1
|
Li Q, Cui Y, Wang Z, Li Y, Yang H. Toxicity assessment of dioxins and their transformation by-products from inferred degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173416. [PMID: 38795989 DOI: 10.1016/j.scitotenv.2024.173416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
2
|
Ma Y, Wang J, Liu Y, Wang X, Zhang B, Zhang W, Chen T, Liu G, Xue L, Cui X. Nocardioides: "Specialists" for Hard-to-Degrade Pollutants in the Environment. Molecules 2023; 28:7433. [PMID: 37959852 PMCID: PMC10649934 DOI: 10.3390/molecules28217433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.
Collapse
Affiliation(s)
- Yecheng Ma
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lingui Xue
- College of Biotechnology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaowen Cui
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
3
|
Wang Z, Hu H, Zhang Z, Xu Y, Xu P, Tang H. lA multiple PAHs-degrading Shinella sp. strain and its potential bioremediation in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162974. [PMID: 36958565 DOI: 10.1016/j.scitotenv.2023.162974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants which threaten ecosystems and human beings. In this study, a new strain, Shinella sp. FLN 14, was isolated and characterized. It can utilize fluorene as its sole carbon source and effectively co-metabolize multiple PAHs and heterocyclic derivatives, including phenanthrene, acenaphthene, and fluoranthene. Two possible metabolic pathways are proposed (i.e., salicylic acid pathway and phthalic acid pathway). Whole-genome sequencing revealed that strain FLN14 possesses a chromosome and four plasmids. However, when combined with ensemble genetic information, novel fluorene-degrading functional gene clusters were not located within the genome of FLN 14, except for some new dioxygenases and electron transport chains, which typically initiate the oxidation of aromatic compounds. In wastewater bioremediation, strain FLN14 removed nearly 95 % of PAHs within 5 days and maintained high degrading activity during the 18-day reaction compared to the control. Overall, our study provides a promising candidate to achieve bioremediation of PAHs-contaminated environments.
Collapse
Affiliation(s)
- Zan Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhan Zhang
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Yongming Xu
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou 450000, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
4
|
Nguyen TLA, Dang HTC, Dat TTH, Brandt BW, Röling WFM, Brouwer A, van Spanning RJM. Correlating biodegradation kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the dynamics of microbial communities originating from soil in Vietnam contaminated with herbicides and dioxins. Front Microbiol 2022; 13:923432. [PMID: 36033897 PMCID: PMC9404497 DOI: 10.3389/fmicb.2022.923432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
We studied the succession of bacterial communities during the biodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The communities originated from a mesocosm with soil from Bien Hoa airbase in Vietnam heavily contaminated with herbicides and dioxins. They were grown in defined media with different carbon and Gibbs energy sources and 2,3,7,8-TCDD. Cultures with dimethyl sulfoxide (DMSO) as the sole carbon and energy source degraded about 95% of 2,3,7,8-TCDD within 60 days of cultivation. Those with an additional 1 mM of vanillin did that in roughly 90 days. Further 16S rRNA gene amplicon sequencing showed that the increase in relative abundance of members belonging to the genera Bordetella, Sphingomonas, Proteiniphilum, and Rhizobium correlated to increased biodegradation of 2,3,7,8-TCDD in these cultures. A higher concentration of vanillin slowed down the biodegradation rate. Addition of alternative carbon and Gibbs energy sources, such as amino acids, sodium lactate and sodium acetate, even stopped the degradation of 2,3,7,8-TCDD completely. Bacteria from the genera Bordetella, Achromobacter, Sphingomonas and Pseudomonas dominated most of the cultures, but the microbial profiles also significantly differed between cultures as judged by non-metric multidimensional scaling (NMDS) analyses. Our study indicates that 2,3,7,8-TCDD degradation may be stimulated by bacterial communities preadapted to a certain degree of starvation with respect to the carbon and energy source. It also reveals the succession and abundance of defined bacterial genera in the degradation process.
Collapse
Affiliation(s)
- Thi Lan Anh Nguyen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- *Correspondence: Thi Lan Anh Nguyen,
| | - Ha Thi Cam Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Thua Thien Hue, Vietnam
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilfred F. M. Röling
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Amsterdam, Netherlands
- Department of Ecological Science, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
5
|
He X, Lu H, Hu W, Deng T, Gong X, Yang X, Song D, He M, Xu M. Novosphingobium percolationis sp. nov. and Novosphingobium huizhouense sp. nov., isolated from landfill leachate of a domestic waste treatment plant. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains designated as c1T and c7T, were isolated from the landfill leachate of a domestic waste treatment plant in Huizhou City, Guangdong Province, PR China. The cells of both strains were aerobic, rod-shaped, non-motile and formed yellow colonies on Reasoner’s 2A agar plates. Strain c1T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 7.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Strain c7T grew at 10–42 °C (optimum, 30 °C), pH 4.5–10.5 (optimum, pH 6.0) and 0–2.0 % (w/v) NaCl (optimum, 0–0.5 %). Phylogenetic analyses revealed that strains c1T and c7T belong to the genus
Novosphingobium
. The 16S rRNA gene sequence similarities of strains c1T and c7T to the type strains of
Novosphingobium
species were 94.5–98.2 % and 94.3–99.1 %, respectively. The calculated pairwise average nucleotide identity values among strains c1T, c7T and the reference strains were in the range of 75.2–85.9 % and the calculated pairwise average amino acid identity values among strains c1T, c7T and reference strains were in the range of 72.0–88.3 %. Their major respiratory quinone was Q-10, and the major cellular fatty acids were C18 : 1
ω7c, C18 : 0, C16 : 1
ω7c, C16 : 0 and C14 : 0 2OH. The major polar lipids of strains c1T and c7T were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, sphingoglycolipid, unidentified lipids and unidentified phospholipid. Based on phenotypic, chemotaxonomic, phylogenetic and genomic results from this study, strains c1T and c7T should represent two independent novel species of
Novosphingobium
, for which the names Novosphingobium percolationis sp. nov. (type strain c1T=GDMCC 1.2555T=KCTC 82826T) and Novosphingobium huizhouense sp. nov. (type strain c7T=GDMCC 1.2556T=KCTC 82827T) are proposed. The gene function annotation results of strains c1T and c7T suggest that they could play an important role in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xiaoling He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Huibin Lu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Wenzhe Hu
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tongchu Deng
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xiaofan Gong
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Xunan Yang
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Da Song
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
- Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| |
Collapse
|
6
|
Chen Z, Hu H, Xu P, Tang H. Soil bioremediation by Pseudomonas brassicacearum MPDS and its enzyme involved in degrading PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152522. [PMID: 34953839 DOI: 10.1016/j.scitotenv.2021.152522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) commonly coexist in contaminated sites, posing a significant threat to ecosystem. Strains that degrade a wide range of substrates play important roles in bioremediation of contaminated environment. In this study, we reveal that Pseudomonas brassicacearum MPDS was able to remove 31.1% naphthalene of 500 mg/kg from soil within 2 d, while its relative abundance decreased significantly on Day 20, indicating its applicable potential in soil remediation. In addition to naphthalene, dibenzofuran, dibenzothiophene, and fluorene as reported previously, strain MPDS is able to degrade carbazole, phenanthrene, pyrene, and 2-bromonaphthalene. Moreover, NahA from strain MPDS has multi-substrate catalytic capacities on naphthalene, dibenzofuran, dibenzothiophene, phenanthrene, and 2-bromonaphthalene into dihydrodiols, while converts fluorene and carbazole into monohydroxy compounds according to GC-MS analysis. This study provides further insights into the exploration of soil remediation by strain MPDS and the mining of enzymes involved in the degradation of PAHs.
