1
|
Diaz-Mateus MA, Salgar-Chaparro SJ, Tarazona J, Farhat H. Exploring the influence of deposit mineral composition on biofilm communities in oil and gas systems. Front Microbiol 2024; 15:1438806. [PMID: 39139372 PMCID: PMC11319257 DOI: 10.3389/fmicb.2024.1438806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Inside oil and gas pipelines, native microbial communities and different solid compounds typically coexist and form mixed deposits. However, interactions between these deposits (primarily consisting of mineral phases) and microorganisms in oil and gas systems remain poorly understood. Here, we investigated the influence of magnetite (Fe3O4), troilite (FeS), and silica (SiO2) on the microbial diversity, cell viability, biofilm formation, and EPS composition of an oil-recovered multispecies consortium. Methods An oilfield-recovered microbial consortium was grown for 2 weeks in separate bioreactors, each containing 10 g of commercially available magnetite (Fe3O4), troilite (FeS), or silica (SiO2) at 40°C ± 1°C under a gas atmosphere of 20% CO2/80% N2. Results The microbial population formed in troilite significantly differed from those in silica and magnetite, which exhibited significant similarities. The dominant taxa in troilite was the Dethiosulfovibrio genus, whereas Sulfurospirillum dominated in magnetite and silica. Nevertheless, biofilm formation was lowest on troilite and highest on silica, correlating with the observed cell viability. Discussion The dissolution of troilite followed by the liberation of HS- (H2S) and Fe2+ into the test solution, along with its larger particle size compared to silica, likely contributed to the observed results. Confocal laser scanning microscopy revealed that the EPS of the biofilm formed in silica was dominated by eDNA, while those in troilite and magnetite primarily contained polysaccharides. Although the mechanisms of this phenomenon could not be determined, these findings are anticipated to be particularly valuable for enhancing MIC mitigation strategies currently used in oil and gas systems.
Collapse
Affiliation(s)
- Maria A. Diaz-Mateus
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin Corrosion Centre, Curtin University, Bentley, WA, Australia
| | - Silvia J. Salgar-Chaparro
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin Corrosion Centre, Curtin University, Bentley, WA, Australia
| | - Johanna Tarazona
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin Corrosion Centre, Curtin University, Bentley, WA, Australia
| | - Hanan Farhat
- Qatar Environment and Energy Research Institute (QEERI), Doha, Qatar
| |
Collapse
|
2
|
Cai M, Wang B, Han J, Yang J, Zhang X, Guan X, Jiang H. Microbial difference and its influencing factors in ice-covered lakes on the three poles. ENVIRONMENTAL RESEARCH 2024; 252:118753. [PMID: 38527718 DOI: 10.1016/j.envres.2024.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Most lakes in the world are permanently or seasonally covered with ice. However, little is known about the distribution of microbes and their influencing factors in ice-covered lakes worldwide. Here we analyzed the microbial community composition in the waters of 14 ice-covered lakes in the Hoh Xil region of northern Qing-Tibetan Plateau (QTP), and conducted a meta-analysis by integrating published microbial community data of ice-covered lakes in the tripolar regions (the Arctic, Antarctica and QTP). The results showed that there were significant differences in microbial diversity, community composition and distribution patterns in the ice-covered tripolar lakes. Microbial diversity and richness were lower in the ice-covered QTP lakes (including the studied lakes in the Hoh Xil region) than those in the Arctic and Antarctica. In the ice-covered lakes of Hoh Xil, prokaryotes are mainly involved in S-metabolic processes, making them more adaptable to extreme environmental conditions. In contrast, prokaryotes in the ice-covered lakes of the Arctic and Antarctica were predominantly involved in carbon/nitrogen metabolic processes. Deterministic (salinity and nutrients) and stochastic processes (dispersal limitation, homogenizing dispersal and drift) jointly determine the geographical distribution patterns of microorganisms in ice-covered lakes, with stochastic processes dominating. These results expand the understanding of microbial diversity, distribution patterns, and metabolic processes in polar ice-covered lakes.
Collapse
Affiliation(s)
- Min Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jibin Han
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiying Zhang
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
3
|
Srivastava A, De Corte D, Garcia JAL, Swan BK, Stepanauskas R, Herndl GJ, Sintes E. Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses. MICROBIOME 2023; 11:239. [PMID: 37925458 PMCID: PMC10625248 DOI: 10.1186/s40168-023-01688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. METHODS Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic and incubated in the dark at in situ temperature unamended, amended with 1 µM thiosulfate, or with 1 µM thiosulfate plus 10 µM glucose and 10 µM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h and 72 h of incubation. RESULTS Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communities was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria (Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoalteromonas sp.). CONCLUSIONS The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy production via sulfur oxidation and coupled to CO2 fixation pathways coincided with the change in the transcriptional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean. Video Abstract.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| | - Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
- Currently at Ocean Technology and Engineering Department, National Oceanography Centre, Southampton, UK
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Informatics, INS La Ferreria, 08110, Montcada i Reixach, Spain
| | - Brandon K Swan
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Eva Sintes
- Ecosystem Oceanography Group (GRECO), Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Baleares, Palma, Spain.
| |
Collapse
|
4
|
Gusmão ACB, Peres FV, Paula FS, Pellizari VH, Kolm HE, Signori CN. Microbial communities in the deep-sea sediments of the South São Paulo Plateau, Southwestern Atlantic Ocean. Int Microbiol 2023; 26:1041-1051. [PMID: 37093322 DOI: 10.1007/s10123-023-00358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Microbial communities play a key role in the ocean, acting as primary producers, nutrient recyclers, and energy providers. The São Paulo Plateau is a region located on the southeastern coast of Brazil within economic importance, due to its oil and gas reservoirs. With this focus, this study examined the diversity and composition of microbial communities in marine sediments located at three oceanographic stations in the southern region of São Paulo Plateau using the HOV Shinkai 6500 in 2013. The 16S rRNA gene was sequenced using the universal primers (515F and 926R) by the Illumina Miseq platform. The taxonomic compositions of samples recovered from SP3 station were markedly distinct from those obtained from SP1 and SP2. Although all three stations exhibited a high abundance of Gammaproteobacteria (> 15%), this taxon dominated more than 90% of composition of the A and C sediment layers at SP3. The highest abundance of the archaeal class Nitrososphaeria was presented at SP1, mainly at layer C (~ 21%), being absent at SP3 station. The prediction of chemoheterotrophy and fermentation as important microbial functions was supported by the data. Additionally, other metabolic pathways related to the cycles of nitrogen, carbon and sulfur were also predicted. The core microbiome analysis comprised only two ASVs. Our study contributes to a better understanding of microbial communities in an economically important little-explored region. This is the third microbiological survey in plateau sediments and the first focused on the southern region.
Collapse
Affiliation(s)
- Ana Carolina Bercini Gusmão
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil.
