1
|
Thi Ngoc Nguyen D, Lee OK, Na JG, Lee EY. Biosynthesis of biodegradable plastic, poly(3HB-co-3HP), using methane as sole carbon source in metabolically engineered type II methanotroph, Methylosinus trichosporium OB3b. N Biotechnol 2025; 87:12-19. [PMID: 39983898 DOI: 10.1016/j.nbt.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
We report a biosynthetic method for producing poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] copolymer from methane alone; we developed a 3-hydroxypropionate (3HP) biosynthetic pathway starting from methane in Methylosinus trichosporium OB3b and overexpressed 3HP-CoA transferase to optimize 3HP incorporation into P(3HB-co-3HP) copolymers. Upon comparing the β-alanine and malonyl-CoA pathways, we discovered that the latter showed greater potential for the formation of 3HP monomers. In addition, we examined the activities of 3HP-CoA synthetases from three distinct sources and found that the enzyme from Metallosphaera sedula was the most effective for 3HP incorporation. Using methane as the sole carbon source in a shake-flask culture, we developed recombinant strains and found that the best strain was OB3b-MCRM-3S, which formed a P(3HB-co-3HP) copolymer, up to 25.62 % of the biomass, with a maximum 3HP level of 9.02 mol%. Our research demonstrates the successful production of a biopolymer, the P(3HB-co-3HP) copolymer, via methane bioconversion using methanotrophs.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
2
|
Li M, Li W, Zhang T, Guo K, Feng D, Liang F, Xu C, Xian M, Zou H. De Novo Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxypropionate) from Oil by Engineered Cupriavidus necator. Bioengineering (Basel) 2023; 10:bioengineering10040446. [PMID: 37106633 PMCID: PMC10135886 DOI: 10.3390/bioengineering10040446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] is a biodegradable and biocompatible polyester with improved and expanded material properties compared with poly(3-hydroxybutyrate) (PHB). This study engineered a robust malonyl-CoA pathway in Cupriavidus necator for the efficient supply of a 3HP monomer, and could achieve the production of [P(3HB-co-3HP)] from variable oil substrates. Flask level experiments followed by product purification and characterization found the optimal fermentation condition (soybean oil as carbon source, 0.5 g/L arabinose as induction level) in general consideration of the PHA content, PHA titer and 3HP molar fraction. A 5 L fed-batch fermentation (72 h) further increased the dry cell weight (DCW) to 6.08 g/L, the titer of [P(3HB-co-3HP)] to 3.11 g/L and the 3HP molar fraction to 32.25%. Further improving the 3HP molar fraction by increasing arabinose induction failed as the engineered malonyl-CoA pathway was not properly expressed under the high-level induction condition. With several promising advantages (broader range of economic oil substrates, no need for expensive supplementations such as alanine and VB12), this study indicated a candidate route for the industrial level production of [P(3HB-co-3HP)]. For future prospects, further studies are needed to further improve the strain and the fermentation process and expand the range of relative products.
Collapse
Affiliation(s)
- Mengdi Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tongtong Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Keyi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chao Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
3
|
McGregor C, Minton NP, Kovács K. Biosynthesis of Poly(3HB- co-3HP) with Variable Monomer Composition in Recombinant Cupriavidus necator H16. ACS Synth Biol 2021; 10:3343-3352. [PMID: 34762808 DOI: 10.1021/acssynbio.1c00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates are attractive alternatives to traditional plastics. However, although polyhydroxybutyrate (PHB) is produced in large quantities by Cupriavidus necator H16, its properties are far from ideal for the manufacture of plastic products. These properties may be improved through its coproduction with 3-hydroxypropionate (3HP), which leads to the formation of the copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (poly(3HB-co-3HP). To achieve this, a pathway was designed to enable C. necator H16 to convert β-alanine to 3HP. The initial low levels of incorporation of 3HP into the copolymer were overcome by the overproduction of the native propionyl-CoA transferase together with PHA synthase from Chromobacterium sp. USM2. Following optimization of 3HP incorporation into the copolymer, the molar fraction of 3HP could be controlled by cultivation in medium containing different concentrations of β-alanine. Between 0 and 80 mol % 3HP could be achieved. Further supplementation with 2 mM cysteine increased the maximum 3HP molar fraction to 89%. Additionally, the effect of deletions of the phaA and phaB1 genes of the phaCAB operon on 3HP molar fraction were investigated. A phaAB1 double knockout resulted in a copolymer containing 91 mol % 3HP without the need for cysteine supplementation.