Collapse
Affiliation(s)
- Zhengshi Chen
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
7
|
Lei F, Liu X, Huang H, Fu S, Zou K, Zhang S, Zhou L, Zeng J, Liu H, Jiang L, Miao B, Liang Y. The Macleaya cordata Symbiont: Revealing the Effects of Plant Niches and Alkaloids on the Bacterial Community. Front Microbiol 2021; 12:681210. [PMID: 34177865 PMCID: PMC8219869 DOI: 10.3389/fmicb.2021.681210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Endophytes are highly associated with plant growth and health. Exploring the variation of bacterial communities in different plant niches is essential for understanding microbe-plant interactions. In this study, high-throughput gene sequencing was used to analyze the composition and abundance of bacteria from the rhizospheric soil and different parts of the Macleaya cordata. The results indicated that the bacterial community structure varied widely among compartments. Bacterial diversity was observed to be the highest in the rhizospheric soil and the lowest in fruits. Proteobacteria, Actinobacteria, and Bacteroidetes were found as the dominant phyla. The genera Sphingomonas (∼47.77%) and Methylobacterium (∼45.25%) dominated in fruits and leaves, respectively. High-performance liquid chromatography (HPLC) was employed to measure the alkaloid content of different plant parts. Significant correlations were observed between endophytic bacteria and alkaloids. Especially, Sphingomonas showed a significant positive correlation with sanguinarine and chelerythrine. All four alkaloids were negatively correlated with the microbiota of stems. The predicted result of PICRUST2 revealed that the synthesis of plant alkaloids might lead to a higher abundance of endophytic microorganisms with genes related to alkaloid synthesis, further demonstrated the correlation between bacterial communities and alkaloids. This study provided the first insight into the bacterial community composition in different parts of Macleaya cordata and the correlation between the endophytic bacteria and alkaloids.
Collapse
Affiliation(s)
- Fangying Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Haonan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Kai Zou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Shuangfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Li Zhou
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China.,Key Laboratory of Biometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
8
|
Separate Upper Pathway Ring Cleavage Dioxygenases Are Required for Growth of Sphingomonas wittichii Strain RW1 on Dibenzofuran and Dibenzo- p-Dioxin. Appl Environ Microbiol 2021; 87:AEM.02464-20. [PMID: 33741618 DOI: 10.1128/aem.02464-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas wittichii RW1 is one of a few strains known to grow on the related compounds dibenzofuran (DBF) and dibenzo-p-dioxin (DXN) as the sole source of carbon. Previous work by others (B. Happe, L. D. Eltis, H. Poth, R. Hedderich, and K. N. Timmis, J Bacteriol 175:7313-7320, 1993, https://doi.org/10.1128/jb.175.22.7313-7320.1993) showed that purified DbfB had significant ring cleavage activity against the DBF metabolite trihydroxybiphenyl but little activity against the DXN metabolite trihydroxybiphenylether. We took a physiological approach to positively identify ring cleavage enzymes involved in the DBF and DXN pathways. Knockout of dbfB on the RW1 megaplasmid pSWIT02 results in a strain that grows slowly on DBF but normally on DXN, confirming that DbfB is not involved in DXN degradation. Knockout of SWIT3046 on the RW1 chromosome results in a strain that grows normally on DBF but that does not grow on DXN, demonstrating that SWIT3046 is required for DXN degradation. A double-knockout strain does not grow on either DBF or DXN, demonstrating that these are the only ring cleavage enzymes involved in RW1 DBF and DXN degradation. The replacement of dbfB by SWIT3046 results in a strain that grows normally (equal to the wild type) on both DBF and DXN, showing that promoter strength is important for SWIT3046 to take the place of DbfB in DBF degradation. Thus, both dbfB- and SWIT3046-encoded enzymes are involved in DBF degradation, but only the SWIT3046-encoded enzyme is involved in DXN degradation.IMPORTANCE S. wittichii RW1 has been the subject of numerous investigations, because it is one of only a few strains known to grow on DXN as the sole carbon and energy source. However, while the genome has been sequenced and several DBF pathway enzymes have been purified, there has been very little research using physiological techniques to precisely identify the genes and enzymes involved in the RW1 DBF and DXN catabolic pathways. Using knockout and gene replacement mutagenesis, our work identifies separate upper pathway ring cleavage enzymes involved in the related catabolic pathways for DBF and DXN degradation. The identification of a new enzyme involved in DXN biodegradation explains why the pathway of DBF degradation on the RW1 megaplasmid pSWIT02 is inefficient for DXN degradation. In addition, our work demonstrates that both plasmid- and chromosomally encoded enzymes are necessary for DXN degradation, suggesting that the DXN pathway has only recently evolved.
Collapse
|
9
|
Liu Y, Hu H, Zanaroli G, Xu P, Tang H. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123956. [PMID: 33265000 DOI: 10.1016/j.jhazmat.2020.123956] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants that pose a serious health risk to human beings. In this study, a newly isolated Pseudomonas brassicacearum strain MPDS could effectively degrade PAHs and heterocyclic derivatives, including naphthalene, fluorene, dibenzofuran (DBF) and dibenzothiophene (DBT). Notably, strain MPDS is able to degrade fluorene, DBF and DBT uniquely via a lateral dioxygenation pathway, while most reported strains degrade fluorene, DBF and DBT via an angular dioxygenation pathway or co-metabolize them via a lateral dioxygenation pathway. Strain MPDS completely degraded 50 mg naphthalene (in 50 mL medium) in 84 h, and OD600 reached 1.0-1.1; while, it stabilized at OD600 0.5-0.6 with 5 mg fluorene or DBF or DBT. Meanwhile, 65.7% DBF and 32.1% DBT were degraded in 96 h, and 40.3% fluorene was degraded in 72 h, respectively. Through genomic and transcriptomic analyses, and comparative genomic analysis with another DBF degradation strain, relevant gene clusters were predicted, and a naphthalene-degrading gene cluster was identified. This study provides understanding of degradation of PAHs and their heterocyclic derivatives, as well as new insights into the lateral dioxygenation pathway of relevant contaminants.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40131, Italy
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
10
|
Dean RK, Schneider CR, Almnehlawi HS, Dawson KS, Fennell DE. 2,3,7,8-Tetrachlorodibenzo- p-dioxin Dechlorination is Differentially Enhanced by Dichlorobenzene Amendment in Passaic River, NJ Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8380-8389. [PMID: 32432863 DOI: 10.1021/acs.est.0c00876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are a class of toxic organic compounds released by a number of industrial processes. Sediments of the Passaic River in New Jersey are contaminated by these compounds. To explore the ability of native organohalide respiring bacteria to dechlorinate PCDDs, we first enriched bacteria from sediments of the Passaic River on two organohalides, trichloroethene (TCE) and 1,2-dichlorobenzene (DCB). We then used these enriched sediment cultures and original, unamended sediment as the inocula in a secondary experiment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TeCDD), 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TeCDD), and 2,7-dichlorodibenzo-p-dioxin (2,7-DiCDD) as target organohalides. We observed dechlorination of 1,2,3,4-TeCDD by all inocula, although to different extents. We observed progressive dechlorination of 2,3,7,8-TeCDD only in bottles inoculated with the DCB enrichment culture, and dechlorination of 2,7-DiCDD almost exclusively in bottles inoculated with the original, unamended river sediment. Dechlorination of 1,2,3,4-TeCDD was more rapid than that of the other amended congeners. Phylotypes within the class Dehalococcoidia associated with organohalide dechlorination were differentially enriched in DCB versus TCE enrichment cultures, indicating that they may play a role in dechlorination of the PCDDs.
Collapse
Affiliation(s)
- Rachel K Dean
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Cassidy R Schneider
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Haider S Almnehlawi
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
- College of Science, Al-Muthanna University, Samawah, AL-Muthanna 66001 Iraq
| | - Katherine S Dawson
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| | - Donna E Fennell
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
11
|
Saibu S, Adebusoye SA, Oyetibo GO, Rodrigues DF. Aerobic degradation of dichlorinated dibenzo-p-dioxin and dichlorinated dibenzofuran by bacteria strains obtained from tropical contaminated soil. Biodegradation 2020; 31:123-137. [PMID: 32342243 DOI: 10.1007/s10532-020-09898-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Bacterial diversity and aerobic catabolic competence of dioxin-degrading bacterial strains isolated from a polluted soil in the tropics were explored. Isolation of bacteria occurred after 12 months of consecutive enrichment, with dioxin congeners serving as the only sources of carbon and energy. Seventeen strains that were isolated were subsequently screened for dioxin metabolic competence. Among these isolates, five had unique amplified ribosomal DNA restriction analysis (ARDRA) patterns out of which two exhibiting good metabolic competence were selected for further investigation. The two strains were identified as Bacillus sp. SS2 and Serratia sp. SSA1, based on their 16S rRNA gene sequences. Bacterial growth co-occurred with dioxin disappearance and near stoichiometric release of chloride for one ring of the chlorinated congeners. The overall percentage removal of dibenzofuran (DF) by strain SS2 was 93.87%; while corresponding values for 2,8-dichlorodibenzofuran (2,8-diCDF) and 2,7-dichlorodibenzo-p-dioxin (2,7-diCDD) were 86.22% and 82.30% respectively. In the case of strain SSA1, percentage removal for DF, 2,8-diCDF and 2,7-diCDD were respectively 98.9%, 80.97% and 70.80%. The presence of two dioxin dioxygenase catabolic genes (dxnA1 and dbfA1) was investigated. Only the dbfA1 gene could be amplified in SS2 strain. Results further revealed that strain SS2 presented higher expression levels for the alpha-subunit of DF dioxygenase (dbfA1) gene during growth with dioxins. The expression level for dbfA1 gene was higher when growing on DF than on the other chlorinated analogs. This study gives an insight into dioxin degradation, with the catabolic potential of strains SS2 and SSA1 (an enteric bacterium) within the sub-Sahara Africa. It further shows that dioxin catabolic potential might be more prevalent in different groups of microorganisms than previously believed. Few reports have demonstrated the degradation of chlorinated congeners of dioxins, particularly from sub-Saharan African contaminated systems.
