1
|
Park YC. Xylose Metabolism and Transport in Bacillus subtilis and Its Application to D-Ribose Production. J Microbiol Biotechnol 2025; 35:e2504021. [PMID: 40274416 PMCID: PMC12034463 DOI: 10.4014/jmb.2504.04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 04/26/2025]
Abstract
Xylose is a five-carbon sugar and the second abundant mono-saccharide in lignocellulosic biomass. Xylose is not only a sugar substitute by itself, but also a good carbon source for the microbial and enzymatic synthesis of various valuable biomaterials. Most microorganisms are able to uptake and consume xylose as a sole carbon source because they possess specific transport systems and metabolic enzymes. Bacillus subtilis is a representative Gram-positive bacterium commercially used for enzyme and food production. Even though B. subtilis is popular in genetic and protein engineering, its application for metabolic engineering has been limited. Meanwhile, D-ribose is a five-carbon sugar and essential component in nucleotides, ATP, NAD, coenzyme A and so on. It boosts healthy effects on the human body such as enhancement of muscle performance and tolerance to myocardial ischemia. To produce D-ribose from xylose in B. subtilis, a comprehensive review on xylose metabolic regulation, xylose transport, and D-ribose biosynthetic engineering and fermentation process was provided. It would be useful for production of other valuable metabolites from xylose in B. subtilis.
Collapse
Affiliation(s)
- Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Abe K. Biological and biochemical studies on cell surface functions in microorganisms used in brewing and fermentation industry. Biosci Biotechnol Biochem 2025; 89:649-667. [PMID: 39993924 DOI: 10.1093/bbb/zbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
When brewing microorganisms, which include bacteria and fungi, act on solid cereal substrates, the microbial cell surface interacts with the substrate. When microorganisms use sugars and amino acids released by hydrolysis of the substrate, this occurs on the cell surface. Throughout my career, I have focused on functional studies of cell surface molecules such as solute transporters, cell wall components, and bio-surfactants and applied the knowledge obtained to the development of fermentation technologies. In this review, I describe (i) catabolite control by sugar transporters and energy generation coupled with amino acid decarboxylation in lactic acid bacteria; (ii) recruitment of a polyesterase by the fungal bio-surfactant proteins to polyesters and subsequent promotion of polyester hydrolysis; and (iii) hyphal aggregation via cell wall α-1,3-glucan and galactosaminogalactan in aspergilli and the development of a novel liquid culture method with hyphal dispersed mutants lacking these two polysaccharides.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Fermentation Microbiology, Department of Agrochemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Xylose Metabolism in Bacteria—Opportunities and Challenges towards Efficient Lignocellulosic Biomass-Based Biorefineries. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a sustainable society based on circular economy, the use of waste lignocellulosic biomass (LB) as feedstock for biorefineries is a promising solution, since LB is the world’s most abundant renewable and non-edible raw material. LB is available as a by-product from agricultural and forestry processes, and its main components are cellulose, hemicellulose, and lignin. Following suitable physical, enzymatic, and chemical steps, the different fractions can be processed and/or converted to value-added products such as fuels and biochemicals used in several branches of industry through the implementation of the biorefinery concept. Upon hydrolysis, the carbohydrate-rich fraction may comprise several simple sugars (e.g., glucose, xylose, arabinose, and mannose) that can then be fed to fermentation units. Unlike pentoses, glucose and other hexoses are readily processed by microorganisms. Some wild-type and genetically modified bacteria can metabolize xylose through three different main pathways of metabolism: xylose isomerase pathway, oxidoreductase pathway, and non-phosphorylative pathway (including Weimberg and Dahms pathways). Two of the commercially interesting intermediates of these pathways are xylitol and xylonic acid, which can accumulate in the medium either through manipulation of the culture conditions or through genetic modification of the bacteria. This paper provides a state-of-the art perspective regarding the current knowledge on xylose transport and metabolism in bacteria as well as envisaged strategies to further increase xylose conversion into valuable products.
