1
|
Ragozzino C, Casella V, Coppola A, Scarpato S, Buonocore C, Consiglio A, Palma Esposito F, Galasso C, Tedesco P, Della Sala G, de Pascale D, Vitale L, Coppola D. Last Decade Insights in Exploiting Marine Microorganisms as Sources of New Bioactive Natural Products. Mar Drugs 2025; 23:116. [PMID: 40137302 PMCID: PMC11943599 DOI: 10.3390/md23030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Marine microorganisms have emerged as prolific sources of bioactive natural products, offering a large chemical diversity and a broad spectrum of biological activities. Over the past decade, significant progress has been made in discovering and characterizing these compounds, pushed by technological innovations in genomics, metabolomics, and bioinformatics. Furthermore, innovative isolation and cultivation approaches have improved the isolation of rare and difficult-to-culture marine microbes, leading to the identification of novel secondary metabolites. Advances in synthetic biology and metabolic engineering have further optimized natural product yields and the generation of novel compounds with improved bioactive properties. This review highlights key developments in the exploitation of marine bacteria, fungi, and microalgae for the discovery of novel natural products with potential applications in diverse fields, underscoring the immense potential of marine microorganisms in the growing Blue Economy sector.
Collapse
Affiliation(s)
- Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Vincenza Casella
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Alessandro Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Silvia Scarpato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Antonella Consiglio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, CRIMAC, Stazione Zoologica Anton Dohrn, C. da Torre Spaccata, 87071 Amendolara, Italy;
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Laura Vitale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio, Ferdinando Acton 55, 80133 Naples, Italy; (C.R.); (V.C.); (A.C.); (S.S.); (C.B.); (A.C.); (F.P.E.); (P.T.); (G.D.S.); (D.d.P.)
| |
Collapse
|
2
|
Zhong P, Chen P, Huo P, Ma L, Xu Z, Li F, Cai C. Characterization of cotton stalk as a lignocellulosic feedstock for single-cell protein production. BIORESOURCE TECHNOLOGY 2025; 417:131797. [PMID: 39580094 DOI: 10.1016/j.biortech.2024.131797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Cotton stalk, an important by-product of cotton farming, is challenging in lignocellulosic feedstock application due to the limited understanding of their compositional and lignin structural characteristics. This study elucidates the composition of lignocellulose components and fundamental lignin structural features of cotton stalk. Lignocellulosic hydrolysates were prepared from various cotton stalk parts and used for single-cell protein production. As a proof of concept, cotton stalk hydrolysates were successfully converted into single-cell protein using the superior microbial host, Candida utilis ACCC20060, owing to its favorable sugar consumption efficiency and high protein quality. The highest SCP concentration of 5.74 g/L was obtained, yielding 0.23 g/g from the lignocellulose-derived sugars released from cotton stalk roots. This study provides valuable references for cotton stalk utilization toward lignocellulosic feedstock application and introduces a promising microbial host for single-cell protein production from such feedstocks.
Collapse
Affiliation(s)
- Pingxiang Zhong
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengyun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Pengju Huo
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Chenggu Cai
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China; Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
3
|
Coteli E, Erdem B, Ciftci H. Phytochemical Content of Malus floribunda: In Vitro and Molecular Docking Studies. Appl Biochem Biotechnol 2024; 196:5198-5218. [PMID: 38153650 DOI: 10.1007/s12010-023-04826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Malus floribunda Siebold ex Van Houtte is a plant planted for landscaping, and its sour and red fruits have been seen to be frequently used in the treatment of diabetes, making vinegar marmalade, and producing natural food dyes. Apart from these usage areas of this plant, it is aimed at determining the phytochemical content. For this purpose, plant parts (fruit, leaf, and branch) were examined. The antioxidant capacity (vitamins A, E, and C, lycopene, beta-carotene, total phenolic and flavonoid amounts, and DPPH radical scavenging effect), antimicrobial activity (agar well diffusion method, minimum inhibitory concentration-MIC), and GC-MS contents of plant parts were determined. High-performance liquid chromatography (HPLC), spectrophotometers, and gas chromatography/mass spectroscopy (GC-MS) methods were used in the study. It was determined that M. floribunda fruit is rich in lycopene, beta-carotene, and antioxidant vitamins and contains many biomolecules. In addition, it was concluded that the extracts of different parts of the plant have antimicrobial activity. This study has revealed the idea that this plant, whose phytochemical, antioxidant, and antimicrobial content has been determined, can be used as a bioactive substance equivalent to antibiotics in medicine, the food industry, and human nutrition. In addition, it is expected that the study will contribute to the plant literature. Molecular docking studies were performed to evaluate the binding interactions between the compound and human peroxiredoxin 5 and S. aureus. Both in vitro and in silico results indicated that synthesized extracts could act as potent antioxidant and antimicrobial agents.
