1
|
Bulka O, Mahadevan R, Edwards EA. Pangenomic insights into Dehalobacter evolution and acquisition of functional genes for bioremediation. Microb Genom 2024; 10. [PMID: 39565095 DOI: 10.1099/mgen.0.001324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Dehalobacter is a genus of organohalide-respiring bacteria that is recognized for its fastidious growth using reductive dehalogenases (RDases). In the SC05 culture, however, a Dehalobacter population also mineralizes dichloromethane (DCM) produced by chloroform dechlorination using the mec cassette, just downstream of its active RDase. A closed genome of this DCM-mineralizing lineage has previously evaded assembly. Here, we present the genomes of two novel Dehalobacter strains, each of which was assembled from the metagenome of a distinct subculture from SC05. A pangenomic analysis of the Dehalobacter genus, including RDase synteny and phylogenomics, reveals at least five species of Dehalobacter based on average nucleotide identity, RDase and core gene synteny, as well as differential functional genes. An integration hotspot is also pinpointed in the Dehalobacter genome, in which many recombinase islands have accumulated. This nested recombinase island encodes the active RDase and mec cassette in both SC05 Dehalobacter genomes, indicating the transfer of key functional genes between species of Dehalobacter. Horizontal gene transfer between these two novel Dehalobacter strains has implications for the evolutionary history within the SC05 subcultures and of the Dehalobacter genus as a whole, especially regarding adaptation to anthropogenic chemicals.
Collapse
Affiliation(s)
- Olivia Bulka
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Maslova O, Beletsky A, Mindlin S, Petrova N, Mardanov A, Petrova M. Conjugative Plasmid pPPUT-Tik1-1 from a Permafrost Pseudomonas putida Strain and Its Present-Day Counterparts Inhabiting Environments and Clinics. Int J Mol Sci 2023; 24:13518. [PMID: 37686323 PMCID: PMC10488154 DOI: 10.3390/ijms241713518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
A novel group of conjugative plasmids of Pseudomonas is characterized. The prototype plasmid pPPUT-Tik1-1 (153,663 bp), isolated from a permafrost strain of P. putida Tik1, carries a defective mercury transposon, Tn501, and a streptomycin resistance transposon, Tn5393. Ten plasmids and 34 contigs with backbone regions closely related to pPPUT-Tik1-1 have been found in GenBank. Two of these plasmids from clinical strains of P. putida and P. fulva are almost identical to the ancient plasmid. A characteristic feature of this group of plasmids is the presence of two genes encoding the initiators of replication (repA1 and repA2). None of these genes have high similarity with plasmid replication genes belonging to known incompatibility groups. It has been demonstrated that while pPPUT-Tik1-1-like plasmids have homologous backbone regions, they significantly differ by the molecular structure and the predicted functions of their accessory regions. Some of the pPPUT-Tik1-1-related plasmids carry determinants of antibiotic resistance and/or heavy metal salts. Some plasmids are characterized by the ability to degrade xenobiotics. Plasmids related to pPPUT-Tik1-1 are characterized by a narrow host range and are found in various species of the Pseudomonas genus. Interestingly, we also found shorter plasmid variants containing the same replication module, but lacking conjugation genes and containing other structural changes that strongly distinguish them from plasmids related to pPPUT-Tik1-1, indicating that the structure of the replication module cannot be used as the sole criterion for classifying plasmids. Overall, the results suggest that the plasmids of the novel group can be spread using conjugation in environmental and clinical strains of Pseudomonas and may play diverse adaptive functions due to the presence of various accessory regions.
Collapse
Affiliation(s)
- Olga Maslova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Alexey Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (A.B.); (A.M.)
| | - Sofia Mindlin
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Nika Petrova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| | - Andrey Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; (A.B.); (A.M.)
| | - Mayya Petrova
- National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.); (N.P.)