Collapse
Affiliation(s)
- Callum McGregor
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Nigel P. Minton
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Katalin Kovács
- BBSRC/EPSRC Synthetic Biology Research Centre, The University of Nottingham, Nottingham NG7 2RD, U.K
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
4
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
5
|
Li D, Lv L, Chen JC, Chen GQ. Controlling microbial PHB synthesis via CRISPRi. Appl Microbiol Biotechnol 2017; 101:5861-5867. [PMID: 28620688 DOI: 10.1007/s00253-017-8374-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.
Collapse
Affiliation(s)
- Dan Li
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Nano and Micro-Mechanics, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab for Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Tajima K, Iwamoto K, Satoh Y, Sakai R, Satoh T, Dairi T. Advanced functionalization of polyhydroxyalkanoate via the UV-initiated thiol-ene click reaction. Appl Microbiol Biotechnol 2016; 100:4375-83. [PMID: 26743654 DOI: 10.1007/s00253-015-7252-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Polyhydroxyalkanoates (PHAs) incorporating vinyl-bearing 3-hydroxyalkanoates were prepared in 8.5-12.9 g L(-1) yield. The molar ratios (0-16 mol%) of the vinyl-bearing 3-hydroxyalkanoate derivatives were controlled by the continuous feeding of undecylenate at various concentrations. Subsequently, the PHAs were functionalized by UV-initiated thiol-ene click reaction and chemical modification. (1)H NMR spectra suggested that 3-mercaptopropionic acid and 2-aminoethanethiol were successfully introduced into the vinyl-bearing PHA. Subsequently, chemical modification using fluorescein or a fibronectin active fragment (GRGDS) was attempted. The former yielded a PHA derivative capable of emitting fluorescence under UV irradiation, which was useful for determining the miscibility of PHA in a composite film comprising poly-ʟ-lactic acid (PLLA) and PHA. In the latter case, PHA bearing GRGDS peptides exhibited cell adhesiveness, suggesting that its biocompatibility was improved upon peptide introduction. Taken together, the UV-initiated thiol-ene click reaction was demonstrated to be useful in PHA modification.
Collapse
Affiliation(s)
- Kenji Tajima
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kosuke Iwamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Yasuharu Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Ryosuke Sakai
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan.,Department of Materials Chemistry, Asahikawa National College of Technology, Asahikawa, 071-8142, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Tohru Dairi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan.
| |
Collapse
|
7
|
Andreessen B, Taylor N, Steinbüchel A. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 2014; 80:6574-82. [PMID: 25149521 PMCID: PMC4249027 DOI: 10.1128/aem.02361-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.
