1
|
Wu L, Bian W, Abubakar YS, Lin J, Yan H, Zhang H, Wang Z, Wu C, Shim W, Lu GD. FvKex2 is required for development, virulence, and mycotoxin production in Fusarium verticillioides. Appl Microbiol Biotechnol 2024; 108:228. [PMID: 38386129 PMCID: PMC10884074 DOI: 10.1007/s00253-024-13022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.
Collapse
Affiliation(s)
- Limin Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - Wenyin Bian
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Yakubu Saddeeq Abubakar
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Jiayi Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Zonghua Wang
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China
| | - Changbiao Wu
- Fujian Vocational College of Bioengineering, Fuzhou, 350002, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA.
| | - Guo-Dong Lu
- Key Laboratory of Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Arai T, Wada M, Nishiguchi H, Takimura Y, Ishii J. Inducer-free recombinant protein production in Trichoderma reesei: secretory production of endogenous enzymes and heterologous nanobodies using glucose as the sole carbon source. Microb Cell Fact 2023; 22:103. [PMID: 37208691 DOI: 10.1186/s12934-023-02109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei has been used as a host organism for the production of lignocellulosic biomass-degrading enzymes. Although this microorganism has high potential for protein production, it has not yet been widely used for heterologous recombinant protein production. Transcriptional induction of the cellulase genes is essential for high-level protein production in T. reesei; however, glucose represses this transcriptional induction. Therefore, cellulose is commonly used as a carbon source for providing its degraded sugars such as cellobiose, which act as inducers to activate the strong promoters of the major cellulase (cellobiohydrolase 1 and 2 (cbh1 and cbh2) genes. However, replacement of cbh1 and/or cbh2 with a gene encoding the protein of interest (POI) for high productivity and occupancy of recombinant proteins remarkably impairs the ability to release soluble inducers from cellulose, consequently reducing the production of POI. To overcome this challenge, we first used an inducer-free biomass-degrading enzyme expression system, previously developed to produce cellulases and hemicellulases using glucose as the sole carbon source, for recombinant protein production using T. reesei. RESULTS We chose endogenous secretory enzymes and heterologous camelid small antibodies (nanobody) as model proteins. By using the inducer-free strain as a parent, replacement of cbh1 with genes encoding two intrinsic enzymes (aspartic protease and glucoamylase) and three different nanobodies (1ZVH, caplacizumab, and ozoralizumab) resulted in their high secretory productions using glucose medium without inducers such as cellulose. Based on signal sequences (carrier polypeptides) and protease inhibitors, additional replacement of cbh2 with the nanobody gene increased the percentage of POI to about 20% of total secreted proteins in T. reesei. This allowed the production of caplacizumab, a bivalent nanobody, to be increased to 9.49-fold (508 mg/L) compared to the initial inducer-free strain. CONCLUSIONS In general, whereas the replacement of major cellulase genes leads to extreme decrease in the degradation capacity of cellulose, our inducer-free system enabled it and achieved high secretory production of POI with increased occupancy in glucose medium. This system would be a novel platform for heterologous recombinant protein production in T. reesei.
Collapse
Affiliation(s)
- Toshiharu Arai
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan.
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Mayumi Wada
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Hiroki Nishiguchi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Yasushi Takimura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, 640‑8580, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
3
|
Djemiel C, Goulas E, Badalato N, Chabbert B, Hawkins S, Grec S. Targeted Metagenomics of Retting in Flax: The Beginning of the Quest to Harness the Secret Powers of the Microbiota. Front Genet 2020; 11:581664. [PMID: 33193706 PMCID: PMC7652851 DOI: 10.3389/fgene.2020.581664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanical and chemical properties of natural plant fibers are determined by many different factors, both intrinsic and extrinsic to the plant, during growth but also after harvest. A better understanding of how all these factors exert their effect and how they interact is necessary to be able to optimize fiber quality for use in different industries. One important factor is the post-harvest process known as retting, representing the first step in the extraction of bast fibers from the stem of species such as flax and hemp. During this process microorganisms colonize the stem and produce hydrolytic enzymes that target cell wall polymers thereby facilitating the progressive destruction of the stem and fiber bundles. Recent advances in sequencing technology have allowed researchers to implement targeted metagenomics leading to a much better characterization of the microbial communities involved in retting, as well as an improved understanding of microbial dynamics. In this paper we review how our current knowledge of the microbiology of retting has been improved by targeted metagenomics and discuss how related '-omics' approaches might be used to fully characterize the functional capability of the retting microbiome.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Nelly Badalato