Collapse
|
4
|
Metagenome Analysis of a Hydrocarbon-Degrading Bacterial Consortium Reveals the Specific Roles of BTEX Biodegraders. Genes (Basel) 2021; 12:genes12010098. [PMID: 33466668 PMCID: PMC7828808 DOI: 10.3390/genes12010098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental contamination by petroleum hydrocarbons is of concern due to the carcinogenicity and neurotoxicity of these compounds. Successful bioremediation of organic contaminants requires bacterial populations with degradative capacity for these contaminants. Through successive enrichment of microorganisms from a petroleum-contaminated soil using diesel fuel as the sole carbon and energy source, we successfully isolated a bacterial consortium that can degrade diesel fuel hydrocarbons. Metagenome analysis revealed the specific roles of different microbial populations involved in the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), and the metabolic pathways involved in these reactions. One hundred and five putative coding DNA sequences were identified as responsible for both the activation of BTEX and central metabolism (ring-cleavage) of catechol and alkylcatechols during BTEX degradation. The majority of the Coding DNA sequences (CDSs) were affiliated to Acidocella, which was also the dominant bacterial genus in the consortium. The inoculation of diesel fuel contaminated soils with the consortium resulted in approximately 70% hydrocarbon biodegradation, indicating the potential of the consortium for environmental remediation of petroleum hydrocarbons.
Collapse
|
5
|
Yu H, Meng X, Aflakpui FWK, Luo L. A salt-induced butA gene of Tetragenococcus halophilus confers salt tolerance to Escherichia coli by heterologous expression of its dual copies. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Teo WS, Chang MW. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Biotechnol J 2014; 10:315-22. [PMID: 24975936 DOI: 10.1002/biot.201400159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/21/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
Abstract
Lignocellulosic biomass is a sustainable and abundant starting material for biofuel production. However, lignocellulosic hydrolysates contain not only glucose, but also other sugars including xylose which cannot be metabolized by the industrial workhorse Saccharomyces cerevisiae. Hence, engineering of xylose assimilating S. cerevisiae has been much studied, including strain optimization strategies. In this work, we constructed genetically encoded xylose biosensors that can control protein expression upon detection of xylose sugars. These were constructed with the constitutive expression of heterologous XylR repressors, which function as protein sensors, and cloning of synthetic promoters with XylR operator sites. Three XylR variants and the corresponding synthetic promoters were used: XylR from Tetragenococcus halophile, Clostridium difficile, and Lactobacillus pentosus. To optimize the biosensor, two promoters with different strengths were used to express the XylR proteins. The ability of XylR to repress yEGFP expression from the synthetic promoters was demonstrated. Furthermore, xylose sugars added exogenously to the cells were shown to regulate gene expression. We envision that the xylose biosensors can be used as a tool to engineer and optimize yeast that efficiently utilizes xylose as carbon source for growth and biofuel production.
Collapse
Affiliation(s)
- Wei Suong Teo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Synthetic Biology Research Consortium, National University of Singapore, Singapore
| | | |
Collapse
|
7
|
Lin Z, Deng B, Jiao Z, Wu B, Xu X, Yu D, Li W. A versatile mini-mazF-cassette for marker-free targeted genetic modification in Bacillus subtilis. J Microbiol Methods 2013; 95:207-14. [PMID: 23911571 DOI: 10.1016/j.mimet.2013.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
Abstract
There are some drawbacks for MazF-cassette constructed in previous reports for marker-free genetic manipulation in Bacillus subtilis, including cloning-dependent methodology and non-strictly controlled expression system. In our study, the modifications on mazF-cassette are carried out, such as using mini Zeocin resistance gene as positive-selectable marker and strictly controlled xyl promoter from the B. subtilis to replace non-strictly controlled IPTG-inducible Pspac or xyl promoter from Bacillus megaterium. Then the mini-mazF-cassette was successfully applied to knock-out the amyE gene, to delete a 90-kb gene cluster, and to knock-in a green fluorescent protein expression cassette employing a cloning-independent methodology, without introducing undesirable redundant sequences at the modified locus in the B. subtilis 1A751. Besides, the mini-mazF-cassette could be used repeatedly to delete multiple genes or gene clusters with only a 2- to 2.5-kb PCR-fused fragment, which largely reduced the frequency of nucleic acid mutations generated by PCR compared to previous reports. We further demonstrated that the frequency of spontaneous mazF-resistant mutants was lower, and the frequency of generating desired clones was nearly 100%. The entire procedure for marker-free genetic manipulation using the mini-mazF-cassette can be finished in about 3days. This modified cassette has remarkable improvement compared to existing approaches and is applicable for available manipulating Bacillus species chromosomes.
