1
|
Warwick-Dugdale J, Tian F, Michelsen ML, Cronin DR, Moore K, Farbos A, Chittick L, Bell A, Zayed AA, Buchholz HH, Bolanos LM, Parsons RJ, Allen MJ, Sullivan MB, Temperton B. Long-read powered viral metagenomics in the oligotrophic Sargasso Sea. Nat Commun 2024; 15:4089. [PMID: 38744831 PMCID: PMC11094077 DOI: 10.1038/s41467-024-48300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Dominant microorganisms of the Sargasso Sea are key drivers of the global carbon cycle. However, associated viruses that shape microbial community structure and function are not well characterised. Here, we combined short and long read sequencing to survey Sargasso Sea phage communities in virus- and cellular fractions at viral maximum (80 m) and mesopelagic (200 m) depths. We identified 2,301 Sargasso Sea phage populations from 186 genera. Over half of the phage populations identified here lacked representation in global ocean viral metagenomes, whilst 177 of the 186 identified genera lacked representation in genomic databases of phage isolates. Viral fraction and cell-associated viral communities were decoupled, indicating viral turnover occurred across periods longer than the sampling period of three days. Inclusion of long-read data was critical for capturing the breadth of viral diversity. Phage isolates that infect the dominant bacterial taxa Prochlorococcus and Pelagibacter, usually regarded as cosmopolitan and abundant, were poorly represented.
Collapse
Affiliation(s)
- Joanna Warwick-Dugdale
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK.
- Plymouth Marine Laboratory, Plymouth, Devon, PL1 3DH, UK.
| | - Funing Tian
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | | | - Dylan R Cronin
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Karen Moore
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Audrey Farbos
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Lauren Chittick
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ashley Bell
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Ahmed A Zayed
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Holger H Buchholz
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Luis M Bolanos
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Rachel J Parsons
- Bermuda Institute of Ocean Sciences, St.George's, GE, 01, Bermuda
- School of Ocean Futures, Arizona State University, Tempe, AZ, US
| | - Michael J Allen
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK
| | - Matthew B Sullivan
- Center of Microbiome Science and Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, Devon, EX4 4SB, UK.
| |
Collapse
|
2
|
Varona NS, Hesketh-Best PJ, Coutinho FH, Stiffler AK, Wallace BA, Garcia SL, Scholten Y, Haas AF, Little M, Vermeij M, Luque A, Silveira C. Host-specific viral predation network on coral reefs. THE ISME JOURNAL 2024; 18:wrae240. [PMID: 39657233 PMCID: PMC11694666 DOI: 10.1093/ismejo/wrae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Viral infections are major modulators of marine microbial community assembly and biogeochemical cycling. In coral reefs, viral lysis controls bacterial overgrowth that is detrimental to coral health. However, methodological limitations have prevented the identification of viral hosts and quantification of their interaction frequencies. Here, we reconstructed an abundance-resolved virus-bacteria interaction network in the oligotrophic coral reef waters of Curaçao by integrating direct microscopy counts with virus-host links obtained from proximity-ligation, prophage integration, and CRISPR spacers. This network of 3013 individual links (97 unique species-level interactions) revealed that the abundance of free viral particles was weakly related to host abundance and viral production, as indicated by the cell-associated virus-to-host ratio (VHR). The viruses with the highest free and cell-associated VHR, interpreted here as highly productive viruses, formed links with intermediate-to-low abundance hosts belonging to Gammaproteobacteria, Bacteroidia, and Planctomycetia. In contrast, low-production viruses interacted with abundant members of Alphaproteobacteria and Gammaproteobacteria enriched in prophages. These findings highlight the decoupling between viral abundance and production and identify potentially active viruses. We propose that differential decay rates and burst sizes may explain the decoupling between free viral abundance and production and that lysogenic infections play an important role in the ecology of high-abundance hosts.
Collapse
Affiliation(s)
- Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Passeig Maritìm de la Barceloneta, 37-49, 08003 Barcelona, Catalunya, Spain
| | - Alexandra K Stiffler
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Sofia L Garcia
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Yun Scholten
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg 1790 AB, Texel, The Netherlands
| | - Andreas F Haas
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, Den Burg 1790 AB, Texel, The Netherlands
| | - Mark Little
- Department of Organismal & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA, 02138, United States
| | - Mark Vermeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands
- CARMABI Foundation, P.O. Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| | - Antoni Luque
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
| | - Cynthia Silveira
- Department of Biology, University of Miami, Coral Gables, FL 33146, United States
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL 33149, United States
| |
Collapse
|
3
|
Bulannga RB, Schmidt S. Two Predators, One Prey - the Interaction Between Bacteriophage, Bacterivorous Ciliates, and Escherichia coli. MICROBIAL ECOLOGY 2023; 86:1620-1631. [PMID: 36723682 DOI: 10.1007/s00248-022-02163-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Bacterivorous ciliates and lytic bacteriophages are two major predators in aquatic environments, competing for the same type of prey. This study investigated the possible interaction of these different microorganisms and their influence on the activity of each other. Therefore, two bacterivorous ciliates, Paramecium sp. RB1 and Tetrahymena sp. RB2, were used as representative ciliates; a T4-like Escherichia coli targeting lytic bacteriophage as a model virus; and E. coli ATCC 25922 as a susceptible bacterial host and prey. The growth of the two ciliates with E. coli ATCC 25922 as prey was affected by the presence of phage particles. The grazing activity of the two ciliates resulted in more than a 99% reduction of the phage titer and bacterial cell numbers. However, viable phage particles were recovered from individual washed cells of the two ciliates after membrane filtration. Therefore, ciliates such as Paramecium sp. RB1 and Tetrahymena sp. RB2 can remove bacteriophages present in natural and artificial waters by ingesting the viral particles and eliminating bacterial host cells required for viral replication. The ingestion of phage particles may marginally contribute to the nutrient supply of the ciliates. However, the interaction of phage particles with ciliate cells may contribute to the transmission of bacteriophages in aquatic environments.
Collapse
Affiliation(s)
- Rendani Bridghette Bulannga
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
4
|
DiPietro AG, Bryant SA, Zanger MM, Williamson KE. Understanding Viral Impacts in Soil Microbial Ecology Through the Persistence and Decay of Infectious Bacteriophages. Curr Microbiol 2023; 80:276. [PMID: 37432469 DOI: 10.1007/s00284-023-03386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Marine bacteriophages have been well characterized in terms of decay rates, population dynamics in relation to their hosts, and their impacts on biogeochemical cycles in the global ocean. Knowledge in soil bacteriophage ecology lags considerably behind, with few studies documenting population dynamics with hosts and even fewer reporting phage decay rates. By using sterile soil or aquatic microcosms inoculated with single bacteriophage isolates, phage decay rates (loss of infectivity over time) were determined, independent of host interactions, for 5 model phage isolates. Decay rates varied by phage from 0.11-2.07% h-1 in soils to 0.07-0.28% h-1 in aquatic microcosms. For phages incubated in both soil and aquatic microcosms, the observed decay rate was consistently higher in soil microcosms than in aquatic microcosms by at least a factor of two. However, when decay rates for soil phage isolates in the present study were compared to those reported for marine and freshwater phage isolates from previous studies, the decay constants for soil phages were, on average, 4 times lower than those for aquatic phages. Slower rates of phage decay in soils indicate a lower turnover rate, which may have subsequent and potentially far-reaching impacts on virus-mediated mortality and bacterial activity. The wide range of decay rates observed in the present study and the lack of information on this critical aspect of virus-host dynamics in soil emphasizes the need for continued research in this field.