| |
Collapse
|
3
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
4
|
Esikova TZ, Gafarov AB, Anokhina TO. Genetic Control of Degradation of epsilon-Caprolactam, Toluene, and meta-Xylene in Pseudomonas putida Strain CT3. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
6
|
Molecular characterization of the pA3J1 plasmid from the psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_J3. Plasmid 2017; 92:49-56. [DOI: 10.1016/j.plasmid.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023]
|
7
|
Salam LB, Obayori SO, Nwaokorie FO, Suleiman A, Mustapha R. Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7139-7159. [PMID: 28093673 DOI: 10.1007/s11356-017-8364-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Analyzing the microbial community structure and functions become imperative for ecological processes. To understand the impact of spent engine oil (SEO) contamination on microbial community structure of an agricultural soil, soil microcosms designated 1S (agricultural soil) and AB1 (agricultural soil polluted with SEO) were set up. Metagenomic DNA extracted from the soil microcosms and sequenced using Miseq Illumina sequencing were analyzed for their taxonomic and functional properties. Taxonomic profiling of the two microcosms by MG-RAST revealed the dominance of Actinobacteria (23.36%) and Proteobacteria (52.46%) phyla in 1S and AB1 with preponderance of Streptomyces (12.83%) and Gemmatimonas (10.20%) in 1S and Geodermatophilus (26.24%), Burkholderia (15.40%), and Pseudomonas (12.72%) in AB1, respectively. Our results showed that soil microbial diversity significantly decreased in AB1. Further assignment of the metagenomic reads to MG-RAST, Cluster of Orthologous Groups (COG) of proteins, Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI's CDD hits revealed diverse metabolic potentials of the autochthonous microbial community. It also revealed the adaptation of the community to various environmental stressors such as hydrocarbon hydrophobicity, heavy metal toxicity, oxidative stress, nutrient starvation, and C/N/P imbalance. To the best of our knowledge, this is the first study that investigates the effect of SEO perturbation on soil microbial communities through Illumina sequencing. The results indicated that SEO contamination significantly affects soil microbial community structure and functions leading to massive loss of nonhydrocarbon degrading indigenous microbiota and enrichment of hydrocarbonoclastic organisms such as members of Proteobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Lateef B Salam
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria.
| | - Sunday O Obayori
- Department of Microbiology, Lagos State University, Ojo, Lagos, Nigeria
| | - Francisca O Nwaokorie
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Akoka, Lagos, Nigeria
| | - Aisha Suleiman
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria
| | - Raheemat Mustapha
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria
| |
Collapse
|
8
|
|
9
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
10
|
Jutkina J, Hansen LH, Li L, Heinaru E, Vedler E, Jõesaar M, Heinaru A. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Plasmid 2013; 70:393-405. [PMID: 24095800 DOI: 10.1016/j.plasmid.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/27/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023]
Abstract
In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+C content of 53.75%. A total of 135 open reading frames (ORFs) were predicted to encode proteins, among them genes for catabolism of toluene, plasmid replication, maintenance and conjugative transfer. ORFs encoding proteins with putative functions in stress response, transposition and site-specific recombination were also predicted. Analysis of the organization and nucleotide sequence of pD2RT backbone region revealed high degree of similarity to the draft genome sequence data of the plant-pathogenic pseudomonad Pseudomonas syringae pv. glycinea strain B076, exhibiting relatedness to pPT23A plasmid family. The pD2RT backbone is also closely related to that of pGRT1 of Pseudomonas putida strain DOT-T1E and pBVIE04 of Burkholderia vietnamiensis strain G4, both plasmids are associated with resistance to toluene. The ability of pD2RT to self-transfer by conjugation to P. putida recipient strain PaW340 was experimentally determined. Genetic organization of toluene-degrading (xyl) genes and flanking DNA segments resembles the structure of Tn1721-related class II transposon Tn4656 of TOL plasmid pWW53 of P. putida strain MT53. The complete sequence of the plasmid pD2RT extends the known range of xyl genes carriers, being the first completely sequenced TOL plasmid, which is not related to well-studied IncP plasmid groups. We also verified the functionality of the catabolic route encoded by pD2RT by monitoring the expression of the xylE gene in pD2RT bearing hosts along with bacterial strains containing TOL plasmid of IncP-9 group. The growth kinetics of plasmid-bearing strains was found to be affected by particular TOL plasmid.