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Brigitte Chabbert
- Université de Reims Champagne Ardenne, INRAE, UMR FARE A 614, Reims, France
| | - Simon Hawkins
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
4
|
Wang J, Zhou H, Lu H, Du T, Luo Y, Wilson IBH, Jin C. Kexin-like endoprotease KexB is required for N-glycan processing, morphogenesis and virulence in Aspergillus fumigatus. Fungal Genet Biol 2015; 76:57-69. [PMID: 25687931 DOI: 10.1016/j.fgb.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
Abstract
Kexin-like proteins belong to the subtilisin-like family of the proteinases that cleave secretory proproteins to their active forms. Several fungal kexin-like proteins have been investigated. The mutants lacking of kexin-like protein display strong phenotypes such as cell wall defect, abnormal polarity, and, in case of Candida albicans, diminished virulence. However, only several proteins have been confirmed as the substrates of kexin-like proteases in these fungal species. It still remains unclear how kexin-like proteins contribute to the morphogenesis in these fungal species. In this study, a kexB-null mutant of the human opportunistic fungal pathogen Aspergillus fumigatus was constructed and analyzed. The ΔkexB mutant showed retarded growth, temperature-sensitive cell wall defect, reduced conidia formation, and abnormal polarity. Biochemical analyses revealed that deletion of the kexB gene resulted in impaired N-glycan processing, activation of the MpkA-dependent cell wall integrity signaling pathway, and ER-stress. Results from in vivo assays demonstrated that the mutant exhibited an attenuated virulence in immunecompromised mice. Based on our results, the kexin-like endoprotease KexB was involved in the N-glycan processing, which provides a novel insight to understand how kexin-like protein affects the cell-wall modifying enzymes and therefore morphogenesis in fungi.
Collapse
Affiliation(s)
- Jingyang Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Biotechnol Adv 2014; 33:142-154. [PMID: 25479282 DOI: 10.1016/j.biotechadv.2014.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/18/2014] [Accepted: 11/23/2014] [Indexed: 10/24/2022]
Abstract
Hypocrea jecorina, the sexual teleomorph of Trichoderma reesei, has long been favored as an industrial cellulase producer, first utilizing its native cellulase system and later augmented by the introduction of heterologous enzymatic activities or improved variants of native enzymes. Expression of heterologous proteins in H. jecorina was once considered difficult when the target was an improved variant of a native cellulase. Developments over the past nearly 30 years have produced strains, vectors, and selection mechanisms that have continued to simplify and streamline heterologous protein expression in this fungus. More recent developments in fungal molecular biology have pointed the way toward a fundamental transformation in the ease and efficiency of heterologous protein expression in this important industrial host. Here, 1) we provide a historical perspective on advances in H. jecorina molecular biology, 2) outline host strain engineering, transformation, selection, and expression strategies, 3) detail potential pitfalls when working with this organism, and 4) provide consolidated examples of successful cellulase expression outcomes from our laboratory.
Collapse
|
6
|
Enhanced production of heterologous proteins by the filamentous fungus Trichoderma reesei via disruption of the alkaline serine protease SPW combined with a pH control strategy. Plasmid 2014; 71:16-22. [DOI: 10.1016/j.plasmid.2014.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/28/2013] [Accepted: 01/02/2014] [Indexed: 11/21/2022]
|
7
|
Faccio G, Arvas M, Thöny-Meyer L, Saloheimo M. Experimental and bioinformatic investigation of the proteolytic degradation of the C-terminal domain of a fungal tyrosinase. J Inorg Biochem 2012; 121:37-45. [PMID: 23333757 DOI: 10.1016/j.jinorgbio.2012.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Proteolytic processing is a key step in the production of polyphenol oxidases such as tyrosinases, converting the inactive proenzyme to an active form. In general, the fungal tyrosinase gene codes for a ~60 kDa protein that is, however, isolated as an active enzyme of ~40 kDa, lacking the C-terminal domain. Using the secreted tyrosinase 2 from Trichoderma reesei as a model protein, we performed a mutagenesis study of the residues in proximity of the experimentally determined cleavage site which are possibly involved in the proteolytic process. However, the mutant forms of tyrosinase 2 were not secreted in a full-length form retaining the C-terminal domain, but they were processed to give a ~45 kDa active form. Aiming at explaining this phenomenon, we analysed in silico the properties of the C-terminal domain of tyrosinase 2, of 23 previously retrieved homologous tyrosinase sequences from fungi (C. Gasparetti, G. Faccio, M. Arvas, J. Buchert, M. Saloheimo, K. Kruus, Appl. Microbiol. Biotechnol. 86 (2010) 213-226) and of nine well-characterised polyphenol oxidases. Based on the results of our study, we exclude the key role of specific amino acids at the cleavage site in the proteolytic process and report an overall higher sensitivity to proteolysis of the linker region and of the whole C-terminal domain of fungal tyrosinases.
