1
|
Adu Oparah I, Deaker R, Hartley JC, Gemell G, Hartley E, Sohail MN, Kaiser BN. Symbiotic Effectiveness, Rhizosphere Competence and Nodule Occupancy of Chickpea Root Nodule Bacteria from Soils in Kununurra Western Australia and Narrabri New South Wales Australia. PLANTS (BASEL, SWITZERLAND) 2025; 14:809. [PMID: 40094814 PMCID: PMC11902108 DOI: 10.3390/plants14050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Root nodule bacterial isolates from field-grown chickpea were evaluated in glasshouse and field experiments based on infectivity, relative symbiotic effectiveness, nodule occupancy, plant yield and survivability in the soil rhizosphere for their use as inoculants to enhance chickpea production in Western Australia. Compared to the Australian commercial chickpea inoculant strain Mesorhizobium ciceri sv. ciceri CC1192, 10 new strains were 'fast' growers, averaging 72 h to grow in culture at 28 °C. The relative symbiotic effectiveness (RSE%) of the new strains in field experiments determined by shoot weight ranged from 77 to 111% in the Desi genotype (var. Kyabra) and 83 to 102% in Kabuli (var. Kimberley Large). Kyabra yielded greater output (2.4-3 t/ha) than Kimberley Large (1.2-1.8 t/ha), with mean 100 seed weights of 23 and 59 g, respectively. The rhizobial strains living in the rhizosphere presented a higher competitive ability for nodule occupancy than those in the bulk soil. Tukey's multiple comparisons test showed no significant differences between the nodule occupancy ability of the introduced strains (i.e., 3/4, 6/7, N5, N300, K66, K188 and CC1192) in either Kyabra or Kimberley Large (p = 0.7321), but the strain competitiveness with each cultivar differed (p < 0.0001) for some of the test strains. Strains N5, N300, K72 and 6/7 were the top contenders that matched or beat CC1192 in nitrogen fixation traits. These findings show that new rhizobial strains derived from naturalized soil populations exhibited better adaptability to local soil conditions than CC1192.
Collapse
Affiliation(s)
- Irene Adu Oparah
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia;
| | - Rosalind Deaker
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
| | - Jade Christopher Hartley
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
| | - Greg Gemell
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
| | - Elizabeth Hartley
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
| | - Muhammad Nouman Sohail
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia;
- Elizabeth Macarthur Agricultural Institute New South Wales, Department of Primary Industries and Regional Development, Menangle, Sydney, NSW 2568, Australia
| | - Brent Norman Kaiser
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (R.D.); (J.C.H.); (G.G.); (E.H.); (B.N.K.)
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia;
| |
Collapse
|
2
|
Castellano-Hinojosa A, Mora C, Strauss SL. Native Rhizobia Improve Plant Growth, Fix N 2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. PLANTS (BASEL, SWITZERLAND) 2022; 11:3011. [PMID: 36432740 PMCID: PMC9695096 DOI: 10.3390/plants11223011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Sunnhemp (Crotalaria juncea L.) is an important legume cover crop used in tree cropping systems, where there is increased interest by growers to identify rhizobia to maximize soil nitrogen (N) inputs. We aimed to isolate and identify native rhizobia and compare their capabilities with non-native rhizobia from commercial inoculants to fix atmospheric dinitrogen (N2), produce and reduce nitrous oxide (N2O), and improve plant growth. Phylogenetic analyses of sequences of the 16S rRNA and recA, atpD, and glnII genes showed native rhizobial strains belonged to Rhizobium tropici and the non-native strain to Bradyrhizobium japonicum. Plant nodulation tests, sequencing of nodC and nifH genes, and the acetylene-dependent ethylene production assay confirmed the capacity of all strains to nodulate sunnhemp and fix N2. Inoculation with native rhizobial strains resulted in significant increases in root and shoot weight and total C and N contents in the shoots, and showed greater N2-fixation rates and lower emissions of N2O compared to the non-native rhizobium. Our results suggest that native rhizobia improve plant growth, fix N2, and reduce greenhouse emissions of sunnhemp more than commercial rhizobia inoculants in Florida citrus orchards.
Collapse
|
3
|
Kozieł M, Kalita M, Janczarek M. Genetic diversity of microsymbionts nodulating Trifolium pratense in subpolar and temperate climate regions. Sci Rep 2022; 12:12144. [PMID: 35840628 PMCID: PMC9287440 DOI: 10.1038/s41598-022-16410-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Rhizobia are soil-borne bacteria forming symbiotic associations with legumes and fixing atmospheric dinitrogen. The nitrogen-fixation potential depends on the type of host plants and microsymbionts as well as environmental factors that affect the distribution of rhizobia. In this study, we compared genetic diversity of bacteria isolated from root nodules of Trifolium pratense grown in two geographical regions (Tromsø, Norway and Lublin, Poland) located in distinct climatic (subpolar and temperate) zones. To characterize these isolates genetically, three PCR-based techniques (ERIC, BOX, and RFLP of the 16S-23S rRNA intergenic spacer), 16S rRNA sequencing, and multi-locus sequence analysis of chromosomal house-keeping genes (atpD, recA, rpoB, gyrB, and glnII) were done. Our results indicate that a great majority of the isolates are T. pratense microsymbionts belonging to Rhizobium leguminosarum sv. trifolii. A high diversity among these strains was detected. However, a lower diversity within the population derived from the subpolar region in comparison to that of the temperate region was found. Multi-locus sequence analysis showed that a majority of the strains formed distinct clusters characteristic for the individual climatic regions. The subpolar strains belonged to two (A and B) and the temperate strains to three R. leguminosarum genospecies (B, E, and K), respectively.
Collapse
Affiliation(s)
- Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| |
Collapse
|
4
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
5
|
Ndungu SM, Messmer MM, Ziegler D, Gamper HA, Mészáros É, Thuita M, Vanlauwe B, Frossard E, Thonar C. Cowpea ( Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. AGRICULTURE, ECOSYSTEMS & ENVIRONMENT 2018; 261:161-171. [PMID: 29970945 PMCID: PMC5946706 DOI: 10.1016/j.agee.2017.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 09/18/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
Cowpea (Vigna unguiculata L. Walp.) is an important African food legume suitable for dry regions. It is the main legume in two contrasting agro-ecological regions of Kenya as an important component of crop rotations because of its relative tolerance to unpredictable drought events. This study was carried out in an effort to establish a collection of bacterial root nodule symbionts and determine their relationship to physicochemical soil parameters as well as any geographical distributional patterns. Bradyrhizobium spp. were found to be widespread in this study and several different types could be identified at each site. Unique but rare symbionts were recovered from the nodules of plants sampled in a drier in-land region, where there were also overall more different bradyrhizobia found. Plants raised in soil from uncultivated sites with a natural vegetation cover tended to also associate with more different bradyrizobia. The occurrence and abundance of different bradyrhizobia correlated with differences in soil texture and pH, but did neither with the agro-ecological origin, nor the origin from cultivated (n = 15) or uncultivated (n = 5) sites. The analytical method, protein profiling of isolated strains by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), provided higher resolution than 16S rRNA gene sequencing and was applied in this study for the first time to isolates recovered directly from field-collected cowpea root nodules. The method thus seems suitable for screening isolate collections on the presence of different groups, which, provided an appropriate reference database, can also be assigned to known species.
