1
|
Shah AB, Cho H, Shim SH. Exploring the bioactive landscape: peptides and non-peptides from the human microbiota. NPJ Biofilms Microbiomes 2025; 11:76. [PMID: 40341751 PMCID: PMC12062242 DOI: 10.1038/s41522-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
The human microbiota, consisting of trillions of bacteria from six main phyla, produces peptide and non-peptide secondary metabolites which have antibacterial properties vital to medicine and biotechnology. These metabolites influence biological processes linked to diseases, yet much remains unknown. This review explores their structures and functions, aiming to spur novel metabolite discovery and advance drug development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeonjae Cho
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Suryaletha K, Savithri AV, Nayar SA, Asokan S, Rajeswary D, Thomas S. Demystifying Bacteriocins of Human Microbiota by Genome Guided Prospects: An Impetus to Rekindle the Antimicrobial Research. Curr Protein Pept Sci 2022; 23:811-822. [PMID: 36278460 DOI: 10.2174/1389203724666221019111515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/07/2022]
Abstract
The human microbiome is a reservoir of potential bacteriocins that can counteract multidrug resistant bacterial pathogens. Unlike antibiotics, bacteriocins selectively inhibit a spectrum of competent bacteria and are said to safeguard gut commensals, reducing the chance of dysbiosis. Bacteriocinogenic probiotics or bacteriocins of human origin will be more pertinent in human physiological conditions for therapeutic applications to act against invading pathogens. Recent advancement in the omics approach enables the mining of diverse and novel bacteriocins by identifying biosynthetic gene clusters from the human microbial genome, pangenome or shotgun metagenome, which is a breakthrough in the discovery line of novel bacteriocins. This review summarizes the most recent trends and therapeutic potential of bacteriocins of human microbial origin, the advancement in the in silico algorithms and databases in the discovery of novel bacteriocin, and how to bridge the gap between the discovery of bacteriocin genes from big datasets and their in vitro production. Besides, the later part of the review discussed the various impediments in their clinical applications and possible solution to bring them into the frontline therapeutics to control infections, thereby meeting the challenges of global antimicrobial resistance.
Collapse
Affiliation(s)
- Karthika Suryaletha
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Akhila Velappan Savithri
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Seema A Nayar
- Department of Microbiology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sijo Asokan
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Divya Rajeswary
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sabu Thomas
- Cholera & Biofilm Research Laboratory, Pathogen Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
5
|
Amabebe E, Anumba DO. Diabetogenically beneficial gut microbiota alterations in third trimester of pregnancy. REPRODUCTION AND FERTILITY 2022; 2:R1-R12. [PMID: 35128441 PMCID: PMC8812459 DOI: 10.1530/raf-20-0034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Altered gut microbiota (dysbiosis), inflammation and weight gain are pivotal to the success of normal pregnancy. These are features of metabolic syndrome that ordinarily increase the risk of type 2 diabetes in non-pregnant individuals. Though gut microbiota influences host energy metabolism and homeostasis, the outcome (healthy or unhealthy) varies depending on pregnancy status. In a healthy pregnancy, the gut microbiota is altered to promote metabolic and immunological changes beneficial to the mother and foetus but could connote a disease state in non-pregnant individuals. During the later stages of gestation, metabolic syndrome-like features, that is, obesity-related gut dysbiotic microbiota, increased insulin resistance, and elevated pro-inflammatory cytokines, promote energy storage in adipose tissue for rapid foetal growth and development, and in preparation for energy-consuming processes such as parturition and lactation. The origin of this gestation-associated host–microbial interaction is still elusive. Therefore, this review critically examined the host–microbial interactions in the gastrointestinal tract of pregnant women at late gestation (third trimester) that shift host metabolism in favour of a diabetogenic or metabolic syndrome-like phenotype. Whether the diabetogenic effects of such interactions are indeed beneficial to both mother and foetus was also discussed with plausible mechanistic pathways and associations highlighted.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Dilly O Anumba
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
7
|
He Y, Sang S, Tang H, Ou C. In vitro
mechanism of antibacterial activity of eucalyptus essential oil against specific spoilage organisms in aquatic products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yidan He
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Shangyuan Sang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| | - Haiqing Tang
- Department of Food Science Zhejiang Pharmaceutical Colleges Ningbo China
| | - Changrong Ou
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province Ningbo University Ningbo China
| |
Collapse
|
8
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
9
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Aftab Uddin M, Akter S, Ferdous M, Haidar B, Amin A, Shofiul Islam Molla AHM, Khan H, Islam MR. A plant endophyte Staphylococcus hominis strain MBL_AB63 produces a novel lantibiotic, homicorcin and a position one variant. Sci Rep 2021; 11:11211. [PMID: 34045548 PMCID: PMC8159966 DOI: 10.1038/s41598-021-90613-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Here we report a jute endophyte Staphylococcus hominis strain MBL_AB63 isolated from jute seeds which showed promising antimicrobial activity against Staphylococcus aureus SG511 when screening for antimicrobial substances. The whole genome sequence of this strain, annotated using BAGEL4 and antiSMASH 5.0 to predict the gene clusters for antimicrobial substances identified a novel antimicrobial peptide cluster that belongs to the class I lantibiotic group. The predicted lantibiotic (homicorcin) was found to be 82% similar to a reported peptide epicidin 280 having a difference of seven amino acids at several positions of the core peptide. Two distinct peaks obtained at close retention times from a RP-HPLC purified fraction have comparable antimicrobial activities and LC-MS revealed the molecular mass of these peaks to be 3046.5 and 3043.2 Da. The presence of an oxidoreductase (homO) similar to that of epicidin 280- associated eciO or epilancin 15X- associated elxO in the homicorcin gene cluster is predicted to be responsible for the reduction of the first dehydrated residue dehydroalanine (Dha) to 2-hydroxypropionate that causes an increase of 3 Da mass of homicorcin 1. Trypsin digestion of the core peptide and its variant followed by ESI-MS analysis suggests the presence of three ring structures, one in the N-terminal and other two interlocking rings at the C-terminal region that remain undigested. Homicorcin exerts bactericidal activity against susceptible cells by disrupting the integrity of the cytoplasmic membrane through pore formation as observed under FE-SEM.