Collapse
Affiliation(s)
- Greta Faccio
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomaterials, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| | | | | | | |
Collapse
|
8
|
Gasparetti C, Faccio G, Arvas M, Buchert J, Saloheimo M, Kruus K. Discovery of a new tyrosinase-like enzyme family lacking a C-terminally processed domain: production and characterization of an Aspergillus oryzae catechol oxidase. Appl Microbiol Biotechnol 2009; 86:213-26. [PMID: 19798497 DOI: 10.1007/s00253-009-2258-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/22/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
A homology search against public fungal genome sequences was performed to discover novel secreted tyrosinases. The analyzed proteins could be divided in two groups with different lengths (350-400 and 400-600 residues), suggesting the presence of a new class of secreted enzymes lacking the C-terminal domain. Among them, a sequence from Aspergillus oryzae (408 aa, AoCO4) was selected for production and characterization. AoCO4 was expressed in Trichoderma reesei under the strong cbh1 promoter. Expression of AoCO4 in T. reesei resulted in high yields of extracellular enzyme, corresponding to 1.5 g L(-1) production of the enzyme. AoCO4 was purified with a two-step purification procedure, consisting of cation and anion exchange chromatography. The N-terminal analysis of the protein revealed N-terminal processing taking place in the Kex2/furin-type protease cleavage site and removing the first 51 amino acids from the putative N-terminus. AoCO4 activity was tested on various substrates, and the highest activity was found on 4-tert-butylcatechol. Because no activity was detected on L-tyrosine and on L-dopa, AoCO4 was classified as a catechol oxidase. AoCO4 showed the highest activity within an acidic and neutral pH range, having an optimum at pH 5.6. AoCO4 showed good pH stability within a neutral and alkaline pH range and good thermostability up to 60 degrees C. The UV-visible and circular dichroism spectroscopic analysis suggested that the folding of the protein was correct.
Collapse
Affiliation(s)
- Chiara Gasparetti
- VTT Technical Research Centre of Finland, P. O. Box 1000, Espoo, 02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
9
|
Rossi-Rodrigues BC, Brochetto-Braga MR, Tauk-Tornisielo SM, Carmona EC, Arruda VM, Chaud Netto J. Comparative growth of trichoderma strains in different nutritional sources, using bioscreen c automated system. Braz J Microbiol 2009; 40:404-10. [PMID: 24031380 PMCID: PMC3769723 DOI: 10.1590/s1517-838220090002000035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/26/2008] [Accepted: 05/03/2009] [Indexed: 11/29/2022] Open
Abstract
Trichoderma is one of the fungi genera that produce important metabolites for industry. The growth of these organisms is a consequence of the nutritional sources used as also of the physical conditions employed to cultivate them. In this work, the automated Bioscreen C system was used to evaluate the influence of different nutritional sources on the growth of Trichoderma strains (T. hamatum, T. harzianum, T. viride, and T. longibrachiatum) isolated from the soil in the Juréia-Itatins Ecological Station (JIES), São Paulo State - Brazil. The cultures were grown in liquid culture media containing different carbon- (2%; w/v) and nitrogen (1%; w/v) sources at 28ºC, pH 6.5, and agitated at 150 rpm for 72 h. The results showed, as expected, that glucose is superior to sucrose as a growth-stimulating carbon source in the Trichoderma strains studied, while yeast extract and tryptone were good growth-stimulating nitrogen sources in the cultivation of T. hamatum and T. harzianum.
Collapse
|
10
|
Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 2009; 75:2148-57. [PMID: 19201950 DOI: 10.1128/aem.02103-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three cutinase gene-like genes from the basidiomycete Coprinopsis cinerea (Coprinus cinereus) found with a similarity search were cloned and expressed in Trichoderma reesei under the control of an inducible cbh1 promoter. The selected transformants of all three polyesterase constructs showed activity with p-nitrophenylbutyrate, used as a model substrate. The most promising transformant of the cutinase CC1G_09668.1 gene construct was cultivated in a laboratory fermentor, with a production yield of 1.4 g liter(-l) purified protein. The expressed cutinase (CcCUT1) was purified to homogeneity by immobilized metal affinity chromatography exploiting a C-terminal His tag. The N terminus of the enzyme was found to be blocked. The molecular mass of the purified enzyme was determined to be around 18.8 kDa by mass spectrometry. CcCUT1 had higher activity on shorter (C(2) to C(10)) fatty acid esters of p-nitrophenol than on longer ones, and it also exhibited lipase activity. CcCUT1 had optimal activity between pH 7 and 8 but retained activity over a wide pH range. The enzyme retained 80% of its activity after 20 h of incubation at 50 degrees C, but residual activity decreased sharply at 60 degrees C. Microscopic analyses and determination of released hydrolysis products showed that the enzyme was able to depolymerize apple cutin and birch outer bark suberin.