Collapse
Affiliation(s)
- Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nicolas Taylor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Pramanik N, Mukherjee K, Nandy A, Mukherjee S, Kundu PP. Comparative analysis of different properties of polyhydroxyalkanoates isolated from two different bacterial strains:Alkaliphilus oremlandiiOhILAs and recombinantEscherichia coliXL1B. J Appl Polym Sci 2014. [DOI: 10.1002/app.41080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nilkamal Pramanik
- Advanced Polymer Laboratory, Department of Polymer Science and Technology; University of Calcutta; Calcutta 700009 India
| | - Khushi Mukherjee
- Advanced Polymer Laboratory, Department of Polymer Science and Technology; University of Calcutta; Calcutta 700009 India
| | - Arpita Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology; University of Calcutta; Calcutta 700009 India
| | - Shritama Mukherjee
- Advanced Polymer Laboratory, Department of Polymer Science and Technology; University of Calcutta; Calcutta 700009 India
| | - Patit Paban Kundu
- Advanced Polymer Laboratory, Department of Polymer Science and Technology; University of Calcutta; Calcutta 700009 India
| |
Collapse
|
9
|
Andreeßen B, Johanningmeier B, Burbank J, Steinbüchel A. Influence of the operon structure on poly(3-hydroxypropionate) synthesis in Shimwellia blattae. Appl Microbiol Biotechnol 2014; 98:7409-22. [PMID: 24859521 DOI: 10.1007/s00253-014-5804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/17/2023]
Abstract
Glycerol has become a cheap and abundant carbon source due to biodiesel production at a large scale, and it is available for several biotechnological applications. We recently established poly(3-hydroxypropionate) [poly(3HP)] synthesis in a recombinant Shimwellia blattae strain (Heinrich et al. Appl Environ Microbiol 79:3582-3589, 2013). The major drawbacks of the current strains are (i) low poly(3HP) yields, (ii) low plasmid stability and (iii) insufficient conversion rates. In this study, we demonstrated the influence of alterations of the operon structure, consisting of 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate:coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2 and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16. It was shown that S. blattae ATCC33430/pBBR1MCS-2::dhaT::pct::aldD::phaC1 synthesized up to 14.5 % (wtPHA/wtCDW) in a 2-L fed-batch fermentation process. Furthermore, we overcame the problem of plasmid losses during the fermentation period by engineering a carbon source-dependent plasmid addiction system in a triose phosphate isomerase knockout mutant. An assumed poly(3-hydroxyalkanoic acid) degrading activity of the lipase/esterase YbfF could not be confirmed.
Collapse
Affiliation(s)
- Björn Andreeßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, 48149, Münster, Germany
| | | | | | | |
Collapse
|
10
|
Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 2013; 98:95-104. [PMID: 24113828 DOI: 10.1007/s00253-013-5285-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
The Escherichia coli XL1-blue strain was metabolically engineered to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] through 2-ketobutyrate, which is generated via citramalate pathway, as a precursor for propionyl-CoA. Two different metabolic pathways were examined for the synthesis of propionyl-CoA from 2-ketobutyrate. The first pathway is composed of the Dickeya dadantii 3937 2-ketobutyrate oxidase or the E. coli pyruvate oxidase mutant (PoxB L253F V380A) for the conversion of 2-ketobutyrate into propionate and the Ralstonia eutropha propionyl-CoA synthetase (PrpE) or the E. coli acetyl-CoA:acetoacetyl-CoA transferase for further conversion of propionate into propionyl-CoA. The second pathway employs pyruvate formate lyase encoded by the E. coli tdcE gene or the Clostridium difficile pflB gene for the direct conversion of 2-ketobutyrate into propionyl-CoA. As the direct conversion of 2-ketobutyrate into propionyl-CoA could not support the efficient production of P(3HB-co-3HV) from glucose, the first metabolic pathway was further examined. When the recombinant E. coli XL1-blue strain equipped with citramalate pathway expressing the E. coli poxB L253F V380A gene and R. eutropha prpE gene together with the R. eutropha PHA biosynthesis genes was cultured in a chemically defined medium containing 20 g/L of glucose as a sole carbon source, P(3HB-co-2.3 mol% 3HV) was produced up to the polymer content of 61.7 wt.%. Moreover, the 3HV monomer fraction in P(3HB-co-3HV) could be increased up to 5.5 mol% by additional deletion of the prpC and scpC genes, which are responsible for the metabolism of propionyl-CoA in host strains.