Collapse
Affiliation(s)
- Jekaterina Jutkina
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23a, 51010 Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Larentis M, Hoermann K, Lueders T. Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene-contaminated aquifer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:225-234. [PMID: 23584966 DOI: 10.1111/1758-2229.12004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 06/02/2023]
Abstract
Hydrocarbon contaminants in groundwater can be degraded by microbes under different redox settings, forming hot spots of degradation especially at the fringes of contaminant plumes. At a tar-oil-contaminated aquifer in Germany, it was previously shown that the distribution of anaerobic toluene degraders as traced via catabolic and ribosomal marker genes is highly correlated to zones of increased anaerobic degradation at the lower fringe of the plume. Here, we trace the respective distribution of aerobic toluene degraders over a fine-scale depth transect of sediments taken at the upper fringe of the plume and below, based on the analysis of 16S rRNA genes as well as catabolic markers in intervals of 3-10 cm. Well-defined small-scale distribution maxima of typical aerobic degrader lineages within the Pseudomonadaceae, Comamonadaceae and Burkholderiaceae are revealed over the redox gradient. An unexpected maximal abundance of 9.2 × 10⁶ toluene monooxygenase (tmoA) genes per g of sediment was detected in the strongly reduced plume core, and gene counts did not increase towards the more oxidized upper plume fringe. This may point towards unusual ecological controls of these yet unidentified aerobic degraders, and indicates that competitive niche partitioning between aerobic and anaerobic hydrocarbon degraders in the field is not yet fully understood. These findings demonstrate the potential of catabolic marker gene assays in elaborating the ecology of contaminant plumes, which is a prerequisite for developing integrated monitoring strategies for natural attenuation.
Collapse
Affiliation(s)
- Michael Larentis
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | | | | |
Collapse
|
12
|
Czechowska K, van der Meer JR. Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1201-1208. [PMID: 22175440 DOI: 10.1021/es203352y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.
Collapse
Affiliation(s)
- Kamila Czechowska
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | |
Collapse
|
13
|
Occurrence of plasmids in the aromatic degrading bacterioplankton of the baltic sea. Genes (Basel) 2011; 2:853-68. [PMID: 24710296 PMCID: PMC3927600 DOI: 10.3390/genes2040853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/23/2011] [Accepted: 10/20/2011] [Indexed: 11/21/2022] Open
Abstract
Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly prevalent among bacterial genera Pseudomonas and Acinetobacter. Out of 61 plasmid-containing strains (29% of all isolates), 34 strains were found to carry large plasmids, which could be associated with the biodegradative capabilities of the host bacterial strains. Focusing on the diversity of IncP-9 plasmids, self-transmissible m-toluate (TOL) and salicylate (SAL) plasmids were detected. Sequencing the repA gene of IncP-9 carrying isolates revealed a high diversity within IncP-9 plasmid family, as well as extended the assumed bacterial host species range of the IncP-9 representatives. This study is the first insight into the genetic pool of the IncP-9 catabolic plasmids in the Baltic Sea bacterioplankton.
Collapse
|
14
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
15
|
Czechowska K, van der Meer JR. A flow cytometry based oligotrophic pollutant exposure test to detect bacterial growth inhibition and cell injury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5820-5827. [PMID: 21657560 DOI: 10.1021/es200591v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Collapse
Affiliation(s)
- Kamila Czechowska
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | |
Collapse
|
16
|
Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ. First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 2010; 5:e15399. [PMID: 21079766 PMCID: PMC2974637 DOI: 10.1371/journal.pone.0015399] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.
Collapse
Affiliation(s)
- Olivia U Mason
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Complete nucleotide sequence of TOL plasmid pDK1 provides evidence for evolutionary history of IncP-7 catabolic plasmids. J Bacteriol 2010; 192:4337-47. [PMID: 20581207 DOI: 10.1128/jb.00359-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the mechanisms for structural diversification of Pseudomonas-derived toluene-catabolic (TOL) plasmids, the complete sequence of a self-transmissible plasmid pDK1 with a size of 128,921 bp from Pseudomonas putida HS1 was determined. Comparative analysis revealed that (i) pDK1 consisted of a 75.6-kb IncP-7 plasmid backbone and 53.2-kb accessory gene segments that were bounded by transposon-associated regions, (ii) the genes for conjugative transfer of pDK1 were highly similar to those of MOB(H) group of mobilizable plasmids, and (iii) the toluene-catabolic (xyl) gene clusters of pDK1 were derived through homologous recombination, transposition, and site-specific recombination from the xyl gene clusters homologous to another TOL plasmid, pWW53. The minireplicons of pDK1 and its related IncP-7 plasmids, pWW53 and pCAR1, that contain replication and partition genes were maintained in all of six Pseudomonas strains tested, but not in alpha- or betaproteobacterial strains. The recipient host range of conjugative transfer of pDK1 was, however, limited to two Pseudomonas strains. These results indicate that IncP-7 plasmids are essentially narrow-host-range and self-transmissible plasmids that encode MOB(H) group-related transfer functions and that the host range of IncP-7-specified conjugative transfer was, unlike the situation in other well-known plasmids, narrower than that of its replication.