| | - Francielli Vilela Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| | - Hedda Elisabeth Kolm
- Department of Oceanography, Center for Marine Studies, Federal University of Paraná, Pontal do Paraná, Brazil
| | - Camila Negrão Signori
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça Do Oceanográfico, 191. CEP: 05508-120, São Paulo, Brazil
| |
Collapse
|
5
|
Ding W, Wang S, Qin P, Fan S, Su X, Cai P, Lu J, Cui H, Wang M, Shu Y, Wang Y, Fu HH, Zhang YZ, Li YX, Zhang W. Anaerobic thiosulfate oxidation by the Roseobacter group is prevalent in marine biofilms. Nat Commun 2023; 14:2033. [PMID: 37041201 PMCID: PMC10090131 DOI: 10.1038/s41467-023-37759-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Thiosulfate oxidation by microbes has a major impact on global sulfur cycling. Here, we provide evidence that bacteria within various Roseobacter lineages are important for thiosulfate oxidation in marine biofilms. We isolate and sequence the genomes of 54 biofilm-associated Roseobacter strains, finding conserved sox gene clusters for thiosulfate oxidation and plasmids, pointing to a niche-specific lifestyle. Analysis of global ocean metagenomic data suggests that Roseobacter strains are abundant in biofilms and mats on various substrates, including stones, artificial surfaces, plant roots, and hydrothermal vent chimneys. Metatranscriptomic analysis indicates that the majority of active sox genes in biofilms belong to Roseobacter strains. Furthermore, we show that Roseobacter strains can grow and oxidize thiosulfate to sulfate under both aerobic and anaerobic conditions. Transcriptomic and membrane proteomic analyses of biofilms formed by a representative strain indicate that thiosulfate induces sox gene expression and alterations in cell membrane protein composition, and promotes biofilm formation and anaerobic respiration. We propose that bacteria of the Roseobacter group are major thiosulfate-oxidizers in marine biofilms, where anaerobic thiosulfate metabolism is preferred.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Shougang Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Peng Qin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Shen Fan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Su
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China
| | - Jie Lu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Han Cui
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yi Shu
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yongming Wang
- College of Marine Life Sciences and MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Hui-Hui Fu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
| | - Weipeng Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
6
|
Rangamaran VR, Sankara Subramanian SH, Balachandran KRS, Gopal D. Vertical Microbial Profiling of Arabian Sea Oxygen Minimal Zone Reveals Complex Bacterial Communities and Distinct Functional Implications. MICROBIAL ECOLOGY 2023; 85:357-371. [PMID: 35195736 DOI: 10.1007/s00248-021-01952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arabian Sea harbours one of the largest oxygen minimal zones (OMZs) among the global oceans wherein biogeochemical cycles are regulated through dominant and complex microbial processes. The present study investigated the bacterial communities at various depths of the Arabian Sea OMZ using high-throughput sequencing of the v3-v4 hyper variable region of 16S rRNA gene. A total of 10 samples which included water samples from 8 different depths and 2 sediment samples were analyzed in this study. About 2.7 million sequences were obtained from all the samples. The sequence analysis revealed high bacterial diversity at deep waters and sediment samples and comparatively less species richness at the core OMZ depths. Number of OTUs ranged from 114 to 14441.Taxonomic assignments of the obtained OTUs showed dominant presence of Proteobacteria, Bacteriodetes, and Chloroflexi across all the samples. The identified OTUs were further affiliated to the phyla Marinimicrobia, Colwellia, Nitrospina, Tepidicaulis, Shewanella, Pseudoalteromonas, Woeseia at various depths along the water column. Correlation with abiotic factors suggested distinct variation in bacterial community composition with change in depth and dissolved oxygen (DO) levels. Predictive functional annotation based on bacterial phylotypes suggested presence of active nitrogen, sulphur, carbon, and methane metabolic cycles along the vertical transect of the studied region. Presence of nitrogen reduction bacterial group below the core OMZ depths may potentially provide insight into the expansion of OMZ region in Arabian Sea. Functional profiling further revealed presence of genes related to xenobiotic degradation in the water and sediment samples indicating a potential hotspot for bio-prospection.
Collapse
Affiliation(s)
- Vijaya Raghavan Rangamaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India.
| | - Sai H Sankara Subramanian
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Karpaga Raja Sundari Balachandran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - Dharani Gopal
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India.
| |
Collapse
|
7
|
Qing C, Nicol A, Li P, Planer-Friedrich B, Yuan C, Kou Z. Different sulfide to arsenic ratios driving arsenic speciation and microbial community interactions in two alkaline hot springs. ENVIRONMENTAL RESEARCH 2023; 218:115033. [PMID: 36502897 DOI: 10.1016/j.envres.2022.115033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 μg/L and 12,700 μg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.
Collapse
Affiliation(s)
- Chun Qing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Alan Nicol
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440, Bayreuth, Germany.
| | - Changguo Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| | - Zhu Kou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, Hubei, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, 430074, Wuhan, Hubei, PR China.
| |
Collapse
|
8
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
9
|
Bergen N, Krämer P, Romberg J, Wichels A, Gerlach G, Brinkhoff T. Shell Disease Syndrome Is Associated with Reduced and Shifted Epibacterial Diversity on the Carapace of the Crustacean Cancer pagurus. Microbiol Spectr 2022; 10:e0341922. [PMID: 36342282 PMCID: PMC9769784 DOI: 10.1128/spectrum.03419-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer pagurus is highly susceptible to shell disease syndrome. However, little is known about concomitant changes in the epibacterial community. We compared the bacterial communities of black spot affected and nonaffected areas of the carapace by amplicon sequencing of 16S rRNA genes and 16S rRNA. Within each spot, bacterial communities of affected areas were less diverse compared to communities from nonaffected areas. Communities of different affected spots were, however, more divergent from each other, compared to those of different nonaffected areas. This indicates a reduced and shifted microbial community composition caused by the black spot disease. Different communities found in black spots likely indicate different stages of the disease. In affected areas, Flavobacteriaceae rose to one of the most abundant and active families due to the increase of Aquimarina spp., suggesting a significant role in shell disease syndrome. We isolated 75 bacterial strains from diseased and healthy areas, which are primarily affiliated with Proteobacteria and Bacteroidetes, reflecting the dominant phyla detected by amplicon sequencing. The ability to degrade chitin was mainly found for Gammaproteobacteria and Aquimarina spp. within the Flavobacteriia, while the ability to use N-acetylglucosamine, the monomer of the polysaccharide chitin, was observed for most isolates, including many Alphaproteobacteria. One-third of the isolates, including most Aquimarina spp., showed antagonistic properties, indicating a high potential for interactions between the bacterial populations. The combination of bacterial community analysis and the physiological properties of the isolates provided insights into a functional complex epibacterial community on the carapace of C. pagurus. IMPORTANCE In recent years, shell disease syndrome has been detected for several ecologically and economically important crustacean species. Large proportions of populations are affected, e.g., >60% of the widely distributed species Cancer pagurus in different North Sea areas. Bacteria play a significant role in the development of different forms of shell disease, all characterized by microbial chitinolytic degradation of the outer shell. By comparing the bacterial communities of healthy and diseased areas of the shell of C. pagurus, we demonstrated that the disease causes a reduced bacterial diversity within affected areas, a phenomenon co-occurring also with many other diseases. Furthermore, the community composition dramatically changed with some taxa rising to high relative abundances and showing increased activity, indicating strong participation in shell disease. Characterization of bacterial isolates obtained from affected and nonaffected spots provided deeper insights into their physiological properties and thus the possible role within the microbiome.
Collapse
Affiliation(s)
- Nils Bergen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Philipp Krämer
- Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
| | - Julia Romberg
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Antje Wichels
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Gabriele Gerlach
- Institute for Biology and Environmental Science, University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Wei M, Zeng X, Han X, Shao Z, Xie Q, Dong C, Wang Y, Qiu Z. Potential autotrophic carbon-fixer and Fe(II)-oxidizer Alcanivorax sp. MM125-6 isolated from Wocan hydrothermal field. Front Microbiol 2022; 13:930601. [PMID: 36316996 PMCID: PMC9616709 DOI: 10.3389/fmicb.2022.930601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/09/2022] [Indexed: 12/02/2022] Open
Abstract
The genus Alcanivorax is common in various marine environments, including in hydrothermal fields. They were previously recognized as obligate hydrocarbonoclastic bacteria, but their potential for autotrophic carbon fixation and Fe(II)-oxidation remains largely elusive. In this study, an in situ enrichment experiment was performed using a hydrothermal massive sulfide slab deployed 300 m away from the Wocan hydrothermal vent. Furthermore, the biofilms on the surface of the slab were used as an inoculum, with hydrothermal massive sulfide powder from the same vent as an energy source, to enrich the potential iron oxidizer in the laboratory. Three dominant bacterial families, Alcanivoraceae, Pseudomonadaceae, and Rhizobiaceae, were enriched in the medium with hydrothermal massive sulfides. Subsequently, strain Alcanivorax sp. MM125-6 was isolated from the enrichment culture. It belongs to the genus Alcanivorax and is closely related to Alcanivorax profundimaris ST75FaO-1 T (98.9% sequence similarity) indicated by a phylogenetic analysis based on 16S rRNA gene sequences. Autotrophic growth experiments on strain MM125-6 revealed that the cell concentrations were increased from an initial 7.5 × 105 cells/ml to 3.13 × 108 cells/ml after 10 days, and that the δ13C VPDB in the cell biomass was also increased from 234.25‰ on day 2 to gradually 345.66 ‰ on day 10. The gradient tube incubation showed that bands of iron oxides and cells formed approximately 1 and 1.5 cm, respectively, below the air-agarose medium interface. In addition, the SEM-EDS data demonstrated that it can also secrete acidic exopolysaccharides and adhere to the surface of sulfide minerals to oxidize Fe(II) with NaHCO3 as the sole carbon source, which accelerates hydrothermal massive sulfide dissolution. These results support the conclusion that strain MM125-6 is capable of autotrophic carbon fixation and Fe(II) oxidization chemoautotrophically. This study expands our understanding of the metabolic versatility of the Alcanivorax genus as well as their important role(s) in coupling hydrothermal massive sulfide weathering and iron and carbon cycles in hydrothermal fields.