Collapse
Affiliation(s)
- Zhiwei Lin
- Key Laboratory of Molecular Animal Nutrition of Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Ferreira D, Nobre A, Silva ML, Faria-Oliveira F, Tulha J, Ferreira C, Lucas C. XYLHencodes a xylose/H+symporter from the highly related yeast speciesDebaryomyces fabryiandDebaryomyces hansenii. FEMS Yeast Res 2013; 13:585-96. [DOI: 10.1111/1567-1364.12061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Danielly Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Alexandra Nobre
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Marta Luisa Silva
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Fábio Faria-Oliveira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Célia Ferreira
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA); Department of Biology; University of Minho; Braga; Portugal
| |
Collapse
|
9
|
Origin and molecular evolution of the determinant of methicillin resistance in staphylococci. Antimicrob Agents Chemother 2010; 54:4352-9. [PMID: 20679504 DOI: 10.1128/aac.00356-10] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important multidrug-resistant pathogens around the world. MRSA is generated when methicillin-susceptible S. aureus (MSSA) exogenously acquires a methicillin resistance gene, mecA, carried by a mobile genetic element, staphylococcal cassette chromosome mec (SCCmec), which is speculated to be transmissible across staphylococcal species. However, the origin/reservoir of the mecA gene has remained unclear. Finding the origin/reservoir of the mecA gene is important for understanding the evolution of MRSA. Moreover, it may contribute to more effective control measures for MRSA. Here we report on one of the animal-related Staphylococcus species, S. fleurettii, as the highly probable origin of the mecA gene. The mecA gene of S. fleurettii was found on the chromosome linked with the essential genes for the growth of staphylococci and was not associated with SCCmec. The mecA locus of the S. fleurettii chromosome has a sequence practically identical to that of the mecA-containing region (∼12 kbp long) of SCCmec. Furthermore, by analyzing the corresponding gene loci (over 20 kbp in size) of S. sciuri and S. vitulinus, which evolved from a common ancestor with that of S. fleurettii, the speciation-related mecA gene homologues were identified, indicating that mecA of S. fleurettii descended from its ancestor and was not recently acquired. It is speculated that SCCmec came into form by adopting the S. fleurettii mecA gene and its surrounding chromosomal region. Our finding suggests that SCCmec was generated in Staphylococcus cells living in animals by acquiring the intrinsic mecA region of S. fleurettii, which is a commensal bacterium of animals.