Collapse
Affiliation(s)
- Alessandra G DiPietro
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Shawn A Bryant
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Matthew M Zanger
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA
| | - Kurt E Williamson
- Biology Department, The College of William and Mary, 3037 Integrated Science Center, Williamsburg, VA, 23185, USA.
| |
Collapse
|
5
|
Eissler Y, Castillo-Reyes A, Dorador C, Cornejo-D'Ottone M, Celis-Plá PSM, Aguilar P, Molina V. Virus-to-prokaryote ratio in the Salar de Huasco and different ecosystems of the Southern hemisphere and its relationship with physicochemical and biological parameters. Front Microbiol 2022; 13:938066. [PMID: 36060762 PMCID: PMC9434117 DOI: 10.3389/fmicb.2022.938066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
The virus-to-prokaryote ratio (VPR) has been used in many ecosystems to study the relationship between viruses and their hosts. While high VPR values indicate a high rate of prokaryotes' cell lysis, low values are interpreted as a decrease in or absence of viral activity. Salar de Huasco is a high-altitude wetland characterized by a rich microbial diversity associated with aquatic sites like springs, ponds, streams and a lagoon with variable physicochemical conditions. Samples from two ponds, Poza Rosada (PR) and Poza Verde (PV), were analyzed by epifluorescence microscopy to determine variability of viral and prokaryotic abundance and to calculate the VPR in a dry season. In addition, to put Salar de Huasco results into perspective, a compilation of research articles on viral and prokaryotic abundance, VPR, and metadata from various Southern hemisphere ecosystems was revised. The ecosystems were grouped into six categories: high-altitude wetlands, Pacific, Atlantic, Indian, and Southern Oceans and Antarctic lakes. Salar de Huasco ponds recorded similar VPR values (an average of 7.4 and 1.7 at PR and PV, respectively), ranging from 3.22 to 15.99 in PR. The VPR variability was associated with VA and chlorophyll a, when considering all data available for this ecosystem. In general, high-altitude wetlands recorded the highest VPR average (53.22 ± 95.09), followed by the Oceans, Southern (21.91 ± 25.72), Atlantic (19.57 ± 15.77) and Indian (13.43 ± 16.12), then Antarctic lakes (11.37 ± 15.82) and the Pacific Ocean (6.34 ± 3.79). Physicochemical variables, i.e., temperature, conductivity, nutrients (nitrate, ammonium, and phosphate) and chlorophyll a as a biological variable, were found to drive the VPR in the ecosystems analyzed. Thus, the viral activity in the Wetland followed similar trends of previous reports based on larger sets of metadata analyses. In total, this study highlights the importance of including viruses as a biological variable to study microbial temporal dynamics in wetlands considering their crucial role in the carbon budgets of these understudied ecosystems in the southern hemisphere.
Collapse
Affiliation(s)
- Yoanna Eissler
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Yoanna Eissler
| | - Alonso Castillo-Reyes
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula S. M. Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Polette Aguilar
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Verónica Molina
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile
- Verónica Molina
| |
Collapse
|
6
|
Chancharoenthana W, Sutnu N, Visitchanakun P, Sawaswong V, Chitcharoen S, Payungporn S, Schuetz A, Schultz MJ, Leelahavanichkul A. Critical roles of sepsis-reshaped fecal virota in attenuating sepsis severity. Front Immunol 2022; 13:940935. [PMID: 35983067 PMCID: PMC9380439 DOI: 10.3389/fimmu.2022.940935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Because studies on all fecal organisms (bacteria, fungi, and viruses) in sepsis are rare and bacteriophages during sepsis might have adapted against gut bacteria with possible pathogenicity, cecal ligation and puncture (CLP; a sepsis mouse model) was evaluated. In fecal bacteriome, sepsis increased Bacteroides and Proteobacteria but decreased Firmicutes, while fecal virome demonstrated increased Podoviridae when compared with sham feces. There was no difference in the fungal microbiome (predominant Ascomycota in both sham and CLP mice) and the abundance of all organisms between sepsis and control groups. Interestingly, the transfers of feces from CLP mice worsened sepsis severity when compared with sham fecal transplantation, as evaluated by mortality, renal injury (serum creatinine and histology), liver damage (liver enzyme and histology), spleen apoptosis, serum cytokines, endotoxemia, and bacteremia. In contrast, the transfers of fecal viral particles from sepsis mice, but not from sham mice, attenuated inflammation in CLP sepsis possibly through the decrease in several fecal pathogenic bacteria (such as Proteobacteria, Gammaproteobacteria, and Prevotellaceae) as evaluated by fecal microbiome analysis. Perhaps the isolation of favorable bacteriophages in sepsis feces and increased abundance ex vivo before oral treatment in a high concentration are beneficial.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Nattawut Sutnu
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Vorthon Sawaswong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwalak Chitcharoen
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Research Unit of Systems Microbiology, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda , MD, United States
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences-United States Component, Bangkok, Thailand
| | - Marcus J. Schultz
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
7
|
Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A. Phage Therapy Related Microbial Succession Associated with Successful Clinical Outcome for a Recurrent Urinary Tract Infection. Viruses 2021; 13:v13102049. [PMID: 34696479 PMCID: PMC8541385 DOI: 10.3390/v13102049] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
We rationally designed a bacteriophage cocktail to treat a 56-year-old male liver transplant patient with complex, recurrent prostate and urinary tract infections caused by an extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) (UCS1). We screened our library for phages that killed UCS1, with four promising candidates chosen for their virulence, mucolytic properties, and ability to reduce bacterial resistance. The patient received 2 weeks of intravenous phage cocktail with concomitant ertapenem for 6 weeks. Weekly serum and urine samples were collected to track the patient’s response. The patient tolerated the phage therapy without any adverse events with symptom resolution. The neutralization of the phage activity occurred with sera collected 1 to 4 weeks after the first phage treatment. This was consistent with immunoassays that detected the upregulation of immune stimulatory analytes. The patient developed asymptomatic recurrent bacteriuria 6 and 11 weeks following the end of phage therapy—a condition that did not require antibiotic treatment. The bacteriuria was caused by a sister strain of E. coli (UCS1.1) that remained susceptible to the original phage cocktail and possessed putative mutations in the proteins involved in adhesion and invasion compared to UCS1. This study highlights the utility of rationally designed phage cocktails with antibiotics at controlling E. coli infection and suggests that microbial succession, without complete eradication, may produce desirable clinical outcomes.
Collapse
Affiliation(s)
- Austen Terwilliger
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Justin Clark
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Maile Karris
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
| | - Haroldo Hernandez-Santos
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Sabrina Green
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| | - Anthony Maresso
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| |
Collapse
|
8
|
Brown JM, Labonté JM, Brown J, Record NR, Poulton NJ, Sieracki ME, Logares R, Stepanauskas R. Single Cell Genomics Reveals Viruses Consumed by Marine Protists. Front Microbiol 2020; 11:524828. [PMID: 33072003 PMCID: PMC7541821 DOI: 10.3389/fmicb.2020.524828] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The predominant model of the role of viruses in the marine trophic web is that of the “viral shunt,” where viral infection funnels a substantial fraction of the microbial primary and secondary production back to the pool of dissolved organic matter. Here, we analyzed the composition of non-eukaryotic DNA associated with individual cells of small, planktonic protists in the Gulf of Maine (GoM) and the Mediterranean Sea. We found viral DNA associated with a substantial fraction cells from the GoM (51%) and the Mediterranean Sea (35%). While Mediterranean SAGs contained a larger proportion of cells containing bacterial sequences (49%), a smaller fraction of cells contained bacterial sequences in the GoM (19%). In GoM cells, nearly identical bacteriophage and ssDNA virus sequences where found across diverse lineages of protists, suggesting many of these viruses are non-infective. The fraction of cells containing viral DNA varied among protistan lineages and reached 100% in Picozoa and Choanozoa. These two groups also contained significantly higher numbers of viral sequences than other identified taxa. We consider mechanisms that may explain the presence of viral DNA in protistan cells and conclude that protistan predation on free viral particles contributed to the observed patterns. These findings confirm prior experiments with protistan isolates and indicate that the viral shunt is complemented by a viral link in the marine microbial food web. This link may constitute a sink of viral particles in the ocean and has implications for the flow of carbon through the microbial food web.