Collapse
|
11
|
Wang Q, Yang P, Xian M, Yang Y, Liu C, Xue Y, Zhao G. Biosynthesis of poly(3-hydroxypropionate-co-3-hydroxybutyrate) with fully controllable structures from glycerol. BIORESOURCE TECHNOLOGY 2013; 142:741-744. [PMID: 23773835 DOI: 10.1016/j.biortech.2013.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
As the most representative biodegradable thermoplastic, poly(3-hydroxybutyrate) (P3HB) has a limited range of applications because of its poor thermal and physical properties. To improve its properties, a novel biosynthetic system was designed to produce poly(3-hydroxypropionate-co-3-hydroxybutyrate) (P(3HP-co-3HB)) with fully controllable structures from inexpensive carbon source. In this system, two parallel synthetic pathways controlled by independent regulatory systems were used to produce the 3HP and 3HB monomers, respectively. Through tuning the expression level of appropriate genes, P(3HP-co-3HB) copolyesters were synthesized with a wide range of 3HP fraction from 11.5 mol% to 94.6 mol%. Differential scanning calorimetry analysis demonstrated that the thermal properties of P(3HP-co-3HB) copolymer were totally dependent on its composition. The bioreactor cultivation was also performed and accumulated 9.8 g/L P(48.2 mol% 3HP-co-3HB) using glycerol as sole carbon source, which represented the highest production so far.
Collapse
Affiliation(s)
- Qi Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Heinrich D, Andreessen B, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A. From waste to plastic: synthesis of poly(3-hydroxypropionate) in Shimwellia blattae. Appl Environ Microbiol 2013; 79:3582-9. [PMID: 23542629 PMCID: PMC3675910 DOI: 10.1128/aem.00161-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/27/2013] [Indexed: 11/20/2022] Open
Abstract
In recent years, glycerol has become an attractive carbon source for microbial processes, as it accumulates massively as a by-product of biodiesel production, also resulting in a decline of its price. A potential use of glycerol in biotechnology is the synthesis of poly(3-hydroxypropionate) [poly(3HP)], a biopolymer with promising properties which is not synthesized by any known wild-type organism. In this study, the genes for 1,3-propanediol dehydrogenase (dhaT) and aldehyde dehydrogenase (aldD) of Pseudomonas putida KT2442, propionate-coenzyme A (propionate-CoA) transferase (pct) of Clostridium propionicum X2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha H16 were cloned and expressed in the 1,3-propanediol producer Shimwellia blattae. In a two-step cultivation process, recombinant S. blattae cells accumulated up to 9.8% ± 0.4% (wt/wt [cell dry weight]) poly(3HP) with glycerol as the sole carbon source. Furthermore, the engineered strain tolerated the application of crude glycerol derived from biodiesel production, yielding a cell density of 4.05 g cell dry weight/liter in a 2-liter fed-batch fermentation process.
Collapse
Affiliation(s)
- Daniel Heinrich
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Björn Andreessen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Mohamed H. Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Al-Ghamdi
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim I. Shabbaj
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Zhu C, Chiu S, Nakas JP, Nomura CT. Bioplastics from waste glycerol derived from biodiesel industry. J Appl Polym Sci 2013. [DOI: 10.1002/app.39157] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Wang Q, Zhuang Q, Liang Q, Qi Q. Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:3301-7. [DOI: 10.1007/s00253-013-4809-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
15
|
Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 2012; 30:1196-206. [DOI: 10.1016/j.biotechadv.2011.11.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/01/2011] [Accepted: 11/15/2011] [Indexed: 11/22/2022]
|
16
|