Collapse
Affiliation(s)
- Salametu Saibu
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77204-4003, USA
| | - Sunday A Adebusoye
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria.
| | - Ganiyu O Oyetibo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos, Nigeria
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, 77204-4003, USA
| |
Collapse
|
12
|
Chai B, Tsoi T, Sallach JB, Liu C, Landgraf J, Bezdek M, Zylstra G, Li H, Johnston CT, Teppen BJ, Cole JR, Boyd SA, Tiedje JM. Bioavailability of clay-adsorbed dioxin to Sphingomonas wittichii RW1 and its associated genome-wide shifts in gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135525. [PMID: 32050392 DOI: 10.1016/j.scitotenv.2019.135525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans are a group of chemically-related pollutants categorically known as dioxins. Some of their chlorinated congeners are among the most hazardous pollutants that persist in the environment. This persistence is due in part to the limited number of bacteria capable of metabolizing these compounds, but also to their limited bioavailability in soil. We used Sphingomonas wittichii strain RW1 (RW1), one of the few strains able to grow on dioxin, to characterize its ability to respond to and degrade clay-bound dioxin. We found that RW1 grew on and completely degraded dibenzo-p-dioxin (DD) intercalated into the smectite clay saponite (SAP). To characterize the effects of DD sorption on RW1 gene expression, we compared transcriptomes of RW1 grown with either free crystalline DD or DD intercalated clay, i.e. sandwiched between the clay interlayers (DDSAP). Free crystalline DD appeared to cause greater expression of toxicity and stress related functions. Genes coding for heat shock proteins, chaperones, as well as genes involved in DNA repair, and efflux were up-regulated during growth on crystalline dioxin compared to growth on intercalated dioxin. In contrast, growth on intercalated dioxin up-regulated genes that might be important in recognition and uptake mechanisms, as well as surface interaction/attachment/biofilm formation such as extracellular solute-binding protein and LuxR. These differences in gene expression may reflect the underlying adaptive mechanisms by which RW1 cells sense and deploy pathways to access dioxin intercalated into clay. These data show that intercalated DD remains bioavailable to the degrading bacterium with implications for bioremediation alternatives.
Collapse
Affiliation(s)
- Benli Chai
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Tamara Tsoi
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - J Brett Sallach
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Cun Liu
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Jeff Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI, USA
| | - Mark Bezdek
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Gerben Zylstra
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Hui Li
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Cliff T Johnston
- Department of Crop, Soil and Environmental Sciences, Purdue University, West Lafayette, IN, USA
| | - Brian J Teppen
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James R Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Stephen A Boyd
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA; Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Saibu S, Adebusoye SA, Oyetibo GO. Aerobic bacterial transformation and biodegradation of dioxins: a review. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0294-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractWaste generation tends to surge in quantum as the population and living conditions grow. A group of structurally related chemicals of dibenzofurans and dibenzo-p-dioxins including their chlorinated congeners collectively known as dioxins are among the most lethal environmental pollutants formed during different anthropogenic activities. Removal of dioxins from the environment is challenging due to their persistence, recalcitrance to biodegradation, and prevalent nature. Dioxin elimination through the biological approach is considered both economically and environmentally as a better substitute to physicochemical conventional approaches. Bacterial aerobic degradation of these compounds is through two major catabolic routes: lateral and angular dioxygenation pathways. Information on the diversity of bacteria with aerobic dioxin degradation capability has accumulated over the years and efforts have been made to harness this fundamental knowledge to cleanup dioxin-polluted soils. This paper covers the previous decades and recent developments on bacterial diversity and aerobic bacterial transformation, degradation, and bioremediation of dioxins in contaminated systems.
Collapse
|
14
|
Hu H, Zhou H, Zhou S, Li Z, Wei C, Yu Y, Hay AG. Fomesafen impacts bacterial communities and enzyme activities in the rhizosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:302-311. [PMID: 31323613 DOI: 10.1016/j.envpol.2019.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Fomesafen, a long-lived protoporphyrinogen-oxidase inhibitor, specially developed for post-emergence control of broad-leaf weeds, is used widely in soybean fields in northern China (Dayan and Duke, 2010). The impact of fomesafen on microbial communities in rhizosphere soils, however, is unknown. In this study we examined fomesafen degradation as well as its effects in the rhizosphere of soybean plants grown in a greenhouse. Fomesafen had shorter half-life in rhizosphere soil than previously reported for bulk soil from the same location (87 vs 120 days). The enzyme activity of soil extracts and the microbial community composition of 16S rRNA genes (16S) amplified from soil DNA were also investigated. Although not immediately apparent, both the high (37.5 mg kg-1) and low (18.75 mg kg-1) doses of fomesafen significantly decreased urease and invertase activities in the rhizosphere soil from days 30 and 45 respectively until the end of the experiment (90 days). Analysis of 16S amplicons demonstrated that fomesafen had a dose dependent effect, decreasing alpha diversity and altering beta diversity. Significant phylum level decreases were observed in five of the ten phyla that were most abundant in the control. Proteobacteria was the only phylum whose relative abundance increased in the presence of fomesafen, driven by increases in the genera Methylophilacaea, Dyella, and Sphingomonas. The functional implications of changes in 16S abundance as predicted using PICRUSt suggested that fomesafen enriched for enzymes involved in xenobiotic metabolism and detoxification (cytochrome P450s and glutathione metabolism). Our data suggest that, despite being degraded more rapidly in the rhizosphere than in bulk soil, fomesafen had long-lasting functional impacts on the soil microbial community.
Collapse
Affiliation(s)
- Haiyan Hu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Hao Zhou
- Department of Microbiology, Cornell University, Ithaca NY, 14853, USA
| | - Shixiong Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China; College of Forestry, Agricultural University of Hebei, Baoding Hebei, 071000, China
| | - Zhaojun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing, 100081, PR China
| | - Chaojun Wei
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, 102206, China
| | - Yong Yu
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca NY, 14853, USA.
| |
Collapse
|
15
|
Ali F, Hu H, Wang W, Zhou Z, Shah SB, Xu P, Tang H. Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:262-273. [PMID: 30999203 DOI: 10.1016/j.envpol.2019.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Dibenzofuran (DBF) derivatives have caused serious environmental problems, especially those produced by paper pulp bleaching and incineration processes. Prominent for its resilient mutagenicity and toxicity, DBF poses a major challenge to human health. In the present study, a new strain of Pseudomonas aeruginosa, FA-HZ1, with high DBF-degrading activity was isolated and identified. The determined optimum conditions for cell growth of strain FA-HZ1 were a temperature of 30 °C, pH 5.0, rotation rate of 200 rpm and 0.1 mM DBF as a carbon source. The biochemical and physiological features as well as usage of different carbon sources by FA-HZ1 were studied. The new strain was positive for arginine double hydrolase, gelatinase and citric acid, while it was negative for urease and lysine decarboxylase. It could utilize citric acid as its sole carbon source, but was negative for indole and H2S production. Intermediates of DBF 1,2-dihydroxy-1,2-dihydrodibenzofuran, 1,2-dihydroxydibenzofuran, 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid, 2,3-dihydroxybenzofuran, 2-oxo-2-(2'-hydrophenyl)lactic acid, and 2-hydroxy-2-(2'-hydroxyphenyl)acetic acid were detected and identified through liquid chromatography-mass analyses. FA-HZ1 metabolizes DBF by both the angular and lateral dioxygenation pathways. The genomic study identified 158 genes that were involved in the catabolism of aromatic compounds. To identify the key genes responsible for DBF degradation, a proteomic study was performed. A total of 1459 proteins were identified in strain FA-HZ1, of which 100 were up-regulated and 104 were down-regulated. A novel enzyme "HZ6359 dioxygenase", was amplified and expressed in pET-28a in E. coli BL21(DE3). The recombinant plasmid was successfully constructed, and was used for further experiments to verify its function. In addition, the strain FA-HZ1 can also degrade halogenated analogues such as 2, 8-dibromo dibenzofuran and 4-(4-bromophenyl) dibenzofuran. Undoubtedly, the isolation and characterization of new strain and the designed pathways is significant, as it could lead to the development of cost-effective and alternative remediation strategies. The degradation pathway of DBF by P. aeruginosa FA-HZ1 is a promising tool of biotechnological and environmental significance.