Collapse
Affiliation(s)
- M Aftab Uddin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shammi Akter
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mahbuba Ferdous
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashuliya, Savar, Dhaka, 1349, Bangladesh
| | - Badrul Haidar
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- Divisional DNA Screening Laboratory, Sylhet MAG Osmani Medical College Hospital, Sylhet, 3100, Bangladesh
| | - Al Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - A H M Shofiul Islam Molla
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
11
|
Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr 2019; 60:3042-3053. [PMID: 31617738 DOI: 10.1080/10408398.2019.1675585] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of the antibacterial activities of essential oils from the Lamiaceae herbaceous plant family thyme and oregano are attributed to their bioactive isomeric monoterpenoid constituents, carvacrol and thymol. Commercially available antibiotics of thymol or carvacrol have not yet been developed but health products have incorporated thymol into their formulations for their antimicrobial properties. Carvacrol and thymol are generally considered safe for consumption and they have been used in dental applications, approved as food flavorings and have been considered as antibacterial additives in food and feed. Many studies have demonstrated that carvacrol and thymol are potent antibacterial agents against both Gram-positive and Gram-negative bacteria. The most frequently reported mechanism of antibacterial action of both isomers involves the disruption of bacterial membrane leading to bacterial lysis and leakage of intracellular contents resulting in death. Other proposed mechanisms of antibacterial action include the inhibition of efflux pumps, prevention in the formation and disruption of preformed biofilms, inhibition of bacterial motility, and inhibition of membrane ATPases. In addition, both isomers have been found to act additively or synergistically with conventional antibiotics important in overcoming the problem of bacteria resistance in food and disease.
Collapse
Affiliation(s)
- Karina Kachur
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Zacharias Suntres
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
12
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
13
|
Abhisingha M, Dumnil J, Pitaksutheepong C. Selection of Potential Probiotic Lactobacillus with Inhibitory Activity Against Salmonella and Fecal Coliform Bacteria. Probiotics Antimicrob Proteins 2019; 10:218-227. [PMID: 28712023 DOI: 10.1007/s12602-017-9304-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.
Collapse
Affiliation(s)
- Mattika Abhisingha
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Jureeporn Dumnil
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chetsadaporn Pitaksutheepong
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
14
|
Davoren MJ, Liu J, Castellanos J, Rodríguez-Malavé NI, Schiestl RH. A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes 2018; 10:458-480. [PMID: 30580660 PMCID: PMC6748577 DOI: 10.1080/19490976.2018.1547612] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023] Open
Abstract
Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.
Collapse
Affiliation(s)
- Michael J. Davoren
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jared Liu
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jocelyn Castellanos
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Robert H. Schiestl
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q. Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 2018; 102:7465-7473. [PMID: 29982926 DOI: 10.1007/s00253-018-9182-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/11/2018] [Accepted: 06/16/2018] [Indexed: 11/29/2022]
Abstract
Plantaricin NC8, a two-peptide non-lantibiotic class IIb bacteriocin composed of PLNC8α and PLNC8β and derived from Lactobacillus plantarum ZJ316, has been shown to be highly potent against a range of bacteria and fungi. In this study, we assessed the antimicrobial mechanism of plantaricin NC8 against the most sensitive bacterial strain, Micrococcus luteus CGMCC 1.193. The results showed that plantaricin NC8 induced membrane permeabilization and caused cell membrane disruption to M. luteus CGMCC 1.193 cells, as evidenced by electrolyte efflux, loss of proton motive force, and ATP depletion within a few minutes of plantaricin NC8 treatment. Furthermore, scanning and transmission electron microscopy showed that plantaricin NC8 had a drastic impact on the structure and integrity of M. luteus CGMCC 1.193 cells. In addition, we found that either PLNC8α or PLNC8β alone exhibited membrane permeabilization activity, but that PLNC8β had higher permeabilization activity, and their individual effects were not as strong as that of the combined compounds as plantaricin NC8. Finally, we showed that lipid II is not the specific target of plantaricin NC8 against M. luteus CGMCC 1.193. Our study reveals the antimicrobial mechanism of plantaricin NC8 against M. luteus CGMCC 1.193.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.,Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Xuan Tang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Jiong Zou
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Institute of Biomembranes, Utrecht University, 3584, CH, Utrecht, the Netherlands
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
16
|
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2018; 10:1-21. [PMID: 29584555 PMCID: PMC6363078 DOI: 10.1080/19490976.2018.1455790] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 02/08/2023] Open
Abstract
Bacteria, Archaea, Eukarya and viruses coexist in the human gut, and this coexistence is functionally balanced by symbiotic or antagonistic relationships. Antagonism is often characterized by the production of antimicrobials against other organisms occupying the same environmental niche. Indeed, close co-evolution in the gut has led to the development of specialized antimicrobials, which is attracting increased attention as these may serve as novel alternatives to antibiotics and thereby help to address the global problem of antimicrobial resistance. The gastrointestinal (GI) tract is especially suitable for finding novel antimicrobials due to the vast array of microbes that inhabit it, and a considerable number of antimicrobial producers of both wide and narrow spectrum have been described. In this review, we summarize some of the antimicrobial compounds that are produced by bacteria isolated from the gut environment, with a special focus on bacteriocins. We also evaluate the potential therapeutic application of these compounds to maintain homeostasis in the gut and the biocontrol of pathogenic bacteria.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