Collapse
Affiliation(s)
- Ebru Coteli
- Vocational School of Health Services, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey.
| | - Belgin Erdem
- Vocational School of Health Services, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey
| | - Harun Ciftci
- Department of Medical Biochemistry, Faculty of Medicine, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey
| |
Collapse
|
4
|
De Mol ML, Vandamme EJ. Arts, cultural heritage, sciences, and micro-/bio-/technology: Impact of biomaterials and biocolorants from antiquity till today! J Ind Microbiol Biotechnol 2024; 51:kuae049. [PMID: 39656876 DOI: 10.1093/jimb/kuae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Nature has inspired and provided humans with ideas, concepts, and thoughts on design, art, and performance for millennia. From early societies when humankind often took shelter in caves, until today, many materials and colorants to express feelings or communicate with one another were derived from plants, animals, or microbes. In this manuscript, an overview of these natural products used in the creation of art is given, from paintings on rocks to fashionable dresses made from bacterial cellulose. Besides offering many examples of art works, the origin and application of various biomaterials and colorants are discussed. While many facets of our daily lives have changed over millennia, one certainty has been that humans have an intrinsic need to conceptualize and create to express themselves. Driven by technological advances in the past decades and in the light of global warming, new and often more sustainable materials and colorants have been discovered and implemented. The impact of art on human societies remains relevant and powerful. ONE-SENTENCE SUMMARY This manuscript discusses the use of biomaterials and biocolorants in art from a historical perspective, spanning 37,000 bc until today.
Collapse
Affiliation(s)
- Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Erick J Vandamme
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, Li G, Wang H, Fan F, Zhang X. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains. ACS Synth Biol 2023; 12:2947-2960. [PMID: 37816156 DOI: 10.1021/acssynbio.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.
Collapse
Affiliation(s)
- Lishan Gu
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Rongxin Zhang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuqian Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Yu Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Kaiyu Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jingjing Jiang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Gen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
6
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
7
|
Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carotenoid production from oleaginous red yeast has been considered as a safe alternative to chemically synthesized carotenoids commonly used in the food industry, since plant-based carotenoids are expensive and an irregular source for obtaining pigments. This is a summative review on the factors affecting carotenoid production, cost-effective production strategies using various inexpensive feedstock, metabolic engineering, and strain improvisation. The review specially highlights the various potential applications of carotenoids as anti-microbial, anti-viral, antioxidant, anti-cancerous, anti-malarial agents, etc. The importance of such natural and easily available resources for prevention, evasion, or cure of emerging diseases and their plausible nutraceutical effect demands exhaustive research in this area.
Collapse
|
8
|
Jing Y, Wang Y, Zhou D, Wang J, Li J, Sun J, Feng Y, Xin F, Zhang W. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnol Adv 2022; 61:108033. [PMID: 36096404 DOI: 10.1016/j.biotechadv.2022.108033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Carotenoids are natural pigments that widely exist in nature. Due to their excellent antioxidant, anticancer and anti-inflammatory properties, carotenoids are commonly used in food, medicine, cosmetic and other fields. At present, natural carotenoids are mainly extracted from plants, algae and microorganisms. With the rapid development of metabolic engineering and molecular biology as well as the continuous in-depth study of carotenoids synthesis pathways, industrial microorganisms have showed promising applications in the synthesis of carotenoids. In this review, we introduced the properties of several carotenoids and their biosynthetic metabolism process. Then, the microorganisms synthesizing carotenoids through the natural and non-natural pathways and the extraction methods of carotenoids were summarized and compared. Meanwhile, the influence of substrates on the carotenoids production was also listed. The methods and strategies for achieving high carotenoid production are categorized to help with future research.