Collapse
|
11
|
Jacob-Wilk D, Turina M, Kazmierczak P, Van Alfen NK. Silencing of Kex2 significantly diminishes the virulence of Cryphonectria parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:211-221. [PMID: 19132873 DOI: 10.1094/mpmi-22-2-0211] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cryphonectria parasitica is the causal agent of chestnut blight. Infection of this ascomycete with Cryphonectria hypovirus 1 (CHV1) results in reduction of virulence and sporulation of the fungus. The virus affects fungal gene expression and several of the CHV1 downregulated genes encode secreted proteins that contain consensus Kex2 processing signals. Additionally, CHV1 has been shown to colocalize in infected cells primarily with fungal trans-Golgi network vesicles containing the Kex2 protease. We report here the cloning, analysis, and possible role of the C. parasitica Kex2 gene (CpKex2). CpKex2 gene sequence analysis showed high similarity to other ascomycete kexin-like proteins. Southern blot analyses of CpKex2 showed a single copy of this gene in the fungal genome. In order to monitor the expression and evaluate the function of CpKex2, antibodies were raised against expressed protein and Kex2-silenced mutants were generated. Western blots indicate that the Kex2 protein was constitutively expressed. Growth rate of the fungus was not significantly affected in Kex2-silenced strains; however, these strains showed reduced virulence, reduced sexual and asexual sporulation, and reductions in mating and fertility. The reduced virulence was correlated with reduced Kex2 enzymatic activity and reduced relative mRNA transcript levels as measured by real time reverse-transcriptase polymerase chain reaction. These results suggest that secreted proteins processed by Kex2 are important in fungal development and virulence.
Collapse
Affiliation(s)
- Debora Jacob-Wilk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
12
|
Bader O, Krauke Y, Hube B. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 2008; 8:116. [PMID: 18625069 PMCID: PMC2515848 DOI: 10.1186/1471-2180-8-116] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the alpha-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. RESULTS In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. CONCLUSION Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.
Collapse
Affiliation(s)
- Oliver Bader
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Institut für Medizinische Mikrobiologie, Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Yannick Krauke
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Dept. Membrane Transport, Institute of Physiology AS CR v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Bernhard Hube
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Department of Microbial Pathogenicity, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, and Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
13
|
Montero M, Sanz L, Rey M, Llobell A, Monte E. Cloning and characterization ofbgn16·3, coding for a β-1,6-glucanase expressed duringTrichoderma harzianummycoparasitism. J Appl Microbiol 2007; 103:1291-300. [PMID: 17897233 DOI: 10.1111/j.1365-2672.2007.03371.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To clone and characterize the gene coding for BGN16.3, a beta-1,6-glucanase putatively implicated in mycoparasitism by Trichoderma harzianum, a biocontrol agent used against plant pathogenic fungi. METHODS AND RESULTS Using degenerate primed PCR and cDNA library screening, we have cloned the cDNA coding BGN16.3. bgn16.3 showed a significant sequence identity (50%) to bgn16.1; however, they both have low identity to the previously cloned bgn16.2, allowing the identification of amino acid sequences putatively involved in the common catalytic activity of the three proteins. bgn16.3 is a single-copy gene and highly homologous sequences are present in all tested Trichoderma species. bgn16.3 expression pattern is analysed by Northern blot, finding that it is expressed during the interaction of T. harzianum CECT 2413 with Botrytis cinerea, supporting the implication of the enzyme in the mycoparasitic process. CONCLUSIONS The cloned bgn16.3 completes the knowledge on the beta-1,6-glucanase isozyme system from T. harzianum CECT 2413. A highly homologous gene is present in all analysed Trichoderma strains. bgn16.3 is expressed under few specific conditions, including the mycoparasitic process. SIGNIFICANCE AND IMPACT OF THE STUDY This study contributes to the knowledge of beta-1,6-glucanases. It implicates this group of enzymes in the mycoparasitism by some biocontrol agents such as T. harzianum.