Collapse
Affiliation(s)
- Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Joseph Brown
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas R Record
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Nicole J Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Michael E Sieracki
- Division of Ocean Sciences, National Science Foundation, Alexandria, VA, United States
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | | |
Collapse
|
9
|
Temperate infection in a virus-host system previously known for virulent dynamics. Nat Commun 2020; 11:4626. [PMID: 32934228 PMCID: PMC7493887 DOI: 10.1038/s41467-020-18078-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
The blooming cosmopolitan coccolithophore Emiliania huxleyi and its viruses (EhVs) are a model for density-dependent virulent dynamics. EhVs commonly exhibit rapid viral reproduction and drive host death in high-density laboratory cultures and mesocosms that simulate blooms. Here we show that this system exhibits physiology-dependent temperate dynamics at environmentally relevant E. huxleyi host densities rather than virulent dynamics, with viruses switching from a long-term non-lethal temperate phase in healthy hosts to a lethal lytic stage as host cells become physiologically stressed. Using this system as a model for temperate infection dynamics, we present a template to diagnose temperate infection in other virus-host systems by integrating experimental, theoretical, and environmental approaches. Finding temperate dynamics in such an established virulent host-virus model system indicates that temperateness may be more pervasive than previously considered, and that the role of viruses in bloom formation and decline may be governed by host physiology rather than by host-virus densities.
Collapse
|
10
|
Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of Freshwater and Seawater Mixing on the Production and Decay of Virioplankton in a Subtropical Estuary. MICROBIAL ECOLOGY 2019; 78:843-854. [PMID: 30972435 PMCID: PMC6842343 DOI: 10.1007/s00248-019-01362-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Virioplankton is an important component of the aquatic ecosystem and plays multiple ecological and biogeochemical roles. Although the spatial and temporal distributions and dynamics of virioplankton have been well investigated in riverine and marine environments, little is known about the dynamics and environmental controlling mechanisms of virioplankton in estuaries. In this study, viral abundance, production and decay were examined in the Pearl River Estuary (PRE), one of the largest estuaries in China. The influences of freshwater and seawater mixing on viral ecological dynamics were evaluated with several cross-transplant experiments. In PRE, viral abundance, production and decay rates varied from 2.72 ± 0.09 to 27.5 ± 1.07 × 106 viruses ml-1, 7.98 ± 2.33 to 16.27 ± 2.85% h-1 and 0.80 ± 0.23 to 3.74 ± 0.98% h-1, respectively. When the riverine and marine microbial community were transferred into simulated brackish water, viral production rates were markedly inhibited by 83.8% and 47.3%, respectively. The decay of riverine and marine virioplankton was inhibited by 21.1% and 34.2%, respectively, in simulated brackish water. These results indicate change of estuarine environmental factors significantly alters the dynamics of riverine and marine virioplankton. In addition, the effects of mixing on viral production and decay differed between high- and low-fluorescence viruses. High-fluorescence viruses seemed more resistant to decay than low-fluorescence viruses, whereas the production of marine low-fluorescence viruses seemed more resistant to inhibition than that of marine high-fluorescence viruses. Together, these results provide new insights into the ecological dynamics of virioplankton in estuarine environments.
Collapse
Affiliation(s)
- Wei Wei
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Nannan Wang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, People's Republic of China
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, People's Republic of China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, People's Republic of China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, People's Republic of China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
11
|
Sinha A, Maurice CF. Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators Inflamm 2019; 2019:3730519. [PMID: 31582898 PMCID: PMC6754933 DOI: 10.1155/2019/3730519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The human gut is an extremely active immunological site interfacing with the densest microbial community known to colonize the human body, the gut microbiota. Despite tremendous advances in our comprehension of how the gut microbiota is involved in human health and interacts with the mammalian immune system, most studies are incomplete as they typically do not consider bacteriophages. These bacterial viruses are estimated to be as numerous as their bacterial hosts, with tremendous and mostly uncharacterized genetic diversity. In addition, bacteriophages are not passive members of the gut microbiota, as highlighted by the recent evidence for their active involvement in human health. Yet, how bacteriophages interact with their bacterial hosts and the immune system in the human gut remains poorly described. Here, we aim to fill this gap by providing an overview of bacteriophage communities in the gut during human development, detailing recent findings for their bacterial-mediated effects on the immune response and summarizing the latest evidence for direct interactions between them and the immune system. The dramatic increase in antibiotic-resistant bacterial pathogens has spurred a renewed interest in using bacteriophages for therapy, despite the many unknowns about bacteriophages in the human body. Going forward, more studies encompassing the communities of bacteria, bacteriophages, and the immune system in diverse health and disease settings will provide invaluable insight into this dynamic trio essential for human health.
Collapse
Affiliation(s)
- Anshul Sinha
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Brown MR, Baptista JC, Lunn M, Swan DL, Smith SJ, Davenport RJ, Allen BD, Sloan WT, Curtis TP. Coupled virus - bacteria interactions and ecosystem function in an engineered microbial system. WATER RESEARCH 2019; 152:264-273. [PMID: 30682570 DOI: 10.1016/j.watres.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Viruses are thought to control bacterial abundance, affect community composition and influence ecosystem function in natural environments. Yet their dynamics have seldom been studied in engineered systems, or indeed in any system, for long periods of time. We measured virus abundance in a full-scale activated sludge plant every week for two years. Total bacteria and ammonia oxidising bacteria (AOB) abundances, bacterial community profiles, and a suite of environmental and operational parameters were also monitored. Mixed liquor virus abundance fluctuated over an order of magnitude (3.18 × 108-3.41 × 109 virus's mL-1) and that variation was statistically significantly associated with total bacterial and AOB abundance, community composition, and effluent concentrations of COD and NH4+- N and thus system function. This suggests viruses play a far more important role in the dynamics of activated sludge systems than previously realised and could be one of the key factors controlling bacterial abundance, community structure and functional stability and may cause reactors to fail. These findings are based on statistical associations, not mechanistic models. Nevertheless, viral associations with abiotic factors, such as pH, make physical sense, giving credence to these findings and highlighting the role that physical factors play in virus ecology. Further work is needed to identify and quantify specific bacteriophage and their hosts to enable us to develop mechanistic models of the ecology of viruses in wastewater treatment systems. However, since we have shown that viruses can be related to effluent quality and virus quantification is simple and cheap, practitioners would probably benefit from quantifying viruses now.