Wang Q, Liu C, Xian M, Zhang Y, Zhao G. Biosynthetic pathway for poly(3-Hydroxypropionate) in recombinant Escherichia coli. J Microbiol 2012; 50:693-7. [DOI: 10.1007/s12275-012-2234-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
|
17
|
Armando JW, Boghigian BA, Pfeifer BA. LC-MS/MS quantification of short-chain acyl-CoA's in Escherichia coli demonstrates versatile propionyl-CoA synthetase substrate specificity. Lett Appl Microbiol 2011; 54:140-8. [PMID: 22118660 DOI: 10.1111/j.1472-765x.2011.03184.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AIMS This paper utilized quantitative LC-MS/MS to profile the short-chain acyl-CoA levels of several strains of Escherichia coli engineered for heterologous polyketide production. To further compare and potentially expand the levels of available acyl-CoA molecules, a propionyl-CoA synthetase gene from Ralstonia solanacearum (prpE-RS) was synthesized and expressed in the engineered strain BAP1. METHODS AND RESULTS Upon feeding propionate, the engineered E. coli strains had increased the levels of both propionyl- and methylmalonyl-CoA of 6- to 30-fold and 3·7- to 6·8-fold, respectively. Expression of prpE-RS resulted in no significant increases in acetyl-, butyryl- and propionyl-CoA when fed the corresponding substrates (sodium acetate, butyrate or propionate). More interesting, however, were the results from strain BAP1 engineered for native prpE overexpression, which indicated increases in the same range of acyl-CoA formation. CONCLUSIONS The increased acyl-CoA levels across the strains profiled in this study reflect the genetic modifications implemented for improved polyketide production and also indicate flexibility of the native PrpE. SIGNIFICANCE AND IMPACT OF THE STUDY The results provide direct evidence of enhanced acyl-CoA levels correlating to those strains engineered for polyketide biosynthesis. This information and the inherent flexibility of the native PrpE enzyme support future efforts to characterize, engineer and extend acyl-CoA precursor supply for additional heterologous biosynthetic attempts.
Collapse
Affiliation(s)
- J W Armando
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | | |
Collapse
|
18
|
Park SJ, Lee SY, Kim TW, Jung YK, Yang TH. Biosynthesis of lactate-containing polyesters by metabolically engineered bacteria. Biotechnol J 2011; 7:199-212. [PMID: 22057878 DOI: 10.1002/biot.201100070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Due to increasing concerns about environmental problems, climate change and limited fossil resources, bio-based production of chemicals and polymers is gaining attention as one of the solutions to these problems. Polyhydroxyalkanoates (PHAs) are polyesters that can be produced by microbial fermentation. PHAs are synthesized using monomer precursors provided from diverse metabolic pathways and are accumulated as distinct granules inside the cells. On the other hand, most so-called bio-based polymers including polybutylene succinate, polytrimethylene terephthalate, and polylactic acid (PLA) are synthesized by a chemical process using monomers produced by fermentation. PLA, an attractive biomass-derived plastic, is currently synthesized by heavy metal-catalyzed ring opening polymerization of L-lactide that is made from fermentation-derived L-lactic acid. Recently, a complete biological process for the production of PLA and PLA copolymers from renewable resources has been developed by direct fermentation of recombinant bacteria employing PHA biosynthetic pathways coupled with a novel metabolic pathway. This could be accomplished by establishing a pathway for generating lactyl-CoA and engineering PHA synthase to accept lactyl-CoA as a substrate combined with systems metabolic engineering. In this article, we review recent advances in the production of lactate-containing homo- and co-polyesters. Challenges remaining to efficiently produce PLA and its copolymers and strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are discussed.