Collapse
Affiliation(s)
- M Montero
- Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
14
|
Dienes D, Börjesson J, Hägglund P, Tjerneld F, Lidén G, Réczey K, Stålbrand H. Identification of a trypsin-like serine protease from Trichoderma reesei QM9414. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 2007. [DOI: 10.1007/s00253-006-0787-6 72] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
16
|
Martin K, McDougall BM, McIlroy S, Chen J, Seviour RJ. Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiol Rev 2007; 31:168-92. [PMID: 17313520 DOI: 10.1111/j.1574-6976.2006.00055.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many fungi produce exocellular beta-glucan-degrading enzymes, the beta-glucanases including the noncellulolytic beta-(1,3)- and beta-(1,6)-glucanases, degrading beta-(1,3)- and beta-(1,6)-glucans. An ability to purify several exocellular beta-glucanases attacking the same linkage type from a single fungus is common, although unlike the beta-1,3-glucanases, production of multiple beta-1,6-glucanases is quite rare in fungi. Reasons for this multiplicity remain unclear and the multiple forms may not be genetically different but arise by posttranslational glycosylation or proteolytic degradation of the single enzyme. How their synthesis is regulated, and whether each form is regulated differentially also needs clarifying. Their industrial potential will only be realized when the genes encoding them are cloned and expressed in large quantities. This review considers what is known in molecular terms about their multiplicity of occurrence, regulation of synthesis and phylogenetic diversity. It discusses how this information assists in understanding their functions in the fungi producing them. It deals largely with exocellular beta-glucanases which here refers to those recoverable after the cells are removed, since those associated with fungal cell walls have been reviewed recently by Adams (2004). It also updates the earlier review by Pitson et al. (1993).
Collapse
Affiliation(s)
- Kirstee Martin
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria, Australia
| | | | | | | | | |
Collapse
|
17
|
Li XL, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA. Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 2007; 74:1264-75. [PMID: 17225100 DOI: 10.1007/s00253-006-0787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 11/28/2006] [Accepted: 11/30/2006] [Indexed: 12/01/2022]
Abstract
The catalytic domain encoded by an adenine-thymine (AT)-rich xylanase gene (xynA) of the anaerobic fungus Orpinomyces was expressed in Hypocrea jecorina under the control of the cel7A promoter and terminator. No XynA protein was detected in H. jecorina culture supernatants when the original sequence was fused to the H. jecorina cel5A region coding for its signal peptide, carbohydrate-binding module, and hinge. Replacing the xynA (56% AT content) with a synthetic sequence containing lower AT content (39%) supported the extracellular production (150 mg l(-1)) of the fusion xylanase by H. jecorina. Northern analysis revealed that successful production after the decrease in AT content was related to higher levels of the xylanase-specific mRNA. Another construct with an RDKR-coding sequence inserted between the cel5A linker and the xynA catalytic domain allowed production of the fully processed active xylanase catalytic domain. Both the fusion (40 kDa) and the fully processed (28 kDa) forms displayed enzymatic properties of family 11 xylanases. Both the R and the Kex2-like KR sites were recognized during secretion, resulting in a mixture of two amino termini for the 28-kDa xylanase. The work demonstrated for the first time that glycoside hydrolases derived from anaerobic fungi can be produced by H. jecorina.
Collapse
MESH Headings
- AT Rich Sequence/genetics
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Endo-1,4-beta Xylanases/genetics
- Endo-1,4-beta Xylanases/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Hypocrea/genetics
- Molecular Sequence Data
- Neocallimastigales/enzymology
- Neocallimastigales/genetics
- Plasmids/chemistry
- Plasmids/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Xin-Liang Li
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture-Agricultural Research Service, 1815 N. University Street, Peoria, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, Nakari-Setälä T, Penttilä M, von Döhren H. Direct identification of hydrophobins and their processing in Trichoderma using intact-cell MALDI-TOF MS. FEBS J 2007; 274:841-52. [PMID: 17288563 DOI: 10.1111/j.1742-4658.2007.05636.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intact-cell MS (ICMS) was applied for the direct detection of hydrophobins in various species and strains of Hypocrea/Trichoderma. In both mycelia and spores, dominating peaks were identified as hydrophobins by detecting mass shifts of 8 Da of reduced and unreduced forms, the analysis of knockout mutants, and comparison with protein databases. Strain-specific processing was observed in the case of Hypocrea jecorina (anamorph Trichoderma reesei). An analysis of 32 strains comprising 29 different species of Trichoderma and Hypocrea showed hydrophobin patterns that were specific at both at the species and isolate (subspecies) levels. The method therefore permits rapid and direct detection of hydrophobin class II compositions and may also provide a means to identify Trichoderma (and other fungal) species and strains from microgram amounts of biomass without prior cultivation.