Collapse
|
18
|
Wang M, Yang G, Min H, Lv Z. A novel nicotine catabolic plasmid pMH1 in Pseudomonas sp. strain HF-1. Can J Microbiol 2009; 55:228-33. [DOI: 10.1139/w08-135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attempts were made to acquire a plasmid-loss mutant via various methods (spontaneous mutation, SDS, and mitomycin C), among which the method involving mitomycin C (10 µg/mL) has been proven successful. Concomitant with the loss of the plasmid in Pseudomonas sp. strain HF-1, the cured derivative was identified as having a nicotine-negative (Nic–) phenotype, named mutant strain 6-13 (Nic–). After plasmids were transferred from strain HF-1 (named plasmid pMH1) to the mutant strain 6-13, the mutant strain acquired nicotine-degrading ability, called 6-13 transformant (Nic+). There were no differences in growth or nicotine-degrading efficiency between strain HF-1 (wild-type strain) and strain 6-13 transformant. After pMH1 was transferred to Escherichia coli strain Top10 (Nic–), a distant relative of Pseudomonas, it also gained nicotine-degrading ability, showing the highest nicotine degradation efficiency at pH 7.0, the optimal pH for growth of E. coli. The hsp gene, which encodes 6-hydroxy-3-succinoylpyridine hydroxylase, is involved in nicotine degradation in Pseudomonas putida strain S16 and was present in pMH1 but not in pAO1, the well-known nicotine degradation plasmid in Arthrobacter nicotinovorans . It was demonstrated that plasmid pMH1 is a novel nicotine-degrading plasmid.
Collapse
Affiliation(s)
- Meizhen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Guiqin Yang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Hang Min
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhenmei Lv
- College of Life Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
19
|
Sevastsyanovich YR, Krasowiak R, Bingle LEH, Haines AS, Sokolov SL, Kosheleva IA, Leuchuk AA, Titok MA, Smalla K, Thomas CM. Diversity of IncP-9 plasmids of Pseudomonas. MICROBIOLOGY (READING, ENGLAND) 2008; 154:2929-2941. [PMID: 18832300 PMCID: PMC2885752 DOI: 10.1099/mic.0.2008/017939-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/30/2008] [Accepted: 06/30/2008] [Indexed: 11/18/2022]
Abstract
IncP-9 plasmids are important vehicles for degradation and resistance genes that contribute to the adaptability of Pseudomonas species in a variety of natural habitats. The three completely sequenced IncP-9 plasmids, pWW0, pDTG1 and NAH7, show extensive homology in replication, partitioning and transfer loci (an approximately 25 kb region) and to a lesser extent in the remaining backbone segments. We used PCR, DNA sequencing, hybridization and phylogenetic analyses to investigate the genetic diversity of 30 IncP-9 plasmids as well as the possibility of recombination between plasmids belonging to this family. Phylogenetic analysis of rep and oriV sequences revealed nine plasmid subgroups with 7-35 % divergence between them. Only one phenotypic character was normally associated with each subgroup, except for the IncP-9beta cluster, which included naphthalene- and toluene-degradation plasmids. The PCR and hybridization analysis using pWW0- and pDTG1-specific primers and probes targeting selected backbone loci showed that members of different IncP-9 subgroups have considerable similarity in their overall organization, supporting the existence of a conserved ancestral IncP-9 sequence. The results suggested that some IncP-9 plasmids are the product of recombination between plasmids of different IncP-9 subgroups but demonstrated clearly that insertion of degradative transposons has occurred on multiple occasions, indicating that association of this phenotype with these plasmids is not simply the result of divergent evolution from a single successful ancestral degradative plasmid.