Collapse
Affiliation(s)
- Fawad Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zikang Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Syed Bilal Shah
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
16
|
Wu H, Shen J, Jiang X, Liu X, Sun X, Li J, Han W, Mu Y, Wang L. Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. BIORESOURCE TECHNOLOGY 2018; 264:98-105. [PMID: 29793119 DOI: 10.1016/j.biortech.2018.05.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
In order to develop an effective bioaugmentation strategy for the removal of highly toxic and recalcitrant tricyclazole from wastewater, a tricyclazole degrading strain was firstly successfully isolated and identified as Sphingomonas sp. NJUST37. In batch reactors, 100 mg L-1 tricyclazole could be completely removed within 102 h, which was accompanied by significant biomass increase, TOC and COD removal, as well as toxicity reduction. Chromatography analysis and density functional theory simulation indicated that monooxygenation occurred firstly, followed by triazole ring cleavage, decyanation reaction, hydration reaction, deamination, dihydroxylation and final mineralization reaction. Tricyclazole biodegradation condition by NJUST37 was optimized in terms of temperature, pH, tricyclazole concentration and additional carbon and nitrogen sources. After the inoculation of NJUST37 into a pilot-scale powdered activated carbon treatment tank treating real fungicide wastewater, tricyclazole removal efficiency increased to higher than 90%, demonstrating the great potential of NJUST37 for bioaugmentation particularly on tricyclazole biodegradation in practice.
Collapse
Affiliation(s)
- Haobo Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Suzuki Y, Nakamura M, Otsuka Y, Suzuki N, Ohyama K, Kawakami T, Sato-Izawa K, Navarro RR, Hishiyama S, Inoue K, Kameyama T, Takahashi A, Katayama Y. Cloning and sequencing of the gene encoding the enzyme for the reductive cleavage of diaryl ether bonds of 2,3,7,8-tetrachlorodibenzo-p-dioxin in Geobacillus thermodenitrificans UZO 3. J Biosci Bioeng 2018; 126:488-496. [PMID: 29805114 DOI: 10.1016/j.jbiosc.2018.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022]
Abstract
We have previously reported that a cell-free extract prepared from Geobacillus thermodenitrificans UZO 3 reductively cleaves diaryl ether bonds of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), a dioxin with the highest toxicity, in a sequential fashion producing 3',4',4,5-tetrachloro-2-hydroxydiphenyl ether (TCDE) as the intermediate, and 3,4-dichlorophenol (DCP) as the final reaction product. The detection of TCDE implicated the discovery of an unprecedented dioxin-degrading enzyme that reductively cleaves the diaryl ether bonds. In this study, we report the cloning and sequencing of the dioxin reductive etherase gene dreE which codes for the 2,3,7,8-TCDD-degrading enzyme. We showed that dreE was expressed in Escherichia coli and that the product of the expression could reductively cleave diaryl ether bonds of 2,3,7,8-TCDD to produce TCDE. Furthermore, we established that the amino acid sequence encoded by dreE was homologous to an enzyme with yet unknown function that is encoded by a gene located in the riboflavin (vitamin B2) biosynthesis operon in Bacillus subtilis. We also showed that the amino acid sequence possesses a coenzyme A (CoA) binding site that is conserved in the N-acyltransferase superfamily. For the first time, the degradation of 2,3,7,8-TCDD at the molecular level using a enzyme of bacterial origin has been demonstrated. A novel mechanism model for the reductive cleavage of diaryl ether bond of 2,3,7,8-TCDD was also proposed.
Collapse
Affiliation(s)
- Yuzo Suzuki
- Takasago Thermal Engineering Co. Ltd., Shinjyuku, Tokyo 160-0022, Japan
| | - Masaya Nakamura
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Nao Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Keisuke Ohyama
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Takeshi Kawakami
- Takasago Thermal Engineering Co. Ltd., Shinjyuku, Tokyo 160-0022, Japan
| | - Kanna Sato-Izawa
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Ronald R Navarro
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Shojiro Hishiyama
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Kouya Inoue
- Kantteku Co. Ltd., Bunkyo, Tokyo 112-0004, Japan
| | | | - Atsushi Takahashi
- Takasago Thermal Engineering Co. Ltd., Shinjyuku, Tokyo 160-0022, Japan
| | - Yoshihiro Katayama
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
18
|
Liu X, Wang W, Hu H, Lu X, Zhang L, Xu P, Tang H. 2-Hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid biosynthesis from dibenzofuran using lateral dioxygenation in a Pseudomonas putida strain B6-2 (DSM 28064). BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0209-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
19
|
Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1238-1247. [PMID: 28787798 DOI: 10.1016/j.scitotenv.2017.07.249] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 05/12/2023]
Abstract
Bacteria belonging to the genera Sphingomonas and Sphingobium are known for their ability to catabolize aromatic compounds. In this study, we analyzed the whole genome sequences of 26 strains in the genera Sphingomonas and Sphingobium to gain insight into dissemination of bioremediation capabilities, biodegradation potential, central pathways and genome plasticity. Phylogenetic analysis revealed that both Sphingomonas sp. strain BHC-A and Sphingomonas paucimobilis EPA505 should be placed in the genus Sphingobium. The bph and xyl gene cluster was found in 6 polycyclic aromatic hydrocarbons-degrading strains. Transposase and IS coding genes were found in the 6 gene clusters, suggesting the mobility of bph and xyl gene clusters. β-ketoadipate and homogentisate pathways were the main central pathways in Sphingomonas and Sphingobium strains. A large number of oxygenase coding genes were predicted in the 26 genomes, indicating a huge biodegradation potential of the Sphingomonas and Sphingobium strains. Horizontal gene transfer related genes and prophages were predicted in the analyzed strains, suggesting the ongoing evolution and shaping of the genomes. Analysis of the 26 genomes in this work contributes to the understanding of dispersion of bioremediation capabilities, bioremediation potential and genome plasticity in strains belonging to the genera Sphingomonas and Sphingobium.
Collapse
Affiliation(s)
- Qiang Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengjie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Fida TT, Moreno-Forero SK, Breugelmans P, Heipieper HJ, Röling WFM, Springael D. Physiological and Transcriptome Response of the Polycyclic Aromatic Hydrocarbon Degrading Novosphingobium sp. LH128 after Inoculation in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1570-1579. [PMID: 28040887 DOI: 10.1021/acs.est.6b03822] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soil bioaugmentation involves the inoculation of pollutant-degrading bacteria to accelerate pollutant degradation. Often the inoculum shows a dramatic decrease in Colony Forming Units (CFU) upon soil inoculation but this behavior is not well-understood. In this study, the physiology and transcriptomic response of a GFP tagged variant of Novosphingobium sp. LH128 was examined after inoculation into phenanthrene spiked soil. Four hours after inoculation, strain LH128-GFP showed about 99% reduction in CFU while microscopic counts of GFP-expressing cells were identical to the expected initial cell density, indicating that the reduction in CFU number is explained by cells entering into a Viable But Non-Culturable (VBNC)-like state and not by cell death. Transcriptome analysis showed a remarkably higher expression of phenanthrene degradation genes 4 h after inoculation, compared to the inoculum suspension concomitant with an increased expression of genes involved in stress response. This indicates that the cells were active in phenanthrene degradation while experiencing stress. Between 4 h and 10 days, CFU numbers increased to numbers comparable to the inoculated cell density. Our results suggest that strain LH128-GFP enters a VBNC-like state upon inoculation into soil but is metabolically active and that VBNC cells should be taken into account in evaluating bioaugmentation approaches.