Collapse
Affiliation(s)
- Torsten Neuhof
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Djonović S, Pozo MJ, Kenerley CM. Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 2006; 72:7661-70. [PMID: 16997978 PMCID: PMC1694269 DOI: 10.1128/aem.01607-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Even though beta-1,6-glucanases have been purified from several filamentous fungi, the physiological function has not been conclusively established for any species. In the present study, the role of Tvbgn3, a beta-1,6-glucanase from Trichoderma virens, was examined by comparison of wild-type (WT) and transformant strains in which Tvbgn3 was disrupted (GKO) or constitutively overexpressed (GOE). Gene expression analysis revealed induction of Tvbgn3 in the presence of host fungal cell walls, indicating regulation during mycoparasitism. Indeed, while deletion or overexpression of Tvbgn3 had no evident effect on growth and development, GOE and GKO strains showed an enhanced or reduced ability, respectively, to inhibit the growth of the plant pathogen Pythium ultimum compared to results with the WT. The relevance of this activity in the biocontrol ability of T. virens was confirmed in plant bioassays. Deletion of the gene resulted in levels of disease protection that were significantly reduced from WT levels, while GOE strains showed a significantly increased biocontrol capability. These results demonstrate the involvement of beta-1,6-glucanase in mycoparasitism and its relevance in the biocontrol activity of T. virens, opening a new avenue for biotechnological applications.
Collapse
Affiliation(s)
- Slavica Djonović
- Department of Plant Pathology and Microbiology, 413C LF Peterson Building, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | |
Collapse
|
20
|
Seidl V, Huemer B, Seiboth B, Kubicek CP. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 2005; 272:5923-39. [PMID: 16279955 DOI: 10.1111/j.1742-4658.2005.04994.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genome-wide analysis of chitinase genes in the Hypocrea jecorina (anamorph: Trichoderma reesei) genome database revealed the presence of 18 ORFs encoding putative chitinases, all of them belonging to glycoside hydrolase family 18. Eleven of these encode yet undescribed chitinases. A systematic nomenclature for the H. jecorina chitinases is proposed, which designates the chitinases corresponding to their glycoside hydrolase family and numbers the isoenzymes according to their pI from Chi18-1 to Chi18-18. Phylogenetic analysis of H. jecorina chitinases, and those from other filamentous fungi, including hypothetical proteins of annotated fungal genome databases, showed that the fungal chitinases can be divided into three groups: groups A and B (corresponding to class V and III chitinases, respectively) also contained the so Trichoderma chitinases identified to date, whereas a novel group C comprises high molecular weight chitinases that have a domain structure similar to Kluyveromyces lactis killer toxins. Five chitinase genes, representing members of groups A-C, were cloned from the mycoparasitic species H. atroviridis (anamorph: T. atroviride). Transcription of chi18-10 (belonging to group C) and chi18-13 (belonging to a novel clade in group B) was triggered upon growth on Rhizoctonia solani cell walls, and during plate confrontation tests with the plant pathogen R. solani. Therefore, group C and the novel clade in group B may contain chitinases of potential relevance for the biocontrol properties of Trichoderma.
Collapse
Affiliation(s)
- Verena Seidl
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Austria.
| | | | | | | |
Collapse
|
21
|
Paloheimo M, Mäntylä A, Kallio J, Suominen P. High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol 2004; 69:7073-82. [PMID: 14660351 PMCID: PMC309970 DOI: 10.1128/aem.69.12.7073-7082.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bacterial xylanase gene, Nonomuraea flexuosa xyn11A, was expressed in the filamentous fungus Trichoderma reesei from the strong cellobiohydrolase 1 promoter as fusions to a variety of carrier polypeptides. By using single-copy isogenic transformants, it was shown that production of this xylanase was clearly increased (up to 820 mg/liter) when it was produced as a fusion protein with a carrier polypeptide having an intact domain structure compared to the production (150 to 300 mg/liter) of fusions to the signal sequence alone or to carriers having incomplete domain structures. The carriers tested were the T. reesei mannanase I (Man5A, or MANI) core-hinge and a fragment thereof and the cellulose binding domain of T. reesei cellobiohydrolase II (Cel6A, or CBHII) with and without the hinge region(s) and a fragment thereof. The flexible hinge region was shown to have a positive effect on both the production of Xyn11A and the efficiency of cleavage of the fusion polypeptide. The recombinant Xyn11A produced had properties similar to those of the native xylanase. It constituted 6 to 10% of the total proteins secreted by the transformants. About three times more of the Man5A core-hinge carrier polypeptide than of the recombinant Xyn11A was observed. Even in the best Xyn11A producers, the levels of the fusion mRNAs were only approximately 10% of the level of cel7A (cbh1) mRNA in the untransformed host strain.