Collapse
Affiliation(s)
- Yiwen Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yanxia Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, PR China
| | - Dawei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawen Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jingxiang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yifan Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
9
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|
10
|
Lyu X, Lyu Y, Yu H, Chen W, Ye L, Yang R. Biotechnological advances for improving natural pigment production: a state-of-the-art review. BIORESOUR BIOPROCESS 2022; 9:8. [PMID: 38647847 PMCID: PMC10992905 DOI: 10.1186/s40643-022-00497-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
In current years, natural pigments are facing a fast-growing global market due to the increase of people's awareness of health and the discovery of novel pharmacological effects of various natural pigments, e.g., carotenoids, flavonoids, and curcuminoids. However, the traditional production approaches are source-dependent and generally subject to the low contents of target pigment compounds. In order to scale-up industrial production, many efforts have been devoted to increasing pigment production from natural producers, via development of both in vitro plant cell/tissue culture systems, as well as optimization of microbial cultivation approaches. Moreover, synthetic biology has opened the door for heterologous biosynthesis of pigments via design and re-construction of novel biological modules as well as biological systems in bio-platforms. In this review, the innovative methods and strategies for optimization and engineering of both native and heterologous producers of natural pigments are comprehensively summarized. Current progress in the production of several representative high-value natural pigments is also presented; and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Lyu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - WeiNing Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
11
|
Ren F, Yan D, Liu Y, Wang C, Guo C. Bacterial and fungal communities of traditional fermented Chinese soybean paste (Doujiang) and their properties. Food Sci Nutr 2021; 9:5457-5466. [PMID: 34646516 PMCID: PMC8498056 DOI: 10.1002/fsn3.2505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean paste (Doujiang) is one of the traditional fermented foods from China, fermented by various microorganisms. However, the microflora of Doujiang keeps little known. In this study, the microbial communities of seven kinds of representative Doujiang samples were investigated by both culture-independent and culture-dependent methods. We found that core OTUs among seven Doujiang samples were mainly from Bacillus, Pseudomonas, Candida, and Aspergillus according to Illumina sequencing. Every type of Doujiang sample harbored a different composition of microbial community. Doujiang LSJ and LBJ had the highest bacterial and fungal richness and diversity, respectively. The structure of microbial community was remarkably correlated with Doujiang properties-pH, and the content of total protein, soluble protein, amino acid, and total sugar (p < .05). Bacillus spp. were most frequently isolated bacterial species. Fungi of Monascus, Candida, and Aspergillus were also isolated. Eleven microbial strains showed high protease activities to degrade corn proteins, which can form obvious transparent hydrolytic circles in corn gluten meal medium plates. Therefore, microbial communities were supposed to tightly connect to Doujiang type and properties. It is possible to apply potential protein-degrading microbial strains to corn byproducts for protein production in the future study.
Collapse
Affiliation(s)
- Fei Ren
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Dong‐Hui Yan
- The Key Laboratory of Forest Protection affiliated to State Forestry Administration of ChinaInstitute of Forest EcologyEnvironment and ProtectionChinese Academy of ForestryBeijingChina
| | - Yuchun Liu
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Chao Wang
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Chao Guo
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| |
Collapse
|
12
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
14
|
Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottari M. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2053-2067. [PMID: 32096597 PMCID: PMC7540493 DOI: 10.1111/pbi.13364] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 05/03/2023]
Abstract
The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin; however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic redesign of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C. reinhardtii, even at high light intensities. Under different growth conditions, the best performing CrBKT overexpression strain was found to reach ketocarotenoid productivities up to 4.3 mg/L/day. Astaxanthin productivity in engineered C. reinhardtii shown here might be competitive with that reported for Haematococcus lacustris (formerly pluvialis) which is currently the main organism cultivated for industrial astaxanthin production. In addition, the extractability and bio-accessibility of these pigments were much higher in cell wall-deficient C. reinhardtii than the resting cysts of H. lacustris. Engineered C. reinhardtii strains could thus be a promising alternative to natural astaxanthin producing algal strains and may open the possibility of other tailor-made pigments from this host.
Collapse
Affiliation(s)
| | | | - Thomas Baier
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | | | | - Kyle J. Lauersen
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Lutz Wobbe
- Faculty of BiologyCenter for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | | |
Collapse
|
15
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
16
|
AYTAR EC, AKATA İ, AÇIK L. ANTIOXIDANT, ANTIMICROBIAL AND ANTI-PROLIFERATIVE ACTIVITY OF SUILLUS LUTEUS (L.) ROUSSEL EXTRACTS. ANKARA UNIVERSITESI ECZACILIK FAKULTESI DERGISI 2020:373-387. [DOI: 10.33483/jfpau.707014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
17
|
Usmani Z, Sharma M, Sudheer S, Gupta VK, Bhat R. Engineered Microbes for Pigment Production Using Waste Biomass. Curr Genomics 2020; 21:80-95. [PMID: 32655303 PMCID: PMC7324876 DOI: 10.2174/1389202921999200330152007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agri-food wastes biomass/by-products as substrates in a sustainable way.