| | - Melinda J. Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Paul D. Cotter
- Food Bioscience Department, Teagasc Food Research Centre, Fermoy, Ireland
- APC Microbiome, Ireland
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
17
|
Yang JY, Park JH, Lee MJ, Lee JH, Lee HS. Antimicrobial Effects of 7,8-Dihydroxy-6-Methoxycoumarin and 7-Hydroxy-6-Methoxycoumarin Analogues against Foodborne Pathogens and the Antimicrobial Mechanisms Associated with Membrane Permeability. J Food Prot 2017; 80:1784-1790. [PMID: 28976788 DOI: 10.4315/0362-028x.jfp-17-050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/09/2017] [Indexed: 11/11/2022]
Abstract
The antimicrobial effects of 7,8-dihydroxy-6-methoxycoumarin and 7-hydroxy-6-methoxycoumarin isolated from Fraxinus rhynchophylla bark and of their structural analogues were determined in an attempt to develop natural antimicrobial agents against the foodborne pathogens Escherichia coli, Bacillus cereus, Staphylococcus intermedius, and Listeria monocytogenes. To elucidate the relationship between structure and antimicrobial activity for the coumarin analogues, isolated constituents and their structural analogues were evaluated against foodborne pathogens. Based on the culture plate inhibition zones and MICs, 6,7-dimethoxycoumarin, 7,8-dihydroxy-6-methoxycoumarin, 7-hydroxy-6-methoxycoumarin, and 7-methoxycoumarin, containing a methoxy functional group on the coumarin skeleton, had the notable antimicrobial activity against foodborne pathogens. However, 7-hydroxycoumarin and 6,7-dihydroxycoumarin, which contained a hydroxyl functional group on the coumarin skeleton, had no antimicrobial activity against these pathogens. An increase in cell membrane permeability was confirmed by electron microscopy observations, and release of extracellular ATP and cell constituents followed treatment with the ethyl acetate fraction of F. rhynchophylla extract. These findings indicate that F. rhynchophylla extract and coumarin analogues have potential for use as antimicrobial agents against foodborne pathogens and that the antimicrobial mechanisms are associated with the loss of cell membrane integrity.
Collapse
Affiliation(s)
- Ji-Yeon Yang
- Department of Agricultural Chemistry, Chonbuk National University, Jeonju 54896, Korea
| | - Jun-Hwan Park
- Department of Agricultural Chemistry, Chonbuk National University, Jeonju 54896, Korea
| | - Myung-Ji Lee
- Department of Agricultural Chemistry, Chonbuk National University, Jeonju 54896, Korea
| | - Ji-Hoon Lee
- Department of Agricultural Chemistry, Chonbuk National University, Jeonju 54896, Korea
| | - Hoi-Seon Lee
- Department of Agricultural Chemistry, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
18
|
Shukla S, Ahirwal L, Bajpai VK, Huh YS, Han YK. Growth Inhibitory Effects of Adhatoda vasica and Its Potential at Reducing Listeria monocytogenes in Chicken Meat. Front Microbiol 2017; 8:1260. [PMID: 28769879 PMCID: PMC5511825 DOI: 10.3389/fmicb.2017.01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
The inhibitory effects of Adhatoda vasica ethanolic leaf extract (AVELE) against Listeria monocytogenes were examined to assess its potential to preserve minimally processed meat products safely. The total phenolic, flavonoid, and alkaloid levels in AVELE were 10.09 ± 4.52 mg of gallic acid equivalents (GAE)/g, 22.43 ± 1.62 mg of quercetin equivalents/g, and 19.43 ± 3.90 mg/g, respectively. AVELE (1, 5, 10, or 20%) had considerable antibacterial effects against L. monocytogenes NCIM 24563 in terms of the inhibitory zones (7.4-13.6 mm), MIC (100 mg/mL or 10% formulated solution), reduced cell viability, potassium ion efflux, and the release of 260-nm absorbing materials and extracellular ATP. AVELE was used as a rinse solution (5, 10, and 20%) for raw chicken breast meat. A 20% rinsing solution applied for 60 min inhibited the L. monocytogenes NCIM 24563 counts significantly on raw chicken breast meat. Moreover, L. monocytogenes NCIM 24563 did not grow in the meat sample when the rinse time was increased to 90 min at the same concentration. L. monocytogenes showed a greater reduction to ~3 CFU/g after rinsing with a 10 and 20% AVELE solution for 30 min than with a 5% AVELE solution. The rinsing processes with AVELE produced the final cooked chicken products with higher sensory attribute scores, such as taste, juiciness, and tenderness, compared to the control group along with a decrease in microbial contamination. Chicken meat rinsed with AVELE (rinsing time of 90 min) showed better sensory attribute scores of juiciness and tenderness, as well as the overall sensory quality compared to the untreated group. This research highlights the effectiveness of AVELE against L. monocytogenes NCIM 24563, suggesting that AVELE can be used as an effective antimicrobial marinade and/or a rinse for meat preservation.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University SeoulSeoul, South Korea
| | - Laxmi Ahirwal
- Laboratory of Plant Pathology and Microbiology, Department of Botany, Dr. Hari Singh Gour UniversitySagar, India
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan-si, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha UniversityIncheon, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University SeoulSeoul, South Korea
| |
Collapse
|
19
|
Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 2017; 49:1-11. [DOI: 10.1016/j.ijantimicag.2016.08.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/10/2016] [Accepted: 08/08/2016] [Indexed: 10/20/2022]
|
20
|
Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE. Review: Bacteriocins of Lactic Acid Bacteria. FOOD SCI TECHNOL INT 2016. [DOI: 10.1106/r8de-p6hu-clxp-5ryt] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few years, a large number of new bacteriocins produced by lactic acid bacteria (LAB) have been identified and characterized. LAB-bacteriocins comprise a heterogeneous group of physicochemically diverse ribosomally-synthesized peptides or proteins showing a narrow or broad antimicrobial activity spectrum against Gram-positive bacteria. Bacteriocins are classified into separate groups such as the lantibiotics (Class I); the small (<10 kDa) heat-stable postranslationally unmodified non-lantibiotics (Class II), further subdivided in the pediocin-like and anti Listeria bacteriocins (subclass IIa), the two-peptide bacteriocins (subclass IIb), and the sec-dependent bacteriocins (subclass IIc); and the large (>30 kDa) heat-labile non-lantibiotics (Class III). Most bacteriocins characterized to date belong to Class II and are synthesized as precursor peptides (preprobacteriocins) containing an N-terminal double-glycine leader peptide, which is cleaved off concomitantly with externalization of biologically active bacteriocins by a dedicated ABC-transporter and its accessory protein. However, the recently identified sec-dependent bacteriocins contain an N-terminal signal peptide that directs bacteriocin secretion through the general secretory pathway (GSP). Most LAB-bacteriocins act on sensitive cells by destabilization and permeabilization of the cytoplasmic membrane through the formation of transitory poration complexes or ionic channels that cause the reduction or dissipation of the proton motive force (PMF). Bacteriocin producing LAB strains protect themselves against the toxicity of their own bacteriocins by the expression of a specific immunity protein which is generally encoded in the bacteriocin operon. Bacteriocin production in LAB is frequently regulated by a three-component signal transduction system consisting of an induction factor (IF), and histidine protein kinase (HPK) and a response regulator (RR). This paper presents an updated review on the general knowledge about physicochemical properties, molecular mode of action, biosynthesis, regulation and genetics of LAB-bacteriocins.
Collapse
Affiliation(s)
- L. M. Cintas
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - M. P. Casaus
- Carrefour, Departamento de Marcas Propias, Área de Calidad, Campezo 16, 28022 Madrid
| | - C. Herranz
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - I. F. Nes
- Laboratory of Microbial Gene Technology, Department of Chemistry and Biotechnology, Agricultural University of Norway, P.O. Box 5051, N-1432 Ås, Norway
| | - P. E. Hernández
- Departamento de Nutrición y Bromatología III (Higiene y Tecnología de los Alimentos), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
21
|
Hsiao HL, Lin SB, Chen LC, Chen HH. Hurdle Effect of Antimicrobial Activity Achieved by Time Differential Releasing of Nisin and Chitosan Hydrolysates from Bacterial Cellulose. J Food Sci 2016; 81:M1184-91. [DOI: 10.1111/1750-3841.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Hui-Ling Hsiao
- Dept. of Food Science; National Ilan Univ; 1 Sec. 1, Shen Nung Rd. Ilan city Taiwan, R.O.C
| | - Shih-Bin Lin
- Dept. of Food Science; National Ilan Univ; 1 Sec. 1, Shen Nung Rd. Ilan city Taiwan, R.O.C
| | - Li-Chen Chen
- Dept. of Food Science; National Ilan Univ; 1 Sec. 1, Shen Nung Rd. Ilan city Taiwan, R.O.C
| | - Hui-Huang Chen
- Dept. of Food Science; National Ilan Univ; 1 Sec. 1, Shen Nung Rd. Ilan city Taiwan, R.O.C
| |
Collapse
|
22
|
Liu G, Song Z, Yang X, Gao Y, Wang C, Sun B. Antibacterial mechanism of bifidocin A, a novel broad-spectrum bacteriocin produced by Bifidobacterium animalis BB04. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:274-80. [DOI: 10.1016/j.bbamem.2015.11.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/16/2015] [Accepted: 11/21/2015] [Indexed: 11/24/2022]
|
24
|
Sonsa-Ard N, Rodtong S, Chikindas ML, Yongsawatdigul J. Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Gilbert SF. A holobiont birth narrative: the epigenetic transmission of the human microbiome. Front Genet 2014; 5:282. [PMID: 25191338 PMCID: PMC4137224 DOI: 10.3389/fgene.2014.00282] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 01/12/2023] Open
Abstract
This essay plans to explore, expand, and re-tell the human birth narrative. Usually, human birth narratives focus on the origins of a new individual, focusing on the mother and fetus. This essay discusses birth as the origin of a new community. For not only is the eukaryotic body being reproduced, but so also are the bodies of its symbiotic microbes and so is the set of relationships between these organic components. Several parts of the new narrative are surprising: (1) bacterial symbionts might cause some of the characteristics of pregnancy and prepare a symbiotic community for transfer; (2) the first bacterial colonizers of the mammalian organism my enter the fetus prior to the lysing of the amniotic membrane and birth; (3) the same signals that often cause immunological attack against a microbe may serve under these conditions to signal homeostatic stability between symbiont and host; and (4) the mother may actively provide substances that promote the growth and settlement of helpful bacteria. The birth of the holobiont exemplifies principles of co-evolution, co-development, niche construction, and scaffolding. Birth is nothing less than the passage from one set of symbiotic relationships to another.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College Swarthmore, PA, USA ; Biotechnology Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
26
|
Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Crit Rev Food Sci Nutr 2014; 56:817-34. [DOI: 10.1080/10408398.2012.729231] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Prince AL, Antony KM, Chu DM, Aagaard KM. The microbiome, parturition, and timing of birth: more questions than answers. J Reprod Immunol 2014; 104-105:12-9. [PMID: 24793619 DOI: 10.1016/j.jri.2014.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/12/2023]
Abstract
The causes of preterm birth are multifactorial, but its association with infection has been well-established. The predominant paradigm describes an ascending infection from the lower genital tract through the cervix and into the presumably sterile fetal membranes and placenta. Thus, an evaluation of the role of the vaginal microbiome in preterm birth is implicated. However, emerging fields of data described in this review suggest that the placenta might not be sterile, even in the absence of clinical infection. We thus propose an additional mechanism for placental colonization and infection: hematogenous spread. When considered in the context of decades of evidence demonstrating a strong risk of recurrence for preterm birth, studies on parturition are ideal for applying the rapidly expanding field of metagenomics and analytic pipelines. The translational implications toward identification of innovative treatments for the prevention of preterm birth are further discussed. In sum, exciting advances in understanding the role of both host and microbiota in parturition and preterm birth are on the horizon.