Collapse
Affiliation(s)
| | - Renata Krasowiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lewis E. H. Bingle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anthony S. Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sergey L. Sokolov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Irina A. Kosheleva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Anastassia A. Leuchuk
- Genetics Department, Biology Faculty, Belarus State University, 6 Kurchatova St, Minsk 220064, Belarus
| | - Marina A. Titok
- Genetics Department, Biology Faculty, Belarus State University, 6 Kurchatova St, Minsk 220064, Belarus
| | - Kornelia Smalla
- Julius Kühn Institute – Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| | | |
Collapse
|
20
|
Amer RA, Nasier MM, El-Helow ER. Biodegradation of Monocyclic Aromatic Hydrocarbons by a Newly Isolated Pseudomonas strain. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/biotech.2008.630.640] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R. Metabolic Diversity in Bacterial Degradation of Aromatic Compounds. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:252-79. [PMID: 17883338 DOI: 10.1089/omi.2007.0004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aromatic compounds pose a major threat to the environment, being mutagenic, carcinogenic, and recalcitrant. Microbes, however, have evolved the ability to utilize these highly reduced and recalcitrant compounds as a potential source of carbon and energy. Aerobic degradation of aromatics is initiated by oxidizing the aromatic ring, making them more susceptible to cleavage by ring-cleaving dioxygenases. A preponderance of aromatic degradation genes on plasmids, transposons, and integrative genetic elements (and their shuffling through horizontal gene transfer) have lead to the evolution of novel aromatic degradative pathways. This enables the microorganisms to utilize a multitude of aromatics via common routes of degradation leading to metabolic diversity. In this review, we emphasize the exquisiteness and relevance of bacterial degradation of aromatics, interlinked degradative pathways, genetic and metabolic regulation, carbon source preference, and biosurfactant production. We have also explored the avenue of metagenomics, which opens doors to a plethora of uncultured and uncharted microbial genetics and metabolism that can be used effectively for bioremediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Biotechnology Group, School of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | | | | | | | | | |
Collapse
|
22
|
Vasudevan N, Bharathi S, Arulazhagan P. Role of plasmid in the degradation of petroleum hydrocarbon by Pseudomonas fluorescens NS1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:1141-6. [PMID: 17616886 DOI: 10.1080/10934520701418649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study the role of plasmid in Pseudomonas fluorescens, isolated from petroleum contaminated soil on hexadecane degradation was assessed. The organism was able to utilize hexadecane as sole carbon source and also reduce surface tension up to 27 mN/m. The organism harboured a plasmid of approximately 1.8 kb. Plasmid curing and transformation of plasmid DNA into E. coli revealed that the plasmid was involved in hexadecane degradation. When compared to P. fluorescens, no significant growth was observed with wild-type E. coli strain. P. fluorescens degraded 95% of hexadecane (0.4% (v/v)) whereas the transformed strain degraded 92% of hexadecane in 120 h, which was almost equivalent to the degradation by P. fluorescens. The wild-type E. coli showed no significant degradation of hexadecane whereas, the plasmid transformed E. coli was able to degrade hexadecane, which indicates the expression of the catabolic genes in the transformed E. coli strain.
Collapse
Affiliation(s)
- N Vasudevan
- Centre for Environmental Studies, Anna University, Chennai, India.
| | | | | |
Collapse
|
23
|
Yano H, Garruto CE, Sota M, Ohtsubo Y, Nagata Y, Zylstra GJ, Williams PA, Tsuda M. Complete Sequence Determination Combined with Analysis of Transposition/Site-specific Recombination Events to Explain Genetic Organization of IncP-7 TOL Plasmid pWW53 and Related Mobile Genetic Elements. J Mol Biol 2007; 369:11-26. [PMID: 17408691 DOI: 10.1016/j.jmb.2007.02.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/19/2022]
Abstract
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.
Collapse
Affiliation(s)
- Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Jussila MM, Zhao J, Suominen L, Lindström K. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:510-24. [PMID: 17000041 DOI: 10.1016/j.envpol.2006.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 05/12/2023]
Abstract
Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids.