Collapse
Affiliation(s)
- Mingcong Wei
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiqiu Han
- Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Qian Xie
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanqi Dong
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
11
|
Chaudhary S, Dhanker R, Singh K, Brar B, Goyal S. Characterization of Sulfur Oxidizing Bacteria isolated from Mustard (
Brassica juncea
L.) rhizosphere having capability of improving Sulfur and Nitrogen uptake. J Appl Microbiol 2022; 133:2814-2825. [DOI: 10.1111/jam.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Chaudhary
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Rinku Dhanker
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Kuldeep Singh
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Basanti Brar
- Department of ABT Lala Lajpat Rai University of Veterinary and Animal Science Hisar Haryana India
| | - Sneh Goyal
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
12
|
Ferchiou S, Caza F, de Boissel PGJ, Villemur R, St-Pierre Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME COMMUNICATIONS 2022; 2:61. [PMID: 37938655 PMCID: PMC9723566 DOI: 10.1038/s43705-022-00145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 10/04/2023]
Abstract
Liquid biopsy (LB) is a concept that is rapidly gaining ground in the biomedical field. Its concept is largely based on the detection of circulating cell-free DNA (ccfDNA) fragments that are mostly released as small fragments following cell death in various tissues. A small percentage of these fragments are from foreign (nonself) tissues or organisms. In the present work, we applied this concept to mussels, a sentinel species known for its high filtration capacity of seawater. We exploited the capacity of mussels to be used as natural filters to capture environmental DNA fragments of different origins to provide information on the biodiversity of marine coastal ecosystems. Our results showed that hemolymph of mussels contains DNA fragments that varied considerably in size, ranging from 1 to 5 kb. Shotgun sequencing revealed that a significant amount of DNA fragments had a nonself microbial origin. Among these, we found DNA fragments derived from bacteria, archaea, and viruses, including viruses known to infect a variety of hosts that commonly populate coastal marine ecosystems. Taken together, our study shows that the concept of LB applied to mussels provides a rich and yet unexplored source of knowledge regarding the microbial biodiversity of a marine coastal ecosystem.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
13
|
Jia T, Zhang L, Zhao Q, Peng Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128638. [PMID: 35306408 DOI: 10.1016/j.jhazmat.2022.128638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Biofilm growth affects the oxygen transfer in biofilm and thus the oxidation pathway of sulfur and the synergy of microorganisms. In this study, the effect of biofilm growth on the oxidation pathway of H2S and the synergy of microorganisms in desulfurization reactors under different pH conditions was first discussed to enhance the understanding of desulfurization process. A biotrickling filter (BTF) was operated for 168 days under acidic condition (pH<4.7) and 32 days under alkaline condition (7.0 <pH<10.2). In acidic period, the average growth mass (AGM) of biofilm was 0.04 g/L-BTF/d, and most of S-H2S was converted to S-SO42- (>89.0%). In alkaline period, the AGM raised to 0.97 g/L-BTF/d, and 77.0% of S-H2S was transferred to elemental sulfur (S0) and polysulfanes (R-Sx-R) accumulated in biofilm. The increase of biofilm and sulfur-oxidizing bacteria activity limited the oxygen transfer in alkaline biofilm, leading to the accumulation of S0 and the emergence of an obligate anaerobe- Acetoanaerobium (8.1%). The formation of R-Sx-R may be due to the reaction of S0 with thiols produced by a thiol-producing bacterium- Pseudomonas (6.7%). The uneven distribution of oxygen in biofilm caused by biofilm growth complicated the transfer pathway of sulfur and the synergy of microorganisms in desulfurization system.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Stasik S, Schmidt J, Wendt-Potthoff K. High Potential for Anaerobic Microbial Sulfur Oxidation in Oil Sands Tailings Ponds. Microorganisms 2021; 9:2529. [PMID: 34946130 PMCID: PMC8706365 DOI: 10.3390/microorganisms9122529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The biogenic production of toxic H2S gas in sulfate-rich oil sands tailings ponds is associated with strong environmental concerns. Beside precipitation into sulfide minerals and chemical re-oxidation, microbial sulfur oxidation may catalyze sulfide re-cycling but potentially contributes to acid rock drainage (ARD) generation. To evaluate the microbial potential for sulfur oxidation, we conducted a microcosm-based pilot study with tailings of an active pond. Incubations were performed under oxic and anoxic conditions, with and without KNO3 as an electron acceptor and thiosulfate as a common substrate for microbial sulfur oxidation. The highest potentials of sulfur oxidation occurred in oxic assays (1.21 mmol L-1 day-1). Under anoxic conditions, rates were significantly lower and dominated by chemical transformation (0.09 mmol L-1 day-1; p < 0.0001). The addition of KNO3 to anoxic incubations increased microbial thiosulfate oxidation 2.5-fold (0.23 mmol L-1 day-1; p = 0.0474), with complete transformation to SO42- coupled to NO3- consumption, pointing to the activity of sulfur-oxidizing bacteria (SOB) under nitrate-reducing conditions. Importantly, in the presence of KNO3, a decrease in sedimentary sulfides was associated with an increase in S0, which indicates the potential for microbially mediated oxidation of sulfide minerals and ARD generation. Furthermore, the comparative analysis of sediments from other anthropogenic aquatic habitats demonstrated high similarities with respect to viable SOB counts and corresponding activity rates.
Collapse
Affiliation(s)
| | | | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (S.S.); (J.S.)
| |
Collapse
|
15
|
Cockell CS, Schaefer B, Wuchter C, Coolen MJL, Grice K, Schnieders L, Morgan JV, Gulick SPS, Wittmann A, Lofi J, Christeson GL, Kring DA, Whalen MT, Bralower TJ, Osinski GR, Claeys P, Kaskes P, de Graaff SJ, Déhais T, Goderis S, Hernandez Becerra N, Nixon S. Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Front Microbiol 2021; 12:668240. [PMID: 34248877 PMCID: PMC8264514 DOI: 10.3389/fmicb.2021.668240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023] Open
Abstract
We report on the effect of the end-Cretaceous impact event on the present-day deep microbial biosphere at the impact site. IODP-ICDP Expedition 364 drilled into the peak ring of the Chicxulub crater, México, allowing us to investigate the microbial communities within this structure. Increased cell biomass was found in the impact suevite, which was deposited within the first few hours of the Cenozoic, demonstrating that the impact produced a new lithological horizon that caused a long-term improvement in deep subsurface colonization potential. In the biologically impoverished granitic rocks, we observed increased cell abundances at impact-induced geological interfaces, that can be attributed to the nutritionally diverse substrates and/or elevated fluid flow. 16S rRNA gene amplicon sequencing revealed taxonomically distinct microbial communities in each crater lithology. These observations show that the impact caused geological deformation that continues to shape the deep subsurface biosphere at Chicxulub in the present day.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Bettina Schaefer
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Cornelia Wuchter
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Marco J L Coolen
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Kliti Grice
- WA-Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Bentley, WA, Australia
| | - Luzie Schnieders
- MARUM-Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Joanna V Morgan
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Sean P S Gulick
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States.,Center for Planetary Systems Habitability, University of Texas at Austin, Austin, TX, United States
| | - Axel Wittmann
- Arizona State University, Eyring Materials Center, Tempe, AZ, United States
| | - Johanna Lofi
- Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Gail L Christeson
- Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX, United States
| | - David A Kring
- Lunar and Planetary Institute, Houston, TX, United States
| | - Michael T Whalen
- Department of Geosciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Timothy J Bralower
- Department of Geosciences, Pennsylvania State University, University Park, PA, United States
| | - Gordon R Osinski
- Institute for Earth and Space Exploration and Department of Earth Sciences, University of Western Ontario, London, ON, Canada
| | - Philippe Claeys
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pim Kaskes
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sietze J de Graaff
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Déhais
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Goderis
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natali Hernandez Becerra
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | - Sophie Nixon
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, IN, United States
| | | |
Collapse
|
16
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
17
|
Osman JR, Cardon H, Montagnac G, Picard A, Daniel I. Pressure effects on sulfur-oxidizing activity of Thiobacillus thioparus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:169-175. [PMID: 33421329 PMCID: PMC7986089 DOI: 10.1111/1758-2229.12922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Carbon capture and storage technologies are crucial for reducing carbon emission from power plants as a response to global climate change. The CarbFix project (Iceland) aims at examining the geochemical response of injected CO2 into subsurface reservoirs. The potential role of the subsurface biosphere has been little investigated up to now. Here, we used Thiobacillus thioparus that became abundant at the CarbFix1 pilot site after injection of CO2 and purified geothermal gases in basaltic aquifer at 400-800 m depth (4-8 MPa). The capacity of T. thioparus to produce sulfate, through oxidation of thiosulfate, was measured by Raman spectroscopy as a function of pressure up to 10 MPa. The results show that the growth and metabolic activity of T. thioparus are influenced by the initial concentration of the electron donor thiosulfate. It grows best at low initial concentration of thiosulfate (here 5 g.l-1 or 31.6 mM) and best oxidizes thiosulfate into sulfate at 0.1 MPa with a yield of 14.7 ± 0.5%. Sulfur oxidation stops at 4.3 ± 0.1 MPa (43 bar). This autotrophic specie can thereby react to CO2 and H2 S injection down to 430 m depth and may contribute to induced biogeochemical cycles during subsurface energy operations.