Collapse
Affiliation(s)
- Si Jae Park
- Chemical Biotechnology Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | | | | | | | | |
Collapse
|
19
|
Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli. Metab Eng 2011; 13:777-85. [DOI: 10.1016/j.ymben.2011.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/09/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022]
|
20
|
Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 2011; 93:273-83. [DOI: 10.1007/s00253-011-3530-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/24/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022]
|
21
|
Chemo-enzymatic synthesis of polyhydroxyalkanoate (PHA) incorporating 2-hydroxybutyrate by wild-type class I PHA synthase from Ralstonia eutropha. Appl Microbiol Biotechnol 2011; 92:509-17. [PMID: 21667085 DOI: 10.1007/s00253-011-3362-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
A previously established improved two-phase reaction system has been applied to analyze the substrate specificities and polymerization activities of polyhydroxyalkanoate (PHA) synthases. We first analyzed the substrate specificity of propionate coenzyme A (CoA) transferase and found that 2-hydroxybutyrate (2HB) was converted into its CoA derivative. Then, the synthesis of PHA incorporating 2HB was achieved by a wild-type class I PHA synthase from Ralstonia eutropha. The PHA synthase stereoselectively polymerized (R)-2HB, and the maximal molar ratio of 2HB in the polymer was 9 mol%. The yields and the molecular weights of the products were decreased with the increase of the (R)-2HB concentration in the reaction mixture. The weight-average molecular weight of the polymer incorporating 9 mol% 2HB was 1.00 × 10(5), and a unimodal peak with polydispersity of 3.1 was observed in the GPC chart. Thermal properties of the polymer incorporating 9 mol% 2HB were analyzed by DSC and TG-DTA. T (g), T (m), and T (d) (10%) were observed at -1.1°C, 158.8°C, and 252.7°C, respectively. In general, major components of PHAs are 3-hydroxyalkanoates, and only engineered class II PHA synthases have been reported as enzymes having the ability to polymerize HA with the hydroxyl group at C2 position. Thus, this is the first report to demonstrate that wild-type class I PHA synthase was able to polymerize 2HB.
Collapse
|
22
|
Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl Environ Microbiol 2010; 76:4919-25. [PMID: 20543057 DOI: 10.1128/aem.01015-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Hydroxypropionate (3HP) is an important compound in the chemical industry, and the polymerized 3HP can be used as a bioplastic. In this review, we focus on polyesters consisting of 3HP monomers, including the homopolyester poly(3-hydroxypropionate) and copolyesters poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxypropionate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate), poly(4-hydroxybutyrate-co-3-hydroxypropionate-co-lactate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate-co-4-hydroxybutyrate-co-lactate). Homopolyesters like poly(3-hydroxybutyrate) are often highly crystalline and brittle, which limits some of their applications. The incorporation of 3HP monomers reduces the glass transition temperature, the crystallinity, and also, at up to 60 to 70 mol% 3HP, the melting point of the copolymer. This review provides a survey of the synthesis and physical properties of different polyesters containing 3HP.
Collapse
|
23
|
Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 2009; 76:622-6. [PMID: 19933347 DOI: 10.1128/aem.02097-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed the conversion of glycerol into thermoplastic poly(3-hydroxypropionate) [poly(3HP)]. For this, the genes for glycerol dehydratase (dhaB1) of Clostridium butyricum, propionaldehyde dehydrogenase (pduP) of Salmonella enterica serovar Typhimurium LT2, and polyhydroxyalkanoate (PHA) synthase (phaC1) of Ralstonia eutropha were expressed in recombinant Escherichia coli. Poly(3HP) was accumulated up to 11.98% (wt/wt [cell dry weight]) in a two-step, fed-batch fermentation. The present study shows an interesting application to engineer a poly(3HP) synthesis pathway in bacteria.
Collapse
|
24
|
Fukui T, Suzuki M, Tsuge T, Nakamura S. Microbial Synthesis of Poly((R)-3-hydroxybutyrate-co- 3-hydroxypropionate) from Unrelated Carbon Sources by Engineered Cupriavidus necator. Biomacromolecules 2009; 10:700-6. [DOI: 10.1021/bm801391j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshiaki Fukui
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Mamie Suzuki
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takeharu Tsuge
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Nakamura
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
25
|
Li R, Zhang H, Qi Q. The production of polyhydroxyalkanoates in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2007; 98:2313-20. [PMID: 17097289 DOI: 10.1016/j.biortech.2006.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 05/06/2023]
Abstract
Polyhydroxyalkanoates, the natural polyester that many microorganisms accumulate to store carbon and reducing equivalents, have been considered as a future alternative of traditional plastic due to their special properties. In Escherichia coli, a previous non-polyhydroxyalkanoates producer, pathway engineering has been developed as a very powerful approach to set up microbial production process through the introduction of direct genetic changes by recombinant DNA technology. Various metabolic pathways leading to the polyhydroxyalkanoates accumulation with desirable properties at low-cost and high-productivity have been developed. At the same time, high density fermentation technology of E. coli provides an efficient polyhydroxyalkanoates production strategy. This review focused on metabolic engineering, fermentation and downstream process aiming to polyhydroxyalkanoates production in E. coli.