Collapse
Affiliation(s)
- Samuel Mathu Ndungu
- Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
- International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
| | - Monika M. Messmer
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
| | - Dominik Ziegler
- Mabritec AG, Lörracherstrasse 50, CH-4125 Riehen, Switzerland
| | - Hannes A. Gamper
- Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
| | - Éva Mészáros
- Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
| | - Moses Thuita
- International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya
| | - Emmanuel Frossard
- Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
| | - Cécile Thonar
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
- Current address: AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| |
Collapse
|
6
|
Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae , Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol 2018; 41:122-130. [DOI: 10.1016/j.syapm.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/17/2017] [Indexed: 11/21/2022]
|
7
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Reprint of "Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants". J Biotechnol 2017; 257:22-34. [PMID: 28755910 DOI: 10.1016/j.jbiotec.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/19/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
8
|
Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, De Deyn GB. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol Ecol 2017; 26:4085-4098. [DOI: 10.1111/mec.14175] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Sigrid Dassen
- Department of Terrestrial Ecology; Netherlands Institute of Ecology, NIOO KNAW; Wageningen The Netherlands
| | - Roeland Cortois
- Department of Terrestrial Ecology; Netherlands Institute of Ecology, NIOO KNAW; Wageningen The Netherlands
| | - Henk Martens
- Department of Terrestrial Ecology; Netherlands Institute of Ecology, NIOO KNAW; Wageningen The Netherlands
- Department of Soil Quality; Wageningen University; Wageningen The Netherlands
| | - Mattias de Hollander
- Department of Microbial Ecology; Netherlands Institute of Ecology, NIOO KNAW; Wageningen The Netherlands
| | | | - Wim H. van der Putten
- Department of Terrestrial Ecology; Netherlands Institute of Ecology, NIOO KNAW; Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Wageningen The Netherlands
| | - Gerlinde B. De Deyn
- Department of Soil Quality; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
9
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants. J Biotechnol 2017; 243:48-60. [PMID: 28011129 DOI: 10.1016/j.jbiotec.2016.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
10
|
Yan J, Chen W, Han X, Wang E, Zou W, Zhang Z. Genetic diversity of indigenous soybean-nodulating rhizobia in response to locally-based long term fertilization in a Mollisol of Northeast China. World J Microbiol Biotechnol 2017; 33:6. [PMID: 27848139 DOI: 10.1007/s11274-016-2170-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/03/2016] [Indexed: 01/03/2023]
Abstract
The influences of five different fertilizer treatments on diversity of rhizobia in soybean nodule were investigated in a long-term experiment with with four replicates: (1) control (without fertilization), (2) balanced NPK fertilizer (NPK), and (3-5) unbalanced chemical fertilizers without one of the major elements (NP, PK, and NK) in Mollisol in Northeast China. The highest soybean yield was observed in the NPK treatment. Total of 200 isolates were isolated and grouped into four Bradyrhizobium genospecies corresponding to B. japonicum, B. diazoefficiens, B. ottawaense and Bradyrhizobium sp. I, based upon the multilocus sequence analysis of 6 housekeeping genes. The Bradyrhizobium sp. I was extensively distributed throughout the study site and was recorded as the dominant soybean rhizobia (82.5-87.5%). Except the NK treatment, the other fertilizer treatments had no effect on rhizobial species composition. Compared with the CK treatment, all the fertilizer treatments decreased species richness, diversity and evenness. The soil organic carbon contents, available N content and pH were the key soil factors to rhizobial community structure. Results suggest that long-term fertilization can decrease rhizobial species diversity, while balanced fertilization with NPK is the most suitable fertilization regime if taking both soybean yields and rhizobial diversity into account.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - WenFeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - XiaoZeng Han
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - EnTao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México D.F., Mexico
| | - WenXiu Zou
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - ZhiMing Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| |
Collapse
|
11
|
Moreira FDS, Costa PBD, Souza RD, Beneduzi A, Lisboa BB, Vargas LK, Passaglia LMP. Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum aestivum L.) crops. Genet Mol Biol 2016; 39:111-21. [PMID: 27007904 PMCID: PMC4807380 DOI: 10.1590/1678-4685-gmb-2015-0140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/24/2015] [Indexed: 12/15/2022] Open
Abstract
In the pursuit of sustainable agriculture, bioinoculants usage as providers of a
crop's needs is a method to limit environmental damage. In this study, a
collection of cultivable putative plant growth promoting (PGP) bacteria
associated with wheat crops was obtained and this bacterial sample was
characterized in relation to the functional diversity of certain PGP features.
The isolates were obtained through classical cultivation methods, identified by
partial 16S rRNA gene sequencing and characterized for PGP traits of interest.
Functional diversity characterization was performed using Categorical Principal
Component Analysis (CatPCA) and Multiple Correspondence Analysis (MCA). The most
abundant genera found among the 346 isolates were Pseudomonas,
Burkholderia, and Enterobacter. Occurrence of PGP
traits was affected by genus, niche, and sampling site. A large number of genera
grouped together with the ability to produce indolic compounds; phosphate
solubilization and siderophores production formed a second group related to
fewer genera, in which the genus Burkholderia has a great
importance. The results obtained may help future studies aiming prospection of
putative plant growth promoting bacteria regarding the desired organism and PGP
trait.
