1
|
Dai T, Guo Y, Wen T, Yu S, Tao Y, Liu Z. Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on Phytophthora pini. Microorganisms 2025; 13:863. [PMID: 40284699 PMCID: PMC12029582 DOI: 10.3390/microorganisms13040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Phytophthora pini, a globally dispersed plant pathogen, poses a significant threat to natural ecosystems and cultivated horticultural crops. Early and precise detection of P. pini is essential for effective disease management. This study focused on developing specific, rapid, and sensitive molecular diagnostic techniques to identify the pathogenic oomycete P. pini. We employed recombinase polymerase amplification with lateral flow device (RPA-LFD) and RPA combined with CRISPR/Cas12a. The RPA-LFD method can identify P. pini at concentrations as low as 10 pg/μL in 30 min, while the RPA-CRISPR/Cas12a approach can detect the pathogen at 1 pg/μL in approximately 50 min. These methods are highly effective in identifying disease caused by P. pini and provide a basis for future field detection, which may reduce the economic losses associated with this devastating disease.
Collapse
Affiliation(s)
- Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Tongyue Wen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Sinong Yu
- Modern Forestry Innovation Center of Yancheng State-Owned Forest Farm, Yancheng 224049, China;
| | - Yuan Tao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| | - Zhuo Liu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Y.G.); (T.W.); (Y.T.); (Z.L.)
| |
Collapse
|
2
|
Sterol-Sensing Domain (SSD)-Containing Proteins in Sterol Auxotrophic Phytophthora capsici Mediate Sterol Signaling and Play a Role in Asexual Reproduction and Pathogenicity. Microbiol Spectr 2023; 11:e0379722. [PMID: 36629430 PMCID: PMC9927452 DOI: 10.1128/spectrum.03797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phytophthora species are devastating filamentous plant pathogens that belong to oomycetes, a group of microorganisms similar to fungi in morphology but phylogenetically distinct. They are sterol auxotrophic, but nevertheless exploit exogenous sterols for growth and development. However, as for now the mechanisms underlying sterol utilization in Phytophthora are unknown. In this study, we identified four genes in Phytophthora capsici that encode proteins containing a sterol-sensing domain (SSD), a protein domain of around 180 amino acids comprising five transmembrane segments and known to feature in sterol signaling in animals. Using a modified CRISPR/Cas9 system, we successfully knocked out the four genes named PcSCP1 to PcSCP4 (for P. capsici SSD-containing protein 1 to 4), either individually or sequentially, thereby creating single, double, triple, and quadruple knockout transformants. Results showed that knocking out just one of the four PcSCPs was not sufficient to block sterol signaling. However, the quadruple "all-four" PcSCPs knockout transformants no longer responded to sterol treatment in asexual reproduction, in contrast to wild-type P. capsici that produced zoospores under sterol treatment. Apparently, the four PcSCPs play a key role in sterol signaling in P. capsici with functional redundancy. Transcriptome analysis indicated that the expression of a subset of genes is regulated by exogenous sterols via PcSCPs. Further investigations showed that sterols could stimulate zoospore differentiation via PcSCPs by controlling actin-mediated membrane trafficking. Moreover, the pathogenicity of the "all-four" PcSCPs knockout transformants was significantly decreased and many pathogenicity related genes were downregulated, implying that PcSCPs also contribute to plant-pathogen interaction. IMPORTANCE Phytophthora is an important genus of oomycetes that comprises many destructive plant pathogens. Due to the incompleteness of the sterol synthesis pathway, Phytophthora spp. do not possess the ability to produce sterols. Therefore, these sterol auxotrophic oomycetes need to recruit sterols from the environment such as host plants to support growth and development, which seems crucial during pathogen-plant interactions. However, the mechanisms underlying sterol utilization by Phytophthora spp. remain largely unknown. Here, we show that a family of sterol-sensing domain-containing proteins (SCPs) consisting of four members in P. capsici plays a key role in sterol signaling with functional redundancy. Moreover, these SCPs play a role in different biological processes, including asexual reproduction and pathogenicity. Our study overall revealed the multiple functions of PcSCPs and addressed the question of how exogenous sterols regulate the development of heterothallic Phytophthora spp. via SSD-containing proteins.
Collapse
|
3
|
Mironenko NV, Khyutti AV, Kyrova EI, Belov DA, Afanasenko OS. First Detection of Potato Spindle Tuber Viroid in Natural Isolates of Potato Blight Agent Phytophthora infestans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:55-62. [PMID: 37186047 DOI: 10.1134/s0012496622700119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Phytophthora infestans is the oomycete that causes potato blight, an important disease. The potato spindle tuber viroid (PSTVd) is a dangerous pathogen of many plants, including potato. We have previously shown that PSTVd can be transmitted from infected potato plants into the Ph. infestans mycelium, replicated within the mycelium, and then transmitted to other potato plants upon their infection with Ph. infestans in laboratory conditions. The objective of this work was to check the hypothesis that PSTVd transmission, preservation, and replication in Ph. infestans are possible to occur in natural conditions during long-term coevolution of the host and pathogen in the Solanum spp.-Ph. infestans system. A screening test for PSTVd was performed in 111 natural Ph. infestans isolates obtained from potato plants, which represented various cultivars, had signs of potato blight, and were collected from industrial potato fields of the Moscow, Vologda, and Bryansk regions and breeding and variety test plots of the St. Petersburg and Moscow regions in 2020 and 2022. Using RT-PCR with PSTVd-specific primers, 42 Ph. infestans isolates collected in 2020 were tested after five passages and 69 Ph. infestans isolates collected in 2022, after a single passage on rye agar. Diagnostic amplicons were detected in 8 and 50 isolates, respectively. Some of the amplicons were visually assessed as minor amplification products, apparently resulting from nonspecific priming on a host Ph. infestans gene, which codes for a hypothetical protein-coding mRNA in Ph. infestans and other oomycetes. Eight amplicons were sequenced to verify the PSTVd presence in Ph. infestans isolates. Three amplicons corresponded to the complete PSTVd genome and five, to its part (~260 bp). The nucleotide sequences of cloned amplification products were identified to species in the BLAST system and deposited in GenBank. The amplicons obtained with the PSTVd-specific primers were identified as PSTVd sequences in all Ph. infestans isolates examined. The majority of the nucleotide sequences were phylogenetically related to BLAST sequences of PSTVd strains originating from Russia; several strains showed similarity to strains from other countries (France, China, and West African countries). The results demonstrate that PSTVd was for the first time detected in natural (field) Ph. infestans isolates and offer new opportunities for studying the intricate multilevel host-parasite interactions.
Collapse
Affiliation(s)
- N V Mironenko
- All-Russia Institute of Plant Protection, St. Petersburg, Russia.
| | - A V Khyutti
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - E I Kyrova
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - D A Belov
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| | - O S Afanasenko
- All-Russia Institute of Plant Protection, St. Petersburg, Russia
| |
Collapse
|
4
|
Afanasenko OS, Khiutti AV, Mironenko NV, Lashina NM. Transmission of potato spindle tuber viroid between <i>Phytophthora infestans</i> and host plants. Vavilovskii Zhurnal Genet Selektsii 2022; 26:272-280. [PMID: 35774366 PMCID: PMC9167824 DOI: 10.18699/vjgb-22-34] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a naked, circular, single-stranded RNA (356–363 nucleotides in length) which lacks any protein-coding sequences. It is an economically important pathogen and is classified as a high-risk plant quarantine disease. Moreover, it is known that PSTVd is mechanically transmitted by vegetative plant propagation through infected pollen, and by aphids. The aim of this study is to determine the possibility of viroid transmission by potato pathogen Phytophthora infestans (Mont.) de Bary. PSTVd-infected (strain VP87) potato cultivars Gala, Colomba, and Riviera were inoculated with P. infestans isolate PiVZR18, and in 7 days, after the appearance of symptoms, re-isolation of P. infestans on rye agar was conducted. RT-PCR diagnostics of PSTVd in a mixture of mycelia and sporangia were positive after 14 days of cultivation on rye agar. The PSTVd-infected P. infestans isolate PiVZR18v+ was used to inoculate the healthy, viroid-free plants of potato cv. Gala and tomato cv. Zagadka. After 60 days, an amplification fragment of PSTVd was detected in the tissues of one plant of tomato cv. Zagadka by RT-PCR with the primer set P3/P4, indicating successful transmission of PSTVd by P. infestans isolate PiVZR18v+. This result was confirmed by sequencing of the RT-PCR amplicon with primers P3/P4. The partial sequence of this amplicon was identical (99.5 %) to PSTVd strain VP87. RT-PCR showed the possibility of viroid stability in a pure culture of P. infestans isolate PiVZR18v+ after three consecutive passages on rye agar. PSTVd was not detected after the eighth passage on rye agar in P. infestans subculture. These results are initial evidence of potato viroid PSTVd being bidirectionally transferred between P. infestans and host plants
Collapse
|
5
|
Anti-Pseudomonas aeruginosa activity of a C 16-terpene dilactone isolated from the endophytic fungus Neofusicoccum luteum of Kigelia africana (Lam.). Sci Rep 2022; 12:780. [PMID: 35039545 PMCID: PMC8763916 DOI: 10.1038/s41598-021-04747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
Fungal endophytes have the capacity to biosynthesize secondary metabolites that are produced by their host plants. In this study, a dilactone terpenoid of C16 architecture was isolated from the fungal endophytes of Kigeliaafricana, in our attempt to identify anti-Pseudomonasaeruginosa metabolites. Thirty-eight fungal isolates were cultured for biomolecule production over a period of thirty days. Extracts from three (ZF 34, ZF 52 and ZF 91) of the fungi showed good anti-P.aeruginosa activity, with ZF 52 presenting the best MIC of 19.53 µg/mL and was accordingly subjected to chromatographic separation. Based on nuclear magnetic resonance (NMR) spectroscopy, high resolution mass spectrometry and single crystal X-ray diffraction (XRD) analyses, the isolated compound was identified as a C16-terpene dilactone, with a structure consistent with that of the known diterpene, CJ-14445. The isolated dilactone showed anti-P.aeruginosa activity with MIC of 0.61 µg/mL, signifying the antibacterial potential of the biomolecule. The bioactive fungal isolate (ZF 52) was identified as Neofusicoccumluteum based on genomic DNA sequencing. This is the first report of the endophyte N.luteum from K.africana and the first reported occurrence of CJ-14445 in the fungus.