Collapse
Affiliation(s)
- M R Brown
- School of Engineering, Newcastle University, NE1 7RU, UK.
| | - J C Baptista
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - M Lunn
- Department of Statistics, University of Oxford, OX1 3TG, UK
| | - D L Swan
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - S J Smith
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - R J Davenport
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - B D Allen
- School of Engineering, Newcastle University, NE1 7RU, UK
| | - W T Sloan
- Department of Civil Engineering, University of Glasgow, G12 8LT, UK
| | - T P Curtis
- School of Engineering, Newcastle University, NE1 7RU, UK
| |
Collapse
|
13
|
Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol J 2019; 16:15. [PMID: 30709355 PMCID: PMC6359870 DOI: 10.1186/s12985-019-1120-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial communities living in the oceans are major drivers of global biogeochemical cycles. With nutrients limited across vast swathes of the ocean, marine microbes eke out a living under constant assault from predatory viruses. Viral concentrations exceed those of their bacterial prey by an order of magnitude in surface water, making these obligate parasites the most abundant biological entities in the ocean. Like the pirates of the 17th and 18th centuries that hounded ships plying major trade and exploration routes, viruses have evolved mechanisms to hijack microbial cells and repurpose their cargo and indeed the vessels themselves to maximise viral propagation. Phenotypic reconfiguration of the host is often achieved through Auxiliary Metabolic Genes - genes originally derived from host genomes but maintained and adapted in viral genomes to redirect energy and substrates towards viral synthesis. In this review, we critically evaluate the literature describing the mechanisms used by bacteriophages to reconfigure host metabolism and to plunder intracellular resources to optimise viral production. We also highlight the mechanisms used when, in challenging environments, a 'batten down the hatches' strategy supersedes that of 'plunder and pillage'. Here, the infecting virus increases host fitness through phenotypic augmentation in order to ride out the metaphorical storm, with a concomitant impact on host substrate uptake and metabolism, and ultimately, their interactions with their wider microbial community. Thus, the traditional view of the virus-host relationship as predator and prey does not fully characterise the variety or significance of the interactions observed. Recent advances in viral metagenomics have provided a tantalising glimpse of novel mechanisms of viral metabolic reprogramming in global oceans. Incorporation of these new findings into global biogeochemical models requires experimental evidence from model systems and major improvements in our ability to accurately predict protein function from sequence data.
Collapse
Affiliation(s)
- Joanna Warwick-Dugdale
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH UK
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Holger H. Buchholz
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Michael J. Allen
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH UK
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Ben Temperton
- University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
14
|
Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep 2018; 8:1525. [PMID: 29367730 PMCID: PMC5784127 DOI: 10.1038/s41598-018-19678-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2018] [Indexed: 12/04/2022] Open
Abstract
In this study, we investigated virioplankton decay rates and their responses to changes in temperature and photosynthetically active radiation (PAR) in the western Pacific Ocean. The mean decay rates for total, high-fluorescence, and low-fluorescence viruses were 1.64 ± 0.21, 2.46 ± 0.43, and 1.57 ± 0.26% h−1, respectively. Higher temperatures and PAR increased viral decay rates, and the increases in the decay rates of low-fluorescence viruses were greater than those of high-fluorescence viruses. Our results revealed that low-fluorescence viruses are more sensitive to warming and increasing PAR than are high-fluorescence viruses, which may be related to differences in their biological characteristics, such as the density of packaged nucleic acid materials. Our study provided experimental evidence for the responses of natural viral communities to changes in global environmental factors (e.g., temperature and solar radiation).
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| | - Lulu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China
| | - Yantao Liang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.,Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and BioProcess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
15
|
Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, Sweredoski MJ, Hess S, Sullivan MB, Bidle KD, Orphan VJ. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol 2017; 20:671-692. [DOI: 10.1111/1462-2920.13996] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis L. Pasulka
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | | | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado Boulder; CO USA
| | - Yunbin Guan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | - Bonnie Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona; AZ USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Sonja Hess
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Kay D. Bidle
- Department of Marine and Coastal Studies; Rutgers University; NJ USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| |
Collapse
|
16
|
Marine Bacterioplankton Seasonal Succession Dynamics. Trends Microbiol 2017; 25:494-505. [DOI: 10.1016/j.tim.2016.12.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
|
17
|
Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship. Viruses 2017; 9:v9040084. [PMID: 28425942 PMCID: PMC5408690 DOI: 10.3390/v9040084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023] Open
Abstract
Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.
Collapse
|
18
|
Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev Camb Philos Soc 2016; 92:1081-1100. [DOI: 10.1111/brv.12271] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Kaarle J. Parikka
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
- LabMCT, Belgian Department of Defense; Queen Astrid Military Hospital; Brussels 1120 Belgium
| | - Marc Le Romancer
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
| | - Nina Wauters
- Biological Evolution and Ecology; Université Libre de Bruxelles; Brussels 1050 Belgium
| | | |
Collapse
|
19
|
Lawes JC, Neilan BA, Brown MV, Clark GF, Johnston EL. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms. BIOFOULING 2016; 32:57-69. [PMID: 26751559 DOI: 10.1080/08927014.2015.1126581] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.
Collapse
Affiliation(s)
- Jasmin C Lawes
- a School of Biological Earth and Environmental Sciences, University of New South Wales , Sydney , Australia
| | - Brett A Neilan
- b School of Biotechnology and Biomedical Sciences, University of New South Wales , Sydney , Australia
| | - Mark V Brown
- a School of Biological Earth and Environmental Sciences, University of New South Wales , Sydney , Australia
- b School of Biotechnology and Biomedical Sciences, University of New South Wales , Sydney , Australia
| | - Graeme F Clark
- a School of Biological Earth and Environmental Sciences, University of New South Wales , Sydney , Australia
| | - Emma L Johnston
- a School of Biological Earth and Environmental Sciences, University of New South Wales , Sydney , Australia
- c Sydney Institute of Marine Science , Sydney , Australia
| |
Collapse
|
20
|
Holmes DE, Giloteaux L, Chaurasia AK, Williams KH, Luef B, Wilkins MJ, Wrighton KC, Thompson CA, Comolli LR, Lovley DR. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. THE ISME JOURNAL 2015; 9:333-46. [PMID: 25083935 PMCID: PMC4303627 DOI: 10.1038/ismej.2014.128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/27/2014] [Accepted: 06/14/2014] [Indexed: 11/08/2022]
Abstract
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
- Western New England University, Springfield, MA, USA
| | - Ludovic Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Akhilesh K Chaurasia
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - Birgit Luef
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Kelly C Wrighton
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Courtney A Thompson
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Luis R Comolli
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
21
|
Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, Muthusamy S, Legrand C, Pinhassi J. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol 2015; 17:2459-76. [PMID: 25403576 DOI: 10.1111/1462-2920.12720] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.
Collapse
Affiliation(s)
- Markus V Lindh
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Johanna Sjöstedt
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-10691, Sweden
| | - Federico Baltar
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden.,Department of Marine Sciences, University of Otago, PO Box 56, Dunedin, NZ-9054, New Zealand
| | - Luisa W Hugerth
- Science for Life Laboratory, KTH Royal Institute of Technology, School of Biotechnology, Stockholm, SE-10691, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Saraladevi Muthusamy
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| |
Collapse
|
22
|
Bettarel Y, Bouvier T, Nguyen HK, Thu PT. The versatile nature of coral-associated viruses. Environ Microbiol 2014; 17:3433-9. [PMID: 25171444 DOI: 10.1111/1462-2920.12579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022]
Abstract
A recent hypothesis considers that many coral pathologies are the result of a sudden structural alteration of the epibiotic bacterial communities in response to environmental disturbances. However, the ecological mechanisms that lead to shifts in their composition are still unclear. In the ocean, viruses represent a major bactericidal agent but little is known on their occurrence within the coral holobiont. Recent reports have revealed that viruses are abundant and diversified within the coral mucus and therefore could be decisive for coral health. However, their mode of action is still unknown, and there is now an urgent need to shed light on the nature of the relationships they might have with the other prokaryotic and eukaryotic members of the holobiont. In this opinion letter, we are putting forward the hypothesis that coral-associated viruses (mostly bacterial and algal viruses), depending on the environmental conditions might either reinforce coral stability or conversely fasten their decline. We propose that these processes are presumably based on an environmentally driven shift in infection strategies allowing viruses to regulate, circumstantially, both coral symbionts (bacteria or Symbiodinium) and surrounding pathogens.