Collapse
|
22
|
Pozo MJ, Baek JM, García JM, Kenerley CM. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 2004; 41:336-48. [PMID: 14761794 DOI: 10.1016/j.fgb.2003.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2003] [Accepted: 11/10/2003] [Indexed: 11/18/2022]
Abstract
Serine proteases are highly conserved among fungi and considered to play a key role in different aspects of fungal biology. These proteases can be involved in development and have been related to pathogenesis or biocontrol processes. A gene (tvsp1) encoding an extracellular serine protease was cloned from Trichoderma virens, a biocontrol agent effective against soilborne fungal pathogens. The gene was expressed in Escherichia coli and a polyclonal antibody was raised against the recombinant protein. The expression pattern of tvsp1 was determined and its physiological role was addressed by mutational analysis. Strains of T. virens in which tvsp1 was deleted (PKO) or constitutively overexpressed (POE) were not affected in growth rate, conidiation, extracellular protein accumulation, antibiotic profiles nor in their ability to induce phytoalexins in cotton seedlings. Tvsp1 overexpression, however, significantly increased the ability of some strains to protect cotton seedlings against Rhizoctonia solani. Our data show that Tvsp1 is not necessary for the normal growth or development of T. virens, but plays a role in the biocontrol process.
Collapse
Affiliation(s)
- María J Pozo
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
23
|
Punt PJ, Drint-Kuijvenhoven A, Lokman BC, Spencer JA, Jeenes D, Archer DA, van den Hondel CAMJJ. The role of the Aspergillus niger furin-type protease gene in processing of fungal proproteins and fusion proteins. J Biotechnol 2003; 106:23-32. [PMID: 14636707 DOI: 10.1016/j.jbiotec.2003.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized growth and protein processing characteristics of Aspergillus niger strains carrying a disrupted allele of the previously cloned and characterized kexB gene [Appl. Environ. Microbiol. 66 (2000) 363] encoding a furin-type endoprotease. Deletion of the single-copy gene confirms it to be non-essential but disruptant strains exhibit a morphologically distinct phenotype characterized by hyperbranching. Processing of homologous pro-proteins and fusion proteins comprised of a heterologous protein fused down-stream of glucoamylase and separated at the fusion junction by an endoproteolytic cleavage site was compared in wildtype and mutant strains of A. niger. We show that maturation of the native glucoamylase requires KexB, whereas maturation of aspergillopepsin does not. The processing of fusion proteins carrying Lys-Arg requires KexB, although alternative endoproteases are capable of cleaving protein fusions at sites adjacent to Lys-Arg.
Collapse
Affiliation(s)
- P J Punt
- TNO Nutrition and Food Research, Department of Applied Microbiology and Gene Technology, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Newport G, Kuo A, Flattery A, Gill C, Blake JJ, Kurtz MB, Abruzzo GK, Agabian N. Inactivation of Kex2p diminishes the virulence of Candida albicans. J Biol Chem 2003; 278:1713-20. [PMID: 12419804 DOI: 10.1074/jbc.m209713200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the kexin gene (KEX2) in Candida albicans has a pleiotropic effect on phenotype and virulence due partly to a defect in the expression of two major virulence factors: the secretion of active aspartyl proteinases and the formation of hyphae. kex2/kex2 mutants are highly attenuated in a mouse systemic infection model and persist within cultured macrophages for at least 24 h without causing damage. Pathology is modest, with little disruption of kidney matrix. The infecting mutant cells are largely confined to glomeruli, and are aberrant in morphology. The complex phenotype of the deletion mutants reflects a role for kexin in a wide range of cellular processes. Taking advantage of the specificity of Kex2p cleavage, an algorithm we developed to scan the 9168 open reading frames in Assembly 6 of the C. albicans genome identified 147 potential substrates of Kex2p. These include all previously identified substrates, including eight secreted aspartyl proteinases, the exoglucanase Xog1p, the immunodominant antigen Mp65, and the adhesin Hwp1p. Other putative Kex2p substrates identified include several adhesins, cell wall proteins, and hydrolases previously not implicated in pathogenesis. Kexins also process fungal mating pheromones; a modification of the algorithm identified a putative mating pheromone with structural similarities to Saccharomyces cerevisiae alpha-factor.