Collapse
Affiliation(s)
- Fernanda da S Moreira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro B da Costa
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anelise Beneduzi
- Fundação Estadual de Pesquisa Agropecuária, Porto Alegre, RS, Brazil
| | - Bruno B Lisboa
- Fundação Estadual de Pesquisa Agropecuária, Porto Alegre, RS, Brazil
| | - Luciano K Vargas
- Fundação Estadual de Pesquisa Agropecuária, Porto Alegre, RS, Brazil
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Wielbo J, Podleśna A, Kidaj D, Podleśny J, Skorupska A. The Diversity of Pea Microsymbionts in Various Types of Soils and Their Effects on Plant Host Productivity. Microbes Environ 2015; 30:254-61. [PMID: 26370165 PMCID: PMC4567564 DOI: 10.1264/jsme2.me14141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/06/2015] [Indexed: 11/17/2022] Open
Abstract
The growth and yield of peas cultivated on eight different soils, as well as the diversity of pea microsymbionts derived from these soils were investigated in the present study. The experimental plot was composed of soils that were transferred from different parts of Poland more than a century ago. The soils were located in direct vicinity of each other in the experimental plot. All soils examined contained pea microsymbionts, which were suggested to belong to Rhizobium leguminosarum sv. viciae based on the nucleotide sequence of the partial 16S rRNA gene. PCR-RFLP analyses of the 16S-23S rRNA gene ITS region and nodD alleles revealed the presence of numerous and diversified groups of pea microsymbionts and some similarities between the tested populations, which may have been the result of the spread or displacement of strains. However, most populations retained their own genetic distinction, which may have been related to the type of soil. Most of the tested populations comprised low-effective strains for the promotion of pea growth. No relationships were found between the characteristics of soil and symbiotic effectiveness of rhizobial populations; however, better seed yield was obtained for soil with medium biological productivity inhabited by high-effective rhizobial populations than for soil with high agricultural quality containing medium-quality pea microsymbionts, and these results showed the importance of symbiosis for plant hosts.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Anna Podleśna
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| | - Janusz Podleśny
- Institute of Soil Science and Plant Cultivation—State Research Institute,
Czartoryskich 8 str., 24–100 Puławy,
Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University,
Akademicka 19 str., 20–033 Lublin,
Poland
| |
Collapse
|
13
|
Karaś MA, Turska-Szewczuk A, Trapska D, Urbanik-Sypniewska T. Growth and Survival of Mesorhizobium loti Inside Acanthamoeba Enhanced Its Ability to Develop More Nodules on Lotus corniculatus. MICROBIAL ECOLOGY 2015; 70:566-75. [PMID: 25779926 PMCID: PMC4494150 DOI: 10.1007/s00248-015-0587-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/16/2015] [Indexed: 05/12/2023]
Abstract
The importance of protozoa as environmental reservoirs of pathogens is well recognized, while their impact on survival and symbiotic properties of rhizobia has not been explored. The possible survival of free-living rhizobia inside amoebae could influence bacterial abundance in the rhizosphere of legume plants and the nodulation competitiveness of microsymbionts. Two well-characterized strains of Mesorhizobium: Mesorhizobium loti NZP2213 and Mesorhizobium huakuii symbiovar loti MAFF303099 were assayed for their growth ability within the Neff strain of Acanthamoeba castellanii. Although the association ability and the initial uptake rate of both strains were similar, recovery of viable M. huakuii MAFF303099 after 4 h postinfection decreased markedly and that of M. loti NZP2213 increased. The latter strain was also able to survive prolonged co-incubation within amoebae and to self-release from the amoeba cell. The temperature 28 °C and PBS were established as optimal for the uptake of Mesorhizobium by amoebae. The internalization of mesorhizobia was mediated by the mannose-dependent receptor. M. loti NZP2213 bacteria released from amoebae developed 1.5 times more nodules on Lotus corniculatus than bacteria cultivated in an amoebae-free medium.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
14
|
Jorrin B, Imperial J. Population Genomics Analysis of Legume Host Preference for Specific Rhizobial Genotypes in the Rhizobium leguminosarum bv. viciae Symbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:310-8. [PMID: 25514682 DOI: 10.1094/mpmi-09-14-0296-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rhizobium leguminosarum bv. viciae establishes root nodule symbioses with several legume genera. Although most isolates are equally effective in establishing symbioses with all host genera, previous evidence suggests that hosts select specific rhizobial genotypes among those present in the soil. We have used population genomics to further investigate this observation. Pisum sativum, Lens culinaris, Vicia sativa, and V. faba plants were used to trap rhizobia from a well-characterized soil, and pooled genomic DNA from 100 isolates from each plant were sequenced. Sequence reads were aligned to the R. leguminosarum bv. viciae 3841 reference genome. High overall conservation of sequences was observed in all subpopulations, although several multigenic regions were absent from the soil population. A large fraction (16 to 22%) of sequence reads could not be recruited to the reference genome, suggesting that they represent sequences specific to that particular soil population. Although highly conserved, the 16S to 23S ribosomal RNA gene region presented single nucleotide polymorphisms (SNP) regarding the reference genome, but no striking differences could be found among plant-selected subpopulations. Plant-specific SNP patterns were, however, clearly observed within the nod gene cluster, supporting the existence of a plant preference for specific rhizobial genotypes. This was also shown after genome-wide analysis of SNP patterns.
Collapse
|
15
|
de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0939-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Riah N, Béna G, Djekoun A, Heulin K, de Lajudie P, Laguerre G. Genotypic and symbiotic diversity of Rhizobium populations associated with cultivated lentil and pea in sub-humid and semi-arid regions of Eastern Algeria. Syst Appl Microbiol 2014; 37:368-75. [PMID: 24582507 DOI: 10.1016/j.syapm.2013.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
Abstract
The genetic structure of rhizobia nodulating pea and lentil in Algeria, Northern Africa was determined. A total of 237 isolates were obtained from root nodules collected on lentil (Lens culinaris), proteaginous and forage pea (Pisum sativum) growing in two eco-climatic zones, sub-humid and semi-arid, in Eastern Algeria. They were characterised by PCR-restriction fragment length polymorphism (RFLP) of the 16S-23S rRNA intergenic region (IGS), and the nodD-F symbiotic region. The combination of these haplotypes allowed the isolates to be clustered into 26 distinct genotypes, and all isolates were classified as Rhizobium leguminosarum. Symbiotic marker variation (nodD-F) was low but with the predominance of one nod haplotype (g), which had been recovered previously at a high frequency in Europe. Sequence analysis of the IGS further confirmed its high variability in the studied strains. An AMOVA analysis showed highly significant differentiation in the IGS haplotype distribution between populations from both eco-climatic zones. This differentiation was reflected by differences in dominant genotype frequencies. Conversely, no host plant effect was detected. The nodD gene sequence-based phylogeny suggested that symbiotic gene diversity in pea and lentil nodulating rhizobial populations in Algeria was low compared to that reported elsewhere in the world.
Collapse
MESH Headings
- Algeria
- Bacterial Proteins/genetics
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Intergenic/chemistry
- DNA, Intergenic/genetics
- Genetic Variation
- Haplotypes
- Lens Plant/microbiology
- Molecular Sequence Data
- Pisum sativum/microbiology
- Phylogeny
- Plant Roots/microbiology
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Rhizobium leguminosarum/classification
- Rhizobium leguminosarum/genetics
- Rhizobium leguminosarum/physiology
- Sequence Analysis, DNA
- Symbiosis
Collapse
Affiliation(s)
- Nassira Riah
- Laboratoire de Génétique, Biochimie et Biotechnologies Végétalesm, Faculté des Sciences de la Nature, Université Constantine 1, Route Ain El Bey 25000, Algeria; IRD - INRA LSTM, Tropical and Mediterranean Symbiosis Laboratory, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Gilles Béna
- IRD - INRA LSTM, Tropical and Mediterranean Symbiosis Laboratory, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France.
| | - Abdelhamid Djekoun
- Laboratoire de Génétique, Biochimie et Biotechnologies Végétalesm, Faculté des Sciences de la Nature, Université Constantine 1, Route Ain El Bey 25000, Algeria
| | - Karine Heulin
- IRD - INRA LSTM, Tropical and Mediterranean Symbiosis Laboratory, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Philippe de Lajudie
- IRD - INRA LSTM, Tropical and Mediterranean Symbiosis Laboratory, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Gisèle Laguerre
- IRD - INRA LSTM, Tropical and Mediterranean Symbiosis Laboratory, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| |
Collapse
|
17
|
Roumiantseva ML, Muntyan VS, Mengoni A, Simarov BV. ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti-symbionts of alfalfa, clover and fenugreek plants. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414040103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wade TK, Le Quéré A, Laguerre G, N’Zoué A, Ndione JA, doRego F, Sadio O, Ndoye I, Neyra M. Eco-geographical diversity of cowpea bradyrhizobia in Senegal is marked by dominance of two genetic types. Syst Appl Microbiol 2014; 37:129-39. [DOI: 10.1016/j.syapm.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 10/25/2022]
|
19
|
Zhou L, Powell CA, Li W, Irey M, Duan Y. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing. PLoS One 2013; 8:e82248. [PMID: 24349235 PMCID: PMC3862640 DOI: 10.1371/journal.pone.0082248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/22/2013] [Indexed: 01/21/2023] Open
Abstract
Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.