Collapse
Affiliation(s)
- Yvan Bettarel
- UMR 5119 ECOSYM, Institute of Research for Development (IRD), CNRS, Montpellier, France
| | - Thierry Bouvier
- UMR 5119 ECOSYM, Institute of Research for Development (IRD), CNRS, Montpellier, France
| | | | - Pham The Thu
- Institute of Marine Environment and Resources, Haiphong, Vietnam
| |
Collapse
|
23
|
Needham DM, Chow CET, Cram JA, Sachdeva R, Parada A, Fuhrman JA. Short-term observations of marine bacterial and viral communities: patterns, connections and resilience. ISME JOURNAL 2013; 7:1274-85. [PMID: 23446831 DOI: 10.1038/ismej.2013.19] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or 'boom/bust' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P≤0.005). Associations observed between bacteria and viruses (P≤0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%-0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a 'mean' microbial community set by longer-term controlling factors.
Collapse
Affiliation(s)
- David M Needham
- University of Southern California, Department of Biological Sciences, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Riemann L, Middelboe M. Viral lysis of marine bacterioplankton: Implications for organic matter cycling and bacterial clonal composition. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/00785236.2002.10409490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Rowe JM, DeBruyn JM, Poorvin L, LeCleir GR, Johnson ZI, Zinser ER, Wilhelm SW. Viral and bacterial abundance and production in the Western Pacific Ocean and the relation to other oceanic realms. FEMS Microbiol Ecol 2011; 79:359-70. [PMID: 22092569 DOI: 10.1111/j.1574-6941.2011.01223.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/26/2011] [Accepted: 10/01/2011] [Indexed: 11/29/2022] Open
Abstract
We completed a transect through the Western Pacific Warm Pool to examine how environmental variables may influence viral and bacterial abundance and production rates in this globally important oceanic region. Of the variables analyzed, viral abundance and production had the most significant relationship to bacterial cell abundance: viral parameters were not significantly correlated to the measured environmental variables, including temperature. Bacterial production rates were significantly correlated to temperature in open ocean waters, but not in waters close to land masses. Analyses of 16S rRNA gene by pyrosequencing indicated only minor changes in eubacterial community structure across the transect, with α-proteobacteria dominating all sampled populations. Diversity within the prokaryotic community did not correlate directly with viral abundance or activity. Comparisons to two other ocean-scale transects (> 8000 km of open ocean in total) in the Atlantic Ocean indicated that correlations between viral and bacterial abundance and production relative to environmental variables are regime dependent. In particular, correlations to temperature showed remarkable differences across the three transects. Collectively, our observations suggest that seemingly similar oceanic regions may have very different microbial community responses to environmental variables. Our observations and analyses demonstrate that ocean-scale generalizations may not apply in the case of viral ecology.
Collapse
Affiliation(s)
- Janet M Rowe
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Danovaro R, Corinaldesi C, Dell'Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA. Marine viruses and global climate change. FEMS Microbiol Rev 2011; 35:993-1034. [DOI: 10.1111/j.1574-6976.2010.00258.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Parsons RJ, Breitbart M, Lomas MW, Carlson CA. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME JOURNAL 2011; 6:273-84. [PMID: 21833038 DOI: 10.1038/ismej.2011.101] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.
Collapse
|
28
|
Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Natl Acad Sci U S A 2011; 108:11506-11. [PMID: 21709214 DOI: 10.1073/pnas.1101907108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Chesapeake Bay, a seasonally variable temperate estuary, provides a natural laboratory for examining the fluctuations and impacts of viral lysis on aquatic microorganisms. Viral abundance (VA) and viral production (VP) were monitored in the Chesapeake Bay over 4 1/2 annual cycles, producing a unique, long-term, interannual study of virioplankton production. High and dynamic VP rates, averaging 7.9 × 10(6) viruses per mL per h, indicate that viral lysis impacts a significant fraction of microorganisms in the Chesapeake. Viral-mediated bacterial mortality, VA, VP, and organic carbon release all displayed similar interannual and seasonal trends with higher values in 2003 and 2006 than in 2004 and 2005 and peaks in early spring and summer. Surprisingly, higher rates of viral lysis occurred in winter, resulting in a magnified effect of viral lysis on bacterioplankton during times of reduced productivity. Viral lysis directly impacted the organic carbon pool, contributing on average 76 μg of C per L per d, an amount capable of sustaining ∼55% of Chesapeake Bay bacterial production. The observed repeating interannual patterns of VP and lysis are likely interlinked with seasonal cycles of host abundance and diversity, which are in turn driven by annual cycles in environmental conditions, emphasizing the complex interplay of seasonality and microbial ecology in the Chesapeake Bay.
Collapse
|
29
|
Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F. Viral and microbial community dynamics in four aquatic environments. ISME JOURNAL 2010; 4:739-51. [PMID: 20147985 DOI: 10.1038/ismej.2010.1] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral-microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.
Collapse
Affiliation(s)
- Beltran Rodriguez-Brito
- Computational Science Research Center, San Diego State University, San Diego, CA 92182-1245, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME JOURNAL 2010; 4:648-59. [DOI: 10.1038/ismej.2009.145] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Winget DM, Wommack KE. Diel and daily fluctuations in virioplankton production in coastal ecosystems. Environ Microbiol 2009; 11:2904-14. [PMID: 19703217 DOI: 10.1111/j.1462-2920.2009.02038.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Viruses saturate the world around us, yet a basic understanding of how viral impacts on microbial host organisms vary over days to hours, which typify the replication cycles of aquatic viruses, remains elusive. Thus, diel patterns of viral production (VP) in Chesapeake Bay surface waters were examined on five sampling dates. Day-to-day variations in VP in the Chesapeake and coastal California surface waters were also investigated. Significant variations in VP were detected over 24 h cycles during four of five studies, but rates did not vary significantly over the course of a few days in either location. Diel patterns of VP displayed seasonality with shorter viral assemblage turnover times and shorter times to maximum viral abundance in summer, implying shorter replication cycles for virus-host systems in warmer months. No correlation was found between VP and time of day, likely due to seasonal changes in the diel patterns of VP. This analysis significantly increases our knowledge of the short-term patterning of in situ VP, and thus viral impacts, and suggests that variations in viral biology in response to changes in host communities or physio-chemical properties affect both diel and seasonal cycles and magnitudes of VP.
Collapse
Affiliation(s)
- Danielle M Winget
- College of Marine and Earth Studies, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
32
|
Abstract
In this review, available data on the structure (diversity, abundance, biomass) and functional imprints (bacteriolysis, lysogeny, gene transfers, regulation of prokaryotic diversity) of natural viruses in the context of food webs in aquatic microbial ecology, and the related biogeochemical cycles, are summarized. Viruses are the most abundant, and probably the most diverse, biological entities in aquatic ecosystems and in the biosphere (i.e., viriosphere). Aquatic viruses typically exceed 107 particles/mL in mesotrophic conditions, the majority being represented by phages without tails and by tailed-phages such as members of the family Siphoviridae. Both types of phages have a small capsid and a small genome size, which is considered an evolutionary adaptation to planktonic life. Their contribution to microbial mortality is significant. There is strong evidence that phages exert a significant pressure on the community structure and diversity and on the diversification of potential hosts, mainly through two major pathways: biogeochemical catalysis from lysis products and horizontal gene transfers. In turn, phages are sensitive to environmental factors, both in terms of integrity and of infectivity. Some phages contain typical viral genes that code for biological functions of interest, such as photosynthesis. In general, development in viral ecology is a source of new knowledge for the scientific community in the domain of environmental sciences, but also in the context of evolutionary biology of living cellular organisms, the obligatory hosts for viruses. For example, the recent discovery of a giant virus that becomes ill through infection by another virus (i.e., a viriophage) is fuelling debate about whether viruses are alive. Finally, future research directions are identified in the context of general aquatic ecology, including ecological researches on cyanophages and other phytoplanktonic phages as a priority, primarily in freshwater lakes.