Collapse
Affiliation(s)
| | - Minaxi Sharma
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| | | | | | - Rajeev Bhat
- Address correspondence to these authors at the ERA Chair for Food (By-) Products Valorization Technologies- VALORTECH, Estonian University of Life Sciences, Kreutzwaldi 56/5, 51006, Tartu, Estonia; Tel/Fax: +372 7313927; E-mails: ;, ;
| |
Collapse
|
18
|
The ploidy determination of the biotechnologically important yeast Candida utilis. J Appl Genet 2020; 61:275-286. [PMID: 31965459 DOI: 10.1007/s13353-020-00544-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
Abstract
Yeast Candida utilis is considered to be a potentially advantageous expression system for production of recombinant proteins utilizable for industrial and pharmaceutical purposes. As the scientific literature is not consistent in the ploidy of this yeast, in this work, we focused on resolving the problem via several methods such as the copy number determination of maltase gene by multiplex PCR, measuring α-glucosidase activity, the characterization of maltase gene copy number in deletion mutants using qPCR and flow cytometry. In context with the published data and results obtained in this study about the copy number of the maltase gene on C. utilis genome, we attempted to hypothesise and made conclusion about the ploidy of C. utilis. The results of this work, besides the biotechnological aspect, contribute to the elementary knowledge of C. utilis. The exact information about the ploidy or more specifically about the copy number of appropriate gene is essential for expression cassette dosage determination integrated into the chromosome of the host. In this study, we come to the conclusion that the maltase gene is present in C. utilis genome in four alleles, and in combination with flow cytometry, published information and the published genome sequences, the observations support the theory about tetraploidy of C. utilis.
Collapse
|
19
|
Enhanced Lycopene Production in Escherichia coli by Expression of Two MEP Pathway Enzymes from Vibrio sp. Dhg. Catalysts 2019. [DOI: 10.3390/catal9121003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microbial production is a promising method that can overcome major limitations in conventional methods of lycopene production, such as low yields and variations in product quality. Significant efforts have been made to improve lycopene production by engineering either the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway or mevalonate (MVA) pathway in microorganisms. To further improve lycopene production, it is critical to utilize metabolic enzymes with high specific activities. Two enzymes, 1-deoxy-d-xylulose-5-phosphate synthase (Dxs) and farnesyl diphosphate synthase (IspA), are required in lycopene production using MEP pathway. Here, we evaluated the activities of Dxs and IspA of Vibrio sp. dhg, a newly isolated and fast-growing microorganism. Considering that the MEP pathway is closely related to the cell membrane and electron transport chain, the activities of the two enzymes of Vibrio sp. dhg were expected to be higher than the enzymes of Escherichia coli. We found that Dxs and IspA in Vibrio sp. dhg exhibited 1.08-fold and 1.38-fold higher catalytic efficiencies, respectively. Consequently, the heterologous overexpression improved the specific lycopene production by 1.88-fold. Our findings could be widely utilized to enhance production of lycopene and other carotenoids.
Collapse
|
20
|
Kwak S, Yun EJ, Lane S, Oh EJ, Kim KH, Jin YS. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae. Biotechnol J 2019; 15:e1900173. [PMID: 31466140 DOI: 10.1002/biot.201900173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/08/2019] [Indexed: 01/07/2023]
Abstract
Sufficient supply of reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a prerequisite of the overproduction of isoprenoids and related bioproducts in Saccharomyces cerevisiae. Although S. cerevisiae highly depends on the oxidative pentose phosphate (PP) pathway to produce NADPH, its metabolic flux toward the oxidative PP pathway is limited due to the rigid glycolysis flux. To maximize NADPH supply for the isoprenoid production in yeast, upper glycolytic metabolic fluxes are reduced by introducing mutations into phosphofructokinase (PFK) along with overexpression of ZWF1 encoding glucose-6-phosphate (G6P) dehydrogenase. The PFK mutations (Pfk1 S724D and Pfk2 S718D) result in less glycerol production and more accumulation of G6P, which is a gateway metabolite toward the oxidative PP pathway. When combined with the PFK mutations, overexpression of ZWF1 caused substantial increases of [NADPH]/[NADP+ ] ratios whereas the effect of ZWF1 overexpression alone in the wild-type strain is not noticeable. Also, the introduction of ZWF1 overexpression and the PFK mutations into engineered yeast overexpressing acetyl-CoA C-acetyltransferase (ERG10), truncated HMG-CoA reductase isozyme 1 (tHMG1), and amorphadiene synthase (ADS) leads to a titer of 497 mg L-1 of amorphadiene (3.7-fold over the parental strain). These results suggest that perturbation of upper glycolytic fluxes, in addition to ZWF1 overexpression, is necessary for efficient NADPH supply through the oxidative PP pathway and enhanced production of isoprenoids by engineered S. cerevisiae.