Collapse
Affiliation(s)
- Lijuan Zhou
- Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida, United States of America
- Indian River Research and Education Center, University of Florida, Fort Pierce, Florida, United States of America
| | - Charles A. Powell
- Indian River Research and Education Center, University of Florida, Fort Pierce, Florida, United States of America
| | - Wenbin Li
- Center for Plant Health, Science and Technology, Animal and Plant health Inspection Service, US Department of Agriculture, Beltsville, Maryland, United States of America
| | - Mike Irey
- Southern Garden Citrus, U. S. Sugar Corp., Clewiston, Florida, United States of America
| | - Yongping Duan
- Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida, United States of America
| |
Collapse
|
20
|
Yang W, Kong Z, Chen W, Wei G. Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 2012; 36:49-55. [PMID: 23245852 DOI: 10.1016/j.syapm.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 12/15/2022]
Abstract
Ninety symbiotic rhizobial isolates from root nodules of Coronilla varia growing in the Shaanxi province of China were characterized. Combined with the results of RFLP patterns, six genotypes were defined among the rhizobial strains and they were divided into three genomic genera. These included Mesorhizobium sp., M. alhagi, M. amorphae, M. metallidurans/M. gobiense as the dominant group (86.7%), and Rhizobium yanglingense and Agrobacterium tumefaciens as the minor groups, according to analysis of the corresponding 16S rRNA, nodC and nifH genes. Five nodC types, which mainly grouped into the Mesorhizobium genus, were obtained from all the isolates examined, implying that nodC genes probably occurred from the native habitat through lateral transfer and long-term adaptation, finally evolving toward M. alhagi. Four different nifH types, displaying obvious differences compared to those of 16S rRNA and nodC, implied that possible lateral transfer of the symbiotic genes occurred between different genera. The association between soil components and the genetic diversity of the rhizobial population demonstrated that combined genotypes were positively correlated with the pH of soil samples.
Collapse
Affiliation(s)
- Wenquan Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling Shaanxi 712100, China
| | | | | | | |
Collapse
|
21
|
Rhizobial communities in symbiosis with legumes: genetic diversity, competition and interactions with host plants. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0032-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe term ‘Rhizobium-legume symbiosis’ refers to numerous plant-bacterial interrelationships. Typically, from an evolutionary perspective, these symbioses can be considered as species-to-species interactions, however, such plant-bacterial symbiosis may also be viewed as a low-scale environmental interplay between individual plants and the local microbial population. Rhizobium-legume interactions are therefore highly important in terms of microbial diversity and environmental adaptation thereby shaping the evolution of plant-bacterial symbiotic systems. Herein, the mechanisms underlying and modulating the diversity of rhizobial populations are presented. The roles of several factors impacting successful persistence of strains in rhizobial populations are discussed, shedding light on the complexity of rhizobial-legume interactions.
Collapse
|
22
|
Kidaj D, Wielbo J, Skorupska A. Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol Res 2012; 167:144-50. [PMID: 21723717 DOI: 10.1016/j.micres.2011.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/02/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
Nod factors are lipochitooligosaccharide (LCO) produced by soil bacteria commonly known as rhizobia acting as signals for the legume plants to initiate symbiosis. Nod factors trigger early symbiotic responses in plant roots and initiate the development of specialized plant organs called nodules, where biological nitrogen fixation takes place. Here, the effect of specific LCO originating from flavonoid induced Rhizobium leguminosarum bv. viciae GR09 culture was studied on germination, plant growth and nodulation of pea and vetch. A crude preparation of GR09 LCO significantly enhanced symbiotic performance of pea and vetch grown under laboratory conditions and in the soil. Moreover, the effect of GR09 LCOs seed treatments on the genetic diversity of rhizobia recovered from vetch and pea nodules was presented.
Collapse
Affiliation(s)
- Dominika Kidaj
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 st., 20-033 Lublin, Poland
| | | | | |
Collapse
|
23
|
The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Open Life Sci 2012. [DOI: 10.2478/s11535-011-0085-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
24
|
Rahi P, Kapoor R, Young JPW, Gulati A. A genetic discontinuity in root-nodulating bacteria of cultivated pea in the Indian trans-Himalayas. Mol Ecol 2012; 21:145-59. [PMID: 22092487 DOI: 10.1111/j.1365-294x.2011.05368.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evolutionary relationships of 120 root-nodulating bacteria isolated from the nodules of Pisum sativum cultivated at 22 different locations of the trans-Himalayan valleys of Lahaul and Spiti in the state of Himachal Pradesh of India were studied using 16S rRNA gene PCR-RFLP, ERIC-PCR, sequencing of 16S rRNA, atpD, recA, nodC and nifH genes, carbon-source utilization pattern (BIOLOG™), and whole-cell fatty acid profiling. The results demonstrated that all isolates belonged to Rhizobium leguminosarum symbiovar viciae (Rlv). Isolates from the two valleys were clearly separated on the basis of ERIC fingerprints, carbon-source utilization pattern, and whole-cell fatty acid methyl esters. Phylogenetic analysis of atpD, recA, nodC and nifH genes revealed a common Rlv sublineage in Spiti valley. Lahaul valley isolates were represented by three sequence types of atpD and recA genes, and four sequence types of nodC and nifH genes. Genotypes from the two valleys were completely distinct, except for two Lahaul isolates that shared nodC and nifH sequences with Spiti isolates but were otherwise more similar to other Lahaul isolates. Isolates from the two highest Spiti valley sites (above 4000 m) had a distinctive whole-cell fatty acid profile. Spiti valley isolates are closely related to Rlv sublineages from Xinjiang and Shanxi provinces in China, while Lahaul valley isolates resemble cosmopolitan strains of the western world. The high mountain pass between these valleys represents a boundary between two distinct microbial populations.