Collapse
|
33
|
Determination of viral production in aquatic sediments using the dilution-based approach. Nat Protoc 2009; 4:1013-22. [PMID: 19536269 DOI: 10.1038/nprot.2009.82] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Viruses are the most abundant and dynamic biological entities in the world's ecosystems. Marine sediments, the largest biome in the world, have the potential to represent an optimal environment for viral development. To assess the viral effect on their hosts, and to understand the ecological role of the viruses in the benthic food webs and biogeochemical cycles, measurements of benthic viral production are needed. Different direct and indirect approaches have been proposed to estimate viral production in aquatic sediments, but a standardized protocol is not available yet. The method presented in this protocol relies on the short-time incubations of sediment samples with virus-free seawater, and the subsequent determination of the increase in viral abundance over time by epifluorescence microscopy. The protocol described here is highly reliable, inexpensive and easy to use. The entire procedure takes approximately 3 days to be completed, but the method allows the parallel processing of several sediment samples, which is recommended in ecological studies.
Collapse
|
34
|
Luef B, Luef F, Peduzzi P. Online program 'vipcal' for calculating lytic viral production and lysogenic cells based on a viral reduction approach. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:78-85. [PMID: 21151811 PMCID: PMC2999826 DOI: 10.1111/j.1758-2229.2008.00008.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Assessing viral production (VP) requires robust methodological settings combined with precise mathematical calculations. This contribution improves and standardizes mathematical calculations of VP and the assessment of the proportion of lysogenic cells in a sample. We present an online tool 'Viral Production Calculator' (vipcal, http://www.univie.ac.at/nuhag-php/vipcal) that calculates lytic production and the percentage of lysogenic cells based on data obtained from a viral reduction approach (VRA). The main advantage of our method lies in its universal applicability, even to different piecewise-linear curves. We demonstrate the application of our tool for calculating lytic VP and the proportion of lysogenic bacteria in an environmental sample. The program can also be used to calculate different parameters for estimating virus-induced mortality, including the percentage of lytically infected cells, lysis rate of bacteria, percentage of bacterial production lysed, proportion of bacterial loss per day, viral turnover time as well as dissolved organic carbon and nitrogen release. vipcal helps avoid differences in the calculation of VP and diverse viral parameters between studies and laboratories, which facilities interpretation of results. This tool represents a methodological step forward that can help improve our understanding of the role of viral activity in aquatic systems.
Collapse
Affiliation(s)
- Birgit Luef
- Faculty of Life Sciences, Department of Freshwater Ecology, University of Vienna, Vienna, Austria
| | - Franz Luef
- Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Peter Peduzzi
- Faculty of Life Sciences, Department of Freshwater Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Williamson KE, Schnitker JB, Radosevich M, Smith DW, Wommack KE. Cultivation-based assessment of lysogeny among soil bacteria. MICROBIAL ECOLOGY 2008; 56:437-447. [PMID: 18322729 DOI: 10.1007/s00248-008-9362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 11/21/2007] [Accepted: 01/07/2008] [Indexed: 05/26/2023]
Abstract
Lysogeny has long been proposed as an important long-term maintenance strategy for autochthonous soil bacteriophages (phages). Whole genome sequence data indicate that prophage-derived sequences pervade prokaryotic genomes, but the connection between inferred prophage sequence and an active temperate phage is tenuous. Thus, definitive evidence of phage production from lysogenic prokaryotes will be critical in determining the presence and extent of temperate phage diversity existing as prophage within bacterial genomes and within environmental contexts such as soils. This study optimized methods for systematic and definitive determination of lysogeny within a collection of autochthonous soil bacteria. Twenty bacterial isolates from a range of Delaware soil environments (five from each soil) were treated with the inducing agents mitomycin C (MC) or UV light. Six isolates (30%) carried inducible temperate phages as evidenced by an increase in virus direct counts. The magnitude of induction response was highly dependent upon specific induction conditions, and corresponding burst sizes ranged from 1 to 176. Treatment with MC for 30 min yielded the largest induction responses for three of the six lysogens. Morphological analysis revealed that four of the lysogens produced lambda-like Siphoviridae particles, whereas two produced Myoviridae particles. Additionally, pulsed-field gel electrophoresis data indicated that two of the six lysogens were polylysogens, producing more than one distinct type of phage particle. These results suggest that lysogeny is relatively common among soil bacteria.
Collapse
Affiliation(s)
- Kurt E Williamson
- Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
36
|
AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 2008; 74:6528-37. [PMID: 18776030 DOI: 10.1128/aem.00780-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insertional mutagenesis with pGhost9::ISS1 resulted in independent insertions in a 350-bp region of the chromosome of Lactococcus lactis subsp. cremoris MG1363 that conferred phage resistance to the integrants. The orientation and location of the insertions suggested that the phage resistance phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis MG1363. This gene was also found to confer phage resistance to L. lactis MG1363 when it was cloned into an expression vector. A subsequent frameshift mutation in the ORF completely eliminated the phage resistance phenotype, confirming that the ORF was necessary for phage resistance. This ORF provided resistance against virulent lactococcal phages belonging to the 936 and c2 species with an efficiency of plaquing of 10(-4), but it did not protect against members of the P335 species. A high level of expression of the ORF did not affect the cellular growth rate. Assays for phage adsorption, DNA ejection, restriction/modification activity, plaque size, phage DNA replication, and cell survival showed that the ORF encoded an abortive infection (Abi) mechanism. Sequence analysis revealed a deduced protein consisting of 201 amino acids which, in its native state, probably forms a dimer in the cytosol. Similarity searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages.
Collapse
|
37
|
Parada V, Baudoux AC, Sintes E, Weinbauer MG, Herndl GJ. Dynamics and diversity of newly produced virioplankton in the North Sea. ISME JOURNAL 2008; 2:924-36. [DOI: 10.1038/ismej.2008.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Trilisky EI, Lenhoff AM. Sorption processes in ion-exchange chromatography of viruses. J Chromatogr A 2007; 1142:2-12. [PMID: 17240385 DOI: 10.1016/j.chroma.2006.12.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 12/19/2006] [Accepted: 12/28/2006] [Indexed: 11/19/2022]
Abstract
Purified viruses are used in gene therapy and vaccine production. Ion-exchange chromatography (IEC) is the most common method for large-scale downstream purification of viruses and proteins. Published IEC protocols provide details for specific separations but not general methods for selecting operating parameters. To make the selection more systematic, we study adenovirus type 5 (Ad5) as a model virus and develop batch uptake and light scattering methods for optimizing the ionic strength and pH of adsorption, as well as providing heuristics for resin geometry. The static capacity for Ad5 was found to go through a maximum with increasing ionic strength. Comparison to a protein-resin system shows that resin capacity for the virus is at least an order of magnitude lower, even on a wide-pore resin. Virus penetration into the wide-pore resin is only partial and the uptake rate is an order of magnitude slower than the uptake onto a narrow-pore resin.