Collapse
Affiliation(s)
- Rui Li
- State Key Lab of Microbial Technology, Life Science School, Shandong University, 250100 Jinan, PR China
| | | | | |
Collapse
|
26
|
Loncaric C, Ward AF, Walker KD. Expression of an acetyl-CoA synthase and a CoA-transferase inEscherichia coli to produce modified taxanesin vivo. Biotechnol J 2007; 2:266-74. [PMID: 17183509 DOI: 10.1002/biot.200600194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous in vitro studies revealed that the 10-deacetylbaccatin III 10beta-O-acetyltransferase (DBAT) from Taxus can catalyze the transfer of acetyl, propionyl or n-butyryl from CoA to the C10-hydroxyl of 10-deacetylbaccatin III. Accordingly, Escherichia coli JM109 were transformed to recombinantly express dbat, and this enzyme function was coupled to that of acetyl-CoA synthase (acs, EC 6.2.1.1) expressed from and regulated by genes encoded on the bacterial chromosome. Incubation of the bacteria with 10-deacetylbaccatin III and increasing concentrations of acetic acid revealed an in vivo conversion ( approximately 10%) of substrate to natural product baccatin III (C10-acetylated), which was remarkably similar to the relative conversion without acid supplementation. Incubation of the modified E. coli with 5 mM propionic acid, revealed a fivefold increase in the conversion ( approximately 13%) of 10-deacetylbaccatin III to 10-deacetyl-10-propionylbaccatin III, compared to approximately 2% conversion in the absence of exogenous propionate. To produce the butyrylbaccatin III analog in vivo, bacteria were engineered to co-express the dbat and atoAD (EC 2.8.3.8) genes; the latter encodes an acetoacetate: acetyl-CoA CoA-transferase that activates butyrate to butyryl CoA. The bacteria were incubated with 10-deacetylbaccatin III and 25-100 mM butyrate, and a maximum of approximately 2.6% conversion to 10-butyrylbaccatin III was observed compared to approximately 0.6% conversion when no exogenous butyrate was supplied.
Collapse
Affiliation(s)
- Catherine Loncaric
- Departments of Chemistry, Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
27
|
Iadevaia S, Mantzaris NV. Genetic network driven control of PHBV copolymer composition. J Biotechnol 2006; 122:99-121. [PMID: 16219380 DOI: 10.1016/j.jbiotec.2005.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 08/24/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
We developed a detailed mathematical model describing the coupling between the molecular weight distribution dynamics of poly(3-hydroxybutyrate-co-3hydroxyvalerate) (PHBV) copolymer chains with those of hydroxybutyrate (HB) and hydroxyvalerate (HV) monomer formation. Sensitivity analysis of the model revealed that both the monomer composition and the molecular weight distribution of the copolymer chains are strongly affected by the ratio between the rates at which the two-monomer units are incorporated into the chains. This ratio depends on the relative HB and HV availability, which in turn is a function of the expression levels of genes encoding enzymes that catalyze monomer formation. Regulation of gene expression was accomplished through the aid of an artificial genetic network, the patterns of expression of which can be controlled by appropriately tuning the concentration of an extracellular inducer. Extensive simulations were used to study the effects of operating conditions and parameter uncertainties on the range of achievable copolymer compositions. Since the predicted conditions fell in the range of feasible bioprocessing manipulations, it is expected that such strategy could be successfully employed. Thus, the presented model constitutes a powerful tool for designing genetic networks that can drive the formation of PHBV copolymer structures with desirable characteristics.