Collapse
Affiliation(s)
- Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Stephan Lane
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
21
|
Sen T, Barrow CJ, Deshmukh SK. Microbial Pigments in the Food Industry-Challenges and the Way Forward. Front Nutr 2019; 6:7. [PMID: 30891448 PMCID: PMC6411662 DOI: 10.3389/fnut.2019.00007] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022] Open
Abstract
Developing new colors for the food industry is challenging, as colorants need to be compatible with a food flavors, safety, and nutritional value, and which ultimately have a minimal impact on the price of the product. In addition, food colorants should preferably be natural rather than synthetic compounds. Micro-organisms already produce industrially useful natural colorants such as carotenoids and anthocyanins. Microbial food colorants can be produced at scale at relatively low costs. This review highlights the significance of color in the food industry, why there is a need to shift to natural food colors compared to synthetic ones and how using microbial pigments as food colorants, instead of colors from other natural sources, is a preferable option. We also summarize the microbial derived food colorants currently used and discuss their classification based on their chemical structure. Finally, we discuss the challenges faced by the use and development of food grade microbial pigments and how to deal with these challenges, using advanced techniques including metabolic engineering and nanotechnology.
Collapse
Affiliation(s)
- Tanuka Sen
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
22
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
23
|
Affiliation(s)
- Kai‐Xiong Ye
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Ting‐Ting Fan
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Lawrence Jordan Keen
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Bing‐Nan Han
- Department of Development Technology of Marine ResourcesCollege of Life SciencesZhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| |
Collapse
|
24
|
Adadi P, Barakova NV, Krivoshapkina EF. Selected Methods of Extracting Carotenoids, Characterization, and Health Concerns: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5925-5947. [PMID: 29851485 DOI: 10.1021/acs.jafc.8b01407] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carotenoids are the most powerful nutrients (medicine) on earth due to their potent antioxidant properties. The ability of these tetraterpenoids in obviating human chronic ailments like cancer, cardiovascular disease, osteoporosis, and diabetes has drawn public attention toward these novel compounds. Conventionally, carotenoids have been extracted from plant materials and agro-industrial byproduct using different solvents, but these procedures result in contaminating the target compound (carotenoids) with extraction solvents. Furthermore, some utilized solvents are not safe and hence are harmful to the environment. This has attracted criticism from consumers, ecologists, environmentalists, and public health workers. However, there is clear consumer preference for carotenoids from natural origin without traces of extracting solvent. Therefore, this review seeks to discuss methods for higher recovery of pure carotenoids without contamination from a solvent. Methods such as enzyme-based extraction, supercritical fluid extraction, microwave-assisted extraction, Soxhlet extraction, ultrasonic extraction, and postextraction treatment (saponification) are discussed. Merits and demerits of these methods along with health concerns during intake of carotenoids were also considered.
Collapse
Affiliation(s)
- Parise Adadi
- ITMO University , Lomonosova Street 9 , 191002 , St. Petersburg , Russia Federation
| | | | | |
Collapse
|
25
|
Martínez-Cámara S, Rubio S, Del Río H, Rodríguez-Sáiz M, Barredo JL. Lycopene Production by Mated Fermentation of Blakeslea trispora. Methods Mol Biol 2018; 1852:257-268. [PMID: 30109636 DOI: 10.1007/978-1-4939-8742-9_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lycopene is a carotenoid mainly present in red-colored fruits and vegetables. Its value in the pharmaceutical and food industry is linked to its benefits for the human health, including properties against cancer and cardiovascular diseases, and its use as a food colorant. Lycopene can be produced either by synthetic or natural means, but there is a preference for the second, since it is considered a more eco-friendly and less harmful process. Among natural methods for obtaining lycopene, microbial fermentation is a good alternative to extraction from plants that naturally contain lycopene, since it implies obtaining higher and more specific amounts of this carotenoid. This chapter describes lycopene production by fermentation of the fungus Blakeslea trispora, a naturally carotenoid producer, at 30 L scale. This procedure involves separated growth of the two sexual mating types of B. trispora during the vegetative stages and the use of a lycopene cyclase inhibitor to achieve lycopene accumulation during the production stage.