Collapse
Affiliation(s)
- Minna M Jussila
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
25
|
Leuchuk AA, Bulyha IM, Izmalkova TY, Sevastyanovich YR, Kosheleva IA, Thomas CM, Titok MA. Nah plasmids of the IncP-9 group in natural Pseudomonas strains. Mol Biol 2006. [DOI: 10.1134/s0026893306050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Bramucci M, Nagarajan V. Bacterial communities in industrial wastewater bioreactors. Curr Opin Microbiol 2006; 9:275-8. [PMID: 16675290 DOI: 10.1016/j.mib.2006.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Wastewater bioreactors have been used to treat domestic and industrial waste for nearly a century. Development of molecular tools such as PCR and DNA microarrays have enabled identification and characterization of some of the microbes in these bioreactors; however, molecular characterization of the microbes is still in its infancy, and only a few of the molecular tools have been applied to improving performance of wastewater bioreactors at the commercial level. Several new plasmids and enzymes have been isolated from wastewater bioreactors. There is enormous opportunity to use the microbes from wastewater for industrial bioprocesses.
Collapse
Affiliation(s)
- Michael Bramucci
- Central Research and Development, DuPont Company, PO Box 80328, Wilmington, DE 19880-0328, USA
| | | |
Collapse
|
27
|
Bramucci M, Chen M, Nagarajan V. Genetic organization of a plasmid from an industrial wastewater bioreactor. Appl Microbiol Biotechnol 2006; 71:67-74. [PMID: 16244860 DOI: 10.1007/s00253-005-0119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/14/2005] [Accepted: 07/24/2005] [Indexed: 11/29/2022]
Abstract
Pseudomonas strain CT14 was isolated from activated sludge. Strain CT14 contained a 55, 216 bp plasmid that was characterized by sequence analysis. The plasmid had a modular structure with 51 open reading frames (ORFs) that were distributed between two clearly demarcated domains. Domain I primarily contained genes for plasmid-related functions and a novel origin of replication. Domain II bore evidence of extensive transposition and recombination. Domain II contained several genes from a meta-cleavage pathway for aromatic rings. These genes appeared to have been recruited from different hosts. This observation suggests that sequencing pCT14 may have revealed an intermediate stage in the evolution of a new assemblage of meta-cleavage pathway genes.
Collapse
Affiliation(s)
- Michael Bramucci
- Central Research and Development, DuPont Company, P.O. Box 80328, Wilmington, DE 19880-0328, USA.
| | | | | |
Collapse
|
28
|
Regeard C, Maillard J, Dufraigne C, Deschavanne P, Holliger C. Indications for acquisition of reductive dehalogenase genes through horizontal gene transfer by Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 2005; 71:2955-61. [PMID: 15932990 PMCID: PMC1151795 DOI: 10.1128/aem.71.6.2955-2961.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genome of Dehalococcoides ethenogenes strain 195, an anaerobic dehalorespiring bacterium, contains 18 copies of putative reductive dehalogenase genes, including the well-characterized tceA gene, whose gene product functions as the key enzyme in the environmentally important dehalorespiration process. The genome of D. ethenogenes was analyzed using a bioinformatic tool based on the frequency of oligonucleotides. The results in the form of a genomic signature revealed several local disruptions of the host signature along the genome sequence. These fractures represent DNA segments of potentially foreign origin, so-called atypical regions, which may have been acquired by an ancestor through horizontal gene transfer. Most interestingly, 15 of the 18 reductive dehalogenase genes, including the tceA gene, were found to be located in these regions, strongly indicating the foreign nature of the dehalorespiration activity. The GC content and the presence of recombinase genes within some of these regions corroborate this hypothesis. A hierarchical classification of the atypical regions containing the reductive dehalogenase genes indicated that these regions were probably acquired by several gene transfer events.