Collapse
|
6
|
Cai M, Li T, Lu X, Chen L, Wang Q, Liu X. Multiple mutations in the predicted transmembrane domains of the cellulose synthase 3 (CesA3) of Phytophthora capsici can confer semi-dominant resistance to carboxylic acid amide fungicides. Int J Biol Macromol 2021; 193:2343-2351. [PMID: 34793810 DOI: 10.1016/j.ijbiomac.2021.11.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/26/2022]
Abstract
The current study established a clearer understanding of the molecular basis for resistance to carboxylic acid amide (CAA) fungicides. Although four cellulose synthase (CesA) genes were investigated, only F1073L, G1105A, V1109L in CesA3 were found to link to CAA-resistance in Phytophthora capsici. Back-transformation experiments confirmed the role of the three mutations in CAA-resistance. Inheritance studies also confirmed the link and indicated the resistance was semi-dominant with the heterozygous F1 and F2 progeny exhibiting intermediate resistance levels compared to the homozygous parents, which was validated by the pyrosequencing results. The semi-dominant nature of CAA-resistance implies that it could be easy for resistance to spread once resistance emerged, being facilitated by both sexual and asexual reproduction. Bioinformatic analysis indicated all mutations occurred in either the first or second of the predicted transmembrane domains at C-terminus of CesA3. Resistant isolates bearing different combinations of mutations were found to exhibit different resistance levels to different CAAs, indicating that each mutation could make different contributions to resistance phenotype depending on structural differences in different CAAs. The current results highlight the complex combinations of mutations and resistance phenotype, and further reinforces the research necessity to completely characterize CAA-resistance to develop appropriate strategies to manage resistance development.
Collapse
Affiliation(s)
- Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | - Tengjiao Li
- Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | - Xiaohong Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Chen
- Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | - Qian Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100094, China; College of Plant Protection, Northwest Agriculture and Forestry University, Yangling 712100, China.
| |
Collapse
|
7
|
Xue Z, Wang W, Shen J, Zhang J, Zhang X, Liu X. A Patched-Like Protein PsPTL Is Not Essential for the Growth and Response to Various Stresses in Phytophthora sojae. Front Microbiol 2021; 12:673784. [PMID: 34690942 PMCID: PMC8530017 DOI: 10.3389/fmicb.2021.673784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Patched (Ptc) and Patched-related (Ptr) proteins containing sterol-sensing domains (SSD) and Patched domains are highly conserved in eukaryotes for lipid transport and metabolism. Four proteins containing predicted SSD and Patched domains were simultaneously found by searching the Phytophthora sojae genome database, and one of them was identified as a Patched-like (PTL) protein. Here, we investigated the biological function of PsPTL. The expression level of PsPTL was higher during mycelial and sporulation stages, compared to zoospore (ZO), cyst, and germinated-cyst stages, without significant change during infection. However, deletion of PsPTL using CRISPR/Cas9 had no significant effect on the growth, development, or virulence of P. sojae. Further investigations showed that PsPTL is not essential for P. sojae to cope with external stresses such as temperature, pH, oxidative and osmotic pressure. In addition, this gene did not appear to play an essential role in P. sojae’s response to exogenous sterols. The transcript levels of the other three proteins containing predicted SSD and Patched domains were also not significantly upregulated in PsPTL deletion transformants. Our studies demonstrated that PsPTL is not an essential protein for P. sojae under the tested conditions, and more in-depth research is required for revealing the potential functions of PsPTL under special conditions or in other signaling pathways.
Collapse
Affiliation(s)
- Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinghuan Shen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinhui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xitao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Christova PK, Kostov KV, Lyubenova AB, Slavov SB. A new hybrid of Phytophthora from Southeast Europe. Mycologia 2021; 113:734-747. [PMID: 33974519 DOI: 10.1080/00275514.2021.1897378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During an investigation of rivers in Bulgaria, an isolate of Phytophthora (RLKam2016/61c) was recovered and initially identified as Phytophthora sansomeana based on internal transcribed spacer region (ITS) sequence data. However, the sequencing of the mitochondrial cytochrome c oxidase subunit I (cox1) gene revealed high similarity to Phytophthora sp. kelmania, and sequencing of other nuclear regions (β-tubulin [Btub] and translation elongation factor 1-alpha [tef1]) revealed a significant number of polymorphisms, indicating a possible hybridization event. Additional cloning and sequencing of the nuclear ITS and Btub regions showed the presence of two distinct groups of alleles, one of which was highly similar to P. sansomeana, whereas the other was similar to a species complex that includes Phytophthora sp. kelmania. Therefore, the new hybrid was named Phytophthora × sansomeana. It is characterized by fast growth on V8 juice agar (V8A) and carrot agar (CA), moderate aerial mycelium with radiate pattern of the colonies and relatively slower growth rate on malt extract agar (MEA) and potato dextrose agar (PDA), and petaloid to rosaceous pattern of the colonies with fluffy aerial mycelium. The optimum growth temperature for P. × sansomeana was at 25 C, with an average growth rate of 9 mm per day. Abundant sporangium formation of the isolate in spring water was observed, but the hybrid was sterile in culture. Pathogenicity analyses of the hybrid were conducted in comparison with the most closely related subclade 8a species from our collection, P. pseudocryptogea. The inhibition effect on the root growth of young seedlings of two legumes, common pea and vetch, as well as on cuttings of the ornamental plant coleus induced by both phytopathogens was significant. No effect of either the new hybrid or P. pseudocryptogea on the growth of maize seedlings was observed.
Collapse
|
9
|
Miao J, Liu X, Du X, Li G, Li C, Zhao D, Liu X. Sensitivity of Pythium spp. and Phytopythium spp. and tolerance mechanism of Pythium spp. to oxathiapiprolin. PEST MANAGEMENT SCIENCE 2020; 76:3975-3981. [PMID: 32506629 DOI: 10.1002/ps.5946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/01/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Oxathiapiprolin, developed by DuPont, is the only commercial oxysterol-binding protein inhibitor (OSBPI) of oomycete pathogens. Although the activity of oxathiapiprolin on some Pythium spp. and Phytopythium spp. has been reported, it has not been tested on many other species, and little is known about the mechanisms of Pythium spp. that are tolerant to it. RESULTS Oxathiapiprolin exhibited a strong inhibitory effect on mycelial growth of Phy. litorale, Phy. helicoides and Phy. chamaehyphon, with EC50 values ranging from 0.002 to 0.013 μg mL-1 . It also showed good effectiveness against Py. splendens and two Py. ultimum isolates, with EC50 values ranging from 0.167 to 0.706 μg mL-1 , but showed no activity against 14 other Pythium spp. Oxathiapiprolin provoked a slight upregulation of PuORP1 in Py. ultimum, but it did not lead to PaORP1-1 or PaORP1-2 overexpression in Py. aphanidermatum. Transformation and expression of PuORP1, PaORP1-1 or PaORP1-2 in the sensitive wild-type Phytophthora sojae isolate P6497 confirmed that either the PuORP1, PaORP1-1 or PaORP1-2 was responsible for the observed oxathiapiprolin tolerance. CONCLUSION This study showed that oxathiapiprolin had excellent activity against Phytopythium spp. but displayed a differentiated activity against different Pythium spp. ORP1s in Pythium spp. are positively related to the tolerance of Pythium species to oxathiapiprolin. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaofei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoran Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guixiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chengcheng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | | | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Lin D, Xue Z, Miao J, Huang Z, Liu X. Activity and Resistance Assessment of a New OSBP Inhibitor, R034-1, in Phytophthora capsici and the Detection of Point Mutations in PcORP1 that Confer Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13651-13660. [PMID: 33191734 DOI: 10.1021/acs.jafc.0c05531] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
R034-1 is a new member of the piperidinyl thiazole isoxazoline class of fungicides that shows high activity against most plant-pathogenic oomycetes and could effectively inhibit several developmental stages of Phytophthora capsici. Here, the potential resistance risk for R034-1 was evaluated in P. capsici. The baseline sensitivities of 135 isolates to R034-1 showed a unimodal curve, with a mean EC50 value of 0.004 μg/mL. Twelve resistant mutants were generated by fungicide adaptation and displayed lower fitness compared to parental isolates, which suggests that the resistance risk of P. capsici to R034-1 is low. R034-1 and oxathiapiprolin are structurally related, and resistant isolates display cross-resistance to both compounds, suggesting that these fungicides may target the same oxysterol binding protein. Comparison of PcORP1 genes in the resistant mutants and their parental isolates revealed (N767S, N767I, and G700V) amino acid substitutions in the R034-1 resistant mutant. Causality was functionally validated using site-directed mutagenesis of the target gene using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Dong Lin
- China Agricultural University, Beijing 100193, China
| | - Zhaolin Xue
- China Agricultural University, Beijing 100193, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712110, China
| | | | - Xili Liu
- China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712110, China
| |
Collapse
|
11
|
Mathew D, Anju PS, Tom A, Johnson N, Lidia George M, Davis SP, Ravisankar V, Asha KN. Genome-wide microsatellites and species specific markers in genus Phytophthora revealed through whole genome analysis. 3 Biotech 2020; 10:442. [PMID: 33014685 DOI: 10.1007/s13205-020-02430-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Abstract
Genome wide microsatellite maps shall support Phytophthora systematics through the development of reliable markers, enabling species discrimination and variability analyses. Whole genome sequences of 17 Phytophthora accessions belonging to 14 species were retrieved from GenBank and the genome-wide microsatellites in each species were mined. A total of 51,200 microsatellites, including dinucleotide to decanucleotide motifs, have been identified across all the species and each one was characterized for uniqueness and repeat number. The P. infestans T30-4 genome had the highest (6873) and P. multivora 3378 had the lowest number of microsatellites (1802). Dinucleotide motifs (63.6%) followed by trinucleotide motifs (30.1%) were most abundant in all the genome. From 14 species, 250 microsatellites which are unique for the respective genomes are detailed along with their primer combinations and product sizes. P. sojae had the highest number of unique microsatellite motifs. Genome wide microsatellite maps for all the 14 Phytophthora species including the chromosome, position, motif, repeat number, forward and reverse primer sequences and expected PCR product size, for every microsatellite are presented. Markers based on the unique microsatellites could be used to identify each species, whereas the ones common to all species could be used to identify the genetic variability. Furthermore, to confirm the results, pure cultures of P. capsici, P. nicotianae and P. palmivora were procured from the Phytophthora Repository, DNA was isolated and the unique markers were screened across the species. The characteristic markers developed have confirmed the genome analysis results.