Collapse
Affiliation(s)
- Jorge R. Osman
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Hervé Cardon
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Gilles Montagnac
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| | - Aude Picard
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
- School of Life SciencesUniversity of Nevada, Las Vegas, 4505 S. Maryland ParkwayLas VegasNV89154‐4004USA
| | - Isabelle Daniel
- Univ Lyon, Université Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL‐TPEVilleurbanneF‐69622France
| |
Collapse
|
18
|
Wang L, Shao Z. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front Microbiol 2021; 12:652766. [PMID: 33815342 PMCID: PMC8014003 DOI: 10.3389/fmicb.2021.652766] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the "H. desiderata group." To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the "H. desiderata group," in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the "H. desiderata group," while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.
Collapse
Affiliation(s)
- Liping Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
19
|
Leprich DJ, Flood BE, Schroedl PR, Ricci E, Marlow JJ, Girguis PR, Bailey JV. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps. ISME JOURNAL 2021; 15:2043-2056. [PMID: 33574572 PMCID: PMC8245480 DOI: 10.1038/s41396-021-00903-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023]
Abstract
Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO3 • cm−2 • yr−1, respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.
Collapse
Affiliation(s)
- Dalton J Leprich
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| | - Beverly E Flood
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Peter R Schroedl
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Elizabeth Ricci
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Jeffery J Marlow
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jake V Bailey
- Department of Earth and Environmental Sciences, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Borchert E, García-Moyano A, Sanchez-Carrillo S, Dahlgren TG, Slaby BM, Bjerga GEK, Ferrer M, Franzenburg S, Hentschel U. Deciphering a Marine Bone-Degrading Microbiome Reveals a Complex Community Effort. mSystems 2021; 6:e01218-20. [PMID: 33563781 PMCID: PMC7883544 DOI: 10.1128/msystems.01218-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
The marine bone biome is a complex assemblage of macro- and microorganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic collagen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source. Bovine and turkey bones were deposited at 69 m depth in a Norwegian fjord (Byfjorden, Bergen). Metagenomic sequence analysis was used to assess the functional potential of microbial assemblages from bone surface and the bone-eating worm Osedax mucofloris, which is a frequent colonizer of whale falls and known to degrade bone. The bone microbiome displayed a surprising taxonomic diversity revealed by the examination of 59 high-quality metagenome-assembled genomes from at least 23 bacterial families. Over 700 genes encoding enzymes from 12 relevant enzymatic families pertaining to collagenases, peptidases, and glycosidases putatively involved in bone degradation were identified. Metagenome-assembled genomes (MAGs) of the class Bacteroidia contained the most diverse gene repertoires. We postulate that demineralization of inorganic bone components is achieved by a timely succession of a closed sulfur biogeochemical cycle between sulfur-oxidizing and sulfur-reducing bacteria, causing a drop in pH and subsequent enzymatic processing of organic components in the bone surface communities. An unusually large and novel collagen utilization gene cluster was retrieved from one genome belonging to the gammaproteobacterial genus Colwellia IMPORTANCE Bones are an underexploited, yet potentially profitable feedstock for biotechnological advances and value chains, due to the sheer amounts of residues produced by the modern meat and poultry processing industry. In this metagenomic study, we decipher the microbial pathways and enzymes that we postulate to be involved in bone degradation in the marine environment. We here demonstrate the interplay between different bacterial community members, each supplying different enzymatic functions with the potential to cover an array of reactions relating to the degradation of bone matrix components. We identify and describe a novel gene cluster for collagen utilization, which is a key function in this unique environment. We propose that the interplay between the different microbial taxa is necessary to achieve the complex task of bone degradation in the marine environment.
Collapse
Affiliation(s)
- Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | | | | | - Thomas G Dahlgren
- NORCE Norwegian Research Centre, Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Beate M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
| | | | | | - Sören Franzenburg
- IKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, Kiel, Germany
- Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
21
|
The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate. Appl Environ Microbiol 2020; 86:AEM.01835-20. [PMID: 32917752 DOI: 10.1128/aem.01835-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Heterotrophic bacteria actively participate in the biogeochemical cycle of sulfur on Earth. The heterotrophic bacterium Cupriavidus pinatubonensis JMP134 contains several enzymes involved in sulfur oxidation, but how these enzymes work together to oxidize sulfide in the bacterium has not been studied. Using gene-deletion and whole-cell assays, we determined that the bacterium uses sulfide:quinone oxidoreductase to oxidize sulfide to polysulfide, which is further oxidized to sulfite by persulfide dioxygenase. Sulfite spontaneously reacts with polysulfide to produce thiosulfate. The sulfur-oxidizing (Sox) system oxidizes thiosulfate to sulfate. Flavocytochrome c sulfide dehydrogenase enhances thiosulfate oxidation by the Sox system but couples with the Sox system for sulfide oxidation to sulfate in the absence of sulfide:quinone oxidoreductase. Thus, C. pinatubonensis JMP134 contains a main pathway and a contingent pathway for sulfide oxidation.IMPORTANCE We establish a new pathway of sulfide oxidation with thiosulfate as a key intermediate in Cupriavidus pinatubonensis JMP134. The bacterium mainly oxidizes sulfide by using sulfide:quinone oxidoreductase, persulfide dioxygenase, and the Sox system with thiosulfate as a key intermediate. Although the purified and reconstituted Sox system oxidizes sulfide, its rate of sulfide oxidation in C. pinatubonensis JMP134 is too low to be physiologically relevant. The findings reveal how these sulfur-oxidizing enzymes participate in sulfide oxidation in a single bacterium.
Collapse
|
22
|
Amala PV, Sumithra TG, Reshma KJ, Anju F, Subramannian S, Vijayagopal P. Analytical validation of a modified turbidimetric assay to screen sulphur oxidizing bacteria. J Microbiol Methods 2020; 176:105998. [PMID: 32649967 DOI: 10.1016/j.mimet.2020.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Conventional turbidimetric assay for sulphate determination was modified to 100 times lesser reaction volume on a convenient format using microtitre plate based platform, targeting routine microbiological applications to screen sulphur oxidizing bacteria (SOB) cultures. The modified assay was linear up to 1500 mg/L of sulphate concentration, which is about 37.5 times more than that of conventional assay. Upon regression analysis, linear equation y = 1.243× + 0.011 was obtained having R2 value of 0.998. The modified assay was fully validated in terms of precision, limit of detection (LOD), limit of quantification (LOQ), sensitivity, selectivity and robustness to assure the reliability during final applications. LOD and LOQ were found as 7.4 mg/L and 24.8 mg/L of sulphate concentration respectively. Further, accuracy of the assay over routine SOB screening media components was tested, and proved as reliable and suitable for the intended application.
