pseudomonas syringae type III effector AvrRpt2 promotes bacterial virulence on Arabidopsis thaliana plants lacking a functional RPS2 gene (rps2 mutant plants). To investigate the mechanisms underlying the virulence activity of AvrRpt2, we examined the phenotypes of transgenic A. thaliana rps2 seedlings constitutively expressing AvrRpt2. These seedlings exhibited phenotypes reminiscent of A. thaliana mutants with altered auxin physiology, including longer primary roots, increased number of lateral roots, and increased sensitivity to exogenous auxin. They also had increased levels of free indole acetic acid (IAA). The presence of AvrRpt2 also was correlated with a further increase in free IAA levels during infection with P. syringae pv. tomato strain DC3000 (PstDC3000). These results indicate that AvrRpt2 alters A. thaliana auxin physiology. Application of the auxin analog 1-naphthaleneacetic acid promoted disease symptom development in PstDC3000-infected plants, suggesting that elevated auxin levels within host tissue promote PstDC3000 virulence. Thus, AvrRpt2 may be among the virulence factors of P. syringae that modulate host auxin physiology to promote disease.
Collapse
|
40
|
Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z. Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1066-79. [PMID: 19704652 DOI: 10.1111/j.1365-313x.2007.03294.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is a growing body of evidence indicating that mitogen-activated protein kinase (MAPK) cascades are involved in plant defense responses. Analysis of the completed Arabidopsis thaliana genome sequence has revealed the existence of 20 MAPKs, 10 MAPKKs and 60 MAPKKKs, implying a high level of complexity in MAPK signaling pathways, and making the assignment of gene functions difficult. The MAP kinase kinase 7 (MKK7) gene of Arabidopsis has previously been shown to negatively regulate polar auxin transport. Here we provide evidence that MKK7 positively regulates plant basal and systemic acquired resistance (SAR). The activation-tagged bud1 mutant, in which the expression of MKK7 is increased, accumulates elevated levels of salicylic acid (SA), exhibits constitutive pathogenesis-related (PR) gene expression, and displays enhanced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasitica Noco2. Both PR gene expression and disease resistance of the bud1 plants depend on SA, and partially depend on NPR1. We demonstrate that the constitutive defense response in bud1 plants is a result of the increased expression of MKK7, and requires the kinase activity of the MKK7 protein. We found that expression of the MKK7 gene in wild-type plants is induced by pathogen infection. Reducing mRNA levels of MKK7 by antisense RNA expression not only compromises basal resistance, but also blocks the induction of SAR. Intriguingly, ectopic expression of MKK7 in local tissues induces PR gene expression and resistance to Psm ES4326 in systemic tissues, indicating that activation of MKK7 is sufficient for generating the mobile signal of SAR.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
D. M, Goyal R, Bhargav V, Manikantan M. Effect of Roasting on Texture, Colour and Acceptability of Soybean for Making Sattu. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/ajft.2007.265.272] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
SITEPU IR, ARYANTO, OGITA N, OSAKI M, SANTOSO E, TAHARA S, HASHIDOKO Y. Screening of rhizobacteria from dipterocarp seedlings and saplings for the promotion of early growth of Shorea selanica seedlings. TROPICS 2007. [DOI: 10.3759/tropics.16.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Yang S, Zhang Q, Guo J, Charkowski AO, Glick BR, Ibekwe AM, Cooksey DA, Yang CH. Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 2006; 73:1079-88. [PMID: 17189441 PMCID: PMC1828641 DOI: 10.1128/aem.01770-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of the plant hormone indole-3-acetic acid (IAA) is widespread among plant-associated microorganisms. The non-gall-forming phytopathogen Erwinia chrysanthemi 3937 (strain Ech3937) possesses iaaM (ASAP16562) and iaaH (ASAP16563) gene homologues. In this work, the null knockout iaaM mutant strain Ech138 was constructed. The IAA production by Ech138 was reduced in M9 minimal medium supplemented with l-tryptophan. Compared with wild-type Ech3937, Ech138 exhibited reduced ability to produce local maceration, but its multiplication in Saintpaulia ionantha was unaffected. The pectate lyase production of Ech138 was diminished. Compared with wild-type Ech3937, the expression levels of an oligogalacturonate lyase gene, ogl, and three endopectate lyase genes, pelD, pelI, and pelL, were reduced in Ech138 as determined by a green fluorescent protein-based fluorescence-activated cell sorting promoter activity assay. In addition, the transcription of type III secretion system (T3SS) genes, dspE (a putative T3SS effector) and hrpN (T3SS harpin), was found to be diminished in the iaaM mutant Ech138. Compared with Ech3937, reduced expression of hrpL (a T3SS alternative sigma factor) and gacA but increased expression of rsmA in Ech138 was also observed, suggesting that the regulation of T3SS and pectate lyase genes by IAA biosynthesis might be partially due to the posttranscriptional regulation of the Gac-Rsm regulatory pathway.