Collapse
Affiliation(s)
- George Newport
- Department of Stomatology, University of California at San Francisco, California 94143-0422, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Enzyme Production in Industrial Fungi-Molecular Genetic Strategies for Integrated Strain Improvement. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-5334(03)80014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Nykänen MJ, Raudaskoski M, Nevalainen H, Mikkonen A. Maturation of barley cysteine endopeptidase expressed in Trichoderma reesei is distorted by incomplete processing. Can J Microbiol 2002; 48:138-50. [PMID: 11958567 DOI: 10.1139/w01-144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maturation of barley cysteine endopeptidase B (EPB) in Trichoderma reesei was studied with metabolic in hibitors, Western blotting, and immuno microscopy. The inactive 42-kDa recombinant EPB proprotein, first detected in apical cells, was sequentially processed in a time-dependent manner to a secreted polypeptide of 38.5 kDa, and thereafter, to polypeptides of 37.5, 35.5, and 32 kDa exhibiting enzyme activity both in the hyphae and culture medium. The sizes of the different forms of recombinant EPB were in accordance with molecular masses calculated from the deduced amino acid sequence, assuming cleavage at four putative Kex2p sites present in the 42-kDa proprotein. Both the liquid and the zymogram in-gel activity assays indicated that the 32-kDa enzyme produced in T. reesei in vivo was 2 kDa larger and four times less active than the endogenous EPB. Brefeldin A treatment prevented the last Kex2p processing step of EPB from a 35.5- to a 32-kDa protein. This coincided with a significant increase in the immuno-gold label for EPB and in modified Golgi-like bodies, which suggests that the processing step probably took place in medial Golgi. A 30.5-kDa EPB polypeptide was observed when glycosylation was inhibited by tunicamycin (TM) or when deglycosylation was carried out enzymatically. Deglycosylation increased the enzyme activity twofold, which was also indicated by an increased fluorescence by TM treatment in the zymogram in-gel activity assay. Simultaneous incubation with TM and monensin produced a peptide of 31.5 kDa. Therefore, monensin may inhibit the final processing step of an unglycosylated EPB by an unknown protease in the fungus. In any case, the final recombinant EPB product in Trichoderma differs from the mature endogenous 30-kDa enzyme produced in barley.
Collapse
Affiliation(s)
- Marko J Nykänen
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | | | | | | |
Collapse
|
27
|
|
28
|
Maras M, Callewaert N, Piens K, Claeyssens M, Martinet W, Dewaele S, Contreras H, Dewerte I, Penttilä M, Contreras R. Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-alpha-D-mannosidase. J Biotechnol 2000; 77:255-63. [PMID: 10682284 DOI: 10.1016/s0168-1656(99)00222-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A cDNA encoding 1,2-alpha-D-mannosidase mds 1 from Trichoderma reesei was cloned. The largest open reading frame occupied 1571 bp. The predicted sequence contains 523 amino acid residues for a calculated molecular mass of 56,266 Da and shows high similarity to the amino acid sequences of 1,2-alpha-D-mannosidases from Aspergillus saitoi and Penicillium citrinum (51.6 and 51.0% identity, respectively). T. reesei mannosidase was produced as a recombinant enzyme in the yeast Pichia pastoris. Replacement of the N-terminal part with the prepro-signal peptide of the Saccharomyces cerevisiae alpha-mating factor resulted in high amounts of secreted enzyme. A three-step purification protocol was designed and the enzymatic properties were analyzed. The enzyme was characterized as a class-I mannosidase.
Collapse
Affiliation(s)
- M Maras
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kruszewska JS, Butterweck AH, Kurzatkowski W, Migdalski A, Kubicek CP, Palamarczyk G. Overexpression of the Saccharomyces cerevisiae mannosylphosphodolichol synthase-encoding gene in Trichoderma reesei results in an increased level of protein secretion and abnormal cell ultrastructure. Appl Environ Microbiol 1999; 65:2382-7. [PMID: 10347017 PMCID: PMC91352 DOI: 10.1128/aem.65.6.2382-2387.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of extracellular proteins plays an important role in the physiology of Trichoderma reesei and has potential industrial application. To improve the efficiency of protein secretion, we overexpressed in T. reesei the DPM1 gene of Saccharomyces cerevisiae, encoding mannosylphosphodolichol (MPD) synthase, under homologous, constitutively acting expression signals. Four stable transformants, each with different copy numbers of tandemly integrated DPM1, exhibited roughly double the activity of MPD synthase in the respective endoplasmic reticulum membrane fraction. On a dry-weight basis, they secreted up to sevenfold-higher concentrations of extracellular proteins during growth on lactose, a carbon source promoting formation of cellulases. Northern blot analysis showed that the relative level of the transcript of cbh1, which encodes the major cellulase (cellobiohydrolase I [CBH I]), did not increase in the transformants. On the other hand, the amount of secreted CBH I and, in all but one of the transformants, intracellular CBH I was elevated. Our results suggest that posttranscriptional processes are responsible for the increase in CBH I production. The carbohydrate contents of the extracellular proteins were comparable in the wild type and in the transformants, and no hyperglycosylation was detected. Electron microscopy of the DPM1-amplified strains revealed amorphous structure of the cell wall and over three times as many mitochondria as in the control. Our data indicate that molecular manipulation of glycan biosynthesis in Trichoderma can result in improved protein secretion.
Collapse
Affiliation(s)
- J S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|