Collapse
Affiliation(s)
- Tekle Tafese Fida
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Silvia K Moreno-Forero
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore Quartier Unil-Sorge , 1015 Lausanne, Switzerland
| | - Philip Breugelmans
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Hermann J Heipieper
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wilfred F M Röling
- Molecular Cell Physiology, FALW, VU University Amsterdam , De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven , Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
21
|
Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111146. [PMID: 27869691 PMCID: PMC5129356 DOI: 10.3390/ijerph13111146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
Collapse
|
22
|
Saeb ATM. Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation 2016; 12:241-248. [PMID: 28197061 PMCID: PMC5290665 DOI: 10.6026/97320630012241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022] Open
Abstract
Sphingomonas wittichii, a close relative of the human pathogen Sphingomonas paucimobilis, is a microorganism of great interest to the bioremediation community for its ability of biodegradation to a large number of toxic polychlorinated dioxins. In the present study we investigated the presence of different virulence factors and genes in S. wittichii. We utilized phylogenetic, comparative genomics and bioinformatics analysis to investigate the potentiality of S. wittichii as a potential virulent pathogen. The 16SrDNA phylogenetic tree showed that the closest bacterial taxon to S. wittichii is Brucella followed by Helicobacter, Campylobacter, Pseudomonas then Legionella. Despite their close phylogenetic relationship, S. wittichii did not share any virulence factors with Helicobacter or Campylobacter. On the contrary, in spite of the phylogenetic divergence between S. wittichii and Pseudomonas spp., they shared many major virulence factors, such as, adherence, antiphagocytosis, Iron uptake, proteases and quorum sensing. S. wittichii contains several major virulence factors resembling Pseudomonas sp., Legionella sp., Brucella sp. and Bordetella sp. virulence factors. Similarity of virulence factors did not match phylogenetic relationships. These findings suggest horizontal gene transfer of virulence factors rather than sharing a common pathogenic ancestor. S. wittichii is a potential virulent bacterium. Another possibility is that reductive evolution process attenuated S. wittichii pathogenic capabilities. Thus plenty of care must be taken when using this bacterium in soil remediation purposes.
Collapse
Affiliation(s)
- Amr T. M. Saeb
- Biotechnology Department, Strategic Center for Diabetes Research, College of medicine, King Saud University, Saudi Arabia
| |
Collapse
|
23
|
Chai B, Tsoi TV, Iwai S, Liu C, Fish JA, Gu C, Johnson TA, Zylstra G, Teppen BJ, Li H, Hashsham SA, Boyd SA, Cole JR, Tiedje JM. Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay. PLoS One 2016; 11:e0157008. [PMID: 27309357 PMCID: PMC4911050 DOI: 10.1371/journal.pone.0157008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/23/2016] [Indexed: 12/23/2022] Open
Abstract
Sphingomonas wittichii strain RW1 (RW1) is one of the few strains that can grow on dibenzo-p-dioxin (DD). We conducted a transcriptomic study of RW1 using RNA-Seq to outline transcriptional responses to DD, dibenzofuran (DF), and the smectite clay mineral saponite with succinate as carbon source. The ability to grow on DD is rare compared to growth on the chemically similar DF even though the same initial dioxygenase may be involved in oxidation of both substrates. Therefore, we hypothesized the reason for this lies beyond catabolic pathways and may concern genes involved in processes for cell-substrate interactions such as substrate recognition, transport, and detoxification. Compared to succinate (SUC) as control carbon source, DF caused over 240 protein-coding genes to be differentially expressed, whereas more than 300 were differentially expressed with DD. Stress response genes were up-regulated in response to both DD and DF. This effect was stronger with DD than DF, suggesting a higher toxicity of DD compared to DF. Both DD and DF caused changes in expression of genes involved in active cross-membrane transport such as TonB-dependent receptor proteins, but the patterns of change differed between the two substrates. Multiple transcription factor genes also displayed expression patterns distinct to DD and DF growth. DD and DF induced the catechol ortho- and the salicylate/gentisate pathways, respectively. Both DD and DF induced the shared down-stream aliphatic intermediate compound pathway. Clay caused category-wide down-regulation of genes for cell motility and chemotaxis, particularly those involved in the synthesis, assembly and functioning of flagella. This is an environmentally important finding because clay is a major component of soil microbes’ microenvironment influencing local chemistry and may serve as a geosorbent for toxic pollutants. Similar to clay, DD and DF also affected expression of genes involved in motility and chemotaxis.
Collapse
Affiliation(s)
- Benli Chai
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
| | - Tamara V. Tsoi
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
| | - Shoko Iwai
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
| | - Cun Liu
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Jordan A. Fish
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
| | - Cheng Gu
- School of the Environment, Nanjing University, Nanjing, China
| | - Timothy A. Johnson
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Gerben Zylstra
- Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ, United States of America
| | - Brian J. Teppen
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Hui Li
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - Syed A. Hashsham
- Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Stephen A. Boyd
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States of America
| | - James R. Cole
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
24
|
Briand E, Humbert JF, Tambosco K, Bormans M, Gerwick WH. Role of bacteria in the production and degradation of Microcystis cyanopeptides. Microbiologyopen 2016; 5:469-78. [PMID: 26918405 PMCID: PMC4905998 DOI: 10.1002/mbo3.343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 02/03/2023] Open
Abstract
The freshwater cyanobacteria, Microcystis sp., commonly form large colonies with bacteria embedded in their mucilage. Positive and negative interactions between Microcystis species and their associated bacteria have been reported. However, the potential role of bacteria in the production and degradation of cyanobacterial secondary metabolites has not been investigated. In this study, a Microcystis‐associated bacterial community was isolated and added to the axenic M. aeruginosaPCC7806 liquid culture. After 3 years of cocultivation, we studied the bacterial genetic diversity adapted to the PCC7806 strain and compared the intra‐ and extracellular concentration of major cyanopeptides produced by the cyanobacterial strain under xenic and axenic conditions. Mass spectrometric analyses showed that the intracellular concentration of peptides was not affected by the presence of bacteria. Interestingly, the produced peptides were detected in the axenic media but could not be found in the xenic media. This investigation revealed that a natural bacterial community, dominated by Alpha‐proteobacteria, was able to degrade a wide panel of structurally varying cyclic cyanopeptides.
Collapse
Affiliation(s)
- Enora Briand
- UMR CNRS 6553 ECOBIO, University of Rennes 1, Rennes Cedex, 35042, France.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093
| | | | | | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, University of Rennes 1, Rennes Cedex, 35042, France
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, 92093
| |
Collapse
|
25
|
Coronado E, Valtat A, van der Meer JR. Sphingomonas wittichii RW1 gene reporters interrogating the dibenzofuran metabolic network highlight conditions for early successful development in contaminated microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:480-488. [PMID: 25683238 DOI: 10.1111/1758-2229.12276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
In order to better understand the fate and activity of bacteria introduced into contaminated material for the purpose of enhancing biodegradation rates, we constructed Sphingomonas wittichii RW1 variants with gene reporters interrogating dibenzofuran metabolic activity. Three potential promoters from the dibenzofuran metabolic network were selected and fused to the gene for enhanced green fluorescent protein (EGFP). The stability of the resulting genetic constructions in RW1 was examined, with plasmids based on the broad-host range vector pME6012 being the most reliable. One of the selected promoters, upstream of the gene Swit_4925 for a putative 2-hydroxy-2,4-pentadienoate hydratase, was inducible by growth on dibenzofuran. Sphingomonas wittichii RW1 equipped with the Swit_4925 promoter egfp fusion grew in a variety of non-sterile sandy microcosms contaminated with dibenzofuran and material from a former gasification site. The strain also grew in microcosms without added dibenzofuran but to a very limited extent, and EGFP expression indicated the formation of consistent small subpopulations of cells with an active inferred dibenzofuran metabolic network. Evidence was obtained for competition for dibenzofuran metabolites scavenged by resident bacteria in the gasification site material, which resulted in a more rapid decline of the RW1 population. Our results show the importance of low inoculation densities in order to observe the population development of the introduced bacteria and further illustrate that the limited availability of unique carbon substrate may be the most important factor impinging growth.
Collapse
Affiliation(s)
- Edith Coronado
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Annabelle Valtat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
26
|
Coronado E, Roggo C, van der Meer JR. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery. Front Microbiol 2014; 5:585. [PMID: 25408691 PMCID: PMC4219479 DOI: 10.3389/fmicb.2014.00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.