Collapse
Affiliation(s)
- Praveen Rahi
- Plant Pathology and Microbiology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, PO Box 6, Palampur-176061 (HP), India
| | | | | | | |
Collapse
|
25
|
Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden. Syst Appl Microbiol 2011; 34:267-75. [DOI: 10.1016/j.syapm.2011.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/24/2022]
|
26
|
Kurchak ON, Provorov NA, Simarov BV. Comparison of the adaptive potential for Rhizobium leguminosarum bv. viceae nodule bacterial populations isolated in natural ecosystems and agrocenoses. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Deng ZS, Zhao LF, Kong ZY, Yang WQ, Lindström K, Wang ET, Wei GH. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol Ecol 2011; 76:463-75. [PMID: 21303396 DOI: 10.1111/j.1574-6941.2011.01063.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A total of 115 endophytic bacteria were isolated from root nodules of the wild legume Sphaerophysa salsula grown in two ecological regions of Loess Plateau in China. The genetic diversity and phylogeny of the strains were revealed by restriction fragment length polymorphism and sequencing of 16S rRNA gene and enterobacterial repetitive intergenic consensus-PCR. Their symbiotic capacity was checked by nodulation tests and analysis of nifH gene sequence. This is the first systematic study on endophytic bacteria associated with S. salsula root nodules. Fifty of the strains found were symbiotic bacteria belonging to eight putative species in the genera Mesorhizobium, Rhizobium and Sinorhizobium, harboring similar nifH genes; Mesorhizobium gobiense was the main group and 65 strains were nonsymbiotic bacteria related to 17 species in the genera Paracoccus, Sphingomonas, Inquilinus, Pseudomonas, Serratia, Mycobacterium, Nocardia, Streptomyces, Paenibacillus, Brevibacillus, Staphylococcus, Lysinibacillus and Bacillus, which were universally coexistent with symbiotic bacteria in the nodules. Differing from other similar studies, the present study is the first time that symbiotic and nonsymbiotic bacteria have been simultaneously isolated from the same root nodules, offering the possibility to accurately reveal the correlation between these two kinds of bacteria. These results provide valuable information about the interactions among the symbiotic bacteria, nonsymbiotic bacteria and their habitats.
Collapse
Affiliation(s)
- Zhen Shan Deng
- College of Life Sciences, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Wadhwa K, Dudeja SS, Yadav RK. Molecular diversity of native rhizobia trapped by five field pea genotypes in Indian soils. J Basic Microbiol 2011; 51:89-97. [PMID: 20806252 DOI: 10.1002/jobm.201000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/07/2010] [Indexed: 11/09/2022]
Abstract
Five pea cultivars; HFP 4, HVP 3-5, HFP 9426, Jayanti and Hariyal, being grown in CCS Haryana Agricultural University farm were used to isolate native rhizobia. Selected 54 rhizobia, from all cultivars, were authenticated as rhizobia by plant infectivity test. Along with nodulation, symbiotic effectiveness in terms of symbiotic ratios showed wide range of effectiveness of pea rhizobia from 1.11 to 5.0. DNA of all the 54 rhizobia was extracted and amplified by PCR, using ERIC and 16S rDNA primers. Dendrogram based on ERIC profiles of these 54 rhizobia showed the formation of 13 subclusters at 80% level of similarity. Dendrogram based on RFLP of 16S rDNA by three restriction endonucleases; Msp I, Csp 6I and Rsa I; also formed 13 subclusters at 80% level of similarity. However, positioning of subclusters was different from that of ERIC based dendrogram. Majority of the isolates i.e. 64.8% by ERIC profiles and 44.4% by RFLP of 16S rDNA formed one cluster. Isolates from same nodule were not 100% similar. Considering each cluster representing a rhizobial genotype, both techniques used to assess molecular diversity indicated the presence of 13 genotypes of field pea rhizobia in CCS Haryana Agricultural University farm soil. Two pea rhizobial genotypes were able to nodulate all the five pea cultivars. Furthermore, high strain richness index (0.43-0.5) of field pea rhizobia was observed by both the techniques.
Collapse
Affiliation(s)
- K Wadhwa
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, India
| | | | | |
Collapse
|
29
|
Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 2010; 33:468-77. [DOI: 10.1016/j.syapm.2010.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/22/2022]
|
30
|
Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 2010; 76:6751-9. [PMID: 20729324 DOI: 10.1128/aem.01063-10] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H') was higher in the A horizons than in the corresponding B horizons. In addition, the H' was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass.
Collapse
|
31
|
Trabelsi D, Mengoni A, Aouani ME, Bazzicalupo M, Mhamdi R. Genetic diversity and salt tolerance of Sinorhizobium populations from two Tunisian soils. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0084-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Genetic and metabolic divergence within a Rhizobium leguminosarum bv. trifolii population recovered from clover nodules. Appl Environ Microbiol 2010; 76:4593-600. [PMID: 20472725 DOI: 10.1128/aem.00667-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are able to establish symbiosis with leguminous plants and usually occupy highly complex soil habitats. The large size and complexity of their genomes are considered advantageous, possibly enhancing their metabolic and adaptive potential and, in consequence, their competitiveness. A population of Rhizobium leguminosarum bv. trifolii organisms recovered from nodules of several clover plants growing in each other's vicinity in the soil was examined regarding possible relationships between their metabolic-physiological properties and their prevalence in such a local population. Genetic and metabolic variability within the R. leguminosarum bv. trifolii strains occupying nodules of several plants was of special interest, and both types were found to be considerable. Moreover, a prevalence of metabolically versatile strains, i.e., those not specializing in utilization of any group of substrates, was observed by combining statistical analyses of Biolog test results with the frequency of occurrence of genetically distinct strains. Metabolic versatility with regard to nutritional requirements was not directly advantageous for effectiveness in the symbiotic interaction with clover: rhizobia with specialized metabolism were more effective in symbiosis but rarely occurred in the population. The significance of genetic and, especially, metabolic complexity of bacteria constituting a nodule population is discussed in the context of strategies employed by bacteria in competition.
Collapse
|
33
|
Zadorina EV, Boulygina ES, Kolganova TV, Kuznetsov BB, Skryabin KG. Evaluation of the effect of late blight-resistant potato plants on the structure of bacterial associations in soil. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Yang C, Yang J, Li Y, Zhou J. Genetic diversity of root-nodulating bacteria isolated from pea (Pisum sativum) in subtropical regions of China. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 51:854-62. [PMID: 18726533 DOI: 10.1007/s11427-008-0104-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
Abstract
Diversity of 42 isolates from effective nodules of Pisum sativum in different geographical regions of China were studied using 16S rRNA gene RFLP patterns, 16S rRNA sequencing, 16S-23S rRNA intergenic spacer (IGS) region RFLP patterns and G-C rich random amplified polymorphic DNA (RAPD). The isolates were distributed in two groups on the basis of their 16S rRNA gene RFLP patterns. The 16S rRNA gene sequences of strains from 16S rRNA gene RFLP patterns group I were very closely related (identities higher than 99.5%) to Rhizobium leguminosarum USDA 2370. Group II consisting of WzP3 and WzP15 was closely related to Rhizobium etli CFN42. The analysis of the 16S-23S IGS RFLP patterns divided the isolates into 18 genotypes and four groups. Group I was clustered with R. leguminosarum USDA2370. Group II consisted of YcP2, YcP3 and CqP7. The strains of group III were distributed abroad. Group IV consisted of WzP3, WzP15 and R. etli CFN42. RAPD divided the isolates into nine clusters in which group IV only consisted of YcP2 and the strains of group V and IX were from Wenzhou and Xiantao, respectively. This assay demonstrated the geographical effect on genetic diversity of pea rhizobia.