Collapse
Affiliation(s)
- Sonia Martínez-Cámara
- Department of Biotechnology, Crystal Pharma, A Subsidiary of Albany Molecular Research Inc. (AMRI), Parque Tecnológico de León, León, Spain
| | - Sara Rubio
- Department of Biotechnology, Crystal Pharma, A Subsidiary of Albany Molecular Research Inc. (AMRI), Parque Tecnológico de León, León, Spain
| | - Hannah Del Río
- Department of Biotechnology, Crystal Pharma, A Subsidiary of Albany Molecular Research Inc. (AMRI), Parque Tecnológico de León, León, Spain
| | - Marta Rodríguez-Sáiz
- Department of Biotechnology, Crystal Pharma, A Subsidiary of Albany Molecular Research Inc. (AMRI), Parque Tecnológico de León, León, Spain
| | - José-Luis Barredo
- Department of Biotechnology, Crystal Pharma, A Subsidiary of Albany Molecular Research Inc. (AMRI), Parque Tecnológico de León, León, Spain.
| |
Collapse
|
26
|
Kurcz A, Błażejak S, Kot AM, Bzducha-Wróbel A, Kieliszek M. Application of Industrial Wastes for the Production of Microbial Single-Cell Protein by Fodder Yeast Candida utilis. WASTE AND BIOMASS VALORIZATION 2018; 9:57-64. [DOI: 10.1007/s12649-016-9782-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
27
|
Mao X, Liu Z, Sun J, Lee SY. Metabolic engineering for the microbial production of marine bioactive compounds. Biotechnol Adv 2017; 35:1004-1021. [DOI: 10.1016/j.biotechadv.2017.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
|
28
|
Li J, Shen J, Sun Z, Li J, Li C, Li X, Zhang Y. Discovery of Several Novel Targets that Enhance β-Carotene Production in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1116. [PMID: 28663749 PMCID: PMC5471310 DOI: 10.3389/fmicb.2017.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
β-Carotene is the precursor of vitamin A, and also exhibits multiple pharmaceutical functions by itself. In comparison to chemical synthesis, the production of β-carotene in microbes by metabolic engineering strategy is relatively inexpensive. Identifying genes enhancing β-carotene production in microbes is important for engineering a strain of producing higher yields of β-carotene. Most of previous efforts in identifying the gene targets have focused on the isoprenoid pathway where the β-carotene biosynthesis belongs. However, due to the complex interactions between metabolic fluxes, seemingly irrelevant genes that are outside the isoprenoid pathway might also affect β-carotene biosynthesis. To this end, here we provided an example that several novel gene targets, which are outside the isoprenoid pathway, have improving effects on β-carotene synthesis in yeast cells, when they were over-expressed. Among these targets, the class E protein of the vacuolar protein-sorting pathway (Did2) led to the highest improvement in β-carotene yields, which was 2.1-fold to that of the corresponding control. This improvement was further explained by the observation that the overexpression of the DID2 gene generally boosted the transcriptions of β-carotene pathway genes. The mechanism by which the other targets improve the production of β-carotene is discussed.
Collapse
Affiliation(s)
- Jia Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Jia Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Zhiqiang Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Jing Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Xiaohua Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| |
Collapse
|
29
|
Panda SK, Ray RC, Mishra SS, Kayitesi E. Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit Rev Biotechnol 2017; 38:1-16. [PMID: 28462596 DOI: 10.1080/07388551.2017.1311295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The review focuses on some of the high value-end biocommodities, such as fermented beverages, single-cell proteins, single-cell oils, biocolors, flavors, fragrances, polysaccharides, biopesticides, plant growth regulators, bioethanol, biogas and biohydrogen, developed from the microbial processing of fruit and vegetable wastes. Microbial detoxification of fruit and vegetable processing effluents is briefly described. The advances in genetic engineering of microorganisms for enhanced yield of the above-mentioned biocommodities are elucidated with selected examples. The bottleneck in commercialization, integrated approach for improved production, techno-economical feasibility and real-life uses of some of these biocommodities, as well as research gaps and future directions are discussed.
Collapse
Affiliation(s)
- Sandeep K Panda
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Johannesburg , South Africa
| | - Ramesh C Ray
- b Microbiology Research Laboratory, ICAR- Regional Centre of Central Tuber Crops Research Institute , Bhubaneswar , India
| | - Swati S Mishra
- c Department of Biodiversity and Conservation of Natural Resources , Central University of Orissa , Koraput , India
| | - Eugenie Kayitesi
- a Department of Biotechnology and Food Technology, Faculty of Science , University of Johannesburg , Johannesburg , South Africa
| |
Collapse
|
30
|
Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 2017; 41:192-201. [PMID: 28414174 DOI: 10.1016/j.ymben.2017.04.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
β-Carotene is a terpenoid molecule with high hydrophobicity that is often used as an additive in foods and feed. Previous work has demonstrated the heterologous biosynthesis of β-carotene from an intrinsic high flux of acetyl-CoA in 12 steps through 11 genes in Yarrowia lipolytica. Here, an efficient biosynthetic pathway capable of producing 100-fold more β-carotene than the baseline construct was generated using strong promoters and multiple gene copies for each of the 12 steps. Using fed-batch fermentation with an optimized medium, the engineered pathway could produce 4g/L β-carotene, which was stored in lipid droplets within engineered Y. lipolytica cells. Expansion of these cells for squalene production also demonstrated that Y. lipolytica could be an industrially relevant platform for hydrophobic terpenoid production.