Collapse
|
10
|
Johnsen U, Schönheit P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 2004; 186:6198-207. [PMID: 15342590 PMCID: PMC515137 DOI: 10.1128/jb.186.18.6198-6207.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During growth of the halophilic archaeon Haloarcula marismortui on D-xylose, a specific D-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to D-xylose, D-ribose was oxidized at similar kinetic constants, whereas D-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)-coding for a 39.9-kDA protein-was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | |
Collapse
|
11
|
Abe K, Ohnishi F, Yagi K, Nakajima T, Higuchi T, Sano M, Machida M, Sarker RI, Maloney PC. Plasmid-encoded asp operon confers a proton motive metabolic cycle catalyzed by an aspartate-alanine exchange reaction. J Bacteriol 2002; 184:2906-13. [PMID: 12003930 PMCID: PMC135062 DOI: 10.1128/jb.184.11.2906-2913.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetragenococcus halophila D10 catalyzes the decarboxylation of L-aspartate with nearly stoichiometric release of L-alanine and CO(2). This trait is encoded on a 25-kb plasmid, pD1. We found in this plasmid a putative asp operon consisting of two genes, which we designated aspD and aspT, encoding an L-aspartate-beta-decarboxylase (AspD) and an aspartate-alanine antiporter (AspT), respectively, and determined the nucleotide sequences. The sequence analysis revealed that the genes of the asp operon in pD1 were in the following order: promoter --> aspD --> aspT. The deduced amino acid sequence of AspD showed similarity to the sequences of two known L-aspartate-beta-decarboxylases from Pseudomonas dacunhae and Alcaligenes faecalis. Hydropathy analyses suggested that the aspT gene product encodes a hydrophobic protein with multiple membrane-spanning regions. The operon was subcloned into the Escherichia coli expression vector pTrc99A, and the two genes were cotranscribed in the resulting plasmid, pTrcAsp. Expression of the asp operon in E. coli coincided with appearance of the capacity to catalyze the decarboxylation of aspartate to alanine. Histidine-tagged AspD (AspDHis) was also expressed in E. coli and purified from cell extracts. The purified AspDHis clearly exhibited activity of L-aspartate-beta-decarboxylase. Recombinant AspT was solubilized from E. coli membranes and reconstituted in proteoliposomes. The reconstituted AspT catalyzed self-exchange of aspartate and electrogenic heterologous exchange of aspartate with alanine. Thus, the asp operon confers a proton motive metabolic cycle consisting of the electrogenic aspartate-alanine antiporter and the aspartate decarboxylase, which keeps intracellular levels of alanine, the countersubstrate for aspartate, high.
Collapse
Affiliation(s)
- Keietsu Abe
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hartley BS, Hanlon N, Jackson RJ, Rangarajan M. Glucose isomerase: insights into protein engineering for increased thermostability. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:294-335. [PMID: 11150612 DOI: 10.1016/s0167-4838(00)00246-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thermostable glucose isomerases are desirable for production of 55% fructose syrups at >90 degrees C. Current commercial enzymes operate only at 60 degrees C to produce 45% fructose syrups. Protein engineering to construct more stable enzymes has so far been relatively unsuccessful, so this review focuses on elucidation of the thermal inactivation pathway as a future guide. The primary and tertiary structures of 11 Class 1 and 20 Class 2 enzymes are compared. Within each class the structures are almost identical and sequence differences are few. Structural differences between Class 1 and Class 2 are less than previously surmised. The thermostabilities of Class 1 enzymes are essentially identical, in contrast to previous reports, but in Class 2 they vary widely. In each class, thermal inactivation proceeds via the tetrameric apoenzyme, so metal ion affinity dominates thermostability. In Class 1 enzymes, subunit dissociation is not involved, but there is an irreversible conformational change in the apoenzyme leading to a more thermostable inactive tetramer. This may be linked to reversible conformational changes in the apoenzyme at alkaline pH arising from electrostatic repulsions in the active site, which break a buried Arg-30-Asp-299 salt bridge and bring Arg-30 to the surface. There is a different salt bridge in Class 2 enzymes, which might explain their varying thermostability. Previous protein engineering results are reviewed in light of these insights.
Collapse
Affiliation(s)
- B S Hartley
- Department of Biochemistry, Imperial College, SW7 2AZ, London, UK.