Collapse
Affiliation(s)
- P V Amala
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Kochi 682 018, India
| | - T G Sumithra
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Kochi 682 018, India.
| | - K J Reshma
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Kochi 682 018, India
| | - F Anju
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Kochi 682 018, India
| | | | - P Vijayagopal
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Kochi 682 018, India
| |
Collapse
|
23
|
Sheeba VA, Anas A, Jasmin C, Vincent M, Parameswaran PS. Response of particle-associated bacteria to long-term heavy metal contamination in a tropical estuary. World J Microbiol Biotechnol 2020; 36:65. [PMID: 32322999 DOI: 10.1007/s11274-020-02842-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Estuaries being the connecting link between terrestrial and marine environment, experience spatial variations in the hydrographic variables as well as concentrations of pollutants. The present study reports a contrasting difference in the metal tolerance and enzyme activity of particle-associated bacteria (PAB) isolated from the upstream and downstream reaches of a tropical estuary [Cochin Estuary (CE) in the southwest coast of India], exposed to different levels of heavy metal contamination. The upstream of the estuary has been overloaded with heavy metals in the last few decades, while the downstream is less polluted. There were only 25% of culturable PAB phylogenetically common in both upstream and downstream. The PAB isolated from the upstream were dominated by γ-proteobacteria (48.1%) followed by α-proteobacteria (25.0%), while it was in the reverse order of α-proteobacteria (45.9%) and γ-proteobacteria (36.1%) in the downstream. More number of PAB from the upstream showed tolerance to higher concentrations of Zn and Cd. The Acinetobacter sp. MMRF1051 isolated from the upstream showed tolerance up to 250 mM Zn, 100 mM Cd, and 250 mM Ni. The enzyme expression profile of PAB from downstream was in the order of lipase > phosphatase > β-glucosidase > aminopeptidase, while it was in the order of β-glucosidase > lipase > aminopeptidase > phosphatase in the upstream of the estuary. The present study shows the selective pressure exerted by heavy metal pollution on the diversity of culturable bacteria associated with particulate matter in a tropical estuary. Also, the variation in their enzyme activities may impinge the remineralization of particulate organic matter (POM) in the system and may impart adverse impacts on ecosystem functioning.
Collapse
Affiliation(s)
- V A Sheeba
- Regional Centre, CSIR-National Institute of Oceanography, Cochin, 682018, India
| | - Abdulaziz Anas
- Regional Centre, CSIR-National Institute of Oceanography, Cochin, 682018, India.
| | - C Jasmin
- Regional Centre, CSIR-National Institute of Oceanography, Cochin, 682018, India
| | - Manu Vincent
- Regional Centre, CSIR-National Institute of Oceanography, Cochin, 682018, India
| | - P S Parameswaran
- Regional Centre, CSIR-National Institute of Oceanography, Cochin, 682018, India
| |
Collapse
|
24
|
Magnuson E, Mykytczuk NC, Pellerin A, Goordial J, Twine SM, Wing B, Foote SJ, Fulton K, Whyte LG. Thiomicrorhabdus
streamers and sulfur cycling in perennial hypersaline cold springs in the Canadian high Arctic. Environ Microbiol 2020; 23:3384-3400. [DOI: 10.1111/1462-2920.14916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences McGill University Montreal QC Canada
| | | | - Andre Pellerin
- Centre for Geomicrobiology Aarhus University Aarhus Denmark
| | - Jacqueline Goordial
- Natural Resource Sciences McGill University Montreal QC Canada
- School of Environmental Sciences University of Guelph Guelph, ON Canada
| | - Susan M. Twine
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Boswell Wing
- Earth and Planetary Sciences McGill University Montreal QC Canada
| | - Simon J. Foote
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Kelly Fulton
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Lyle G. Whyte
- Natural Resource Sciences McGill University Montreal QC Canada
| |
Collapse
|
25
|
Wang X, Yu M, Wang L, Lin H, Li B, Xue CX, Sun H, Zhang XH. Comparative genomic and metabolic analysis of manganese-oxidizing mechanisms in Celeribacter manganoxidans DY25 T: Its adaptation to the environment of polymetallic nodules. Genomics 2019; 112:2080-2091. [PMID: 31809796 DOI: 10.1016/j.ygeno.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) nodule is one of the ubiquitous polymetallic concretions and mainly consists of Mn - Fe oxi-hydroxide precipitations. A primary oxidation of Mn(II) to MnO2, in which microorganisms may play important roles, is followed by agglomeration of MnO2 into nodules. Celeribater manganoxidans DY25T, belonging to family Rhodobacteraceae, has ability to catalyze the formation of MnO2 [1]. The concentration of MnO2 formed by harvested cells reached 7.08 μM after suspended in 10 mM HEPES (pH 7.5). Genomic and physiological characteristics of strain DY25T provided a better understanding of its Mn-oxidizing mechanism. Fifteen genes (including four multicopper oxidases) may be involved in Mn(II)-oxidation, whereas only three of them can promote this process. Sulfur-oxidizing activity was detected, which may be associated with manganese oxidation. Genes involved in import and export of primary elemental ingredients (C, N, P and S) and metallic elements (e.g. Mn) were discovered, demonstrating its potential roles in the biogeochemical cycle.
Collapse
Affiliation(s)
- Xiaolei Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heyu Lin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chun-Xu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hao Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
26
|
Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, Walsh DA. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol 2019; 20:2568-2584. [PMID: 29921005 DOI: 10.1111/1462-2920.14283] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Patricia Tran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Ola Khawasik
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Milla Rautio
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Yannick Huot
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| |
Collapse
|
27
|
Zoss R, Medina Ferrer F, Flood BE, Jones DS, Louw DC, Bailey J. Microbial communities associated with phosphogenic sediments and phosphoclast-associated DNA of the Benguela upwelling system. GEOBIOLOGY 2019; 17:76-90. [PMID: 30369004 DOI: 10.1111/gbi.12318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate-accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment-hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate-reducing bacteria and sulfur-oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast-associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.
Collapse
Affiliation(s)
- Roman Zoss
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| | | | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| | - Daniel S Jones
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
- BioTechnology Institute, University of Minnesota, St. Paul, Minneapolis
| | - Deon C Louw
- Ministry of Fisheries and Marine Resources, National Marine Information and Research Centre, Swakopmund, Namibia
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota, Minnesota, Minneapolis
| |
Collapse
|
28
|
Baltar F, Lundin D, Palovaara J, Lekunberri I, Reinthaler T, Herndl GJ, Pinhassi J. Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO 2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic. Front Microbiol 2016; 7:1670. [PMID: 27818655 PMCID: PMC5073097 DOI: 10.3389/fmicb.2016.01670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023] Open
Abstract
To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC) fixation, community composition (16S rRNA sequencing) and community gene expression (metatranscriptomics) in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e., pyruvate plus acetate) were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates-assumed to be related to autotrophic metabolisms-were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.
Collapse
Affiliation(s)
- Federico Baltar
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
- Department of Marine Sciences, University of OtagoDunedin, New Zealand
- National Institute of Water and Atmospheric Research (NIWA)/University of Otago Research Centre for OceanographyDunedin, New Zealand
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| | - Joakim Palovaara
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| | - Itziar Lekunberri
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
- Institut Català de Recerca de l'AiguaGirona, Spain
| | - Thomas Reinthaler
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
| | - Gerhard J. Herndl
- Division of Bio-Oceanography, Department of Limnology and Oceanography, University of ViennaVienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht UniversityDen Burg, Netherlands
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, EEMiS, Linnaeus UniversityKalmar, Sweden
| |
Collapse
|
29
|
Daly RA, Borton MA, Wilkins MJ, Hoyt DW, Kountz DJ, Wolfe RA, Welch SA, Marcus DN, Trexler RV, MacRae JD, Krzycki JA, Cole DR, Mouser PJ, Wrighton KC. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nat Microbiol 2016; 1:16146. [PMID: 27595198 DOI: 10.1038/nmicrobiol.2016.146] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 01/22/2023]
Abstract
Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here, the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that many of the persisting organisms play roles in methylamine cycling, ultimately supporting methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while thiosulfate reduction could produce sulfide, contributing to reservoir souring and infrastructure corrosion. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - Mikayla A Borton
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - Michael J Wilkins
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA.,School of Earth Sciences, The Ohio State University, Columbus, Ohio 43214, USA
| | - David W Hoyt
- EMSL, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Duncan J Kountz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - Richard A Wolfe
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, Columbus, Ohio 43214, USA
| | - Daniel N Marcus
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - Ryan V Trexler
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43214, USA
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, Maine 04469, USA
| | - Joseph A Krzycki
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, Ohio 43214, USA
| | - Paula J Mouser
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43214, USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43214, USA
| |
Collapse
|
30
|
Tarn J, Peoples LM, Hardy K, Cameron J, Bartlett DH. Identification of Free-Living and Particle-Associated Microbial Communities Present in Hadal Regions of the Mariana Trench. Front Microbiol 2016; 7:665. [PMID: 27242695 PMCID: PMC4860528 DOI: 10.3389/fmicb.2016.00665] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/21/2016] [Indexed: 02/01/2023] Open
Abstract
Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench, and highlight novel community features of these extreme habitats.