Collapse
|
31
|
Guleria S, Zhou J, Koffas MA. Nutraceuticals (Vitamin C, Carotenoids, Resveratrol). Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sanjay Guleria
- Sher-e-Kashmir University of Agricultural Sciences and Technology; Division of Biochemistry, Faculty of Basic Sciences; Main Campus Chatha Jammu 180 009 India
| | - Jingwen Zhou
- Jiangnan University; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Mattheos A.G. Koffas
- Rensselaer Polytechnic Institute; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy NY 12180 USA
| |
Collapse
|
32
|
Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 2016; 100:6981-90. [DOI: 10.1007/s00253-016-7700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
|
33
|
Ma T, Deng Z, Liu T. Microbial production strategies and applications of lycopene and other terpenoids. World J Microbiol Biotechnol 2015; 32:15. [PMID: 26715120 DOI: 10.1007/s11274-015-1975-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/14/2015] [Indexed: 12/14/2022]
Abstract
Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.
Collapse
Affiliation(s)
- Tian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan, 430071, People's Republic of China
- Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, People's Republic of China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Donghu Road, Wuhan, 430071, People's Republic of China.
- Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, People's Republic of China.
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, People's Republic of China.
| |
Collapse
|
34
|
Liu L, Guan N, Li J, Shin HD, Du G, Chen J. Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Crit Rev Biotechnol 2015; 37:139-150. [PMID: 26699901 DOI: 10.3109/07388551.2015.1121461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nutraceuticals are food substances with medical and health benefits for humans. Limited by complicated procedures, high cost, low yield, insufficient raw materials, resource waste, and environment pollution, chemical synthesis and extraction are being replaced by microbial synthesis of nutraceuticals. Many microbial strains that are generally regarded as safe (GRAS) have been identified and developed for the synthesis of nutraceuticals, and significant nutraceutical production by these strains has been achieved. In this review, we systematically summarize recent advances in nutraceutical research in terms of physiological effects on health, potential applications, drawbacks of traditional production processes, characteristics of production strains, and progress in microbial fermentation. Recent advances in systems and synthetic biology techniques have enabled comprehensive understanding of GRAS strains and its wider applications. Thus, these microbial strains are promising cell factories for the commercial production of nutraceuticals.
Collapse
Affiliation(s)
- Long Liu
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Ningzi Guan
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Jianghua Li
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China
| | - Hyun-Dong Shin
- d School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta , GA , USA
| | - Guocheng Du
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| | - Jian Chen
- a Key Laboratory of Carbohydrate Chemistry and Biotechnology and.,b Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi , China.,c Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University , Wuxi , China , and
| |
Collapse
|
35
|
Letnik I, Avrahami R, Rokem JS, Greiner A, Zussman E, Greenblatt C. Living Composites of Electrospun Yeast Cells for Bioremediation and Ethanol Production. Biomacromolecules 2015; 16:3322-8. [DOI: 10.1021/acs.biomac.5b00970] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ilya Letnik
- Department
of Microbiology and Molecular Genetics, IMRIC Hebrew University − Hadassah Medical School Ein-Karem, Jerusalem 9112102, Israel
| | - Ron Avrahami
- The
Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa 32000 Israel
| | - J. Stefan Rokem
- Department
of Microbiology and Molecular Genetics, IMRIC Hebrew University − Hadassah Medical School Ein-Karem, Jerusalem 9112102, Israel
| | - Andreas Greiner
- Macromolecular
Chemistry II and Bayreuth Center for Colloids and Interfaces, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Eyal Zussman
- The
Faculty of Mechanical Engineering, Technion Institute of Technology, Haifa 32000 Israel
| | - Charles Greenblatt
- Department
of Microbiology and Molecular Genetics, IMRIC Hebrew University − Hadassah Medical School Ein-Karem, Jerusalem 9112102, Israel
| |
Collapse
|
36
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Davies FK, Jinkerson RE, Posewitz MC. Toward a photosynthetic microbial platform for terpenoid engineering. PHOTOSYNTHESIS RESEARCH 2015; 123:265-84. [PMID: 24510550 DOI: 10.1007/s11120-014-9979-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/23/2014] [Indexed: 05/20/2023]
Abstract
Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.