Collapse
|
12
|
Wang Z, Peng Q, Hou Y, Gao X, Zhong S, Fang Y, Liu C, Liu X. Resistance assessment for SYP-14288 in Phytophthora capsici and changes in mitochondria electric potential-associated respiration and ATP production confers resistance. PEST MANAGEMENT SCIENCE 2020; 76:2525-2536. [PMID: 32077584 DOI: 10.1002/ps.5795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Phytophthora capsici is a destructive plant oomycete pathogen that could lead to devastating losses in food production. Fungicide application is the main way to control plant disease caused by P. capsici. SYP-14288, a novel fungicide with a unique mode of action, could be used to control a broad range of plant diseases. Here, the potential for SYP-14288 resistance in P. capsici and the resistance mechanism involved were evaluated. RESULTS Baseline sensitivities of 133 isolates to SYP-14288 were determined and found to conform to a unimodal curve with a mean half-maximal effective concentration (EC50 ) of 0.625 μg mL-1 . In total, 21 stable SYP-14288-resistant mutants were generated by fungicide adaptation in three sensitive isolates. The fitness of all the mutants was found to be lower than that of the parental isolates. Otherwise, downregulation of various ATPases may confer different resistance levels in P. capsici. Finally, multiple biochemical studies strongly suggest that both ATP content and electric potential were reduced in SYP-14288-resistant mutants, and as a compensatory mechanism, respiration was facilitated to make up for the energy defect in mutants. CONCLUSION The low fitness of SYP-14288-resistant mutants suggests that the resistance risk of P. capsici to SYP-14288 is low. Resistance may be led by a permeability change in the mitochondrial inner membrane in SYP-14288-resistant isolates, and lower ATP consumption lifestyles may be key to the SYP-14288 resistance generated in P. capsici. The current study could benefit the registration and application of the novel fungicide SYP-14288. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiwen Wang
- China Agricultural University, Beijing, China
| | - Qin Peng
- China Agricultural University, Beijing, China
| | - Yanhua Hou
- China Agricultural University, Beijing, China
| | - Xiang Gao
- China Agricultural University, Beijing, China
| | - Shan Zhong
- China Agricultural University, Beijing, China
| | - Yuan Fang
- China Agricultural University, Beijing, China
| | - Changling Liu
- State Key Laboratory of Discovery and Development of Novel Pesticide, China Shenyang Research Institute of Chemical Industry, Shenyang, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Chan WS, Au CH, Leung SM, Ho DN, Wong EYL, To MY, Ng MK, Chan TL, Ma ESK, Tang BSF. Potential utility of targeted Nanopore sequencing for improving etiologic diagnosis of bacterial and fungal respiratory infection. Diagn Pathol 2020; 15:41. [PMID: 32340617 PMCID: PMC7184685 DOI: 10.1186/s13000-020-00960-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Background Diversified etiology of lower respiratory tract infection renders diagnosis challenging. The mainstay microbial culture is time-consuming and constrained by variable growth requirements. In this study, we explored the use of Nanopore sequencing as a supplementary tool to alleviate this diagnostic bottleneck. Methods We developed a targeted Nanopore method based on amplification of bacterial 16S rRNA gene and fungal internal transcribed spacer region. The performance was compared with routine infectious disease workups on 43 respiratory specimens. Results Nanopore successfully identified majority of microbes (47/54, 87.04%) and 7 possible pathogens not detected by routine workups, which were attributable to the content of microbiological investigations (n = 5) and negative culture (n = 2). The average sequencing time for first target reads was 7 min (1–43 min) plus 5 h of pre-sequencing preparation. Conclusions The Nanopore method described here was rapid, economical and hypothesis-free, which might provide valuable hints to further microbiological follow-up for opportunistic pathogens missed or not detectable by conventional tests.
Collapse
Affiliation(s)
- Wai Sing Chan
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Chun Hang Au
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Sau Man Leung
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Dona N Ho
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | | | | | - Man Kin Ng
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Tsun Leung Chan
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | | | - Bone Siu Fai Tang
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China.
| |
Collapse
|
14
|
Wei LL, Chen WC, Zhao WC, Wang J, Wang BR, Li FJ, Wei MD, Guo J, Chen CJ, Zheng JQ, Wang K. Mutations and Overexpression of CYP51 Associated with DMI-Resistance in Colletotrichum gloeosporioides from Chili. PLANT DISEASE 2020; 104:668-676. [PMID: 31951509 DOI: 10.1094/pdis-08-19-1628-re] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chili anthracnose caused by Colletotrichum spp. is an annual production concern for growers in China. Sterol C14-demethylation inhibitors (DMIs, such as tebuconazole) have been widely used to control this disease for more than three decades. In the current study, of 48 isolates collected from commercial chili farms in Jiangsu Province of China during 2018 and 2019, 8 single-spore isolates were identified as Colletotrichum gloeosporioides and the rest were identified as C. acutatum. To determine whether the DMI resistance of isolates develops in the field, mycelial growth of the 48 isolates was measured in culture medium with and without tebuconazole. In all, 6 of the 8 C. gloeosporioides isolates were resistant to tebuconazole, but all 40 of the C. acutatum isolates were sensitive to tebuconazole. The fitness cost of resistance was low based on a comparison of fitness parameters between the sensitive and resistant isolates of C. gloeosporioides. Positive cross-resistance was observed between tebuconazole and difenconazole or propiconazole, but not prochloraz. Alignment results of the CgCYP51 amino acid sequences from the sensitive and resistant isolates indicated that mutations can be divided into three genotypes. Genotype I possessed four substitutions (V18F, L58V, S175P, and P341A) at the CgCYP51A gene but no substitutions at CgCYP51B, while genotype II had five substitutions (L58V, S175P, A340S, T379A, and N476T) at CgCYP51A, concomitant with three substitutions (D121N, T132A, and F391Y) at CgCYP51B. In addition, genotype III contained two substitutions (L58V and S175P) at CgCYP51A, concomitant with one substitution (T262A) at CgCYP51B. Molecular docking models illustrated that the affinity of tebuconazole to the binding site of the CgCYP51 protein from the resistant isolates was decreased when compared with binding site affinity of the sensitive isolates. Our findings provide not only novel insights into understanding the resistance mechanism to DMIs, but also some important references for resistance management of C. gloeosporioides on chili.
Collapse
Affiliation(s)
- Ling-Ling Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Wen-Chan Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Wei-Cheng Zhao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Bing-Ran Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Feng-Jie Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Meng-di Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jun Guo
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| | - Chang-Jun Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jia-Qiu Zheng
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| | - Kai Wang
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| |
Collapse
|
15
|
Wang W, Xue Z, Miao J, Cai M, Zhang C, Li T, Zhang B, Tyler BM, Liu X. PcMuORP1, an Oxathiapiprolin-Resistance Gene, Functions as a Novel Selection Marker for Phytophthora Transformation and CRISPR/Cas9 Mediated Genome Editing. Front Microbiol 2019; 10:2402. [PMID: 31708886 PMCID: PMC6821980 DOI: 10.3389/fmicb.2019.02402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Phytophthora, a genus of oomycetes, contains many devastating plant pathogens, which cause substantial economic losses worldwide. Recently, CRISPR/Cas9-based genome editing tool was introduced into Phytophthora to delineate the functionality of individual genes. The available selection markers for Phytophthora transformation, however, are limited, which can restrain transgenic manipulation in some cases. We hypothesized that PcMuORP1, an endogenous fungicide resistance gene from P. capsici that confers resistance to the fungicide oxathiapiprolin via an altered target site in the ORP1 protein, could be used as an alternative marker. To test this hypothesis, the gene PcMuORP1 was introduced into the CRISPR/Cas9 system and complementation of a deleted gene in P. capsici was achieved using it as a selection marker. All of the oxathiapiprolin-resistant transformants were confirmed to contain the marker gene, indicating that the positive screening rate was 100%. The novel selection marker could also be used in other representative Phytophthora species including P. sojae and P. litchii, also with 100% positive screening rate. Furthermore, comparative studies indicated that use of PcMuORP1 resulted in a much higher efficiency of screening compared to the conventional selection marker NPT II, especially in P. capsici. Successive subculture and asexual reproduction in the absence of selective pressure were found to result in the loss of the selection marker from the transformants, which indicates that the PcMuORP1 gene would have little long term influence on the fitness of transformants and could be reused as the selection marker in subsequent projects. Thus, we have created an alternative selection marker for Phytophthora transformation by using a fungicide resistance gene, which would accelerate functional studies of genes in these species.
Collapse
Affiliation(s)
- Weizhen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhaolin Xue
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Can Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tengjiao Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Borui Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Khaliq I, Hardy GESJ, White D, Burgess TI. eDNA from roots: a robust tool for determining Phytophthora communities in natural ecosystems. FEMS Microbiol Ecol 2019; 94:4944903. [PMID: 29579182 DOI: 10.1093/femsec/fiy048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Proper isolation and identification of Phytophthora species is critical due to their broad distribution and huge impact on natural ecosystems throughout the world. In this study, five different sites were sampled and seven methods were compared to determine the Phytophthora community. Three traditional isolation methods were conducted (i) soil baiting, (ii) filtering of the bait water and (iii) isolation from field roots using Granny Smith apples. These were compared to four sources of eDNA used for metabarcoding using Phytophthora-specific primers on (i) sieved field soil, (ii) roots from field, (iii) filtered baiting water and (iv) roots from bait plants grown in the glasshouse in soil collected from these sites. Six Phytophthora species each were recovered by soil baiting using bait leaves and from the filtered bait water. No Phytophthora species were recovered from Granny Smith apples. eDNA extracted from field roots detected the highest number of Phytophthora species (25). These were followed by direct DNA isolation from filters (24), isolation from roots from bait plants grown in the glasshouse (19), and DNA extraction from field soil (13). Therefore, roots were determined to be the best substrate for detecting Phytophthora communities using eDNA.