Collapse
Affiliation(s)
- ChengYun Yang
- State Key Laboratory of Agro-Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | |
Collapse
|
35
|
Pistorio M, Giusti MA, Del Papa MF, Draghi WO, Lozano MJ, Torres Tejerizo G, Lagares A. Conjugal properties of the Sinorhizobium meliloti plasmid mobilome. FEMS Microbiol Ecol 2008; 65:372-82. [DOI: 10.1111/j.1574-6941.2008.00509.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Lei X, Wang ET, Chen WF, Sui XH, Chen WX. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 2008; 190:657-71. [DOI: 10.1007/s00203-008-0418-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/24/2022]
|
37
|
Depret G, Laguerre G. Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. THE NEW PHYTOLOGIST 2008; 179:224-235. [PMID: 18373650 DOI: 10.1111/j.1469-8137.2008.02430.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The symbiotic relationships between legumes and their nitrogen (N(2))-fixing bacterial partners (rhizobia) vary in effectiveness to promote plant growth according to both bacterial and legume genotype. To assess the selective effect of host plant on its microsymbionts, the influence of the pea (Pisum sativum) genotype on the relative nodulation success of Rhizobium leguminosarum biovar viciae (Rlv) genotypes from the soil populations during plant development has been investigated. Five pea lines were chosen for their genetic variability in root and nodule development. Genetic structure and diversity of Rlv populations sampled from nodules were estimated by molecular typing with a marker of the genomic background (rDNA intergenic spacer) and a nodulation gene marker (nodD region). Differences were found among Rlv populations related to pea genetic background but also to modification of plant development caused by single gene mutation. The growth stage of the host plant also influenced structuring of populations. A particular nodulation genotype formed the majority of nodules during the reproductive stage. Overall, modification in root and nodule development appears to strongly influence the capacity of particular rhizobial genotypes to form nodules.
Collapse
Affiliation(s)
- Géraldine Depret
- INRA-Université de Bourgogne, UMR1229 Microbiologie du Sol et de l'Environnement, BP 86510, F-21065 Dijon Cedex, France
| | - Gisèle Laguerre
- INRA-Université de Bourgogne, UMR1229 Microbiologie du Sol et de l'Environnement, BP 86510, F-21065 Dijon Cedex, France
- Present address: INRA, USC1242, UMR113 IRD-CIRAD-SupAgro-UM2 Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, TA A-82/J, F-34398 Montpellier Cedex 5, France
| |
Collapse
|
38
|
Laguerre G, Depret G, Bourion V, Duc G. Rhizobium leguminosarum bv. viciae genotypes interact with pea plants in developmental responses of nodules, roots and shoots. THE NEW PHYTOLOGIST 2007; 176:680-690. [PMID: 17822397 DOI: 10.1111/j.1469-8137.2007.02212.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.
Collapse
Affiliation(s)
- Gisèle Laguerre
- INRA, UMR1229 Microbiologie du Sol et de l'Environnement, BP 86510, F-21065 Dijon Cedex, France
- Present address: USC1242 INRA, Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, TA A-82/J, F-34398 Montpellier Cedex 5, France
| | - Géraldine Depret
- INRA, UMR1229 Microbiologie du Sol et de l'Environnement, BP 86510, F-21065 Dijon Cedex, France
| | - Virginie Bourion
- INRA, UR102 Génétique et Ecophysiologie des Légumineuses Protéagineuses, BP 86510, F-21065 Dijon Cedex, France
| | - Gérard Duc
- INRA, UR102 Génétique et Ecophysiologie des Légumineuses Protéagineuses, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
39
|
Wielbo J, Marek-Kozaczuk M, Kubik-Komar A, Skorupska A. Increased metabolic potential of Rhizobium spp. is associated with bacterial competitiveness. Can J Microbiol 2007; 53:957-67. [PMID: 17898852 DOI: 10.1139/w07-053] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Of 105 rhizobial isolates obtained from nodules of commonly cultivated legumes, we selected 19 strains on the basis of a high rate of symbiotic plant growth promotion. Individual strains within the species Rhizobium leguminosarum bv. trifolii , R. leguminosarum bv. viciae , and Rhizobium etli displayed variation not only in plasmid sizes and numbers but also in the chromosomal 16S–23S internal transcribed spacer. The strains were tagged with gusA gene and their competitiveness was examined in relation to an indigenous population of rhizobia under greenhouse conditions. A group of 9 strains was thus isolated that were competitive in relation to native rhizobia in pot experiments. Nineteen selected competitive and uncompetitive strains were examined with respect to their ability to utilize various carbon and energy sources by means of commercial Biolog GN2 microplate test. The ability of the selected strains to metabolize a wide range of nutrients differed markedly and the competitive strains were able to utilize more carbon and energy sources than uncompetitive ones. A major difference concerned the utilization of amino and organic acids, which were metabolized by most of the competitive and only a few uncompetitive strains, whereas sugars and their derivatives were commonly utilized by both groups of strains. A statistically significant correlation between the ability to metabolize a broad range of substrates and nodulation competitiveness was found, indicating that metabolic properties may be an essential trait in determining the competitiveness of rhizobia.
Collapse
Affiliation(s)
- Jerzy Wielbo
- Department of General Microbiology, Institute of Microbiology and Biotechnology, University of M. Curie-Skłodowska, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | |
Collapse
|
40
|
Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX. Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai–Tibet plateau and in other zones of China. Arch Microbiol 2007; 188:103-15. [PMID: 17541555 DOI: 10.1007/s00203-007-0211-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 12/11/2006] [Accepted: 01/04/2007] [Indexed: 11/26/2022]
Abstract
Qinghai-Tibet plateau is the highest place in the world and the environment in that plateau is hard for animals and plants, with low temperature, low concentration of oxygen and high solar radiation. In this study, 61 root nodule isolates from Vicia, Oxytropis, Medicago, Melilotus and Onobrychis species grown in Qinghai-Tibet plateau and in loess plateau were comparatively characterized. Based upon the results of numerical taxonomy, ARDRA, AFLP, DNA-DNA hybridization and 16S rDNA sequencing, the isolates were classified as Rhizobium leguminosarum, Sinorhizobium meliloti, Sinorhizobium fredii, Mesorhizobium sp., Phyllobacterium sp., Stenotrophomonas sp. and two non-symbiotic groups related to Agrobacterium and Enterobacteriaceae. The strains isolated from Qinghai-Tibet plateau and from the loess plateau were mixed in these species or groups. Oxytropis spp. and Medicago archiducis-nicolai grown in Qinghai-Tibet plateau were recorded as new hosts for R. leguminosarum, as well as Oxytropis glabra and Medicago lupulina for S. fredii. In addition, strains resistant to high alkaline (pH 11) and high concentration of NaCl (3-5%, w/v) were found in each of the rhizobial species. This was the first systematic study of rhizobia isolated from Qinghai-Tibet plateau.