Collapse
Affiliation(s)
- Shihui Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Karadeniz A, Topcuoğlu Ş, İnan S. Auxin, Gibberellin, Cytokinin and Abscisic Acid Production in Some Bacteria. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-005-4561-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
47
|
Ansari MM, Sridhar R. Some tryptophan pathways in the phytopathogen Xanthomonas oryzae pv. oryzae. Folia Microbiol (Praha) 2001; 45:531-7. [PMID: 11501419 DOI: 10.1007/bf02818722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Xanthomonas oryzae pv. oryzae, the causal organism of bacterial blight of rice which produces leaf blight as well as kresek (wilt) symptoms in plants were tested for indole, auxin production in culture supplemented with L-tryptophan. On the basis of indoleacetic acid (IAA) production the isolates were grouped into IAA-positive and IAA-negative. Out of 17 isolates, 11 were IAA-positive while 6 were IAA-negative. The isolates metabolized tryptophan through two different routes and the isolates vary in the pathway of tryptophan utilization. The IAA-positive isolates converted tryptophan to IAA as the end product, whereas the IAA-negative isolates formed anthranilate as an intermediate metabolite and finally produced pyrocatechol via the kynurenine pathway. Quantification of tryptophan metabolism revealed that the maximum production of IAA and pyrocatechol in culture occurred during 2-d incubation at 30 +/- 2 degrees C.
Collapse
Affiliation(s)
- M M Ansari
- Laboratory of Molecular Plant Pathology, Central Rice Research Institute, Cuttack, Orissa, 753 006 India
| | | |
Collapse
|
48
|
Oetiker JH, Lee DH, Kato A. Molecular analysis of a tryptophan-2-monooxygenase gene (IaaM) of Agrobacterium vitis. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:349-54. [PMID: 10727091 DOI: 10.3109/10425179909033963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tryptophan-2-monooxygenase genes occur in a number of bacteria and encode the conversion of tryptophan to the plant hormone precursor indole-3-acetamide. The role of these genes in the plant-bacteria interaction is often unclear. However, their function as a virulence determinant is established for Pseudomonas savastanoi and Agrobacterium tumefaciens. Some members of the Agrobacteria, such as Agrobacterium vitis have a limited host range. We have characterized the tryptophan-2-monooxygenase (iaaM) gene of A. vitis strain AG162 and show it is different from other A. vitis strains and related to iaaM of A. rhizogenes. The sequence of AG162 iaaM was deposited in the Genbank database under the accession number AF142716.
Collapse
Affiliation(s)
- J H Oetiker
- Botanical Institute, University of Basel, Switzerland.
| | | | | |
Collapse
|
49
|
Oh C, Heu S, Yoo JY, Cho Y. An hrcU-homologous gene mutant of Xanthomonas campestris pv. glycines 8ra that lost pathogenicity on the host plant but was able to elicit the hypersensitive response on nonhosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:633-9. [PMID: 10478481 DOI: 10.1094/mpmi.1999.12.7.633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transposon mutagenesis was used to isolate nonpathogenic mutants of Xanthomonas campestris pv. glycines 8ra, which causes bacterial pustule disease in soybean. A 6.1-kb DNA region in which a mutation gave loss of pathogenicity was isolated and found to carry six open reading frames (ORFs). Four ORFs had homology with hrcU, hrcV, hrcR, and hrcS genes of Ralstonia solanacearum and X. campestris pv. vesicatoria. One nonpathogenic mutant, X. campestris pv. glycines H80, lost pathogenicity on soybean but was able to elicit the hypersensitive response (HR) on nonhost pepper and tomato plants. This mutant still multiplied as well as the wild type in the leaves or cotyledons of soybean. Although the DNA and amino acid sequences showed high homology with known hrp genes, the hrcU-homolog ORF is not required for HR induction on nonhost plants, pepper and tomato, or for the multiplication of bacteria in the host plant. This gene was only required for the pathogenic symptoms of X. campestris pv. glycines 8ra on soybean.
Collapse
Affiliation(s)
- C Oh
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Seoul National University, Suwon, Korea
| | | | | | | |
Collapse
|
50
|
Beattie GA, Lindow SE. Bacterial colonization of leaves: a spectrum of strategies. PHYTOPATHOLOGY 1999; 89:353-359. [PMID: 18944746 DOI: 10.1094/phyto.1999.89.5.353] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Bacteria associated with plant leaves, or phyllobacteria, probably employ a range of colonization strategies. Steps in these colonization strategies include modification of the leaf habitat, aggregation, ingression, and egression. Considerable evidence indicates that bacteria can modify their environment to enhance their colonization of plants, such as by increasing local nutrient concentrations or by producing a layer of extracellular polysaccharides. This local habitat modification may occur on the surface of leaves, as well as in the leaf interior, and may be enhanced by the formation of bacterial aggregates. The conspicuous presence of bacterial aggregates on leaves and the finding that the behavior of bacteria on plants varies in a density-dependent manner indicate the potential importance of cooperative interactions among phyllobacteria. Such cooperative interactions may occur among both homogeneous and heterogeneous populations, thus influencing the development of microbial communities. While the sites commonly colonized by most phyllobacteria have not been unambiguously identified, there is strong circumstantial evidence that a sizable proportion of cells, particularly of phytopathogenic strains, are localized within "protected sites" on plants. The likelihood that these protected sites are located in the interior of leaves indicates that phytopathogenic bacteria have access to more resources and greater protection from stresses associated with the leaf surface than bacteria that are restricted to the leaf surface. The internal and external leaf-associated populations probably form a continuum due to the processes of ingression and egression. For a specific pathogen, however, the extent of egression that occurs prior to disease induction is likely to influence the success of disease predictions based on external population size, i.e., the number of bacteria in leaf washings. In this review, we illustrate the complexity of the ecology of leaf-associated bacteria and propose a model of leaf colonization that emphasizes the common elements in bacterial colonization strategies, as well as allows for distinct behavior of different phyllobacterial species.
Collapse
|