Collapse
Affiliation(s)
- Amanda L Prince
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen M Antony
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Derrick M Chu
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kjersti M Aagaard
- Departments of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA; Bioinformatics Research Lab, Baylor College of Medicine, Houston, TX, USA; Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:28-44. [PMID: 23818338 DOI: 10.1002/jsfa.6293] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides are produced across all domains of life. Among these diverse compounds, those produced by bacteria have been most successfully applied as agents of biocontrol in food and agriculture. Bacteriocins are ribosomally synthesized, proteinaceous compounds that inhibit the growth of closely related bacteria. Even within the subcategory of bacteriocins, the peptides vary significantly in terms of the gene cluster responsible for expression, and chemical and structural composition. The polycistronic gene cluster generally includes a structural gene and various combinations of immunity, secretion, and regulatory genes and modifying enzymes. Chemical variation can exist in amino acid identity, chain length, secondary and tertiary structural features, as well as specificity of active sites. This diversity posits bacteriocins as potential antimicrobial agents with a range of functions and applications. Those produced by food-grade bacteria and applied in normally occurring concentrations can be used as GRAS-status food additives. However, successful application requires thorough characterization.
Collapse
Affiliation(s)
- Abigail B Snyder
- Department of Food Science, Cornell University, Geneva, NY, 14456, USA
| | | |
Collapse
|
29
|
Anti-Candida activity of spent culture filtrate of Lactobacillus plantarum strain LR/14. J Mycol Med 2013; 24:e25-34. [PMID: 24316318 DOI: 10.1016/j.mycmed.2013.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study was undertaken to understand the effect of antimicrobial compounds produced by an environmental isolate of lactic acid bacterium, Lactobacillus plantarum strain LR/14, on growth, viability and biofilm forming ability of the pathogenic yeast, Candida albicans SC5314 and to identify the mode of action of such compounds. MATERIAL AND METHODS L. plantarum LR14 was grown at 37°C for 18 h in MRS broth. The spent culture filtrate (SCF) was collected by centrifugation and checked for anti-Candida activity. Live/dead staining followed by fluorescence microscopy was done to study the membrane damage. Increased membrane permeability was confirmed by measuring the release of ions and macromolecules (ATP) using atomic absorption spectrophotometer and luminometer, respectively. Effect on biofilm formation was quantified by MTT reduction assay. RESULTS The viability of yeast cells was affected by SCF LR14 treatment in a dose-dependent manner, exerting a fungicidal effect. The active compound was identified as a pH-dependent thermostable proteinaceous metabolite. The fungicidal activity was further confirmed by PI staining, suggesting compromised membrane as the cause of cell death. Leakage of intracellular contents such as, K+ ions and ATP, as a cause of its inhibitory action further confirmed the membrane disruption. Moreover, significant reduction in biofilm formation was also confirmed. CONCLUSIONS SCF LR14 showed potent anti-Candida activity, affecting cell viability, membrane permeability, and biofilm formation and leading to cell death, thereby suggested a probable candidate as a natural therapeutic agent.
Collapse
|
30
|
Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013; 6:1451-74. [PMID: 24287491 PMCID: PMC3873673 DOI: 10.3390/ph6121451] [Citation(s) in RCA: 959] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 12/04/2022] Open
Abstract
The increasing resistance of microorganisms to conventional chemicals and drugs is a serious and evident worldwide problem that has prompted research into the identification of new biocides with broad activity. Plants and their derivatives, such as essential oils, are often used in folk medicine. In nature, essential oils play an important role in the protection of plants. Essential oils contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria, yeasts and moulds. Essential oils and their components have activity against a variety of targets, particularly the membrane and cytoplasm, and in some cases, they completely change the morphology of the cells. This brief review describes the activity of essential oils against pathogenic bacteria.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Florinda Fratianni
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Laura De Martino
- Dipartimento di Farmacia,Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; E-Mails: (L.D.M.); (V.D.F.)
| | - Raffaele Coppola
- Istituto di Scienze dell’Alimentazione, ISA-CNR, Via Roma 64, 83100 Avellino, Italy; E-Mails: (F.F.); (R.C)
| | - Vincenzo De Feo
- Dipartimento di Farmacia,Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy; E-Mails: (L.D.M.); (V.D.F.)