Collapse
Affiliation(s)
- Fiona K Davies
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA,
| | | | | |
Collapse
|
38
|
Ye L, Xie W, Zhou P, Yu H. Biotechnological Production of Astaxanthin through Metabolic Engineering of Yeasts. CHEMBIOENG REVIEWS 2015. [DOI: 10.1002/cben.201400023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Song MC, Kim EJ, Kim E, Rathwell K, Nam SJ, Yoon YJ. Microbial biosynthesis of medicinally important plant secondary metabolites. Nat Prod Rep 2014; 31:1497-509. [PMID: 25072622 DOI: 10.1039/c4np00057a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Secondary metabolites derived from plants are a valuable source of pharmaceuticals, nutraceuticals, and cosmetics. To harness the potential of these natural products, reliable methods must be developed for their rapid and sustainable resupply. Microbial production of plant secondary metabolites through the heterologous expression of plant biosynthetic genes represents one such solution. This highlight focuses on recent advances in the microbial biosynthesis of plant secondary metabolites including terpenoids, flavonoids, and alkaloids as well as providing a brief insight into the current limitations and future prospects.
Collapse
Affiliation(s)
- Myoung Chong Song
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
41
|
Boňková H, Osadská M, Krahulec J, Lišková V, Stuchlík S, Turňa J. Upstream regulatory regions controlling the expression of the Candida utilis maltase gene. J Biotechnol 2014; 189:136-42. [DOI: 10.1016/j.jbiotec.2014.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
42
|
Wang C, Kim JH, Kim SW. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Mar Drugs 2014; 12:4810-32. [PMID: 25233369 PMCID: PMC4178492 DOI: 10.3390/md12094810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.
Collapse
Affiliation(s)
- Chonglong Wang
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jung-Hun Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
43
|
Kiyota H, Okuda Y, Ito M, Hirai MY, Ikeuchi M. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. J Biotechnol 2014; 185:1-7. [DOI: 10.1016/j.jbiotec.2014.05.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/23/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
44
|
Metabolomic and Transcriptomic Analysis for Rate-Limiting Metabolic Steps in Xylose Utilization by RecombinantCandida utilis. Biosci Biotechnol Biochem 2014; 77:1441-8. [DOI: 10.1271/bbb.130093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Ethanol Production from Xylose by a RecombinantCandida utilisStrain Expressing Protein-Engineered Xylose Reductase and Xylitol Dehydrogenase. Biosci Biotechnol Biochem 2014; 75:1994-2000. [DOI: 10.1271/bbb.110426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Heider SAE, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 2014; 98:4355-68. [DOI: 10.1007/s00253-014-5693-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/31/2022]
|
47
|
Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, Shokry AM, Sabir JSM, Murata N. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 2014; 72:18-28. [PMID: 24680933 DOI: 10.1016/j.plasmid.2014.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Saleh M Al-Garni
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Samah Noor
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Norio Murata
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
48
|
Reconstruction of the carotenoid biosynthetic pathway of Cronobacter sakazakii BAA894 in Escherichia coli. PLoS One 2014; 9:e86739. [PMID: 24466219 PMCID: PMC3900654 DOI: 10.1371/journal.pone.0086739] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022] Open
Abstract
Cronobacter sakazakii could form yellow-pigmented colonies. However, the chemical structure and the biosynthetic pathway of the yellow pigments have not been identified. In this study, the yellow pigments of C. sakazakii BAA894 were purified and analyzed. The major components of the yellow pigments were confirmed as zeaxanthin-monoglycoside and zeaxanthin-diglycoside. A gene cluster containing seven genes responsible for the yellow pigmentation in C. sakazakii BAA894 was identified. The seven genes of C. sakazakii BAA894 or parts of them were reconstructed in a heterologous host Escherichia coli DH5α. The pigments formed in these E. coli strains were isolated and analyzed by thin layer chromatography, UV-visible spectroscopy, high performance liquid chromatography, and electron spray ionization-mass spectrometry. These redesigned E. coli strains could produce different carotenoids. E. coli strain expressing all the seven genes could produce zeaxanthin-monoglycoside and zeaxanthin-diglycoside; E. coli strains expressing parts of the seven genes could produce lycopene, β-carotene, cryptoxanthin or zeaxanthin. This study identified the gene cluster responsible for the yellow pigmentation in C. sakazakii BAA894.
Collapse
|
49
|
Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 2014; 13:12. [PMID: 24443802 PMCID: PMC3922794 DOI: 10.1186/1475-2859-13-12] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022] Open
Abstract
Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates.
Collapse
Affiliation(s)
| | - Julio César Montañez
- Chemical Engineering Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Mexico.
| | | | | |
Collapse
|
50
|
Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 2013; 80:1660-9. [PMID: 24375130 DOI: 10.1128/aem.03167-13] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g(-1) (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.
Collapse
|