| | | | | | | |
Collapse
|
13
|
Chaillou S, Pouwels PH, Postma PW. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system. J Bacteriol 1999; 181:4768-73. [PMID: 10438743 PMCID: PMC93960 DOI: 10.1128/jb.181.16.4768-4773.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized the D-xylose transport system of Lactobacillus pentosus. Uptake of D-xylose was not driven by the proton motive force generated by malolactic fermentation and required D-xylose metabolism. The kinetics of D-xylose transport were indicative of a low-affinity facilitated-diffusion system with an apparent K(m) of 8.5 mM and a V(max) of 23 nmol min(-1) mg of dry weight(-1). In two mutants of L. pentosus defective in the phosphoenolpyruvate:mannose phosphotransferase system, growth on D-xylose was absent due to the lack of D-xylose transport. However, transport of the pentose was not totally abolished in a third mutant, which could be complemented after expression of the L. curvatus manB gene encoding the cytoplasmic EIIB(Man) component of the EII(Man) complex. The EII(Man) complex is also involved in D-xylose transport in L. casei ATCC 393 and L. plantarum 80. These two species could transport and metabolize D-xylose after transformation with plasmids which expressed the D-xylose-catabolizing genes of L. pentosus, xylAB. L. casei and L. plantarum mutants resistant to 2-deoxy-D-glucose were defective in EII(Man) activity and were unable to transport D-xylose when transformed with plasmids containing the xylAB genes. Finally, transport of D-xylose was found to be the rate-limiting step in the growth of L. pentosus and of L. plantarum and L. casei ATCC 393 containing plasmids coding for the D-xylose-catabolic enzymes, since the doubling time of these bacteria on D-xylose was proportional to the level of EII(Man) activity.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | |
Collapse
|
14
|
Chaillou S, Bor YC, Batt CA, Postma PW, Pouwels PH. Molecular cloning and functional expression in lactobacillus plantarum 80 of xylT, encoding the D-xylose-H+ symporter of Lactobacillus brevis. Appl Environ Microbiol 1998; 64:4720-8. [PMID: 9835554 PMCID: PMC90914 DOI: 10.1128/aem.64.12.4720-4728.1998] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-kb region, located downstream of the Lactobacillus brevis xylA gene (encoding D-xylose isomerase), was cloned in Escherichia coli TG1. The sequence revealed two open reading frames which could code for the D-xylulose kinase gene (xylB) and another gene (xylT) encoding a protein of 457 amino acids with significant similarity to the D-xylose-H+ symporters of E. coli, XylE (57%), and Bacillus megaterium, XylT (58%), to the D-xylose-Na+ symporter of Tetragenococcus halophila, XylE (57%), and to the L-arabinose-H+ symporter of E. coli, AraE (60%). The L. brevis xylABT genes showed an arrangement similar to that of the B. megaterium xylABT operon and the T. halophila xylABE operon. Southern hybridization performed with the Lactobacillus pentosus xylR gene (encoding the D-xylose repressor protein) as a probe revealed the existence of a xylR homologue in L. brevis which is not located with the xyABT locus. The existence of a functional XylR was further suggested by the presence of xylO sequences upstream of xylA and xylT and by the requirement of D-xylose for the induction of D-xylose isomerase, D-xylulose kinase, and D-xylose transport activities in L. brevis. When L. brevis was cultivated in a mixture of D-glucose and D-xylose, the D-xylose isomerase and D-xylulose kinase activities were reduced fourfold and the D-xylose transport activity was reduced by sixfold, suggesting catabolite repression by D-glucose of D-xylose assimilation. The xylT gene was functionally expressed in Lactobacillus plantarum 80, a strain which lacks proton motive force-linked D-xylose transport activity. The role of the XylT protein was confirmed by the accumulation of D-xylose in L. plantarum 80 cells, and this accumulation was dependent on the proton motive force generated by either malolactic fermentation or by the metabolism of D-glucose. The apparent affinity constant of XylT for D-xylose was approximately 215 microM, and the maximal initial velocity of transport was 35 nmol/min per mg (dry weight). Furthermore, of a number of sugars tested, only 6-deoxy-D-glucose inhibited the transport of D-xylose by XylT competitively, with a Ki of 220 microM.
Collapse
Affiliation(s)
- S Chaillou
- EC Slater Institute, BioCentrum, University of Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Abe K, Higuchi T. Selective fermentation of xylose by a mutant of Tetragenococcus halophila defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase. Biosci Biotechnol Biochem 1998; 62:2062-4. [PMID: 9836445 DOI: 10.1271/bbb.62.2062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tetragenococcus halophila is a Gram-positive halophilic lactic acid bacterium used for soy sauce fermentation. We isolated a mutant, T. halophila 3E4, triply defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase. 3E4 selectively metabolized pentoses such as xylose and arabinose in the presence of hexoses such as glucose and galactose. We present here an example of the metabolic engineering of catabolite control.
Collapse
Affiliation(s)
- K Abe
- Research and Development Division, Kikkoman Corporation, Chiba, Japan.
| | | |
Collapse
|