Collapse
Affiliation(s)
- Ihsanul Khaliq
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Giles E St J Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Diane White
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| | - Treena I Burgess
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, 6150, Australia
| |
Collapse
|
17
|
Malarczyk D, Panek J, Frąc M. Alternative Molecular-Based Diagnostic Methods of Plant Pathogenic Fungi Affecting Berry Crops-A Review. Molecules 2019; 24:molecules24071200. [PMID: 30934757 PMCID: PMC6479758 DOI: 10.3390/molecules24071200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing consumer awareness of potentially harmful pesticides used in conventional agriculture has prompted organic farming to become notably more prevalent in recent decades. Central European countries are some of the most important producers of blueberries, raspberries and strawberries in the world and organic cultivation methods for these fruits have a significant market share. Fungal pathogens are considered to be the most significant threat to organic crops of berries, causing serious economic losses and reducing yields. In order to ameliorate the harmful effects of pathogenic fungi on cultivations, the application of rapid and effective identification methods is essential. At present, various molecular methods are applied for fungal species recognition, such as PCR, qPCR, LAMP and NGS.
Collapse
Affiliation(s)
- Dominika Malarczyk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland.
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland.
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland.
| |
Collapse
|
18
|
Nihei R, Usami M, Taguchi T, Amachi S. Role of fungal laccase in iodide oxidation in soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:127-134. [PMID: 29665575 DOI: 10.1016/j.jenvrad.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Previously, we hypothesized that microbial laccase oxidizes iodide (I-) in soils to molecular iodine (I2) or hypoiodous acid (HIO), both of which are easily incorporated into natural soil organic matter, and thus plays a role in iodine sorption on soils. In this study, soil iodide oxidase activity was determined by a colorimetric assay to evaluate if laccase is responsible for iodide oxidation in soils. Three types of Japanese soil showed significant iodide oxidase activities (0.751-2.87 mU g soil-1) at pH 4.0, which decreased with increasing pH, until it was no longer detected at pH 5.5. The activity was inhibited strongly by autoclaving or by the addition of common laccase inhibitors. Similar tendency of inhibition was observed in soil laccase activity, which was determined with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Significant positive correlations (R2 values of 0.855-0.896) between iodide oxidase activity and laccase activity were observed in two of three soils. Commercially available fungal laccases showed only very low iodide oxidase activities (4.68-18.0 mU mg-1), but enhanced activities of 102-739 mU mg-1 were observed in the presence of redox mediators. Finally, we successfully isolated fungal strains with iodide-oxidizing phenotype in the presence of redox mediators. Polyacrylamide gel electrophoresis of the culture supernatant of Scytalidium sp. strain UMS and subsequent active stain revealed that the fungal laccase actually oxidized iodide in the presence of redox mediators. These results suggest that at least part of iodide in soils is oxidized by fungal laccase through the laccase-mediator system.
Collapse
Affiliation(s)
- Reiko Nihei
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Mizuki Usami
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Taro Taguchi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan.
| |
Collapse
|
19
|
Ma D, Jiang J, He L, Cui K, Mu W, Liu F. Detection and Characterization of QoI-Resistant Phytophthora capsici Causing Pepper Phytophthora Blight in China. PLANT DISEASE 2018; 102:1725-1732. [PMID: 30125205 DOI: 10.1094/pdis-01-18-0197-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytophthora capsici is a highly destructive plant pathogen that has spread worldwide. To date, the quinone outside inhibitor (QoI) azoxystrobin has been the choice of farmers for managing this oomycete. In this study, the sensitivity of 90 P. capsici isolates collected from Yunnan, Fujian, Jiangxi, Zhejiang, and Guangdong in southern China to azoxystrobin was assessed based on mycelial growth, sporangia formation, and zoospore discharge. Furthermore, the mitochondrial cytochrome b (cytb) gene from azoxystrobin-sensitive and -resistant P. capsici isolates was compared to investigate the mechanism of QoI resistance. The high values for effective concentration to inhibit 50% of mycelial growth and large variation factor obtained provide strong support for the existence of azoxystrobin-resistant subpopulations in wild populations. The resistance frequency of P. capsici to azoxystrobin was greater than 40%. Sensitive P. capsici isolates were strongly suppressed on V8 medium plates containing azoxystrobin supplemented with salicylhydroxamic acid at 50 µg ml-1, whereas resistant isolates grew well under these conditions. Multiple alignment analysis revealed a missense mutation in the cytb gene that alters codon 137 (GGA to AGA), causing an amino acid substitution of glycine to arginine (G137R). The fitness of the azoxystrobin-sensitive isolate is similar to that of the G137R mutant. Additionally, the P. capsici isolates used in this study exhibited decreased sensitivity to two other QoI fungicides (pyraclostrobin and famoxadone). Necessary measures should be taken to control this trend of resistance to QoI that has developed in P. capsici in southern China.
Collapse
Affiliation(s)
- Dicheng Ma
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiangong Jiang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Leiming He
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Kaidi Cui
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
20
|
Zhang Z, Ren W, Wang J, Chen W, Sang C, Chen C. Resistance risk assessment of Fusarium oxysporum f. sp. melonis against phenamacril, a myosin inhibitor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 147:127-132. [PMID: 29933982 DOI: 10.1016/j.pestbp.2017.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/12/2017] [Accepted: 09/27/2017] [Indexed: 06/08/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (FOM) is one of the most notorious seed-borne diseases worldwide. Phenamacril is a cyanoacrylate fungicide with novel chemical structure and strong inhibitive activity against FOM. To evaluate the risk of FOM developing phenamacril resistance, five phenamacril-resistant mutants with >800μgml-1 minimum inhibitory concentration were obtained by repeated exposure to the fungicide in the laboratory. Compared with the parental isolate, four of the five phenamacril-resistant mutants showed enhanced biological fitness in sporulation and virulence, but not in sensitivity to various stresses (oxidative and osmotic pressure, cell membrane and wall inhibitor). No positive cross-resistance was observed among phenamacril and the other five fungicides, including azoxystrobin, carbendazim, boscalid, fluazinam and tebuconazole. Sequencing alignment results of the myosin 5 from the five resistant mutants and the parental strain indicated that the three resistant mutants fo-2, fo-3 and fo-4 had a single point mutation (S175L), which may confer the resistance of FOM against phenamacril. Interestingly, the resistant mutant fo-4 harbored not only one mutation (S175L) at myosin 5, but also the other mutation (A52G) at β2-tublin. Our data supported that resistance risk of Fusarium oxysporum f. sp. melonis against phenamacril was between the moderate to high level.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Chengwei Sang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China.
| |
Collapse
|
21
|
Nnadozie CF, Lin J, Govinden R. Optimisation of protocol for effective detachment and selective recovery of the representative bacteria for extraction of metagenomic DNA from Eucalyptus spp. woodchips. J Microbiol Methods 2018; 148:155-160. [PMID: 29673787 DOI: 10.1016/j.mimet.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
For some environments such as planktonic/aqueous environments, the separation of bacteria cells from eukaryotic cells prior to DNA extraction using filtration is relatively straightforward. However, for woodchips, the bacteria are attached/embedded within the wood matrix, which prevents easy removal of bacterial cells. In this study, a method for the selective extraction of DNA from bacteria inhabiting Eucalyptus spp. woodchips has been developed. The objective was to compare milled and unmilled woodchips processed via three detachment methods, viz., sonication, vortexing and shaking followed by filtration using Teflon filters according to three relevant criteria: DNA yield, DNA purity and quality of DNA. Highest DNA yield was obtained by milling and vortexing for 10 min (77.50 ± 5.17 ng/μl), followed by milling and vortexing for 2 min (61.00 ± 6.56 ng/μl), unmilled and vortexing for 10 min (38.67 ± 5.17 ng/μl) and milled and shaking for 2 h (31.62 ± 5.17 ng/μl). The lowest DNA yield was obtained by using unmilled woodchips and 5 min of sonication treatment (7.00 ± 1.22 ng/μl). There was no significant difference in DNA purity for milled or unmilled woodchips processed via the three detachment methods. Duration of cell detachment treatment did not significantly influence DNA yield and purity. Following optimisation experiments, it was possible to extract bacterial DNA using milled woodchips and 10 minute vortexing devoid of DNA from the host background and other associated eukaryotes and of sufficient quality and quantity for metagenomic analysis.
Collapse
Affiliation(s)
- Chika F Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa.
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
22
|
Hossain T, Miah AB, Mahmud SA, Mahin AA. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium. Appl Biochem Biotechnol 2018; 186:425-442. [PMID: 29644595 DOI: 10.1007/s12010-018-2747-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 01/15/2023]
Abstract
In this study, an extensive screening was undertaken to isolate some amylolytic microorganisms capable of producing bioethanol from starchy biomass through Consolidated Bioprocessing (CBP). A total of 28 amylolytic microorganisms were isolated, from which 5 isolates were selected based on high α-amylase and glucoamylase activities and identified as Candida wangnamkhiaoensis, Hyphopichia pseudoburtonii (2 isolates), Wickerhamia sp., and Streptomyces drozdowiczii based on 26S rDNA and 16S rDNA sequencing. Wickerhamia sp. showed the highest ethanol production (30.4 g/L) with fermentation yield of 0.3 g ethanol/g starch. Then, a low cost starchy waste, potato peel waste (PPW) was used as a carbon source to produce ethanol by Wickerhamia sp. Finally, in order to obtain maximum ethanol production from PPW, a fermentation medium was statistically designed. The effect of various medium ingredients was evaluated initially by Plackett-Burman design (PBD), where malt extracts, tryptone, and KH2PO4 showed significantly positive effect (p value < 0.05). Using Response Surface Modeling (RSM), 40 g/L (dry basis) PPW and 25 g/L malt extract were found optimum and yielded 21.7 g/L ethanol. This study strongly suggests Wickerhamia sp. as a promising candidate for bioethanol production from starchy biomass, in particular, PPW through CBP.