Collapse
Affiliation(s)
- Jonathan Tarn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Hardy
- Global Ocean Dynamics, Global Ocean Design San Diego, CA, USA
| | | | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
31
|
Beinart RA, Gartman A, Sanders JG, Luther GW, Girguis PR. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses. Proc Biol Sci 2016; 282:20142811. [PMID: 25876848 PMCID: PMC4426611 DOI: 10.1098/rspb.2014.2811] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera—the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior—when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.
Collapse
Affiliation(s)
- R A Beinart
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| | - A Gartman
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, Lewes, MD, USA
| | - J G Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| | - G W Luther
- School of Marine Science and Policy, College of Earth, Ocean and Environment, University of Delaware, Lewes, MD, USA
| | - P R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02136, USA
| |
Collapse
|
32
|
Stevens EWN, Bailey JV, Flood BE, Jones DS, Gilhooly WP, Joye SB, Teske A, Mason OU. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. GEOBIOLOGY 2015; 13:588-603. [PMID: 26462132 DOI: 10.1111/gbi.12154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/18/2015] [Indexed: 06/05/2023]
Abstract
Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ(34)S and δ(18)O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here.
Collapse
Affiliation(s)
- E W N Stevens
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - J V Bailey
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - B E Flood
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - D S Jones
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - W P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - A Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - O U Mason
- Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
33
|
Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea. J Microbiol 2015; 53:598-605. [DOI: 10.1007/s12275-015-5217-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/24/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
34
|
Kato S, Ikehata K, Shibuya T, Urabe T, Ohkuma M, Yamagishi A. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor. Environ Microbiol 2014; 17:1817-35. [DOI: 10.1111/1462-2920.12648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/13/2014] [Accepted: 09/25/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Shingo Kato
- Department of Molecular Biology; Tokyo University of Pharmacy and Life Science; 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
- Japan Collection of Microorganisms; RIKEN BioResource Center; 3-1-1 Koyadai Tsukuba Ibaraki 305-0074 Japan
| | - Kei Ikehata
- Faculty of Life and Environmental Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8572 Japan
| | - Takazo Shibuya
- Submarine Resources Research Project (SRRP) & Precambrian Ecosystem Laboratory (PEL); Japan Agency for Marine-Earth Science and Technology (JAMSTEC); 2-15 Natsushima Yokosuka Kanagawa 237-0061 Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science; University of Tokyo; Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms; RIKEN BioResource Center; 3-1-1 Koyadai Tsukuba Ibaraki 305-0074 Japan
| | - Akihiko Yamagishi
- Department of Molecular Biology; Tokyo University of Pharmacy and Life Science; 1432-1 Horinouchi Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
35
|
Giebel HA, Kalhoefer D, Gahl-Janssen R, Choo YJ, Lee K, Cho JC, Tindall BJ, Rhiel E, Beardsley C, Aydogmus ÖO, Voget S, Daniel R, Simon M, Brinkhoff T. Planktomarina temperata gen. nov., sp. nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evol Microbiol 2013; 63:4207-4217. [DOI: 10.1099/ijs.0.053249-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four heterotrophic bacterial strains belonging to the globally distributed marine RCA (Roseobacter clade-affiliated) cluster (family
Rhodobacteraceae
, class
Alphaproteobacteria
) were obtained from coastal seawater samples. Strain RCA23T was isolated from a 10−7 dilution culture inoculated with seawater from the German Wadden Sea (southern North Sea), reflecting the high abundance of RCA bacteria in this habitat. Strains IMCC1909, IMCC1923 and IMCC1933 were isolated from diluted seawater (10−3) of the Yellow Sea, South Korea. Based on 16S rRNA gene sequence comparison,
Octadecabacter antarcticus
307T is the closest described relative of the RCA strains, with 95.4–95.5 % sequence similarity. Cells of RCA23T, IMCC1909, IMCC1923 and IMCC1933 are small motile rods requiring sodium ions. Optimal growth of RCA23T occurs at 25 °C and within a very narrow pH range (pH 7–8, optimum pH 7.5). The DNA G+C base content of RCA23T is 53.67 mol%. The major respiratory lipoquinone is ubiquinone-10 (Q-10) and the dominant fatty acids (>1 %) are 12 : 1 3-OH, 16 : 1ω7c, 16 : 0, 18 : 1ω7c, 18 : 0 and 11-methyl 18 : 1ω7c. The polar lipid pattern indicated the presence of phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. On marine agar, RCA23T forms non-pigmented, transparent to light beige, small (<1 mm), circular, convex colonies. Strain RCA23T harbours all genes for the production of bacteriochlorophyll a (BChl a). Genes encoding the light-harvesting reaction centre of BChl a (pufM) were identified in all RCA strains. No visible pigmentation was observed for any of the strains under laboratory conditions, but spectrophotometric analysis revealed weak production of BChl a by RCA23T. Morphological, physiological and genotypic features of strain RCA23T suggest that it represents a novel species of a new genus within the
Rhodobacteraceae
, for which we propose the name Planktomarina temperata gen. nov., sp. nov., described previously by Giebel et al. [ISME J
5 (2011), 8–19] as ‘Candidatus Planktomarina temperata’. The type strain of Planktomarina temperata is RCA23T ( = DSM 22400T = JCM 18269T).
Collapse
Affiliation(s)
- Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Daniela Kalhoefer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Renate Gahl-Janssen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Yoe-Jin Choo
- Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
| | - Kiyoung Lee
- Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
| | - Brian J. Tindall
- Leibniz Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen, D-38124 Braunschweig, Germany
| | - Erhard Rhiel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Christine Beardsley
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Ömer O. Aydogmus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Sonja Voget
- Institute of Microbiology & Genetics, Genomic & Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, D-37077 Göttingen, Germany
| | - Rolf Daniel
- Institute of Microbiology & Genetics, Genomic & Applied Microbiology and Göttingen Genomics Laboratory, University of Göttingen, D-37077 Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
36
|
Phylogenetic diversity of Flavobacteria isolated from the North Sea on solid media. Syst Appl Microbiol 2013; 36:497-504. [DOI: 10.1016/j.syapm.2013.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
|
37
|
Wright KE, Williamson C, Grasby SE, Spear JR, Templeton AS. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 2013; 4:63. [PMID: 23626586 PMCID: PMC3631710 DOI: 10.3389/fmicb.2013.00063] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can flourish.
Collapse
Affiliation(s)
- Katherine E Wright
- Department of Geological Sciences, University of Colorado at Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|
38
|
Marshall KT, Morris RM. Isolation of an aerobic sulfur oxidizer from the SUP05/Arctic96BD-19 clade. THE ISME JOURNAL 2013; 7:452-5. [PMID: 22875135 PMCID: PMC3554405 DOI: 10.1038/ismej.2012.78] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/08/2022]
Abstract
Bacteria from the uncultured SUP05/Arctic96BD-19 clade of gamma proteobacterial sulfur oxidizers (GSOs) have the genetic potential to oxidize reduced sulfur and fix carbon in the tissues of clams and mussels, in oxygen minimum zones and throughout the deep ocean (>200 m). Here, we report isolation of the first cultured representative from this GSO clade. Closely related cultures were obtained from surface waters in Puget Sound and from the deep chlorophyll maximum in the North Pacific gyre. Pure cultures grow aerobically on natural seawater media, oxidize sulfur, and reach higher final cell densities when glucose and thiosulfate are added to the media. This suggests that aerobic sulfur oxidation enhances organic carbon utilization in the oceans. The first isolate from the SUP05/Arctic96BD-19 clade was given the provisional taxonomic assignment 'Candidatus: Thioglobus singularis', alluding to the clade's known role in sulfur oxidation and the isolate's planktonic lifestyle.