Collapse
Affiliation(s)
- Edith Coronado
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Clémence Roggo
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
27
|
Romashov LV, Khemchyan LL, Gordeev EG, Koshevoy IO, Tunik SP, Ananikov VP. Design of a Bimetallic Au/Ag System for Dechlorination of Organochlorides: Experimental and Theoretical Evidence for the Role of the Cluster Effect. Organometallics 2014. [DOI: 10.1021/om500620u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Leonid V. Romashov
- Zelinsky
Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| | - Levon L. Khemchyan
- Zelinsky
Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky
Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| | - Igor O. Koshevoy
- Department
of Chemistry, Saint Petersburg State University, Stary Petergof 198504, Russia
- Department
of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Sergey P. Tunik
- Department
of Chemistry, Saint Petersburg State University, Stary Petergof 198504, Russia
| | - Valentine P. Ananikov
- Zelinsky
Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
- Department
of Chemistry, Saint Petersburg State University, Stary Petergof 198504, Russia
| |
Collapse
|
28
|
Cua LS, Stein LY. Characterization of denitrifying activity by the alphaproteobacterium, Sphingomonas wittichii RW1. Front Microbiol 2014; 5:404. [PMID: 25147547 PMCID: PMC4123721 DOI: 10.3389/fmicb.2014.00404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/17/2014] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas wittichii RW1 has no reported denitrifying activity yet encodes nitrite and nitric oxide reductases. The aims of this study were to determine conditions under which S. wittichii RW1 consumes nitrite (NO(-) 2) and produces nitrous oxide (N2O), examine expression of putative genes for N-oxide metabolism, and determine the functionality of chromosomal (ch) and plasmid (p) encoded quinol-dependent nitric oxide reductases (NorZ). Batch cultures of wildtype (WT) and a norZ ch mutant of S. wittichii RW1 consumed NO(-) 2 and produced N2O during stationary phase. The norZ ch mutant produced N2O, although at significantly lower levels (c.a. 66-87%) relative to the WT. Rates of N2O production were 2-3 times higher in cultures initiated at low relative to atmospheric O2 per unit biomass, although rates of NO(-) 2 consumption were elevated in cultures initiated with atmospheric O2 and 1 mM NaNO2. Levels of mRNA encoding nitrite reductase (nirK), plasmid-encoded nitric oxide dioxygenase (hmp p) and plasmid-encoded nitric oxide reductase (norZ p) were significantly higher in the norZ ch mutant over a growth curve relative to WT. The presence of NO(-) 2 further increased levels of nirK and hmp p mRNA in both the WT and norZ ch mutant; levels of norZ p mRNA compensated for the loss of norZ ch expression in the norZ ch mutant. Together, the results suggest that S. wittichii RW1 denitrifies NO(-) 2 to N2O and expresses gene products predicted to detoxify N-oxides. So far, only S. wittichii strains within four closely related taxa have been observed to encode both nirK and norZ genes, indicating a species-specific lateral gene transfer that may be relevant to the niche preference of S. wittichii.
Collapse
Affiliation(s)
- Lynnie S Cua
- Department of Environmental Sciences, University of California Riverside, CA, USA
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
29
|
Moreno-Andrade I, Kumar G, Buitrón G. Effect of Starvation upon Activity of Microorganisms Degrading 4-Chlorophenol. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201300647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME JOURNAL 2014; 9:150-65. [PMID: 24936762 PMCID: PMC4274413 DOI: 10.1038/ismej.2014.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
Abstract
The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions.
Collapse
|
31
|
Le T, Murugesan K, Nam IH, Jeon JR, Chang YS. Degradation of dibenzofuran via multiple dioxygenation by a newly isolated Agrobacterium
sp. PH-08. J Appl Microbiol 2013; 116:542-53. [DOI: 10.1111/jam.12403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T.T. Le
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - K. Murugesan
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - I.-H. Nam
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - J.-R. Jeon
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| | - Y.-S. Chang
- School of Environmental Science and Engineering; Pohang University of Science and Technology (POSTECH); Pohang Korea
| |
Collapse
|
32
|
Hartmann EM, Armengaud J. Shotgun proteomics suggests involvement of additional enzymes in dioxin degradation by Sphingomonas wittichii RW1. Environ Microbiol 2013; 16:162-76. [PMID: 24118890 DOI: 10.1111/1462-2920.12264] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
Chlorinated congeners of dibenzo-p-dioxin and dibenzofuran are widely dispersed pollutants that can be treated using microorganisms, such as the Sphingomonas wittichii RW1 bacterium, able to transform some of them into non-toxic substances. The enzymes of the upper pathway for dibenzo-p-dioxin degradation in S. wittichii RW1 have been biochemically and genetically characterized, but its genome sequence indicated the existence of a tremendous potential for aromatic compound transformation, with 56 ring-hydroxylating dioxygenase subunits, 34 extradiol dioxygenases and 40 hydrolases. To further characterize this enzymatic arsenal, new methodological approaches should be employed. Here, a large shotgun proteomic survey was performed on cells grown on dibenzofuran, dibenzo-p-dioxin and 2-chlorodibenzo-p-dioxin, and compared with growth on acetate. Changes in the proteome were monitored over time. In total, 502 proteins were observed and quantified using a label-free mass spectrometry-based approach; all data were deposited to the ProteomeXchange (PXD000403). Our results confirmed the roles of the dioxin dioxygenase DxnA1A2, trihydroxybiphenyl dioxygenase DbfB, meta-cleavage product hydrolase DxnB and reductase RedA2, and corroborated the proposed involvement of the Swit_3046 dioxygenase and DxnB2 hydrolase. Trends across substrates and over the course of growth do not support concerted pathway regulation and suggest the involvement of an additional hydrolase and several TonB-dependent receptors.
Collapse
Affiliation(s)
- Erica M Hartmann
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | | |
Collapse
|
33
|
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013; 79:3724-33. [PMID: 23563954 DOI: 10.1128/aem.00518-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonads comprise a physiologically versatile group within the Alphaproteobacteria that includes strains of interest for biotechnology, human health, and environmental nutrient cycling. In this study, we compared 26 sphingomonad genome sequences to gain insight into their ecology, metabolic versatility, and environmental adaptations. Our multilocus phylogenetic and average amino acid identity (AAI) analyses confirm that Sphingomonas, Sphingobium, Sphingopyxis, and Novosphingobium are well-resolved monophyletic groups with the exception of Sphingomonas sp. strain SKA58, which we propose belongs to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible for their ability to degrade various recalcitrant aromatic compounds and polysaccharides, respectively. Many of these enzymes are encoded on megaplasmids, suggesting that they may be readily transferred between species. We also identified enzymes putatively used for the catabolism of sulfonate and nitroaromatic compounds in many of the genomes, suggesting that plant-based compounds or chemical contaminants may be sources of nitrogen and sulfur. Many of these sphingomonads appear to be adapted to oligotrophic environments, but several contain genomic features indicative of host associations. Our work provides a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling.
Collapse
|
34
|
Sakaki T, Yamamoto K, Ikushiro S. Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 2013; 60:65-70. [PMID: 23586993 DOI: 10.1002/bab.1067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/20/2012] [Indexed: 11/07/2022]
Abstract
Dioxins, including polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans, and coplanar polychlorinated biphenyls, are known to be metabolized by enzymes such as cytochrome (CYP) P450, angular dioxygenase, lignin peroxidase, and dehalogenase. It is noted that all of these enzymes have metal ions in their active centers, and the enzyme systems except for peroxidase each have a distinct electron transport chain. Among these enzyme systems, we have focused on cytochrome P450-dependent metabolism of dioxins from the viewpoint of practical use for bioremediation. Mammalian and fungal cytochromes P450 showed remarkable activity toward low-chlorinated PCDDs. In particular, mammalian cytochromes P450 belonging to the CYP1 family showed high activity. Rat CYP1A1 showed high activity toward 2,3,7-trichloro-dibenzo-p-dioxin but no detectable activity for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD). On the basis of these results, we assumed that enlarging the space of the substrate-binding pocket of rat CYP1A1 might generate TCDD-metabolizing enzyme. Large-sized amino acids located at putative substrate-recognition sites and F-G loop were substituted for alanine by site-directed mutagenesis. Finally, we successfully generated 2,3,7,8-TCDD-metabolizing enzyme by site-directed mutagenesis of rat CYP1A1. We hope that recombinant microorganisms harboring genetically engineered cytochrome P450 will be used for bioremediation of soil contaminated with PCDDs, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in the future.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.