| |
Collapse
|
31
|
Bajpai VK, Sharma A, Baek KH. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.01.032] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Bajpai VK, Sharma A, Baek KH. Antibacterial Mechanism of Action of Taxus cuspidata
Stem Essential Oil against Selected Foodborne Pathogens. J Food Saf 2013. [DOI: 10.1111/jfs.12059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivek K. Bajpai
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Republic of Korea
| | - Ajay Sharma
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Republic of Korea
| | - Kwang-Hyun Baek
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Republic of Korea
| |
Collapse
|
33
|
Sharma A, Bajpai VK, Baek KH. Determination of Antibacterial Mode of Action of Allium sativum
Essential Oil against Foodborne Pathogens Using Membrane Permeability and Surface Characteristic Parameters. J Food Saf 2013. [DOI: 10.1111/jfs.12040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ajay Sharma
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Korea
| | - Vivek K. Bajpai
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Korea
| | - Kwang-Hyun Baek
- School of Biotechnology; Yeungnam University; Gyeongsan Gyeongbuk 712-749 Korea
| |
Collapse
|
34
|
Etayash H, Norman L, Thundat T, Kaur K. Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4048-4056. [PMID: 23445325 DOI: 10.1021/la3041743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Specificity of the class IIa bacteriocin Leucocin A (LeuA), an antimicrobial peptide active against Gram-positive bacteria, including Listeria monocytogenes , is known to be dictated by the C-terminal amphipathic helical region, including the extended hairpin-like structure. However, its specificity when attached to a substrate has not been investigated. Exploiting properties of LeuA, we have synthesized two LeuA derivatives, which span the amphipathic helical region of the wild-type LeuA, consisting of 14- (14AA LeuA, CWGEAFSAGVHRLA) and 24-amino acid residues (24AA LeuA, CSVNWGEAFSAGVHRLANGGNGFW). The peptides were purified to >95% purity, as shown by analytical RP-HPLC and mass spectrometry. By including an N-terminal cysteine group, the tailored peptide fragments were readily immobilized at the gold interfaces. The resulting thickness and molecular orientation, determined by ellipsometry and grazing angle infrared spectroscopy, respectively, indicated that the peptides were covalently immobilized in a random helical orientation. The bacterial specificity of the anchored peptide fragments was tested against Gram-positive and Gram-negative bacteria. Our results showed that the adsorbed 14AA LeuA exhibited no specificity toward the bacterial strains, whereas the surface-immobilized 24AA LeuA displayed significant binding toward Gram-positive bacteria with various binding affinities from one strain to another. The 14AA LeuA did not show binding as this fragment is most likely too short in length for recognition by the membrane-bound receptor on the target bacterial cell membrane. These results support the potential use of class IIa bacteriocins as molecular recognition elements in biosensing platforms.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
35
|
Nishie M, Nagao JI, Sonomoto K. Antibacterial peptides "bacteriocins": an overview of their diverse characteristics and applications. Biocontrol Sci 2012; 17:1-16. [PMID: 22451427 DOI: 10.4265/bio.17.1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteriocins are ribosomally synthesized antibacterial peptides produced by bacteria that inhibit the growth of similar or closely related bacterial strains. A number of bacteriocins from a wide variety of bacteria have been discovered, and their diverse structures have been reported. Growing evidence suggests that bacteriocins have diverse structures, modes of action, mechanisms of biosynthesis and self-immunity, and gene regulation. Bacteriocins are considered as an attractive compound in food and pharmaceutical industries to prevent food spoilage and pathogenic bacterial growth. Furthermore, elucidation of their biosynthesis has led to the use of bacteriocin-controlled gene-expression systems and the biosynthetic enzymes of lantibiotics, a class of bacteriocins, as tools to design novel peptides. In this review, we summarize and discuss currently known information on bacteriocins produced by Gram-positive bacteria and their applications.
Collapse
Affiliation(s)
- Mami Nishie
- Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
36
|
Kumar N, Behera B, Sagiri SS, Pal K, Ray SS, Roy S. Bacterial vaginosis: Etiology and modalities of treatment-A brief note. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2011; 3:496-503. [PMID: 22219582 PMCID: PMC3249696 DOI: 10.4103/0975-7406.90102] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/23/2011] [Accepted: 07/31/2011] [Indexed: 11/05/2022] Open
Abstract
A large women population of the world is suffering from a vaginal infection commonly known as bacterial vaginosis. The disease is associated with the decrease in the lactobacilli count in the vagina. Till date, there is a lack of full proof treatment modalities for the cure of the disease. The treatment includes the use of antimicrobials and/or acidifying agents and probiotics, either separately or in combination. This note discusses about the etiology and the various present-day modalities of treatment of bacterial vaginosis.
Collapse
Affiliation(s)
- Nikhil Kumar
- Departments of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Beauty Behera
- Departments of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sai S. Sagiri
- Departments of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Kunal Pal
- Departments of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sirsendu S. Ray
- Departments of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Saroj Roy
- Department of Pharmaceutics, School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
37
|
Paul S, Dubey R, Maheswari D, Kang SC. Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.11.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Gong HS, Meng XC, Wang H. Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. J Basic Microbiol 2011; 50 Suppl 1:S37-45. [PMID: 20967788 DOI: 10.1002/jobm.201000130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/03/2010] [Indexed: 11/08/2022]
Abstract
Plantaricin MG is a 2,180-Da bacteriocin produced by Lactobacillus plantarum KLDS1.0391, which was isolated from Chinese traditional fermented cream. Plantaricin MG showed a broad inhibitory activity against not only Gram-positive bacteria but also Gram-negative bacteria including Listeria monocytogenes and Salmonella typhimurium. The mode of action of plantaricin MG on S. typhimurium was reported in this article. The addition of plantaricin MG to energized cells of S. typhimurium dissipated both, the transmembrane potential (Δψ) and the pH gradient (ΔpH). Energized membrane, obtained after the addition of glucose, was more susceptible to plantaricin MG action, leading to the release of intracellular K(+)ions, inorganic phosphate, ATP and UV-absorbing materials. These data suggest that the presence of a proton motive force promotes the interaction of plantaricin MG with the cytoplasmic membrane of energized cells, leading to pores formation which allows the efflux of ions, thereby ensuring efficient killing of target bacteria.