Collapse
Affiliation(s)
- Tahmina Hossain
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Abdul Bathen Miah
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, 1349, Bangladesh
| | - Siraje Arif Mahmud
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Abdullah-Al- Mahin
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka, 1349, Bangladesh.
| |
Collapse
|
23
|
Winfield MO, Downer A, Longyear J, Dale M, Barker GLA. Comparative study of biofilm formation on biocidal antifouling and fouling-release coatings using next-generation DNA sequencing. BIOFOULING 2018; 34:464-477. [PMID: 29745769 DOI: 10.1080/08927014.2018.1464152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The bacterial and eukaryotic communities forming biofilms on six different antifouling coatings, three biocidal and three fouling-release, on boards statically submerged in a marine environment were studied using next-generation sequencing. Sequenced amplicons of bacterial 16S ribosomal DNA and eukaryotic ribosomal DNA internal transcribed spacer were assigned taxonomy by comparison to reference databases and relative abundances were calculated. Differences in species composition, bacterial and eukaryotic, and relative abundance were observed between the biofilms on the various coatings; the main difference was between coating type, biocidal compared to fouling-release. Species composition and relative abundance also changed through time. Thus, it was possible to group replicate samples by coating and time point, indicating that there are fundamental and reproducible differences in biofilms assemblages. The routine use of next-generation sequencing to assess biofilm formation will allow evaluation of the efficacy of various commercial coatings and the identification of targets for novel formulations.
Collapse
Affiliation(s)
| | - Adrian Downer
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | - Jennifer Longyear
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | - Marie Dale
- b School of Biological Sciences , AkzoNobel/International Paint Ltd , Gateshead , UK
| | | |
Collapse
|
24
|
Han X, Zhao H, Ren W, Lv C, Chen C. Resistance risk assessment for fludioxonil in Bipolaris maydis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 139:32-39. [PMID: 28595919 DOI: 10.1016/j.pestbp.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/26/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Bipolaris maydis (anamorph: Cochliobolus heterostrophus) is the causal agent of Southern Corn Leaf Blight (SCLB), leading to huge annually losses worldwide. Although fludioxonil, a phenylpyrrole fungicide with a broad spectrum of activity, was introduced in the 1990s, no baseline sensitivity has been established for B. maydis. One hundred field isolates were used to establish a baseline sensitivity of B. maydis against fludioxonil during 2015-2016. The results showed that the baseline sensitivity was distributed as a unimodal curve with a mean EC50 value of 0.044±0.022μgmL-1. With repeated exposure to fludioxonil, a total of five fludioxonil-resistant mutants (RF>100, RF=Resistance factor) were obtained in the laboratory. Compared with the parental isolates, the five fludioxonil-resistant mutants showed decreased fitness in sporulation and virulence, and exhibited different features of sensitivity to various stresses (oxidation and osmotic pressure, cell membrane and cell wall inhibitors), but not in mycelial growth on PDA without stress amendation. The five fludioxonil-resistant mutants showed a positive cross-resistance between fludioxonil and the dicarboximide fungicide procymidone, but not between fludioxonil and boscalid or fluazinam. All mutants exhibited stable resistance to fludioxonil after 10 transfers, as indicated by resistance factor values that ranged from 116.82 to 445.59. When treated with 1.0 M NaCl, all the fludioxonil-resistant mutants showed greater mycelial glycerol content than corresponding parental isolates. Sequencing alignment results of Bmos1 indicated that mutant R27-5 had a single point mutation (Z1125K), while the mutant R104 had a 34-bp deletion fragment between the codons of amino acid residues 1125 to 1236 and encodes a putative attenuated 1133-AA protein. The 34-bp deletion fragment led to not only a 11-AA deletion(DNAVNQKLAVR), but also the resulting frameshift mutation and early stop. The mutations of R27-5 and R104 were located in the Rec domain of the Bmos1 gene. No mutations at the Bmos1 were detected in the other three resistant mutants R27-1, R27-2 and R32.
Collapse
Affiliation(s)
- Xu Han
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Hu Zhao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Weichao Ren
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - ChiYuan Lv
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China.
| |
Collapse
|
25
|
Major phytopathogens and strains from cocoa (Theobroma cacao L.) are differentiated by MALDI-MS lipid and/or peptide/protein profiles. Anal Bioanal Chem 2016; 409:1765-1777. [PMID: 28028594 DOI: 10.1007/s00216-016-0133-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/30/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Phytopathogens are the main disease agents that promote attack of cocoa plantations in all tropical countries. The similarity of the symptoms caused by different phytopathogens makes the reliable identification of the diverse species a challenge. Correct identification is important in the monitoring and management of these pests. Here we show that matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis is able to rapidly and reliably differentiate cocoa phytopathogens, namely Moniliophthora perniciosa, Phytophthora palmivora, P. capsici, P. citrophthora, P. heveae, Ceratocystis cacaofunesta, C. paradoxa, and C. fimbriata. MALDI-MS reveals unique peptide/protein and lipid profiles which differentiate these phytopathogens at the level of genus, species, and single strain coming from different hosts or cocoa tissues collected in several plantations/places. This fast methodology based on molecular biomarkers is also shown to be sufficiently reproducible and selective and therefore seems to offer a suitable tool to guide the correct application of sanitary defense approaches for infected cocoa plantations. International trading of cocoa plants and products could also be efficiently monitored by MALDI-MS. It could, for instance, prevent the entry of new phytopathogens into a country, e.g., as in the case of Moniliophthora roreri fungus that is present in all cocoa plantations of countries bordering Brazil, but that has not yet attacked Brazilian plantations. Graphical Abstract Secure identification of phytopathogens attacking cocoa plantations has been demonstrated via typical chemical profiles provided by mass spectrometric screening.
Collapse
|
26
|
McCluskey K. A Review of Living Collections with Special Emphasis on Sustainability and Its Impact on Research Across Multiple Disciplines. Biopreserv Biobank 2016; 15:20-30. [PMID: 27869477 PMCID: PMC5327032 DOI: 10.1089/bio.2016.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Formal living collections have unique characteristics that distinguish them from other types of biorepositories. Comprising diverse resources, microbe culture collections, crop and biodiversity plant germplasm collections, and animal germplasm repositories are commonly allied with specific research communities or stakeholder groups. Among living collections, microbial culture collections have very long and unique life histories, with some being older than 100 years. Regulatory, financial, and technical developments have impacted living collections in many ways. International treaty obligations and restrictions on release of genetically modified organisms complicate the activities of living collections. Funding for living collections is a continuing challenge and threatens to create a two-tier system where medically relevant collections are well funded and all other collections are underfunded and hence understaffed. Molecular, genetic, and whole genome sequence analysis of contents of microbes and other living resource collections bring additional value to living collections.
Collapse
Affiliation(s)
- Kevin McCluskey
- Fungal Genetics Stock Center, Department of Plant Pathology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
27
|
Ren W, Shao W, Han X, Zhou M, Chen C. Molecular and Biochemical Characterization of Laboratory and Field Mutants of Botrytis cinerea Resistant to Fludioxonil. PLANT DISEASE 2016; 100:1414-1423. [PMID: 30686204 DOI: 10.1094/pdis-11-15-1290-re] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Botrytis cinerea is a filamentous phytopathogen with a high risk of developing resistance to fungicides. The phenylpyrrole fungicide fludioxonil has been reported to have excellent activity against B. cinerea and increasingly has been applied to control gray mold in China. In this study, molecular and biochemical characteristics of laboratory and field mutants of B. cinerea resistant to fludioxonil has been investigated. During 2012 to 2014, B. cinerea isolates collected from Jiangsu and Shandong Provinces in China were tested in vitro for sensitivity to fungicides commonly used to suppress gray mold of cucumber and tomato. Among the 75 isolates collected from cucumber in 2013, two were highly resistant (HR) to fludioxonil. Of the 308 isolates collected from tomato in 2014, four were fludioxonil-HR. This was the first time that B. cinerea isolates HR to fludioxonil had been detected in the field. Six fludioxonil-resistant mutants were obtained in the laboratory by selection on fungicide-amended media. These mutants exhibited stable resistance to fludioxonil, as indicated by resistance factor values that ranged from 34.38 to >10,000. In comparison with fludioxonil-sensitive isolates of B. cinerea, all field and laboratory mutants showed reduced fitness, as defined by mycelial growth, sporulation, virulence, and sensitivity to osmotic stress. When treated with fludioxonil at 1 μg/ml, sensitive isolates showed increased glycerol contents in mycelium and expression levels of Bchog1, while levels in field and laboratory HR mutants increased only slightly. Sequences of the Bos1 gene of field and laboratory fludioxonil-HR mutants showed that mutations in field mutants were located in the histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase (HAMP) domains of the N-terminal region, whereas mutations in the laboratory mutants were distributed in HAMP domains or in the HATPase_c domain of the C-terminal region. These results will enhance our understanding of the resistance mechanism of B. cinerea to fludioxonil.