Collapse
Affiliation(s)
- Christophe Regeard
- Swiss Federal Institute of Technology Lausanne (EPFL), ENAC-Laboratory for Environmental Biotechnology, Bātiment CH-B Ecublens, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Hendrickx B, Junca H, Vosahlova J, Lindner A, Rüegg I, Bucheli-Witschel M, Faber F, Egli T, Mau M, Schlömann M, Brennerova M, Brenner V, Pieper DH, Top EM, Dejonghe W, Bastiaens L, Springael D. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. J Microbiol Methods 2005; 64:250-65. [PMID: 15949858 DOI: 10.1016/j.mimet.2005.04.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 04/06/2005] [Accepted: 05/11/2005] [Indexed: 11/20/2022]
Abstract
Eight new primer sets were designed for PCR detection of (i) mono-oxygenase and dioxygenase gene sequences involved in initial attack of bacterial aerobic BTEX degradation and of (ii) catechol 2,3-dioxygenase gene sequences responsible for meta-cleavage of the aromatic ring. The new primer sets allowed detection of the corresponding genotypes in soil with a detection limit of 10(3)-10(4) or 10(5)-10(6) gene copies g(-1) soil, assuming one copy of the gene per cell. The primer sets were used in PCR to assess the distribution of the catabolic genes in BTEX degrading bacterial strains and DNA extracts isolated from soils sampled from different locations and depths (vadose, capillary fringe and saturated zone) within a BTEX contaminated site. In both soil DNA and the isolates, tmoA-, xylM- and xylE1-like genes were the most frequently recovered BTEX catabolic genes. xylM and xylE1 were only recovered from material from the contaminated samples while tmoA was detected in material from both the contaminated and non-contaminated samples. The isolates, mainly obtained from the contaminated locations, belonged to the Actinobacteria or Proteobacteria (mainly Pseudomonas). The ability to degrade benzene was the most common BTEX degradation phenotype among them and its distribution was largely congruent with the distribution of the tmoA-like genotype. The presence of tmoA and xylM genes in phylogenetically distant strains indicated the occurrence of horizontal transfer of BTEX catabolic genes in the aquifer. Overall, these results show spatial variation in the composition of the BTEX degradation genes and hence in the type of BTEX degradation activity and pathway, at the examined site. They indicate that bacteria carrying specific pathways and primarily carrying tmoA/xylM/xylE1 genotypes, are being selected upon BTEX contamination.
Collapse
Affiliation(s)
- Barbara Hendrickx
- Environmental and Process Technology (Vito), Flemish Institute for Technological Research, B-2400 Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shintani M, Yoshida T, Habe H, Omori T, Nojiri H. Large plasmid pCAR2 and class II transposon Tn4676 are functional mobile genetic elements to distribute the carbazole/dioxin-degradative car gene cluster in different bacteria. Appl Microbiol Biotechnol 2004; 67:370-82. [PMID: 15856217 DOI: 10.1007/s00253-004-1778-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 09/10/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The carbazole-catabolic plasmid pCAR1 isolated from Pseudomonas resinovorans strain CA10 was sequenced in its entirety; and it was found that pCAR1 carries the class II transposon Tn4676 containing carbazole-degradative genes. In this study, a new plasmid designated pCAR2 was isolated from P. putida strain HS01 that was a transconjugant from mating between the carbazole-degrader Pseudomonas sp. strain K23 and P. putida strain DS1. Southern hybridization and nucleotide sequence analysis of pCAR1 and pCAR2 revealed that the whole backbone structure was very similar in each. Plasmid pCAR2 was self-transmissible, because it was transferred from strain HS01 to P. fluorescens strain IAM12022 at the frequency of 2 x 10(-7) per recipient cell. After the serial transfer of strain HS01 on rich medium, we detected the transposition of Tn4676 from pCAR2 to the HS01 chromosome. The chromosome-located copy of Tn4676 was flanked by a 6-bp target duplication, 5'-AACATC-3'. These results experimentally demonstrated the transferability of pCAR2 and the functionality of Tn4676 on pCAR2. It was clearly shown that plasmid pCAR2 and transposon Tn4676 are active mobile genetic elements that can mediate the horizontal transfer of genes for the catabolism of carbazole.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
31
|
van Beilen JB, Marín MM, Smits THM, Röthlisberger M, Franchini AG, Witholt B, Rojo F. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 2004; 6:264-73. [PMID: 14871210 DOI: 10.1111/j.1462-2920.2004.00567.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The marine gamma-Proteobacterium Alcanivorax borkumensis is highly specialized in the assimilation of aliphatic hydrocarbons, and makes up a large part of the biomass in oil-polluted marine environments. In addition to the previously identified alkane hydroxylase AlkB1, a second alkane hydroxylase (AlkB2) showing 65% identity to the Pseudomonas aeruginosa AlkB2 alkane hydroxylase was identified. Unlike alkB1, alkB2 is not flanked by genes involved in alkane metabolism. Heterologous expression of the A. borkumensis AP1 alkB1 and alkB2 genes showed that they encode functional alkane hydroxylases with substrate ranges similar to those of their P. putida and P. aeruginosa homologues. The transcription initiation sites and levels of the alkB1, alkB2 and alkS mRNA transcripts were determined. Expression of both alkB1 and alkB2 was induced by alkanes, but transcripts corresponding to alkB1 were much more abundant than those of alkB2. An inverted repeat similar to the binding site for the P. putida GPo1 transcriptional activator AlkS was present upstream of the promoters for alkB1 and alkB2, although that of alkB2 was less well conserved, and only the transcriptional fusion of promoter PalkB1 to the reporter gene lacZ efficiently responded to n-octane. Contrary to what has been found for the P. putida GPo1 alkane degradation pathway, expression of the A. borkumensis AP1 alkS gene was not induced by alkanes, and an AlkS binding site was not present upstream of the promoter for alkS. This indicates that, in spite of the clear similarities, the A. borkumensis alk-genes are regulated by a strategy different from that of the P. putida GPo1 alk genes.