Collapse
Affiliation(s)
- Han-Sheng Gong
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, People's Republic of China
| | | | | |
Collapse
|
39
|
Kumar M, Srivastava S. Effect of calcium and magnesium on the antimicrobial action of enterocin LR/6 produced by Enterococcus faecium LR/6. Int J Antimicrob Agents 2011; 37:572-5. [PMID: 21411293 DOI: 10.1016/j.ijantimicag.2011.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/21/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Enterococci are well-known producers of antimicrobial peptides (enterocins) that possess potential as biopreservatives in food. In this study, divalent cations and release of intracellular potassium were used to assess the mechanism of interaction and killing of enterocin LR/6 produced by Enterococcus faecium LR/6 on three target Gram-positive and Gram-negative bacteria, namely Micrococcus luteus, Enterococcus sp. strain LR/3 and Escherichia coli K-12. Whilst treatment with enterocin LR/6 in all cases led to a significant loss of viability, suggesting a bactericidal mode of action, E. coli K-12 showed better tolerance than the other two strains. Bacteriocins have generally been reported to create pores in the membrane of sensitive cells and this function is diminished by divalent cations. In this study it was shown that Ca(2+) and Mg(2+) markedly improved the viability of enterocin LR/6-treated cells in a concentration-dependent manner. K(+) release as a sign of membrane leakiness was higher in M. luteus compared with the other two test strains. In agreement with the viability response, pre-exposure to Ca(2+) and Mg(2+) substantially reduced the amount of K(+) leakage by M. luteus and Enterococcus sp.; in the case of E. coli K-12, no leakage of K(+) was recorded. These results suggest that enterocin LR/6, which possesses good antibacterial potential, may not be very effective as a preservative in foods containing high concentrations of calcium and magnesium.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | | |
Collapse
|
40
|
MANDAL VIVEKANANDA, SEN SUKANTAK, MANDAL NARAYANC. ASSESSMENT OF ANTIBACTERIAL ACTIVITIES OF PEDIOCIN PRODUCED BY PEDIOCOCCUS ACIDILACTICI LAB 5. J Food Saf 2010. [DOI: 10.1111/j.1745-4565.2010.00230.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Ruiz A, Williams S, Djeri N, Hinton A, Rodrick G. Nisin affects the growth ofListeria monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for sixty-three days. Poult Sci 2010; 89:353-8. [DOI: 10.3382/ps.2008-00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 2009. [DOI: 10.1016/j.foodcont.2009.02.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Probiotics Antimicrob Proteins 2009; 2:52-60. [PMID: 20383320 PMCID: PMC2850506 DOI: 10.1007/s12602-009-9021-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.
Collapse
Affiliation(s)
- Jon Nissen-Meyer
- Department of Molecular Biosciences, University of Oslo, Blindern, Post box 1041, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
44
|
Ruiz A, Williams SK, Djeri N, Hinton A, Rodrick GE. Nisin, rosemary, and ethylenediaminetetraacetic acid affect the growth of Listeria monocytogenes on ready-to-eat turkey ham stored at four degrees Celsius for sixty-three days. Poult Sci 2009; 88:1765-72. [PMID: 19590093 DOI: 10.3382/ps.2008-00521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to determine the anti-Listeria and general antimicrobial properties of nisin, rosemary, and EDTA alone and in combination on Listeria monocytogenes inoculated on ready-to-eat vacuum-packaged diced turkey ham and to ascertain the effects of the treatments on pH and objective color. The turkey hams were cut into 0.5-cm pieces, inoculated with a L. monocytogenes cocktail containing 5 strains of the bacterium, and treated with either no treatment and no inoculum (negative control), inoculum only (positive control), 0.5% nisin, 20 mM EDTA, 1% rosemary, 0.5% nisin + 20 mM EDTA, 0.5% nisin + 1% rosemary, 0.5% nisin + 20 mM EDTA + 1% rosemary, or 20 mM EDTA + 1% rosemary. All samples were vacuum-packaged, stored for 63 d at 4 degrees C +/- 1 degrees C, and analyzed at 1-wk intervals for total aerobes, L. monocytogenes, lactic acid organisms, pH, and objective color. Nisin, nisin with rosemary, nisin with EDTA, and nisin with rosemary and EDTA treatments reduced (P < 0.05) L. monocytogenes counts by 4.42, 4.20, 3.73, and 4.11 log cfu/g when compared with the positive control, respectively, on d 0. Listeria monocytogenes counts remained less than 2.75 log cfu/g for all hams treated with nisin. The EDTA and rosemary treatments alone and in combination were ineffective in inhibiting growth of L. monocytogenes. Although none of the treatments completely eliminated L. monocytogenes, the results indicated that ready-to-eat turkey ham can have significantly decreased L. monocytogenes when treated with nisin alone or in combination with rosemary or EDTA, or both.