Collapse
Affiliation(s)
- Feng Ling Kan
- Key Laboratory of Agro-Microbial Resource and Application, Ministry of Agriculture of China and Department of Microbiology, College of Biological Sciences, China Agricultural University, 100094, Beijing, China
| | | | | | | | | | | |
Collapse
|
41
|
Duodu S, Carlsson G, Huss-Danell K, Svenning MM. Large genotypic variation but small variation in N2fixation among rhizobia nodulating red clover in soils of northern Scandinavia. J Appl Microbiol 2007; 102:1625-35. [PMID: 17578428 DOI: 10.1111/j.1365-2672.2006.03196.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To analyse the symbiotic variations within indigenous populations of rhizobia nodulating red clover (Trifolium pratense L.) in soils of northern Norway and Sweden at different times of the growing season. METHODS AND RESULTS A total of 431 nodule isolates sampled under field conditions in summer and autumn, were characterized genetically by targeting both chromosomal and symbiotic genes. The Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction (PCR) fingerprinting of chromosomal DNA revealed considerable variation within the isolated populations that was more influenced by geographical origin than sampling time. Analysis of PCR amplified nodEF gene on the symbiotic plasmid by restriction fragment length polymorphism revealed a high proportion of nod types common to the two studied sites. The symbiotic efficiency of the isolates, representing both dominating and rare nodEF genotypes, showed high N(2) fixation rates in symbiosis with the host plant in a greenhouse experiment using the (15)N isotope dilution method. CONCLUSIONS Effective N(2)-fixing strains of Rhizobium leguminosarum bv. trifolii nodulating red clover are common and genetically diverse in these northern Scandinavia soils. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides information on the variability, stability and dynamics of resident populations of rhizobia nodulating red clover in Scandinavian soils which has practical implications for applying biological nitrogen fixation in subarctic plant production.
Collapse
Affiliation(s)
- S Duodu
- Department of Biology, Faculty of Science, University of Tromsø, Tromso, Norway
| | | | | | | |
Collapse
|
42
|
Laguerre G, Courde L, Nouaïm R, Lamy I, Revellin C, Breuil MC, Chaussod R. Response of rhizobial populations to moderate copper stress applied to an agricultural soil. MICROBIAL ECOLOGY 2006; 52:426-35. [PMID: 16897301 DOI: 10.1007/s00248-006-9081-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 04/21/2006] [Indexed: 05/11/2023]
Abstract
The use of pesticides in agricultural soils may affect the soil microbiota. The effect of repeated application of copper sulfate in soil on indigenous populations of rhizobia was assessed in a medium-term field experiment. Copper sulfate was applied over 8 years at two different rates, 12.5 and 50 kg of CuSO4 ha(-1) year(-1), in the field. The concentrations of total copper in soil varied between 14.0 (control plots that did not receive copper sulfate) and 91.0 mg kg(-1) (the most contaminated plots) at the time of sampling, 3 years after the end of the copper treatments. All the other physicochemical parameters were similar among the plots that also shared the same cropping history. The target rhizobia were monospecific populations of Rhizobium leguminosarum bv. viciae nodulating Vicia sativa and communities of rhizobial species nodulating Phaseolus vulgaris. The size of the vetch rhizobial populations was significantly reduced in the soils with the higher Cu content, whereas the size of the Phaseolus rhizobial populations was not significantly affected. However, the number of nodules formed on both vetches and common beans were reduced for the plants grown in the most contaminated soils, suggesting an additional toxic effect of copper on plant physiology. The diversity (Simpson's indices) of rhizobial genotypes, as characterized by polymerase chain reaction restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer (IGS), was not influenced by copper application. Also, the genetic structure of the R. leguminosarum bv. viciae populations was not modified by copper treatments. By contrast, a shift was observed in the composition of the Phaseolus-nodulating communities in relation to soil copper content. The communities were composed of three 16S rDNA haplotypes: one corresponding to the R. leguminosarum (biovar phaseoli) species, the two others forming a new lineage of Phaseolus rhizobia based on 16S rDNA sequence analysis. The reduced frequency of the R. leguminosarum species in the Phaseolus-nodulating communities from the copper-treated soils was linked to its higher sensitivity to copper as compared to the higher tolerance of isolates belonging to the other rhizobial lineage. The new lineage was functionally efficient for symbiotic nitrogen fixation with P. vulgaris. Our results suggest that functional redundancy among species exhibiting variability for copper tolerance preserved the size of Phaseolus-nodulating communities. In contrast, the abundance of the vetch-nodulating rhizobia, which was a monospecific functional group mainly constituted by copper-sensitive genotypes, was adversely affected by repeated application of copper sulfate.
Collapse
Affiliation(s)
- G Laguerre
- INRA-Université de Bourgogne UMR Microbiologie et Géochimie des Sols, CMSE, 17 rue Sully, BP 86510, 21065 Dijon, Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher C, Arrowsmith C, Cherevach I, Chillingworth T, Clarke K, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 2006; 7:R34. [PMID: 16640791 PMCID: PMC1557990 DOI: 10.1186/gb-2006-7-4-r34] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/20/2006] [Accepted: 03/22/2006] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Rhizobium leguminosarum is an alpha-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841. RESULTS The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens. CONCLUSION Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.
Collapse
Affiliation(s)
| | - Lisa C Crossman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | | | - Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Andrew RJ Curson
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Philip S Poole
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tim H Mauchline
- School of Biological Sciences, University of Reading, Reading, UK
| | - Alison K East
- School of Biological Sciences, University of Reading, Reading, UK
| | - Michael A Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Carol Churcher
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Claire Arrowsmith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Inna Cherevach
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Tracey Chillingworth
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Kay Clarke
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ann Cronin
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Paul Davis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Audrey Fraser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Zahra Hance
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Heidi Hauser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Kay Jagels
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sharon Moule
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Karen Mungall
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Halina Norbertczak
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ester Rabbinowitsch
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Mandy Sanders
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Mark Simmonds
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Sally Whitehead
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| |
Collapse
|
44
|
Zribi K, Mhamdi R, Huguet T, Aouani ME. Diversity of Sinorhizobium Meliloti and S. medicae Nodulating Medicago Truncatula According to Host and Soil Origins. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-7653-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O, Defez R. Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP–16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 2005; 28:619-31. [PMID: 16156120 DOI: 10.1016/j.syapm.2005.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Twenty-seven new Rhizobium isolates were obtained from root nodules of wild and crop legumes belonging to the genera Vicia, Lathyrus and Pisum from different agroecological areas in central and southern Italy. A polyphasic approach including phenotypic and genotypic techniques was used to study their diversity and their relationships with other biovars and species of rhizobia. Analysis of symbiotic properties and stress tolerance tests revealed that wild isolates showed a wide spectrum of nodulation and a marked variation in stress tolerance compared with reference strains tested in this study. All rhizobial isolates (except for the isolate CG4 from Galega officinalis) were presumptively identified as Rhizobium leguminosarum biovar viciae both by their symbiotic properties and the specific amplification of the nodC gene. In particular, we found that the nodC gene could be used as a diagnostic molecular marker for strains belonging to the bv. viciae. RFLP-PCR 16S rDNA analysis confirms these results, with the exception of two strains that showed different RFLP-genotypes from those of the reference strains of R. leguminosarum bv. viciae. Analysis of intraspecies relationship among strains by using the RAPD-PCR technique showed a high level of genetic polymorphism, grouping our isolates and reference strains into six different major clusters with a similarity level of 20%. Data from seven parameters of phenotypic and genotypic analyses were evaluated by using principal component analysis which indicated the differences among strains and allowed them to be divided into seven different groups.