Collapse
Affiliation(s)
- Weichao Ren
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyong Shao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Han
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Miao J, Cai M, Dong X, Liu L, Lin D, Zhang C, Pang Z, Liu X. Resistance Assessment for Oxathiapiprolin in Phytophthora capsici and the Detection of a Point Mutation (G769W) in PcORP1 that Confers Resistance. Front Microbiol 2016; 7:615. [PMID: 27199944 PMCID: PMC4850160 DOI: 10.3389/fmicb.2016.00615] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/14/2016] [Indexed: 01/07/2023] Open
Abstract
The potential for oxathiapiprolin resistance in Phytophthora capsici was evaluated. The baseline sensitivities of 175 isolates to oxathiapiprolin were initially determinated and found to conform to a unimodal curve with a mean EC50 value of 5.61 × 10(-4) μg/ml. Twelve stable oxathiapiprolin-resistant mutants were generated by fungicide adaptation in two sensitive isolates, LP3 and HNJZ10. The fitness of the LP3-mutants was found to be similar to or better than that of the parental isolate LP3, while the HNJZ10-mutants were found to have lost the capacity to produce zoospores. Taken together these results suggest that the risk of P. capsici developing resistance to oxathiapiprolin is moderate. Comparison of the PcORP1 genes in the LP3-mutants and wild-type parental isolate, which encode the target protein of oxathiapiprolin, revealed that a heterozygous mutation caused the amino acid substitution G769W. Transformation and expression of the mutated PcORP1-769W allele in the sensitive wild-type isolate BYA5 confirmed that the mutation in PcORP1 was responsible for the observed oxathiapiprolin resistance. Finally diagnostic tests including As-PCR and CAPs were developed to detect the oxathiapiprolin resistance resulting from the G769W point mutation in field populations of P. capsici.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xili Liu
- Department of Plant Pathology, China Agricultural UniversityBeijing, China
| |
Collapse
|
29
|
Hansen ZR, Knaus BJ, Tabima JF, Press CM, Judelson HS, Grünwald NJ, Smart CD. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthora infestans. J Appl Microbiol 2016; 120:1010-20. [PMID: 26820117 DOI: 10.1111/jam.13079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/01/2022]
Abstract
AIMS To design and validate a colorimetric loop-mediated isothermal amplification assay for rapid detection of Phytophthora infestans DNA. METHODS AND RESULTS Two sets of loop-mediated isothermal amplification (LAMP) primers were designed and evaluated for their sensitivity and specificity for P. infestans. ITSII primers targeted a portion of the internal transcribed spacer region of ribosomal DNA. These primers had a limit of detection of 2 pg P. infestans DNA and cross-reacted with the closely related species Phytophthora nicotianae. Rgn86_2 primers, designed to improve assay specificity, targeted a portion of a conserved hypothetical protein. These primers had a limit of detection of 200 pg P. infestans DNA and did not cross-react with P. nicotianae. The specificity of the Rgn86_2 assay was tested further using the closely related species P. andina, P. ipomoeae, P. mirabilis and P. phaseoli. Cross-reactions occurred with P. andina and P. mirabilis, but neither species occurs on tomato or potato. Both primer sets were able to detect P. infestans DNA extracted from tomato late blight leaf lesions. CONCLUSIONS Two colorimetric LAMP assays detected P. infestans DNA from pure cultures as well as infected leaf tissue. The ITSII primers had higher sensitivity, and the Rgn86_2 primers had higher specificity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a LAMP assay for the detection of P. infestans, the causal organism of potato and tomato late blight. These assays have potential for immediate utility in plant disease research and diagnostic laboratories.
Collapse
Affiliation(s)
- Z R Hansen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - B J Knaus
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA
| | - J F Tabima
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - C M Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA
| | - H S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | - N J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA.,Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - C D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| |
Collapse
|
30
|
Zhou Y, Chen L, Hu J, Duan H, Lin D, Liu P, Meng Q, Li B, Si N, Liu C, Liu X. Resistance Mechanisms and Molecular Docking Studies of Four Novel QoI Fungicides in Peronophythora litchii. Sci Rep 2015; 5:17466. [PMID: 26657349 PMCID: PMC4677311 DOI: 10.1038/srep17466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022] Open
Abstract
Peronophythora litchii is the causal agent of litchi downy blight. Enestroburin, SYP-1620, SYP-2815 and ZJ0712 are four novel QoI fungicides developed by China. Eight mutants of P. litchii resistant to these QoI fungicides and azoxystrobin (as a known QoI fungicide) were obtained in our preliminary work. In this study, the full length of the cytochrome b gene in P. litchii, which has a full length of 382 amino acids, was cloned from both sensitive isolates and resistant mutants, and single-site mutations G142A, G142S, Y131C, or F128S were found in resistant mutants. Molecular docking was used to predict how the mutations alter the binding of the five QoI fungicides to the Qo-binding pockets. The results have increased our understanding of QoI fungicide-resistance mechanisms and may help in the development of more potent inhibitors against plant diseases in the fields.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Lei Chen
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongxia Duan
- Department of Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Dong Lin
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pengfei Liu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qingxiao Meng
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry co., Ltd., Shenyang, 110021, China
| | - Naiguo Si
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry co., Ltd., Shenyang, 110021, China
| | - Changling Liu
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry co., Ltd., Shenyang, 110021, China
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
31
|
Rapid and sensitive detection of Sclerotium rolfsii associated with collar rot disease of Amorphophallus paeoniifolius by species-specific polymerase chain reaction assay. Mol Biotechnol 2015; 56:787-94. [PMID: 24788585 DOI: 10.1007/s12033-014-9757-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Collar rot disease caused by Sclerotium rolfsii is an economically important disease prevailing in all Amorphophallus growing areas. The pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of S. rolfsii in soil and planting material. The PCR detection limit was 10 pg in conventional assay whereas 0.1 pg in nested assay. The primers designed were found to be highly specific and could be used for accurate identification of pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples.
Collapse
|
32
|
Iribarren MJ, Pascuan C, Soto G, Ayub ND. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island. FEMS Microbiol Lett 2015; 362:fnv189. [PMID: 26443834 DOI: 10.1093/femsle/fnv189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 11/12/2022] Open
Abstract
Phytophthora capsici is a virulent oomycete pathogen of many vegetable crops. Recently, it has been demonstrated that the recognition of the RXLR effector AVR3a1 of P. capsici (PcAVR3a1) triggers a hypersensitive response and plays a critical role in mediating non-host resistance. Here, we analyzed the occurrence of PcAVR3a1 in 57 isolates of P. capsici derived from globe squash, eggplant, tomato and bell pepper cocultivated in a small geographical area. The occurrence of PcAVR3a1 in environmental strains of P. capsici was confirmed by PCR in only 21 of these pathogen isolates. To understand the presence-absence pattern of PcAVR3a1 in environmental strains, the flanking region of this gene was sequenced. PcAVR3a1 was found within a genetic element that we named PcAVR3a1-GI (PcAVR3a1 genomic island). PcAVR3a1-GI was flanked by a 22-bp direct repeat, which is related to its site-specific recombination site. In addition to the PcAVR3a1 gene, PcAVR3a1-GI also encoded a phage integrase probably associated with the excision and integration of this mobile element. Exposure to plant induced the presence of an episomal circular intermediate of PcAVR3a1-GI, indicating that this mobile element is functional. Collectively, these findings provide evidence of PcAVR3a1 evolution via mobile elements in environmental strains of Phytophthora.
Collapse
Affiliation(s)
- María Josefina Iribarren
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Universidad Nacional de Luján, Buenos Aires, CP1428, Argentina
| | - Cecilia Pascuan
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Gabriela Soto
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| | - Nicolás Daniel Ayub
- CONICET, Cuidad Autónoma de Buenos Aires, CP1661, Argentina Instituto de Genética Ewald A. Favret, Buenos Aires, CP1712, Argentina
| |
Collapse
|
33
|
Rahman MZ, Uematsu S, Coffey MD, Uzuhashi S, Suga H, Kageyama K. Re-evaluation of Japanese Phytophthora isolates based on molecular phylogenetic analyses. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Pang Z, Shao J, Hu J, Chen L, Wang Z, Qin Z, Liu X. Competition between pyrimorph-sensitive and pyrimorph-resistant isolates of Phytophthora capsici. PHYTOPATHOLOGY 2014; 104:269-274. [PMID: 24093920 DOI: 10.1094/phyto-07-13-0185-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora capsici causes significant losses to vegetable production worldwide. Pyrimorph, a new carboxylic acid amide fungicide, has been registered to control P. capsici in China. A mutation (Q1077K) in cellulose synthase 3 has been reported to confer resistance to pyrimorph. In this study, we measured the competition between pyrimorph-resistant and pyrimorph-sensitive isolates of P. capsici. Mixed zoospore suspensions of resistant (R) and sensitive (S) isolates at five ratios (1R:9S, 3R:7S, 5R:5S, 7R:3S, and 9R:1S) were applied to carrot agar in vitro test (with five successive transfers) and to the soil surface around pepper plants in planta test (with 10 successive disease cycles). The proportion of resistant isolates was measured by a conventional assay in which single zoospore isolates recovered after transfers or disease cycles were grown on agar medium with a discriminatory concentration of pyrimorph. The results were then compared with those of a real-time polymerase chain reaction (PCR)-based method developed here, the results were similar. Both assays showed that the competitive ability of the resistant isolates was similar to or less than that of the sensitive isolates. The real-time PCR assay developed will be useful for high-throughput analysis and monitoring the development of pyrimorph resistance in field populations of P. capsici.
Collapse
|
35
|
Chowdappa P, Madhura S, Kumar BJN, Kumar SPM, Hema KR. Phytophthora boehmeriae Revealed as the Dominant Pathogen Responsible for Severe Foliar Blight of Capsicum annuum in South India. PLANT DISEASE 2014; 98:90-98. [PMID: 30708597 DOI: 10.1094/pdis-06-13-0601-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Prior to 2011, foliar blight was not reported as a serious threat to hot pepper cultivation in India. During the June-to-January cropping season of 2011 and 2012, severe foliar blight epidemics were observed in Karnataka and Tamil Nadu states of India. In all, 52 Phytophthora isolates, recovered from blight-affected leaf tissues of hot pepper from different localities in Karnataka and Tamil Nadu states between 2011 and 2012, were identified: 43 isolates as P. boehmeriae and 9 isolates as P. capsici, based on morphology, a similarity search of internal transcribed spacer sequences at GenBank, polymerase chain reaction (PCR) restriction fragment length polymorphism patterns, and species-specific PCR using PC1/PC2 and PB1/PB2 primer pairs. The isolates were further assessed for metalaxyl sensitivity and aggressiveness on hot pepper. All isolates of P. boehmeriae were metalaxyl sensitive while P. capsici isolates were intermediate in sensitivity. P. boehmeriae isolates were highly aggressive and produced significantly (P < 0.01) larger lesion than those of P. capsici isolates. Thus, emergence of P. boehmeriae was responsible for severe leaf blight epidemics on hot pepper in South India, although it is not serious pathogen on any crop in any part of the world. These results have epidemiological and management implications for the production of hot pepper in India.