Collapse
Affiliation(s)
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Giovannelli D, Grosche A, Starovoytov V, Yakimov M, Manini E, Vetriani C. Galenea microaerophila gen. nov., sp. nov., a mesophilic, microaerophilic, chemosynthetic, thiosulfate-oxidizing bacterium isolated from a shallow-water hydrothermal vent. Int J Syst Evol Microbiol 2012; 62:3060-3066. [DOI: 10.1099/ijs.0.040808-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic, strictly microaerophilic, chemosynthetic bacterium, designated strain P2DT, was isolated from the sediment of an active shallow-water hydrothermal vent in Paleochori Bay, on the Greek island of Milos. The cells were Gram-staining-negative rods that measured approximately 0.8–1.3 µm in length and 0.4–0.5 µm in width. Strain P2DT grew at 20–50 °C (optimum 35 °C), with 1.0–5.0 % (w/v) NaCl (optimum 3.0 %), and at pH 4.5–8.0 (optimum pH 5.5). The generation time under optimal conditions was 1.1 h. Growth occurred under chemolithoautotrophic conditions with
S
2
O
3
2
-
and CO2 as the energy and carbon sources, respectively. Oxygen (5 %) was used as sole terminal electron acceptor. No growth was observed in the presence of acetate, formate, lactate, tryptone or peptone. Chemolithoheterotrophic growth occurred when d-glucose or sucrose were present as carbon sources. None of the organic compounds tested was used as an electron donor. The genomic DNA G+C content of the novel strain was 44.9 mol%. In a phylogenetic analysis based on 16S rRNA gene sequences, strain P2DT was found to be most closely related to
Thiomicrospira psychrophila
DSM 13453T (92.8% sequence similarity). Based on the phylogenetic, physiological and chemotaxonomic evidence, strain P2DT represents a novel species of a new genus within the class
Gammaproteobacteria
of the family
Piscirickettsiaceae
, for which the name Galenea microaerophila gen. nov., sp. nov. is proposed. The type strain of the type species is P2DT ( = DSM 24963T = JCM 17795T).
Collapse
Affiliation(s)
- Donato Giovannelli
- Institute for Marine Science (ISMAR), National Research Council of Italy (CNR), Ancona 60100, Italy
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ashley Grosche
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Valentin Starovoytov
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Michail Yakimov
- Institute for the Coastal Marine Environments (IAMC), National Research Council of Italy (CNR), Messina 98100, Italy
| | - Elena Manini
- Institute for Marine Science (ISMAR), National Research Council of Italy (CNR), Ancona 60100, Italy
| | - Costantino Vetriani
- Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
40
|
Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 2012; 46:39-52. [PMID: 19719581 DOI: 10.1016/s0168-6496(03)00191-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract A molecular phylogenetic approach was used to characterize the composition of microbial communities from two gas hydrate sedimentary systems in the Gulf of Mexico. Nucleic acids, extracted from sediments directly overlying surface-breaching gas hydrate mounds collected from a research submersible (water depth 550-575 m), were amplified with nine different 16S rDNA gene primer sets. The polymerase chain reaction primers targeted microorganisms at the domain-specific (Bacteria and Archaea) and group-specific (sulfate-reducing bacteria (SRB) and putative anaerobic methane-oxidizing (ANME) archaea) level. Amplicons were obtained with five of the nine primer sets including two of the six SRB Groups (SRB Group 5 and Group 6) and used to generate five different clone libraries. Analysis of 126 clones from the Archaea library revealed that the sediments associated with naturally occurring gas hydrate harbored a low diversity. Sequence analysis indicated the majority of archaeal clones were most closely related to Methanosarcinales, Methanomicrobiales and distinct phylogenetic lineages within the ANME groups. The most frequently recovered phylotypes in the ANME library were related to either ANME-2 or Methanomicrobiales. In contrast to the two archaeal libraries, bacterial diversity was higher with the majority of the 126 bacterial clones most closely related to uncultured clones dominated by the delta- and epsilon-Proteobacteria. Interestingly, while 82% of the clones in the SRB Group 5 library were affiliated with delta-Proteobacteria, the vast majority (83%) of clones in the SRB Group 6 library was affiliated with the Firmicutes. This is the first phylogenetic-based description of microbial communities extant in methane-rich hydrate-associated sediments from a hydrocarbon seep region in the Gulf of Mexico.
Collapse
|
41
|
A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 2012; 45:161-71. [PMID: 19719627 DOI: 10.1016/s0168-6496(03)00133-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Using the MicroDrop((R)) microdispenser system, a novel approach for high throughput cultivation assays for the determination of numbers of culturable bacteria, and for the isolation of bacteria in liquid media was established. The MicroDrop device works similar to an ink jet printer. Droplets of 150-200 pl are created at the nozzle of a glass micropipette by means of a computer-driven piezo transducer, and are dispensed automatically at predetermined positions with the aid of a XYZ-positioning system. The actual drop volume is highly reproducible and is determined by the pulse duration, the pulse frequency and the micropipette geometry. Culture media in 96-well microtiter plates were inoculated with constant numbers of bacteria from three different natural freshwater lakes. The number of culturable bacteria in the sample can be calculated from the frequency of wells showing bacterial growth, based on a binomial distribution of culturable cells. Our method was compared to the conventional most probable number (MPN) approach, the technique presently most often used for the determination of bacterial culturability and for the isolation of numerically dominant culturable bacteria. As opposed to the MPN technique, our approach yields data with much higher statistical significance (i.e. a 10 times lower standard deviation) due to the higher number of parallels which can be performed in each microtiter plate. The values of culturable bacteria as determined by the MPN and MicroDrop techniques were only weakly correlated (r(2)=0.570, n=42, P<0.001). Cultivation efficiencies obtained with the MicroDrop technique were systematically lower than MPN values by a factor of 2.7, indicating a significant overestimation of culturability by the latter method. The composition of the cultured bacterial fraction was determined by denaturing gradient gel electrophoresis fingerprinting of 16S rDNA fragments and sequencing. This demonstrated that phylogenetically similar bacteria were recovered by both cultivation techniques. Both methods resulted in the recovery of many previously unknown aquatic bacteria affiliated to the same taxonomic groups and, in one case, in the isolation of a numerically dominant, but not-yet-cultured beta-Proteobacterium which was ubiquitous in all three lakes.
Collapse
|
42
|
Rocker D, Brinkhoff T, Grüner N, Dogs M, Simon M. Composition of humic acid-degrading estuarine and marine bacterial communities. FEMS Microbiol Ecol 2012; 80:45-63. [PMID: 22133061 DOI: 10.1111/j.1574-6941.2011.01269.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/27/2022] Open
Abstract
We examined the bacterial decomposition of humic acids (HA) in two flow-through culture experiments, one inoculated by marine and one by estuarine bacterial communities. In both experiments, the cultures were fed with HA media of salinities of 28 and 14, close to their ambient and a distinctly different, foreign salinity. HA were decomposed to > 60% of the initial concentration within 70 days, and the foreign salinity yielded the highest decomposition. A detrended correspondence analysis of denaturing gradient gel electrophoresis (DGGE) banding patterns showed that during incubation, the bacterial community composition underwent distinct changes. A phylogenetic analysis of DGGE bands excised and bacteria isolated at the end on HA as the sole carbon source showed that Alphaproteobacteria and Gammaproteobacteria largely dominated the communities in the marine flow-through cultures, whereas Gammaproteobacteria, Actinobacteria and Alphaproteobacteria dominated the estuarine communities. Eleven of 13 isolates obtained from both experiments were able to grow on HA as the sole carbon source, seven on phenol and three, affiliated to the Roseobacter clade, on various aromatic acids. The bacteria retrieved from the flow-through cultures were closely (96-99%) affiliated to organisms capable of degrading humic matter, aromatic and aliphatic compounds and also to other bacteria reported previously from the Wadden Sea and Weser estuary.
Collapse
Affiliation(s)
- Dagmar Rocker
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea. Antonie van Leeuwenhoek 2011; 100:317-31. [DOI: 10.1007/s10482-011-9587-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
|
44
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damsté JS, Rhee SK. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 2010; 76:7575-87. [PMID: 20870784 PMCID: PMC2976178 DOI: 10.1128/aem.01478-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/17/2010] [Indexed: 11/20/2022] Open
Abstract
The role of ammonia-oxidizing archaea (AOA) in nitrogen cycling in marine sediments remains poorly characterized. In this study, we enriched and characterized AOA from marine sediments. Group I.1a crenarchaea closely related to those identified in marine sediments and "Candidatus Nitrosopumilus maritimus" (99.1 and 94.9% 16S rRNA and amoA gene sequence identities to the latter, respectively) were substantially enriched by coculture with sulfur-oxidizing bacteria (SOB). The selective enrichment of AOA over ammonia-oxidizing bacteria (AOB) is likely due to the reduced oxygen levels caused by the rapid initial growth of SOB. After biweekly transfers for ca. 20 months, archaeal cells became the dominant prokaryotes (>80%), based on quantitative PCR and fluorescence in situ hybridization analysis. The increase of archaeal 16S rRNA gene copy numbers was coincident with the amount of ammonia oxidized, and expression of the archaeal amoA gene was observed during ammonia oxidation. Bacterial amoA genes were not detected in the enrichment culture. The affinities of these AOA to oxygen and ammonia were substantially higher than those of AOB. [(13)C]bicarbonate incorporation and the presence and activation of genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle indicated autotrophy during ammonia oxidation. In the enrichment culture, ammonium was oxidized to nitrite by the AOA and subsequently to nitrate by Nitrospina-like bacteria. Our experiments suggest that AOA may be important nitrifiers in low-oxygen environments, such as oxygen-minimum zones and marine sediments.