Collapse
Affiliation(s)
- E I Trilisky
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | |
Collapse
|
39
|
Kirs M, Smith DC. Multiplex quantitative real-time reverse transcriptase PCR for F+-specific RNA coliphages: a method for use in microbial source tracking. Appl Environ Microbiol 2006; 73:808-14. [PMID: 17142373 PMCID: PMC1800770 DOI: 10.1128/aem.00399-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well documented that microbial contamination of coastal waters poses a significant risk to human health through recreational exposure and consumption of shellfish. Identifying the source of microbial contamination (microbial source tracking) plays a dominant role in enabling effective management and remediation strategies. One method used to determine the source of the contamination is quantification of the ratio of the four subgroups of F+-specific RNA coliphages (family Leviviridae) in impacted water samples. Because of typically low concentrations in the environment, enrichment assays are performed prior to detection, even though differential replication rates have been reported. These assays are also compromised by differential loss of phage infectivity among subgroups after release into the environment, thus obscuring the initial ratio. Here, a culture-independent multiplex real-time reverse transcriptase-PCR (RT-PCR) protocol for the simultaneous quantification of all four subgroups of F+-specific RNA coliphages using novel primer sets and molecular beacons is presented. This assay is extremely sensitive, achieving detection with as few as 10 copies of isolated coliphage RNA, and is linear for a minimum of six orders of magnitude. During survival experiments, the real-time RT-PCR technique was able to quantify coliphages in seawater when culture-based double agar layer assay failed. While infectivity was lost at different rates at the subgroup level, decay constants in seawater, calculated using the real-time RT-PCR estimates, did not vary among subgroups. The accurate determination of the in situ concentration of F+-specific RNA coliphages using this method will facilitate more effective remediation strategies for impacted environments.
Collapse
Affiliation(s)
- Marek Kirs
- Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA.
| | | |
Collapse
|
40
|
Fischer UR, Wieltschnig C, Kirschner AKT, Velimirov B. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms. Environ Microbiol 2006; 8:1394-407. [PMID: 16872403 DOI: 10.1111/j.1462-2920.2006.01032.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to the water column, the fate of bacterial production in freshwater sediments is still a matter of debate. Thus, the importance of virus-induced lysis and protozoan grazing of bacteria was investigated for the first time simultaneously in a silty sediment layer of a mesotrophic oxbow lake. Microcosms were installed in the laboratory in order to study the dynamics of these processes over 15 days. All microbial and physicochemical parameters showed acceptable resemblance to field data observed during a concomitant in situ study, and similar conclusions can be drawn with respect to the quantitative impact of viruses and protozoa on the bacterial compartment. Viral decay rates ranged from undetectable to 0.078 h(-1) (average, 0.033 h(-1)), and the control of bacterial production from below the detection limit to 36% (average, 12%). The contribution of virus-induced lysis of bacteria to the dissolved organic matter pool as well as to benthic bacterial nutrition was low. Ingestion rates of protozoan grazers ranged from undetectable to 24.7 bacteria per heterotrophic nanoflagellate (HNF) per hour (average, 4.8 bacteria HNF(-1) h(-1)) and from undetectable to 73.3 bacteria per ciliate per hour (average, 11.2 bacteria ciliate(-1) h(-1)). Heterotrophic nanoflagellate and ciliates together cropped up to 5% (average, 1%) of bacterial production. The viral impact on bacteria prevailed over protozoan grazing by a factor of 2.5-19.9 (average, 9.5). In sum, these factors together removed up to 36% (average, 12%) of bacterial production. The high number of correlations between viral and protozoan parameters is discussed in view of a possible relationship between virus removal and the presence of protozoan grazers.
Collapse
Affiliation(s)
- Ulrike R Fischer
- Medical University of Vienna, Centre for Anatomy and Cell Biology, Research Group General Microbiology, Waehringer Strasse 10, 1090 Vienna, Austria.
| | | | | | | |
Collapse
|
41
|
Kenzaka T, Utrarachkij F, Suthienkul O, Nasu M. Rapid Monitoring of Escherichia coli in Southeast Asian Urban Canals by Fluorescent-Bacteriophage Assay. ACTA ACUST UNITED AC 2006. [DOI: 10.1248/jhs.52.666] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takehiko Kenzaka
- Faculty of Environment and Resource Studies, Mahidol University
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | - Masao Nasu
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
42
|
Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol 2005; 71:6644-50. [PMID: 16269692 PMCID: PMC1287695 DOI: 10.1128/aem.71.11.6644-6650.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the relationships between trophic conditions and viral dynamics have been widely explored in different pelagic environments, there have been few attempts at independent estimates of both viral production and decay. In this study, we investigated factors controlling the balance between viral production and decay along a trophic gradient in the north Adriatic basin, providing independent estimates of these variables and determining the relative importance of nanoflagellate grazing and viral life strategies. Increasing trophic conditions induced an increase of bacterioplankton growth rates and of the burst sizes. As a result, eutrophic waters displayed highest rates of viral production, which considerably exceeded observed rates of viral decay (up to 2.9 x 10(9) VLP liter(-1) h(-1)). Viral decay was also higher in eutrophic waters, where it accounted for ca. 40% of viral production, and dropped significantly to 1.3 to 10.7% in oligotrophic waters. These results suggest that viral production and decay rates may not necessarily be balanced in the short term, resulting in a net increase of viruses in the system. In eutrophic waters nanoflagellate grazing, dissolved-colloidal substances, and lysogenic infection were responsible together for the removal of ca. 66% of viral production versus 17% in oligotrophic waters. Our results suggest that different causative agents are primarily responsible for the removal of viruses from the water column in different trophic conditions. Factors other than those considered in the past might shed light on processes responsible for the removal and/or decay of viral particles from the water column.
Collapse
Affiliation(s)
- Lucia Bongiorni
- Department of Marine Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | |
Collapse
|
43
|
Abstract
Viruses exist wherever life is found. They are a major cause of mortality, a driver of global geochemical cycles and a reservoir of the greatest genetic diversity on Earth. In the oceans, viruses probably infect all living things, from bacteria to whales. They affect the form of available nutrients and the termination of algal blooms. Viruses can move between marine and terrestrial reservoirs, raising the spectre of emerging pathogens. Our understanding of the effect of viruses on global systems and processes continues to unfold, overthrowing the idea that viruses and virus-mediated processes are sidebars to global processes.
Collapse
Affiliation(s)
- Curtis A Suttle
- Department of Chemistry, University of California, Berkeley and the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
44
|
Winter C, Smit A, Szoeke-Dénes T, Herndl GJ, Weinbauer MG. Modelling viral impact on bacterioplankton in the North Sea using artificial neural networks. Environ Microbiol 2005; 7:881-93. [PMID: 15892707 DOI: 10.1111/j.1462-2920.2005.00768.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temporal variability of the viral impact on bacterioplankton during the summer-winter transition in the North Sea was determined and artificial neural networks (ANNs) were developed to predict viral production and the frequency of infected bacterial cells (FIC). Viral production and FIC were estimated using a virus-dilution approach during four cruises in the southern North Sea between July and December 2000 and an additional cruise in June 2001. Supplementary data such as bacterial production, and bacterial and viral abundance were collected to relate changes in FIC and viral production to the dynamics of other biotic parameters. Average viral abundance varied between 4.4 x 10(6) ml(-1) in December and 29.8 x 10(6) ml(-1) in July. Over the seasonal cycle, viral abundance correlated best with bacterial production. Average bacterial abundance varied between 0.5 x 10(6) ml(-1) in December and 1.3 x 10(6) ml(-1) in July. Monthly average values of FIC ranged from 9% in September to 39% in June and the average viral production from 11 x 10(4) ml(-1) h(-1) in December to 35 x 10(4) ml(-1) h(-1) in July. The data set was used to develop ANN-based models of viral production and FIC. Viral production was modelled best using sampling time, and bacterial and viral abundance as input parameters to an ANN with two hidden neurons. Modelling of FIC was performed using bacterial production as an additional input parameter for an ANN with three hidden neurons. The models can be used to simulate viral production and FIC based on regularly recorded and easily obtainable parameters such as bacterial production, bacterial and viral abundance.