| | | | | |
Collapse
|
35
|
Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS. Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:563-6. [PMID: 22909785 DOI: 10.1016/j.scitotenv.2012.07.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/15/2012] [Accepted: 07/22/2012] [Indexed: 05/24/2023]
Abstract
The dioxin isomer 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TeCDD) has been reported as the deadliest compound known to science. Due to its highly recalcitrant nature and low bioavailability, it is stubborn toward bioremediation and chemical treatment. Efforts to degrade it using one single technique have not accomplished the desired results. In this study, we have tried to develop an integrated 2,3,7,8-TeCDD removal process using palladized iron nanoparticles (Pd/nFe) for initial reductive dechlorination under anoxic conditions and subsequent oxidative biomineralization. Using laboratory synthesized Pd/nFe, 2,3,7,8-TeCDD was completely dechlorinated to form the end product dibenzo-p-dioxin (DD). Oxidative degradation of DD was successfully achieved by growing active cells of a dioxin-degrading microorganism Sphingomonas wittichii RW1 (DSM 6014) under aerobic culture conditions. Metabolite identification was done by high performance liquid chromatography (HPLC) and whole cell protein was measured as the indicator for cell growth. To the best of our knowledge, this is the first report on integrated hybrid degradation method for 2,3,7,8-TeCDD.
Collapse
Affiliation(s)
- Varima Bokare
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790‐784, South Korea
| | | | | | | | | |
Collapse
|
36
|
Peng P, Yang H, Jia R, Li L. Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids. Appl Microbiol Biotechnol 2012; 97:5585-95. [DOI: 10.1007/s00253-012-4363-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 10/27/2022]
|
37
|
Coronado E, Roggo C, Johnson DR, van der Meer JR. Genome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1. Front Microbiol 2012; 3:300. [PMID: 22936930 PMCID: PMC3425912 DOI: 10.3389/fmicb.2012.00300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/28/2012] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon library screening to characterize RW1 catabolic and other genes implicated in the reaction to or degradation of DBF. To detect differentially expressed genes upon exposure to DBF, we applied three different growth exposure experiments, using either short DBF exposures to actively growing cells or growing them with DBF as sole carbon and energy source. Genome-wide gene expression was examined using a custom-made microarray. In addition, proportional abundance determination of transposon insertions in RW1 libraries grown on salicylate or DBF by ultra-high throughput sequencing was used to infer genes whose interruption caused a fitness loss for growth on DBF. Expression patterns showed that batch and chemostat growth conditions, and short or long exposure of cells to DBF produced very different responses. Numerous other uncharacterized catabolic gene clusters putatively involved in aromatic compound metabolism increased expression in response to DBF. In addition, only very few transposon insertions completely abolished growth on DBF. Some of those (e.g., in dxnA1) were expected, whereas others (in a gene cluster for phenylacetate degradation) were not. Both transcriptomic data and transposon screening suggest operation of multiple redundant and parallel aromatic pathways, depending on DBF exposure. In addition, increased expression of other non-catabolic genes suggests that during initial exposure, S. wittichii RW1 perceives DBF as a stressor, whereas after longer exposure, the compound is recognized as a carbon source and metabolized using several pathways in parallel.
Collapse
Affiliation(s)
- Edith Coronado
- Department of Fundamental Microbiology, University of Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
38
|
Suzuki Y, Nakamura M, Otsuka Y, Suzuki N, Ohyama K, Kawakami T, Sato K, Kajita S, Hishiyama S, Takahashi A, Katayama Y. Development of a highly sensitive assay for enzyme-mediated reductive degradation of polychlorinated dibenzo-p-dioxin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:1072-1075. [PMID: 22447772 DOI: 10.1002/etc.1775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/12/2011] [Accepted: 01/02/2012] [Indexed: 05/31/2023]
Abstract
The degradation of 2-chloro-4,5-O-(4'-methyl-7', 8'-diphenyl)ether (CMDPE), an analog of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD), mediated by Geobacillus sp. UZO 3 cell-free extract was monitored. Ethyl acetate extracts of a complete reaction mixture incubated at 65°C for 18 h were analyzed either by thin layer chromatography (TLC) fractionation coupled with spectrometric detection or by gas chromatography-mass spectrometry (GC-MS). The reaction product 4-methylumbelliferone (4MU) was successfully isolated by TLC and visualized by a transilluminator at 450 nm. The 4MU, 4-chlorophenol, and reaction intermediate 6-chlorophenoxy-4-methylumbelliferone were all successfully detected by GC-MS. The presence of these compounds suggest that Geobacillus sp. UZO 3 cell-free extract also catalyzes the reductive cleavage of the diaryl ether bonds of CMDPE in a similar mechanism previously reported in 2,7-DCDD. In the present study, the authors describe a simple and highly sensitive fluorescent assay for a new dioxin degrading enzyme(s).
Collapse
Affiliation(s)
- Yuzo Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Johnson DR, Coronado E, Moreno-Forero SK, Heipieper HJ, van der Meer JR. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii. BMC Microbiol 2011; 11:250. [PMID: 22082453 PMCID: PMC3238334 DOI: 10.1186/1471-2180-11-250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. RESULTS Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. CONCLUSIONS A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
40
|
Suzuki Y, Nakamura M, Otsuka Y, Suzuki N, Ohyama K, Kawakami T, Sato K, Kajita S, Hishiyama S, Fujii T, Takahashi A, Katayama Y. Novel enzymatic activity of cell free extract from thermophilic Geobacillus sp. UZO 3 catalyzes reductive cleavage of diaryl ether bonds of 2,7-dichlorodibenzo-p-dioxin. CHEMOSPHERE 2011; 83:868-872. [PMID: 21435685 DOI: 10.1016/j.chemosphere.2011.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/30/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
We characterized the ability of the cell free extract from polychlorinated dibenzo-p-dioxins degrading bacterium Geobacillus sp. UZO 3 to reduce even highly chlorinated dibenzo-p-dioxins such as octachlorodibenzo-p-dioxins in incineration fly ash. The degradation of 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) as a model dioxin catalyzed by the cell free extract from this strain implicates that the ether bonds of 2,7-DCDD molecule undergo reductive cleavage, since 4',5-dichloro-2-hydroxydiphenyl ether and 4-chlorophenol were detected as intermediate products of 2,7-DCDD degradation.
Collapse
Affiliation(s)
- Yuzoh Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 2010; 192:6101-2. [PMID: 20833805 DOI: 10.1128/jb.01030-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pollutants such as polychlorinated biphenyls and dioxins pose a serious threat to human and environmental health. Natural attenuation of these compounds by microorganisms provides one promising avenue for their removal from contaminated areas. Over the past 2 decades, studies of the bacterium Sphingomonas wittichii RW1 have provided a wealth of knowledge about how bacteria metabolize chlorinated aromatic hydrocarbons. Here we describe the finished genome sequence of S. wittichii RW1 and major findings from its annotation.
Collapse
|
42
|
Enzyme systems for biodegradation of polychlorinated dibenzo-p-dioxins. Appl Microbiol Biotechnol 2010; 88:23-30. [DOI: 10.1007/s00253-010-2765-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|
43
|
Li Q, Wang X, Yin G, Gai Z, Tang H, Ma C, Deng Z, Xu P. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8635-8642. [PMID: 20028064 DOI: 10.1021/es901991d] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A biphenyl (BP)-utilizing bacterium, designated B6-2, was isolated from soil and identified as Pseudomonas putida. BP-grown B6-2 cells were capable of transforming dibenzofuran (DBF) via a lateral dioxygenation and meta-cleavage pathway. The ring cleavage product 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid (HOBB) was detected as a major metabolite. B6-2 growing cells could also cometabolically degrade DBF using BP as a primary substrate. A recombinant Escherichia coli strain DH10B (pUC118bphABC) expressing BP dioxygenase, BP-dihydrodiol dehydrogenase, and dihydroxybiphenyl dioxygenase was shown to be capable of transforming DBF to HOBB. Using purified HOBB that was produced by the recombinant as the substrate for B6-2, we newly identified a series of benzofuran derivatives as metabolites. The structures of these metabolites indicate that an unreported HOBB degradation pathway is employed by strain B6-2. In this pathway, HOBB is proposed to be transformed to 2-oxo-4-(3'-oxobenzofuran-2'-yl)butanoic acid and 2-hydroxy-4-(3'-oxobenzofuran-2'-yl)butanoic acid (D4) through two sequential double-bond hydrogenation steps. D4 is suggested to undergo reactions including decarboxylation and oxidation to produce 3-(3'-oxobenzofuran-2'-yl)propanoic acid (D6). 3-Hydroxy-3-(3'-oxobenzofuran-2'-yl)propanoic acid (D7) and 2-(3'-oxobenzofuran-2'-yl)acetic acid (D8) would represent metabolites involved in the processes of beta- and alpha-oxidation of D6, respectively. D7 and D8 are suggested to be transformed to their respective products 3-hydroxy-2,3-dihydrobenzofuran-2-carboxylic acid (D10) and 2-(3'-hydroxy-2',3'-dihydrobenzofuran-2'-yl)acetic acid. D10 is proposed to be transformed to salicylic acid (D14) via 2,3-dihydro-2,3-dihydroxybenzofuran, 2-oxo-2-(2'-hydroxyphenyl)acetic acid and 2-hydroxy-2-(2'-hydroxyphenyl)acetic acid. Further experimental results revealed that B6-2 was capable of growing with D14 as the sole carbon source. Because benzofuran derivatives may have biological, pharmacological, and toxic properties, the elucidation of this new pathway should be significant from both biotechnological and environmental views.