Collapse
MESH Headings
- Alkanes/metabolism
- Artificial Gene Fusion
- Biodegradation, Environmental
- Cloning, Molecular
- Cytochrome P-450 CYP4A/genetics
- Cytochrome P-450 CYP4A/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Reporter
- Halomonadaceae/enzymology
- Halomonadaceae/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- Pseudomonas/genetics
- Pseudomonas/growth & development
- Pseudomonas/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology
- Substrate Specificity
- Transcription Initiation Site
- Water Pollution, Chemical
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Jan B van Beilen
- Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 2003; 14:262-9. [PMID: 12849778 DOI: 10.1016/s0958-1669(03)00066-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.
Collapse
Affiliation(s)
- Eva M Top
- Department of Biological Sciences, 347 Life Sciences Building South, University of Idaho, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
33
|
Ferrero M, Llobet-Brossa E, Lalucat J, García-Valdés E, Rosselló-Mora R, Bosch R. Coexistence of two distinct copies of naphthalene degradation genes in Pseudomonas strains isolated from the western Mediterranean region. Appl Environ Microbiol 2002; 68:957-62. [PMID: 11823244 PMCID: PMC126682 DOI: 10.1128/aem.68.2.957-962.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the occurrence of the naphthalene degradation upper-pathway (nah) genes in the western Mediterranean region. The amplification, restriction, and sequence analysis of internal fragments for several nah genes (nahAc, nahB, nahC, and nahE) from naphthalene-degrading strains isolated from this geographical area proved the coexistence of two distinct sets of nah genes.
Collapse
Affiliation(s)
- Marcela Ferrero
- Departament de Biologia, Microbiologia, Universitat de les Illes Balears, and Institut Mediterrani d'Estudis Avançats (CSIC-UIB), Carretera Valldemossa, E-07071 Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Tsuda M, Genka H. Identification and characterization of Tn4656, a novel class II transposon carrying a set of toluene-degrading genes from TOL plasmid pWW53. J Bacteriol 2001; 183:6215-24. [PMID: 11591664 PMCID: PMC100100 DOI: 10.1128/jb.183.21.6215-6224.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been reported that the toluene-degrading (xyl) genes from Pseudomonas putida plasmid pWW53 are able to translocate to broad-host-range drug resistance plasmid RP4, and pWW53-4 is one of the smallest RP4 derivatives (H. Keil, S. Keil, R. W. Pickup, and P. A. Williams, J. Bacteriol. 164:887-895, 1985). Our investigation of pWW53-4 in this study demonstrated that such a translocated region that is 39 kb long is a transposon. This mobile element, Tn4656, was classified as a class II transposon since its transposition occurred by a two-step process: transposase (TnpA)-mediated formation of the cointegrate and resolvase (TnpR)-mediated site-specific resolution of the cointegrate at the two copies of the res site. The Tn4656 TnpA and TnpR functions encoded in the rightmost 4-kb region were found to be exchangeable with those specified by other Tn1721-related class II transposons, including another toluene transposon, Tn4653. Sequence analysis of the transposition-related genes and sites of Tn4656 also supported the hypothesis that this transposon is closely related to the Tn1721-related transposons. The lower transposition frequency of Tn4656 has been suggested to be due to the unique nucleotide sequence of one of the terminal 39-bp inverted repeats.
Collapse
Affiliation(s)
- M Tsuda
- Department of Environmental Life Science, Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan.
| | | |
Collapse
|