Collapse
MESH Headings
- Ammonia/metabolism
- Archaea/classification
- Archaea/growth & development
- Archaea/isolation & purification
- Archaea/metabolism
- Bacteria/classification
- Bacteria/growth & development
- Bacteria/isolation & purification
- Bacteria/metabolism
- Cluster Analysis
- Coculture Techniques
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genes, rRNA
- Geologic Sediments/microbiology
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sulfur/metabolism
Collapse
Affiliation(s)
- Byoung-Joon Park
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| | - Soo-Je Park
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| | - Dae-No Yoon
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| | - Stefan Schouten
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju 361-763, South Korea, Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Organic Biogeochemistry, P.O. Box 59, 1790 AB Den Burg, Netherlands
| |
Collapse
|
46
|
Müller M, Handley KM, Lloyd J, Pancost RD, Mills RA. Biogeochemical controls on microbial diversity in seafloor sulphidic sediments. GEOBIOLOGY 2010; 8:309-326. [PMID: 20491949 DOI: 10.1111/j.1472-4669.2010.00242.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ultimate fate of hydrothermal sulphides on the seafloor depends on the nature and rate of abiotic and microbially catalysed reactions where sulphide minerals are exposed to oxic seawater. This study combines organic and inorganic geochemical with microbiological measurements across a suboxic transition zone of highly altered sulphidic sediments from the Trans-Atlantic Geotransverse hydrothermal field to characterize the reaction products and microbial communities present. There is distinct biogeochemical zonation apparent within the sediment sequence from oxic surface layers through a suboxic transition zone into the sulphide material. The microbial communities in the sediment differ significantly between the biogeochemical horizons sampled, with the identified microbes inferred to be associated with Fe and S redox cycling. In particular, Marinobacter species, organisms associated with circumneutral Fe oxidation, are dominant in a sulphide lens present in the lower core. The dominance of Marinobacter-related sequences within the relict sulphide lens implies that these organisms play an important role in the alteration of sulphides at the seafloor once active venting has ceased.
Collapse
Affiliation(s)
- M Müller
- National Oceanography Centre, Southampton, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
47
|
Giebel HA, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, Brinkhoff T. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME JOURNAL 2010; 5:8-19. [PMID: 20596072 DOI: 10.1038/ismej.2010.87] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Roseobacter group and SAR11 clade constitute high proportions of the marine bacterioplankton, but only scarce information exists on the abundance of distinct populations of either lineage. Therefore, we quantified the abundance of the largest cluster of the Roseobacter group, the RCA (Roseobacter clade affiliated) cluster together with the SAR11 clade by quantitative PCR in the southern and eastern North Sea. The RCA cluster constituted up to 15 and 21% of total bacterial 16S ribosomal RNA (rRNA) genes in September 2005 and May 2006, respectively. At a few stations, the RCA cluster exceeded the SAR11 clade, whereas at most stations, SAR11 constituted higher fractions with maxima of 37%. In most samples, only one RCA ribotype was detected. RCA abundance was positively correlated with phaeopigments, chlorophyll, dissolved and particulate organic carbon (POC), turnover rates of dissolved free amino acids (DFAAs), temperature, and negatively correlated with salinity. The SAR11 clade was only correlated with POC (negatively, May) and with DFAA turnover rates (positively, September). An abundant RCA strain, 'Candidatus Planktomarina temperata', was isolated from the southern North Sea. This strain has an identical 16S rRNA gene sequence to the dominant RCA ribotype. Detection of the pufM gene, coding for a subunit of the reaction center of bacteriochlorophyll a, indicates the potential of the isolate for aerobic anoxygenic photosynthesis. Our study shows that a distinct population of the RCA cluster constitutes an abundant bacterioplankton group in a neritic sea of the temperate zone and indicates that this population has an important role during decaying phytoplankton blooms.
Collapse
Affiliation(s)
- Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol 2010; 33:222-31. [PMID: 20413241 DOI: 10.1016/j.syapm.2010.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
Bacterial diversity in Tyrrhenian Sea sediments was assessed using cultivation-dependent and -independent approaches. Samples collected from the different sediment layers (up to 30cm) relative to four seamount and non-seamount stations, at depths from 3425 to 3580m, were subjected to DNA extraction and 16S rRNA amplification targeting the V3 region. Denaturing gradient gel electrophoresis (DGGE) showed several heterogeneous profiles and 27 single bands were excised and sequenced. Sequence analysis revealed the presence of Firmicutes, Actinobacteria and Chloroflexi in 26% of the DGGE bands and a predominance of sequences affiliated to cultivable and uncultivable clones of Gammaproteobacteria (55%). To corroborate these findings, cultivation attempts were performed that allowed the isolation of 87 strains assigned to the proteobacterial classes. Identification was achieved by means of automated ribosomal intergenic spacer analysis (ARISA) and by 16S rDNA sequencing. The isolates were related to the gamma, alpha and beta subclasses of Proteobacteria with respective percentages of 77, 17 and 6%. The most predominant Gammaproteobacteria isolates, assigned to the Psychrobacter marincola and P. submarinus clade (n=53) and to Halomonas aquamarina (n=14), showed a huge intraspecific diversity with 29 distinct ARISA haplotypes. The detection by both approaches of these psychrophilic and moderately halophilic species and their extensive microdiversity indicated their predominance in Tyrrhenian Sea sediments where they constituted the indigenous microflora.
Collapse
|
49
|
Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 2009; 50:213-30. [PMID: 19712362 DOI: 10.1016/j.femsec.2004.06.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial communities inhabiting recent (< or =1 million years old; Ma) seafloor basalts from the Arctic spreading ridges were analyzed using traditional enrichment culturing methods in combination with culture-independent molecular phylogenetic techniques. Fragments of 16S rDNA were amplified from the basalt samples by polymerase chain reaction, and fingerprints of the bacterial and archaeal communities were generated using denaturing gradient gel electrophoresis. This analysis indicates a substantial degree of complexity in the samples studied, showing 20-40 dominating bands per profile for the bacterial assemblages. For the archaeal assemblages, a much lower number of bands (6-12) were detected. The phylogenetic affiliations of the predominant electrophoretic bands were inferred by performing a comparative 16S rRNA gene sequence analysis. Sequences obtained from basalts affiliated with eight main phylogenetic groups of Bacteria, but were limited to only one group of the Archaea. The most frequently retrieved bacterial sequences affiliated with the gamma-proteobacteria, alpha-proteobacteria, Chloroflexi, Firmicutes, and Actinobacteria. The archaeal sequences were restricted to the marine Group 1: Crenarchaeota. Our results indicate that the basalt harbors a distinctive microbial community, as the majority of the sequences differed from those retrieved from the surrounding seawater as well as from sequences previously reported from seawater and deep-sea sediments. Most of the sequences did not match precisely any sequences in the database, indicating that the indigenous Arctic ridge basalt microbial community is yet uncharacterized. Results from enrichment cultures showed that autolithotrophic methanogens and iron reducing bacteria were present in the seafloor basalts. We suggest that microbial catalyzed cycling of iron may be important in low-temperature alteration of ocean crust basalt. The phylogenetic and physiological diversity of the seafloor basalt microorganisms differed from those previously reported from deep-sea hydrothermal systems.
Collapse
|
50
|
A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 2009; 13:905-15. [PMID: 19763742 DOI: 10.1007/s00792-009-0278-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
Strains of hyperthermophilic anaerobic hydrothermal vent archaea maintained in the culture collection assembled by Holger Jannasch at the Woods Hole Oceanographic Institution between 1984 and 1998 were identified and partially characterized by Denaturing Gradient Gel Electrophoresis, 16S rRNA gene sequencing, and by growth tests at different temperatures and on different organic carbon and nitrogen sources. All strains were members of the genera Thermococcus and Pyrococcus. The greatest phylogenetic diversity was found in strains from a single Guaymas Basin core isolated by serial dilution from four different depth horizons of heated sediment incubated at the corresponding in situ temperatures. In contrast, geographically distinct vent locations and sample materials yielded a lower diversity of isolates when enriched under uniform temperature regimes and without prior dilution of the source material.
Collapse
|