Collapse
Affiliation(s)
- Sergio Iadevaia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
28
|
Rajashekhara E, Watanabe K. Propionyl-coenzyme A synthetases of Ralstonia solanacearum and Salmonella choleraesuis display atypical kinetics. FEBS Lett 2004; 556:143-7. [PMID: 14706841 DOI: 10.1016/s0014-5793(03)01394-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Propionyl-coenzyme A synthetases (PrpE) of Salmonella choleraesuis and Ralstonia solanacearum sharing 62% identity in amino acid sequence to each other were cloned, expressed in Escherichia coli and purified. Both enzymes catalyzed acetyl-, propionyl-, butyryl- and acrylyl-coenzyme A formation with the highest k(cat)/K(m) values for propionate. They displayed sigmoidal homotrophic autoactivation kinetics for propionate but not for the other acyl substrates tested. Besides, substrate inhibition kinetics was observed for co-substrates, i.e. ATP and CoA. Based on the kinetic data reported herein, the reaction mechanisms of the enzyme are discussed.
Collapse
Affiliation(s)
- Eranna Rajashekhara
- Laboratory of Applied Microbiology, Marine Biotechnology Institute, 3-75-1 Heita, 026-0001, Iwate-ken, Kamaishi-shi, Japan.
| | | |
Collapse
|
29
|
Steinbüchel A, Lütke-Eversloh T. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 2003. [DOI: 10.1016/s1369-703x(03)00036-6] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Abstract
It is well established that the response regulator of the chemotaxis system of Escherichia coli, CheY, can undergo acetylation at lysine residues 92 and 109 via a reaction mediated by acetyl-CoA synthetase (Acs). The outcome is activation of CheY, which results in increased clockwise rotation. Nevertheless, it has not been known whether CheY acetylation is involved in chemotaxis. To address this question, we examined the chemotactic behaviour of two mutants, one lacking the acetylating enzyme Acs, and the other having an arginine-for-lysine substitution at residue 92 of CheY - one of the acetylation sites. The Deltaacs mutant exhibited much reduced sensitivity to chemotactic stimuli (both attractants and repellents) in tethering assays and greatly reduced responses in ring-forming, plug and capillary assays. Likewise, the cheY(92KR) mutant had reduced sensitivity to repellents in tethering assays and a reduced response in capillary assays. However, its response to the addition or removal of attractants was normal. These observations suggest that Acs-mediated acetylation of CheY is involved in chemotaxis and that the acetylation site Lys-92 is only involved in the response to repellents. The observation that, in the cheY(92KR) mutant, the addition of a repellent was not chemotactically equivalent to the removal of an attractant also suggests that there are different signalling pathways for attractants and repellents in E. coli.
Collapse
Affiliation(s)
- R Barak
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
31
|
Aldor I, Keasling JD. Metabolic engineering of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composition in recombinant Salmonella enterica serovar typhimurium. Biotechnol Bioeng 2001; 76:108-14. [PMID: 11505380 DOI: 10.1002/bit.1150] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A recombinant strain of Salmonella enterica serovar Typhimurium (mutant in propionate-activation activity) was metabolically engineered to control the composition of poly(3-hydroxybutyrate-co-3-hydroxy- valerate) (PHBV), a polyhydroxyalkanoate copolymer with commercially desirable properties. A gene (prpE) encoding propionyl-CoA synthetase was placed under the control of the IPTG-inducible taclacUV5 promoter (P(taclacUV5)) while the polyhydroxyalkanoate synthesis operon (phaBCA) from Acinetobacter sp. RA3849 was coexpressed under the control of the arabinose-inducible araBAD promoter (P(BAD)). S. enterica, harboring both constructs, was grown in medium containing a fixed substrate concentration and the composition of the copolymer was varied between 2 mol% and 25 mol% 3-hydroxyvalerate by controlling the IPTG level in the medium. This "dial-a-composition" system should find application in cases where the substrate concentration of a feedstream for PHBV bioplastic production is not adjustable.
Collapse
Affiliation(s)
- I Aldor
- Department of Chemical Engineering, University of California, Berkeley, 94720-1462, USA
| | | |
Collapse
|