Collapse
Affiliation(s)
- Qinggang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kimura N, Kamagata Y. Impact of dibenzofuran/dibenzo-p-dioxin amendment on bacterial community from forest soil and ring-hydroxylating dioxygenase gene populations. Appl Microbiol Biotechnol 2009; 84:365-73. [PMID: 19513710 DOI: 10.1007/s00253-009-2046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The impact of dibenzofuran (DF) and dibenzo-p-dioxin (DD) on the changes in bacterial community structure and the transition of catabolic genes were studied using forest soil. The bacterial community structure of soil suspensions amended with 1 microg/g of either DF or DD was analyzed by 16S rRNA and functional gene sequencing. To analyze the functional genes in the communities, we targeted a gene sequence that functions as the binding site of Rieske iron sulfur center common to ring-hydroxylating dioxygenases (RHDs) for monocyclic, bicyclic, and tricyclic aromatic compounds. The gene fragments were polymerase chain reaction-amplified from DNAs extracted from soil suspensions spiked with either DF or DD, cloned, and sequenced (70 clones). Bacterial community analysis based on 16S rRNA genes revealed that specific 16S rRNA gene sequences, in particular, phylotypes within alpha-Proteobacteria, increased in the soil suspension amended with DF or DD. RHD gene-based functional community analysis showed that, in addition to two groups of RHD genes that were also detected in unamended soil suspensions, another two groups of RHD genes, each of which is specific to DF- and DD-amended soil, respectively, emerged to a great extent. The DD-specific genotype is phylogenetically distant from any known RHDs. These results strongly suggest that soil microbial community potentially harbors a wide array of organisms having diverse RHDs including those previously unknown, and that they could quickly respond to an impact of contamination of hazardous chemicals by changing the microbial community and gene diversity.
Collapse
Affiliation(s)
- Nobutada Kimura
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | | |
Collapse
|
45
|
Aerobic biodegradation of the brominated flame retardants, dibromoneopentyl glycol and tribromoneopentyl alcohol. Biodegradation 2009; 20:621-7. [DOI: 10.1007/s10532-009-9249-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
46
|
Salicylic-Acid-Mediated Enhanced Biological Treatment of Wastewater. Appl Biochem Biotechnol 2009; 160:704-18. [DOI: 10.1007/s12010-009-8538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
47
|
Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, Rapala J. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME JOURNAL 2008; 3:314-25. [DOI: 10.1038/ismej.2008.110] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2008; 81:793-811. [PMID: 19002456 DOI: 10.1007/s00253-008-1752-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The genus Sphingomonas (sensu latu) belongs to the alpha-Proteobacteria and comprises strictly aerobic chemoheterotrophic bacteria that are widespread in various aquatic and terrestrial environments. The members of this genus are often isolated and studied because of their ability to degrade recalcitrant natural and anthropogenic compounds, such as (substituted) biphenyl(s) and naphthalene(s), fluorene, (substituted) phenanthrene(s), pyrene, (chlorinated) diphenylether(s), (chlorinated) furan(s), (chlorinated) dibenzo-p-dioxin(s), carbazole, estradiol, polyethylene glycols, chlorinated phenols, nonylphenols, and different herbicides and pesticides. The metabolic versatility of these organisms suggests that they have evolved mechanisms to adapt quicker and/or more efficiently to the degradation of novel compounds in the environment than members of other bacterial genera. Comparative analyses demonstrate that sphingomonads generally use similar degradative pathways as other groups of microorganisms but deviate from competing microorganisms by the existence of multiple hydroxylating oxygenases and the conservation of specific gene clusters. Furthermore, there is increasing evidence for the existence of plasmids that only can be disseminated among sphingomonads and which undergo after conjugative transfer pronounced rearrangements.
Collapse
|
49
|
Nam IH, Kim YM, Murugesan K, Jeon JR, Chang YY, Chang YS. Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2008; 157:114-121. [PMID: 18258362 DOI: 10.1016/j.jhazmat.2007.12.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 11/27/2007] [Accepted: 12/26/2007] [Indexed: 05/25/2023]
Abstract
Removal of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from fly ash poses a serious problem. In the study presented here, we used a microbial biocatalyst which is a mixture of 4 bacterial and 5 fungal dioxin-degrading strains. The ability of this biocatalyst to bioremediate PCDD/Fs from contaminated municipal solid waste incinerator (MSWI) fly ash was examined by solid-state fermentation under laboratory conditions. Treatment of MSWI fly ash with the microbial biocatalyst for 21 days resulted in a 68.7% reduction in total toxic PCDD/Fs. Further analyses revealed that the microbial biocatalyst also removed 66.8% of the 2,3,7,8-substituted congeners from the fly ash. During the treatment period, the presence of the individual strains composing the microbial biocatalyst was monitored by the amplification of strain-specific DNA sequences followed by denaturing gradient gel electrophoresis (DGGE). This analysis showed that all of the bacterial and fungal strains composing this dioxin-degrading microbial mixture maintained under the dioxin treatment conditions. These results demonstrate that this microbial biocatalyst could potentially be used in the bioremediation of PCDD/Fs from contaminated fly ash.
Collapse
Affiliation(s)
- In-Hyun Nam
- School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
50
|
Two angular dioxygenases contribute to the metabolic versatility of dibenzofuran-degrading Rhodococcus sp. strain HA01. Appl Environ Microbiol 2008; 74:3812-22. [PMID: 18441103 DOI: 10.1128/aem.00226-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus sp. strain HA01, isolated through its ability to utilize dibenzofuran (DBF) as the sole carbon and energy source, was also capable, albeit with low activity, of transforming dibenzo-p-dioxin (DD). This strain could also transform 3-chlorodibenzofuran (3CDBF), mainly by angular oxygenation at the ether bond-carrying carbon (the angular position) and an adjacent carbon atom, to 4-chlorosalicylate as the end product. Similarly, 2-chlorodibenzofuran (2CDBF) was transformed to 5-chlorosalicylate. However, lateral oxygenation at the 3,4-positions was also observed and yielded the novel product 2-chloro-3,4-dihydro-3,4-dihydroxydibenzofuran. Two gene clusters encoding enzymes for angular oxygenation (dfdA1A2A3A4 and dbfA1A2) were isolated, and expression of both was observed during growth on DBF. Heterologous expression revealed that both oxygenase systems catalyze angular oxygenation of DBF and DD but exhibited complementary substrate specificity with respect to CDBF transformation. While DfdA1A2A3A4 oxygenase, with high similarity to DfdA1A2A3A4 oxygenase from Terrabacter sp. strain YK3, transforms 3CDBF by angular dioxygenation at a rate of 29% +/- 4% that of DBF, 2CDBF was not transformed. In contrast, DbfA1A2 oxygenase, with high similarity to the DbfA1A2 oxygenase from Terrabacter sp. strain DBF63, exhibited complementary activity with angular oxygenase activity against 2CDBF but negligible activity against 3CDBF. Thus, Rhodococcus sp. strain HA01 constitutes the first described example of a bacterial strain where coexpression of two angular dioxygenases was observed. Such complementary activity allows for the efficient transformation of chlorinated DBFs.
Collapse
|