Collapse
Affiliation(s)
- P Chowdappa
- Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore-560 089, India
| | - S Madhura
- Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore-560 089, India
| | - B J Nirmal Kumar
- Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore-560 089, India
| | - S P Mohan Kumar
- Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore-560 089, India
| | - K R Hema
- Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore-560 089, India
| |
Collapse
|
36
|
Hu J, Pang Z, Bi Y, Shao J, Diao Y, Guo J, Liu Y, Lv H, Lamour K, Liu X. Genetically diverse long-lived clonal lineages of Phytophthora capsici from pepper in Gansu, China. PHYTOPATHOLOGY 2013; 103:920-926. [PMID: 23550971 DOI: 10.1094/phyto-01-13-0016-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phytophthora capsici causes significant loss to pepper production in China, and our objective was to investigate the population structure in Gansu province. Between 2007 and 2011, 279 isolates were collected from pepper at 24 locations. Isolates (or subsets) were assessed for simple sequence repeat (SSR) genotype, metalaxyl resistance, mating type, and physiological race using cultivars from the World Vegetable Center (AVRDC) and New Mexico recombinant inbred lines (NMRILs). The A1 and A2 mating types were recovered from nine locations and metalaxyl-resistant isolates from three locations. A total of 104 isolates tested on the AVRDC panel resolved five physiological races. None of 42 isolates tested on the NMRIL panel caused visible infection. SSR genotyping of 127 isolates revealed 59 unique genotypes, with 42 present as singletons and 17 having 2 to 13 isolates. Isolates with identical genotypes were recovered from multiple sites across multiple years and, in many cases, had different race types or metalaxyl sensitivities. Isolates clustered into three groups with each group having almost exclusively the A1 or A2 mating type. Overall it appears long-lived genetically diverse clonal lineages are dispersed across Gansu, outcrossing is rare, and functionally important variation exists within a clonal framework.
Collapse
Affiliation(s)
- Jian Hu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pang Z, Shao J, Chen L, Lu X, Hu J, Qin Z, Liu X. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLoS One 2013; 8:e56513. [PMID: 23431382 PMCID: PMC3576395 DOI: 10.1371/journal.pone.0056513] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC(50) value of 1.4261 (± 0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1 × 10(-4). The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC(50) values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.
Collapse
Affiliation(s)
- Zhili Pang
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jingpeng Shao
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Lei Chen
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaohong Lu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jian Hu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaohai Qin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Chen W, Djama ZR, Coffey MD, Martin FN, Bilodeau GJ, Radmer L, Denton G, Lévesque CA. Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species. PHYTOPATHOLOGY 2013; 103:43-54. [PMID: 23050746 DOI: 10.1094/phyto-04-12-0092-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most Phytophthora spp. are destructive plant pathogens; therefore, effective monitoring and accurate early detection are important means of preventing potential epidemics and outbreaks of diseases. In the current study, a membrane-based oligonucleotide array was developed that can detect Phytophthora spp. reliably using three DNA regions; namely, the internal transcribed spacer (ITS), the 5' end of cytochrome c oxidase 1 gene (cox1), and the intergenic region between cytochrome c oxidase 2 gene (cox2) and cox1 (cox2-1 spacer). Each sequence data set contained ≈250 sequences representing 98 described and 15 undescribed species of Phytophthora. The array was validated with 143 pure cultures and 35 field samples. Together, nonrejected oligonucleotides from all three markers have the ability to reliably detect 82 described and 8 undescribed Phytophthora spp., including several quarantine or regulated pathogens such as Phytophthora ramorum. Our results showed that a DNA array containing signature oligonucleotides designed from multiple genomic regions provided robustness and redundancy for the detection and differentiation of closely related taxon groups. This array has the potential to be used as a routine diagnostic tool for Phytophthora spp. from complex environmental samples without the need for extensive growth of cultures.
Collapse
Affiliation(s)
- Wen Chen
- Agriculture & Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Martin FN, Abad ZG, Balci Y, Ivors K. Identification and Detection of Phytophthora: Reviewing Our Progress, Identifying Our Needs. PLANT DISEASE 2012; 96:1080-1103. [PMID: 30727075 DOI: 10.1094/pdis-12-11-1036-fe] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the increased attention given to the genus Phytophthora in the last decade in response to the ecological and economic impact of several invasive species (such as P. ramorum, P. kernoviae, and P. alni), there has been a significant increase in the number of described species. In part, this is due to the extensive surveys in historically underexplored ecosystems (e.g., forest and stream ecosystems) undertaken to determine the spread of invasive species and the involvement of Phytophthora species in forest decline worldwide (e.g., oak decline). The past decade has seen an approximate doubling in the number of described species within the genus Phytophthora, and the number will likely continue to increase as more surveys are completed and greater attention is devoted to clarifying phylogenetic relationships and delineating boundaries in species complexes. The development of molecular resources, the availability of credible sequence databases to simplify identification of new species, and the sequencing of several genomes have provided a solid framework to gain a better understanding of the biology, diversity, and taxonomic relationships within the genus. This information is much needed considering the impact invasive or exotic Phytophthora species have had on natural ecosystems and the regulatory issues associated with their management. While this work is improving our ability to identify species based on phylogenetic grouping, it has also revealed that the genus has a much greater diversity than previously appreciated.
Collapse
Affiliation(s)
- Frank N Martin
- USDA, ARS, Crop Improvement and Protection Research Unit, Salinas, CA
| | - Z Gloria Abad
- USDA, APHIS, PPQ, Center for Plant Health Science and Technology (CPHST), Beltsville Laboratory, MD
| | - Yilmaz Balci
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD
| | - Kelly Ivors
- Department of Plant Pathology, NC State University, Mountain Hort. Crops Research & Extension Center, Mills River, NC
| |
Collapse
|
40
|
Chen L, Zhu S, Lu X, Pang Z, Cai M, Liu X. Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides. PLoS One 2012; 7:e42069. [PMID: 22848705 PMCID: PMC3407118 DOI: 10.1371/journal.pone.0042069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/02/2012] [Indexed: 11/19/2022] Open
Abstract
The risk that the plant pathogen Phytophthora melonis develops resistance to carboxylic acid amide (CAA) fungicides was determined by measuring baseline sensitivities of field isolates, generating resistant mutants, and measuring the fitness of the resistant mutants. The baseline sensitivities of 80 isolates to flumorph, dimethomorph and iprovalicarb were described by unimodal curves, with mean EC(50) values of 0.986 (±0.245), 0.284 (±0.060) and 0.327 (±0.068) µg/ml, respectively. Seven isolates with different genetic background (as indicated by RAPD markers) were selected to generate CAA-resistance. Fifty-five resistant mutants were obtained from three out of seven isolates by spontaneous selection and UV-mutagenesis with frequencies of 1×10(-7) and 1×10(-6), respectively. CAA-resistance was stable for all mutants. The resistance factors of these mutants ranged from 7 to 601. The compound fitness index (CFI = mycelial growth × zoospore production × pathogenicity) was often lower for the CAA-resistant isolates than for wild-type isolates, suggesting that the risk of P. melonis developing resistance to CAA fungicides is low to moderate. Among the CAA-resistant isolates, a negative correlation between EC(50) values was found for iprovalicarb vs. flumorph and for iprovalicarb vs. dimethomorph. Comparison of the full-length cellulose synthase 3 (CesA3) between wild-type and CAA-resistant isolates revealed only one point mutation at codon position 1109: a valine residue (codon GTG in wild-type isolates) was converted to leucine (codon CTG in resistant mutants). This represents a novel point mutation with respect to mutations in CesA3 conferring resistance to CAA fungicides. Based on this mutation, an efficient allelic-specific PCR (AS-PCR) method was developed for rapid detection of CAA-resistance in P. melonis populations.
Collapse
Affiliation(s)
- Lei Chen
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Shusheng Zhu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaohong Lu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Zhili Pang
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Meng Cai
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Sikora K, Verstappen E, Mendes O, Schoen C, Ristaino J, Bonants P. A universal microarray detection method for identification of multiple Phytophthora spp. using padlock probes. PHYTOPATHOLOGY 2012; 102:635-645. [PMID: 22568817 DOI: 10.1094/phyto-11-11-0309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genus Phytophthora consists of many species that cause important diseases in ornamental, agronomic, and forest ecosystems worldwide. Molecular methods have been developed for detection and identification of one or several species of Phytophthora in single or multiplex reactions. In this article, we describe a padlock probe (PLP)-based multiplex method of detection and identification for many Phytophthora spp. simultaneously. A generic TaqMan polymerase chain reaction assay, which detects all known Phytophthora spp., is conducted first, followed by a species-specific PLP ligation. A 96-well-based microarray platform with colorimetric readout is used to detect and identify the different Phytophthora spp. PLPs are long oligonucleotides containing target complementary sequence regions at both their 5' and 3' ends which can be ligated on the target into a circular molecule. The ligation is point mutation specific; therefore, closely related sequences can be differentiated. This circular molecule can then be detected on a microarray. We developed 23 PLPs to economically important Phytophthora spp. based upon internal transcribed spacer-1 sequence differences between individual Phytophthora spp. Tests on genomic DNA of many Phytophthora isolates and DNA from environmental samples showed the specificity and utility of PLPs for Phytophthora diagnostics.
Collapse
Affiliation(s)
- Katarzyna Sikora
- Forest Research Insitute, Department of Forest Protection, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland
| | | | | | | | | | | |
Collapse
|
42
|
Wickert E, de Macedo Lemos EG, Kishi LT, de Souza A, de Goes A. Genetic diversity and population differentiation of Guignardia mangiferae from "Tahiti" acid lime. ScientificWorldJournal 2012; 2012:125654. [PMID: 22619579 PMCID: PMC3348534 DOI: 10.1100/2012/125654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022] Open
Abstract
Among the citrus plants, "Tahiti" acid lime is known as a host of G. mangiferae fungi. This species is considered endophytic for citrus plants and is easily isolated from asymptomatic fruits and leaves. G. mangiferae is genetically related and sometimes confused with G. citricarpa which causes Citrus Black Spot (CBS). "Tahiti" acid lime is one of the few species that means to be resistant to this disease because it does not present symptoms. Despite the fact that it is commonly found in citric plants, little is known about the populations of G. mangiferae associated with these plants. Hence, the objective of this work was to gain insights about the genetic diversity of the G. mangiferae populations that colonize "Tahiti" acid limes by sequencing cistron ITS1-5.8S-ITS2. It was verified that "Tahiti" acid lime plants are hosts of G. mangiferae and also of G. citricarpa, without presenting symptoms of CBS. Populations of G. mangiferae present low-to-moderate genetic diversity and show little-to-moderate levels of population differentiation. As gene flow was detected among the studied populations and they share haplotypes, it is possible that all populations, from citrus plants and also from the other known hosts of this fungus, belong to one great panmictic population.