Collapse
Affiliation(s)
- Christian Winter
- Department Biological Oceanography, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, the Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Hornák K, Masín M, Jezbera J, Bettarel Y, Nedoma J, Sime-Ngando T, Simek K. Effects of decreased resource availability, protozoan grazing and viral impact on a structure of bacterioplankton assemblage in a canyon-shaped reservoir. FEMS Microbiol Ecol 2004; 52:315-27. [PMID: 16329917 DOI: 10.1016/j.femsec.2004.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 10/15/2004] [Accepted: 11/18/2004] [Indexed: 11/24/2022] Open
Abstract
We conducted a transplant experiment to elucidate the effects of different levels of grazing pressure, nutrient availability, especially phosphorus, and the impact of viruses on the changes in the structure of bacterioplankton assemblage in a meso-eutrophic reservoir. A sample taken from the nutrient-rich inflow part of the reservoir was size-fractionated and incubated in dialysis bags in both inflow and dam area. The structure of bacterial assemblage was examined by fluorescence in situ hybridization using oligonucleotide probes with different levels of specificity. In terms of the relative proportions of different bacterial groups, we found very few significant changes in the bacterioplankton composition after transplanting the treatments to the nutrient-poor dam area. However, we observed marked shifts in morphology and biomass towards the development of filaments, flocs and "vibrio-like" morphotypes of selected probe-defined groups of bacteria induced by increased grazing pressure. Despite the very high abundances of viruses in all the treatments, their effects on bacterioplankton were rather negligible.
Collapse
Affiliation(s)
- Karel Hornák
- Hydrobiological Institute of the Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-370 05 Ceské Budejovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
46
|
Anesio AM, Hollas C, Granéli W, Laybourn-Parry J. Influence of humic substances on bacterial and viral dynamics in freshwaters. Appl Environ Microbiol 2004; 70:4848-54. [PMID: 15294823 PMCID: PMC492460 DOI: 10.1128/aem.70.8.4848-4854.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial and viral abundances were measured in 24 lakes with dissolved organic carbon (DOC) concentrations ranging from 3 to 19 mg of C liter(-1). In addition, a laboratory experiment was performed to test the effects of different sources of carbon (i.e., glucose and fulvic acids) and nutrients on the dynamics of viruses and bacteria. In the lake survey, no correlation was found between virus abundance and DOC concentration, yet there was a significant positive correlation between bacterial abundance and DOC concentration. A negative correlation was found between the virus-to-bacteria ratio and DOC level. These results are in agreement with our findings in the laboratory, where virus counts were significantly lower in treatments with fulvic acid additions than in a control (mean, 67.4% +/- 6.5% of the control). Virus counts did not differ significantly among the control and treatments with glucose, indicating that it was the type of organic carbon and not quantity which had an impact on viruses. Results from this study suggest that the way viruses control bacterial assemblages in humic lakes is different from the mechanism in clear water systems.
Collapse
Affiliation(s)
- Alexandre M Anesio
- School of Biosciences, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol 2004; 70:2941-51. [PMID: 15128555 PMCID: PMC404444 DOI: 10.1128/aem.70.5.2941-2951.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For aquatic systems, especially freshwaters, there is little data on the long-term (i.e., >6-month period) and depth-related variability of viruses. In this study, we examined virus-induced mortality of heterotrophic bacteria over a 10-month period and throughout the water column in two lakes of the French Massif Central, the oligomesotrophic Lake Pavin and the eutrophic Lake Aydat. Concurrently, we estimated nonviral mortality through heterotrophic nanoflagellate and ciliate bacterivory. Overall, viral infection parameters were much less variable than bacterial production. We found that the frequency of visibly infected cells (FVIC), estimated using transmission electron microscopy, peaked in both lakes at the end of spring (May to June) and in early autumn (September to October). FVIC values were significantly higher in Lake Pavin (mean [M] = 1.6%) than in Lake Aydat (M = 1.1%), whereas the opposite trend was observed for burst sizes, which averaged 25.7 and 30.2 virus particles bacterium(-1), respectively. We detected no significant depth-related differences in FVIC or burst size. We found that in both lakes the removal of bacterial production by flagellate grazing (M(Pavin) = 37.7%, M(Aydat) = 18.5%) was nearly always more than the production removed by viral lysis (M(Pavin) = 16.2%, M(Aydat) = 19%) or ciliate grazing (M(Pavin) = 2.7%, M(Aydat) = 8.8%). However, at specific times and locations, viral lysis prevailed over protistan grazing, for example, in the anoxic hypolimnion of Lake Aydat. In addition, viral mortality represented a relatively constant mortality source in a bacterial community showing large variations in growth rate and subject to large variations in loss rates from grazers. Finally, although viruses did not represent the main agent of bacterial mortality, our data seem to show that their relative importance was higher in the less productive system.
Collapse
Affiliation(s)
- Yvan Bettarel
- Laboratoire de Biologie des Protistes, UMR CNRS 6023, Université Blaise Pascal (Clermont-Ferrand II), 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
48
|
Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127-81. [PMID: 15109783 DOI: 10.1016/j.femsre.2003.08.001] [Citation(s) in RCA: 946] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 07/22/2003] [Accepted: 08/05/2003] [Indexed: 11/24/2022] Open
Abstract
The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Department of Biological Oceanography, Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
49
|
Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F. Phage community dynamics in hot springs. Appl Environ Microbiol 2004; 70:1633-40. [PMID: 15006788 PMCID: PMC368299 DOI: 10.1128/aem.70.3.1633-1640.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In extreme thermal environments such as hot springs, phages are the only known microbial predators. Here we present the first study of prokaryotic and phage community dynamics in these environments. Phages were abundant in hot springs, reaching concentrations of a million viruses per milliliter. Hot spring phage particles were resistant to shifts to lower temperatures, possibly facilitating DNA transfer out of these extreme environments. The phages were actively produced, with a population turnover time of 1 to 2 days. Phage-mediated microbial mortality was significant, making phage lysis an important component of hot spring microbial food webs. Together, these results show that phages exert an important influence on microbial community structure and energy flow in extreme thermal environments.
Collapse
Affiliation(s)
- Mya Breitbart
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|
50
|
Seguritan V, Feng IW, Rohwer F, Swift M, Segall AM. Genome sequences of two closely related Vibrio parahaemolyticus phages, VP16T and VP16C. J Bacteriol 2003; 185:6434-47. [PMID: 14563879 PMCID: PMC219397 DOI: 10.1128/jb.185.21.6434-6447.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two bacteriophages of an environmental isolate of Vibrio parahaemolyticus were isolated and sequenced. The VP16T and VP16C phages were separated from a mixed lysate based on plaque morphology and exhibit 73 to 88% sequence identity over about 80% of their genomes. Only about 25% of their predicted open reading frames are similar to genes with known functions in the GenBank database. Both phages have cos sites and open reading frames encoding proteins closely related to coliphage lambda's terminase protein (the large subunit). Like in coliphage lambda and other siphophages, a large operon in each phage appears to encode proteins involved in DNA packaging and capsid assembly and presumably in host lysis; we refer to this as the structural operon. In addition, both phages have open reading frames closely related to genes encoding DNA polymerase and helicase proteins. Both phages also encode several putative transcription regulators, an apparent polypeptide deformylase, and a protein related to a virulence-associated protein, VapE, of Dichelobacter nodosus. Despite the similarity of the proteins and genome organization, each of the phages also encodes a few proteins not encoded by the other. We did not identify genes closely related to genes encoding integrase proteins belonging to either the tyrosine or serine recombinase family, and we have no evidence so far that these phages can lysogenize the V. parahaemolyticus strain 16 host. Surprisingly for active lytic viruses, the two phages have a codon usage that is very different than that of the host, suggesting the possibility that they may be relative newcomers to growth in V. parahaemolyticus. The DNA sequences should allow us to characterize the lifestyles of VP16T and VP16C and the interactions between these phages and their host at the molecular level, as well as their relationships to other marine and nonmarine phages.
Collapse
Affiliation(s)
- Victor Seguritan
- Department of Biology. Center for Microbial Sciences. Microchemical Core Facility, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | | | |
Collapse
|