Collapse
Affiliation(s)
- Giancarlo Moschetti
- Dipartimento di Scienza degli Alimenti, Sezione di Microbiologia Agraria, Alimnentare ed Ambientale e di Igiene, Università degli Studi di Napoli Federico II, I 80055 Portici, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Depret G, Houot S, Allard MR, Breuil MC, Nouaïm R, Laguerre G. Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol Ecol 2004; 51:87-97. [PMID: 16329858 DOI: 10.1016/j.femsec.2004.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/08/2004] [Accepted: 07/19/2004] [Indexed: 11/23/2022] Open
Abstract
Little is known about factors that affect the indigenous populations of rhizobia in soils. We compared the abundance, diversity and genetic structure of Rhizobium leguminosarum biovar viciae populations in soils under different crop managements, i.e., wheat and maize monocultures, crop rotation, and permanent grassland. Rhizobial populations were sampled from nodules of pea- or vetch plants grown in soils collected at three geographically distant sites in France, each site comprising a plot under long-term maize monoculture. Molecular characterization of isolates was performed by PCR-restriction fragment length polymorphism of 16S-23S rDNA intergenic spacer as a neutral marker of the genomic background, and PCR-restriction fragment length 0polymorphism of a nodulation gene region, nodD, as a marker of the symbiotic function. The diversity, estimated by richness in types and Simpson's index, was consistently and remarkably lower in soils under maize monoculture than under the other soil managements at the three sites, except for the permanent grassland. The highest level of diversity was found under wheat monoculture. Nucleotide sequences of the main rDNA intergenic spacer types were determined and sequence analysis showed that the prevalent genotypes in the three maize fields were closely related. These results suggest that long-term maize monoculturing decreased the diversity of R. leguminosarum biovar viciae populations and favored a specific subgroup of genotypes, but the size of these populations was generally preserved. We also observed a shift in the distribution of the symbiotic genotypes within the populations under maize monoculture, but the diversity of the symbiotic genotypes was less affected than that of IGS types. The possible effect of such changes on biological nitrogen fixation remains unknown and this requires further investigation.
Collapse
Affiliation(s)
- Géraldine Depret
- Microbiologie et Géochimie des Sols, Institut National de la Recherche Agronomique, UMR INRA-Universite de Bourgogne, INRA, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Mutch LA, Young JPW. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 2004; 13:2435-44. [PMID: 15245415 DOI: 10.1111/j.1365-294x.2004.02259.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The symbiotic partnerships between legumes and their root-nodule bacteria (rhizobia) vary widely in their degree of specificity, but the underlying reasons are not understood. To assess the potential for host-range evolution, we have investigated microheterogeneity among the shared symbionts of a group of related legume species. Host specificity and genetic diversity were characterized for a soil population of Rhizobium leguminosarum biovar viciae (Rlv) sampled using six wild Vicia and Lathyrus species and the crop plants pea (Pisum sativum) and broad bean (Vicia faba). Genetic variation among 625 isolates was assessed by restriction fragment length polymorphism (RFLP) of loci on the chromosome (ribosomal gene spacer) and symbiosis plasmid (nodD region). Broad bean strongly favoured a particular symbiotic genotype that formed a distinct phylogenetic subgroup of Rlv nodulation genotypes but was associated with a range of chromosomal backgrounds. Host range tests of 80 isolates demonstrated that only 34% of isolates were able to nodulate V. faba. By contrast, 89% were able to nodulate all the local wild hosts tested, so high genetic diversity of the rhizobial population cannot be ascribed directly to the diversity of host species at the site. Overall the picture is of a population of symbionts that is diversified by plasmid transfer and shared fairly indiscriminately by local wild legume hosts. The crop species are less promiscuous in their interaction with symbionts than the wild legumes.
Collapse
Affiliation(s)
- Lesley A Mutch
- Department of Biology (Area 3), University of York, PO Box 373, York YO10 5YW, UK
| | | |
Collapse
|
48
|
Garbeva P, van Veen JA, van Elsas JD. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2004; 42:243-70. [PMID: 15283667 DOI: 10.1146/annurev.phyto.42.012604.135455] [Citation(s) in RCA: 516] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The extent of the diversity of microorganisms in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microorganisms is involved in important soil functions. This review focuses on recent data relating how plant type, soil type, and soil management regime affect the microbial diversity of soil and the implication for the soil's disease suppressiveness. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. We propose that the fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms and soil and microorganisms and plants. A conceptual framework, based on the relative strengths of the shaping forces exerted by plant and soil versus the ecological behavior of microorganisms, is proposed.
Collapse
Affiliation(s)
- P Garbeva
- Netherlands Institute of Ecology, NIOO-KNAW, Center for Terrestrial Ecology, Heteren, The Netherlands
| | | | | |
Collapse
|
49
|
DOI R, SAHUNALU P, WACHRINRAT C, TEEJUNTUK S, SAKURAI K. Changes in soil bacterial community profiles associated with deforestation in the Sakaerat Environmental Research Station, Thailand: comparisons between soils of the original forest and bare ground. TROPICS 2004. [DOI: 10.3759/tropics.14.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Bent SJ, Gucker CL, Oda Y, Forney LJ. Spatial distribution of Rhodopseudomonas palustris ecotypes on a local scale. Appl Environ Microbiol 2003; 69:5192-7. [PMID: 12957901 PMCID: PMC194914 DOI: 10.1128/aem.69.9.5192-5197.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The number, spatial distribution, and significance of genetically distinguishable ecotypes of prokaryotes in the environment are poorly understood. Oda et al. (Y. Oda, B. Star, L. A. Huisman, J. C. Gottschal, and L. J. Forney, Appl. Environ. Microbiol. 69:xxx-xxx, 2003) have shown that Rhodopseudomonas palustris ecotypes were lognormally distributed along a 10-m transect and that multiple strains of the species could coexist in 0.5-g sediment samples. To extend these observations, we investigated the clonal diversity of R. palustris in 0.5-g samples taken from the corners and center of a 1-m square. A total of 35 or 36 clones were recovered by direct plating from each sample and were characterized by BOX A1R repetitive element-PCR genomic DNA fingerprinting. Isolates with fingerprint images that were >/=80% similar to each other were defined as the same genotype. Among the 178 isolates studied, 32 genotypes were identified, and each genotype contained between 1 and 40 isolates. These clusters were consistent with minor variations found in 16S rRNA gene sequences. The Shannon indices of the genotypic diversity within each location ranged from 1.08 (5 genotypes) to 2.18 (13 genotypes). Comparison of the rank abundance of genotypes found in pairs of locations showed that strains from three locations were similar to each other, with Morisita-Horn similarity coefficients ranging from 0.59 to 0.71. All comparisons involving the remaining two locations resulted in coefficients between 0 and 0.12. From these results we inferred that the patterns of ecotype diversity at the sampling site are patchy at a 1-m scale and postulated that factors such as mixing, competitive interactions, and microhabitat variability are likely to be responsible for the maintenance of the similarities between some locations and the differences between others.
Collapse
Affiliation(s)
- S J Bent
- University of Idaho, Moscow, Idaho, USA
| | | | | | | |
Collapse
|