Collapse
Affiliation(s)
- Ester Wickert
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Estação Experimental de Itajaí, Rodovia Antônio Heil 8400, Itaipava, Itajaí 88318-112, SC, Brazil.
| | | | | | | | | |
Collapse
|
43
|
Lu XH, Michael Davis R, Livingston S, Nunez J, Hao JJ. Fungicide Sensitivity of Pythium spp. Associated with Cavity Spot of Carrot in California and Michigan. PLANT DISEASE 2012; 96:384-388. [PMID: 30727135 DOI: 10.1094/pdis-07-11-0562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The identity of 172 isolates of Pythium spp. from cavity spot lesions on carrot produced in California and Michigan was determined, and their sensitivity to three fungicides was examined. Pythium violae accounted for 85% of California isolates, with P. irregulare, P. dissotocum (the first report as a carrot pathogen in the United States), P. ultimum, and P. sulcatum making the balance. P. sulcatum, P. sylvaticum, and P. intermedium were the most commonly recovered (85%) species in Michigan; others from Michigan included P. intermedium, P. irregulare, and an unclassified strain, M2-05. On fungicide-amended media, 93% of isolates were sensitive to mefenoxam (inhibition of mycelial growth was >60% at 10 μg active ingredient [a.i.]/ml); however, two of five isolates of P. irregulare from California were highly resistant (≤60% inhibition at 100 μg a.i./ml); about half of the isolates of P. intermedium and P. sylvaticum and a single isolate of P. violae were highly or intermediately resistant to mefenoxam (>60% inhibition at 100 μg a.i./ml, or ≤60% inhibition at 10 μg a.i./ml). P. dissotocum, P. irregulare, P. sulcatum, M2-05, and three of seven isolates of P. intermedium were insensitive to fluopicolide (effective concentrations for 50% growth inhibition [EC50] were >50 μg a.i./ml), while P. sylvaticum, P. ultimum, P. violae, and some isolates in P. intermedium were sensitive (EC50 < 1 μg a.i./ml). All isolates were sensitive to zoxamide (EC50 < 1 μg a.i./ml). Sensitivity baselines of P. violae to zoxamide and fluopicolide were established.
Collapse
Affiliation(s)
- Xiao Hong Lu
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - R Michael Davis
- Department of Plant Pathology, University of California, Davis 95616
| | - S Livingston
- Department of Plant Pathology, University of California, Davis 95616
| | - J Nunez
- Department of Plant Pathology, University of California, Davis 95616
| | - Jianjun J Hao
- Department of Plant Pathology, Michigan State University
| |
Collapse
|
44
|
Robideau GP, De Cock AWAM, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CMM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen ECP, Zhang Y, Bonants PJM, Ristaino JB, Lévesque CA. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 2011; 11:1002-11. [PMID: 21689384 PMCID: PMC3195333 DOI: 10.1111/j.1755-0998.2011.03041.x] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 11/26/2022]
Abstract
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.
Collapse
Affiliation(s)
- Gregg P Robideau
- Biology Department, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Olson HA, Benson DM. Characterization of Phytophthora spp. on Floriculture Crops in North Carolina. PLANT DISEASE 2011; 95:1013-1020. [PMID: 30732118 DOI: 10.1094/pdis-09-10-0619] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Phytophthora in floriculture crops were collected from North Carolina commercial greenhouse facilities in 2007 and 2008, identified, and characterized for mating type and mefenoxam sensitivity. In all, 163 isolates from 13 host species at 11 locations were identified primarily as Phytophthora nicotianae (59%), P. drechsleri (23%), P. cryptogea (9%), and P. tropicalis (4%). Multiple Phytophthora spp. were found at five locations. DNA sequencing was more reliable for differentiating P. cryptogea and P. drechsleri. Only the A1 mating type of P. drechsleri was collected; however, both mating types of P. nicotianae, P. cryptogea, and P. tropicalis were found. Overall, 66% of Phytophthora isolates were resistant or intermediate in resistance to mefenoxam at 1 μg a.i./ml. Three groups of P. drechsleri isolates had effective concentration of mefenoxam providing 50% growth inhibition (EC50) estimates over 700 μg a.i./ml. EC50 estimates for P. nicotianae ranged from 246 to 435 μg a.i./ml. Isolates of P. nicotianae exhibited phenotypic heterogeneity at several locations, suggesting multiple separate introductions to the facilities. In contrast, P. nicotianae and P. drechsleri isolates from two locations were phenotypically identical to a previous survey, suggesting that the facilities have Phytophthora spp. established onsite.
Collapse
Affiliation(s)
- H A Olson
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| | - D M Benson
- Department of Plant Pathology, North Carolina State University, Raleigh 27695
| |
Collapse
|
46
|
Langrell SR, Morel O, Robin C. Touchdown nested multiplex PCR detection of Phytophthora cinnamomi and P. cambivora from French and English chestnut grove soils. Fungal Biol 2011; 115:672-82. [DOI: 10.1016/j.funbio.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/22/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
47
|
Lurá MC, Latorre Rapela MG, Vaccari MC, Maumary R, Soldano A, Mattio M, González AM. Genetic diversity of Cercospora kikuchii isolates from soybean cultured in Argentina as revealed by molecular markers and cercosporin production. Mycopathologia 2011; 171:361-71. [PMID: 20835913 DOI: 10.1007/s11046-010-9362-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
Abstract
Leaf blight and purple seed, caused by the fungal pathogen Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner are very important diseases of soybean (Glycine max L. Merr.) in Argentina. The aims of this work were: (a) to confirm and to assess the genetic variability among C. kikuchii isolates collected from different soybean growing areas in Santa Fe province using inter simple sequence repeats (ISSR) markers and sequence information from the internal transcribed spacer (ITS) region of rDNA and (b) to analyze the cercosporin production of the regional C. kikuchi isolates in order to assess whether there was any relationship between the molecular profiles and the toxin production. Isolates from different regions in Santa Fe province were studied. The sequence of the ITS regions showed high similarity (99-100%) to the GenBank sequences of C. kikuchii BRCK179 (accession number AY633838). The ISSR markers clustered all the isolates into many groups and cercosporin content was highly variable among isolates. No relationship was observed between ITS region, ISSR groups and origin or cercosporin content. The high degree of genetic variability and cercosporin production among isolates compared in this study characterizes a diverse population of C. kikuchii in the region.
Collapse
Affiliation(s)
- María Cristina Lurá
- Cátedra de Microbiología General, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | | | | | | | | | | | | |
Collapse
|
48
|
Quesada-Ocampo LM, Hausbeck MK. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. PHYTOPATHOLOGY 2010; 100:619-627. [PMID: 20465418 DOI: 10.1094/phyto-100-6-0619] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Phytophthora capsici causes root, crown, and fruit rot of tomato, a major vegetable crop grown worldwide. The objective of this study was to screen tomato cultivars and wild relatives of tomato for resistance to P. capsici. Four P. capsici isolates were individually used to inoculate 6-week-old seedlings (1 g of P. capsici-infested millet seed per 10 g of soilless medium) of 42 tomato cultivars and wild relatives of tomato in a greenhouse. Plants were evaluated daily for wilting and death. All P. capsici isolates tested caused disease in seedlings but some isolates were more pathogenic than others. A wild relative of cultivated tomato, Solanum habrochaites accession LA407, was resistant to all P. capsici isolates tested. Moderate resistance to all isolates was identified in the host genotypes Ha7998, Fla7600, Jolly Elf, and Talladega. P. capsici was frequently recovered from root and crown tissue of symptomatic inoculated seedlings but not from leaf tissue or asymptomatic or control plants. The phenotype of the recovered isolate matched the phenotype of the inoculum. Pathogen presence was confirmed in resistant and moderately resistant tomato genotypes by species-specific polymerase chain reaction of DNA from infected crown and root tissue. Amplified fragment length polymorphisms of tomato genotypes showed a lack of correlation between genetic clusters and susceptibility to P. capsici, indicating that resistance is distributed in several tomato lineages. The results of this study create a baseline for future development of tomato cultivars resistant to P. capsici.
Collapse
Affiliation(s)
- L M Quesada-Ocampo
- Department of Plant Pathology, Michigan State University, East Lansing, USA
| | | |
Collapse
|
49
|
Truong NV, Liew EC, Burgess LW. Characterisation of Phytophthora capsici isolates from black pepper in Vietnam. Fungal Biol 2010; 114:160-70. [DOI: 10.1016/j.funbio.2009.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Kozlakidis Z, Brown NA, Jamal A, Phoon X, Coutts RHA. Incidence of endornaviruses in Phytophthora taxon douglasfir and Phytophthora ramorum. Virus Genes 2009; 40:130-4. [PMID: 19915969 DOI: 10.1007/s11262-009-0421-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/31/2009] [Indexed: 11/28/2022]
Abstract
In this investigation, we show that four Phytophthora taxon douglasfir isolates from the USA, irrespective of their geographical location or host plant, and 20% of a representative cohort of Phytophthora ramorum isolates contain endornavirus dsRNAs. Three endornavirus-specific RT-PCR amplicons were generated by RT-PCR using dsRNA isolated from the four Phytophthora taxon douglasfir isolates and one representative Phytophthora ramorum isolate as template with oligonucleotide primers designed from the sequence of Phytophthora endornavirus 1. The amplified segments showed a very high degree of sequence similarity suggesting that the virus has gone through a population bottleneck during its emergence.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|