Collapse
Affiliation(s)
- A Ruiz
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | |
Collapse
|
45
|
Todorov SD. Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action: produção, organização genética e modo de ação. Braz J Microbiol 2009; 40:209-21. [PMID: 24031346 PMCID: PMC3769724 DOI: 10.1590/s1517-83822009000200001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/29/2008] [Accepted: 02/14/2009] [Indexed: 11/30/2022] Open
Abstract
Bacteriocins are biologically active proteins or protein complexes that display a bactericidal mode of action towards usually closely related species. Numerous strains of bacteriocin producing Lactobacillus plantarum have been isolated in the last two decades from different ecological niches including meat, fish, fruits, vegetables, and milk and cereal products. Several of these plantaricins have been characterized and the aminoacid sequence determined. Different aspects of the mode of action, fermentation optimization and genetic organization of the bacteriocin operon have been studied. However, numerous of bacteriocins produced by different Lactobacillus plantarum strains have not been fully characterized. In this article, a brief overview of the classification, genetics, characterization, including mode of action and production optimization for bacteriocins from Lactic Acid Bacteria in general, and where appropriate, with focus on bacteriocins produced by Lactobacillus plantarum, is presented.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- Department of Microbiology, University of Stellenbosch , 7600 Stellenbosch , South Africa
| |
Collapse
|
46
|
Turovskiy Y, Ludescher RD, Aroutcheva AA, Faro S, Chikindas ML. Lactocin 160, a Bacteriocin Produced by Vaginal Lactobacillus rhamnosus, Targets Cytoplasmic Membranes of the Vaginal Pathogen, Gardnerella vaginalis. Probiotics Antimicrob Proteins 2009; 1:67-74. [PMID: 20445810 PMCID: PMC2863056 DOI: 10.1007/s12602-008-9003-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bacterial vaginosis (BV) is a commonly occurring vaginal infection that is associated with a variety of serious risks related to the reproductive health of women. Conventional antibiotic treatment for this condition is frequently ineffective because the antibiotics tend to inhibit healthy vaginal microflora along with the pathogens. Lactocin 160, a bacteriocin produced by healthy vaginal lactobacilli, is a promising alternative to antibiotics; this compound specifically inhibits the BV-associated vaginal pathogens such as Gardnerella vaginalis and Prevotella bivia without affecting the healthy microflora. This study investigates the molecular mechanism of action for lactocin 160 and reveals that this compound targets the cytoplasmic membrane of G. vaginalis, causing the efflux of ATP molecules and dissipation of the proton motive force.
Collapse
Affiliation(s)
- Yevgeniy Turovskiy
- Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
47
|
Foulquié Moreno MR, Baert B, Denayer S, Cornelis P, De Vuyst L. Characterization of the amylovorin locus ofLactobacillus amylovorusDCE 471, producer of a bacteriocin active againstPseudomonas aeruginosa, in combination with colistin and pyocins. FEMS Microbiol Lett 2008; 286:199-206. [DOI: 10.1111/j.1574-6968.2008.01275.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Mode of action of pentocin 31-1: An antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.08.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Fimland N, Rogne P, Fimland G, Nissen-Meyer J, Kristiansen PE. Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin plantaricin EF. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1711-9. [PMID: 18555030 DOI: 10.1016/j.bbapap.2008.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.
Collapse
Affiliation(s)
- Nina Fimland
- Department of Molecular Biosciences, University of Oslo, Pb. 1041 Blindern, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
50
|
Oppegård C, Schmidt J, Kristiansen PE, Nissen-Meyer J. Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G. Biochemistry 2008; 47:5242-9. [PMID: 18407666 DOI: 10.1021/bi800289w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane-permeabilizing two-peptide bacteriocin lactococcin G consists of two different peptides, LcnG-alpha and LcnG-beta. The bacteriocin contains several tryptophan and tyrosine residues and three putative helix-helix interacting GxxxG-motifs, G 7xxxG 11 and G 18xxxG 22 in LcnG-alpha and G 18xxxG 22 in LcnG-beta. The tryptophan and tyrosine residues and residues in the GxxxG-motifs were altered by site-directed mutagenesis to analyze the structure and membrane-orientation of lactococcin G. Substituting the glycine residues at position 7 or 11 in the G 7xxxG 11-motif in LcnG-alpha with large hydrophobic or hydrophilic residues was highly detrimental, whereas small residues were tolerated. Qualitatively similar results were obtained for the G 18xxxG 22-motif in LcnG-beta. In contrast, replacement of the glycine residues in the middle of these two motifs with large hydrophilic residues was tolerated. All mutations in the G 18xxxG 22-motif in LcnG-alpha were relatively well-tolerated, indicating that this motif is not involved in helix-helix interactions. The four aromatic residues in the N-terminal part of LcnG-beta could individually be replaced by other aromatic residues, a hydrophilic positive residue, and a hydrophobic residue without a marked reduced activity, indicating that this region is structurally flexible and not embedded in a strictly hydrophobic or hydrophilic environment. The results are in accordance with a structural model where the G 7xxxG 11-motif in LcnG-alpha and the G 18xxxG 22-motif in LcnG-beta interact and allow the two peptides to form a parallel transmembrane helix-helix structure, with the tryptophan-rich N-terminal part of LcnG-beta positioned in the outer membrane interface and the cationic C-terminal end of LcnG-alpha inside the cell.
Collapse
Affiliation(s)
- Camilla Oppegård
- Department of Molecular Biosciences, University of Oslo, Pb 1041 Blindern, 0316 Oslo, Norway.
| | | | | | | |
Collapse
|