1
|
Zhang Q, Shu F, Chen X, Liu W, Bian Y, Kang H. Construction of nucleus-directed fluorescent reporter systems and its application to verification of heterokaryon formation in Morchella importuna. Front Microbiol 2022; 13:1051013. [PMID: 36478869 PMCID: PMC9720127 DOI: 10.3389/fmicb.2022.1051013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Morchella importuna (M. importuna) is a rare fungus with high nutrition value and distinct flavor. Despite the successful artificial cultivation, its genetic characteristics and biological processes such as life cycle, reproductive system, and trophic mode remain poorly understood. METHODS Considering this, we constructed pEH2B and pMH2B vectors by fusing M. importuna endogenous histone protein H2B with fluorescent proteins eGFP or mCherry, respectively. Based on the constructed pEH2B and pMH2B vectors, nuclear fluorescence localization was performed via Agrobacterium tumefaciens-mediated transformation (ATMT). These two vectors were both driven by two endogenous promoters glyceraldehyde 3-phosphate dehydrogenase (GPD) and ubiquitin (UBI). The vector-based reporter systems were tested by the paired culture of two genetically modified strains pEH2B-labeled M04M24 (24e, MAT1-1-1) and pMH2B-abeled M04M26 (26m, MAT1-2-1). RESULTS The fluorescence observation and molecular identification results indicated the successful hyphal fusion and heterokaryon formation. We found that the expression of the reporter genes was stable, and it did not interfere with the growth of the fungus. DISCUSSION Our constructed nucleus-directed fluorescent systems in M. importuna can be used for monitoring the dynamic development and reproductive processes in living cells and also for monitoring the interaction between morels and plant roots. Therefore, morels exhibit the potential to be a candidate organism used for the research on basic biology and genetics of ascomycetes.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fang Shu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xin Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Wei Liu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yinbing Bian
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Heng Kang
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
You H, Sun B, Li N, Xu JW. Efficient expression of heterologous genes by the introduction of the endogenous glyceraldehyde-3-phosphate dehydrogenase gene intron 1 in Ganoderma lucidum. Microb Cell Fact 2021; 20:164. [PMID: 34419069 PMCID: PMC8379801 DOI: 10.1186/s12934-021-01654-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Ganoderma lucidum, a well-known medicinal mushroom, has received wide attention as a promising cell factory for producing bioactive compounds. However, efficient expression of heterologous genes remains a major challenge in Ganoderma, hindering metabolic regulation research and molecular breeding of this species. Results We show that the presence of glyceraldehyde-3-phosphate dehydrogenase gene (gpd) intron 1 at the 5′ end of, the 3′ end of, or within the heterologous phosphinothricin-resistant gene (bar) is efficient for its expression in G. lucidum. The enhanced expression of bar is exhibited by the higher accumulation of mRNA and increased amounts of protein. Moreover, the insertion of the gpd intron 1 in the β-glucuronidase gene (gus) elevates its mRNA accumulation and enzyme activity, which facilitates the use of this reporter gene in Ganoderma. Conclusions This study has demonstrated the importance of the introduction of gpd intron 1 for the efficient expression of bar and gus in G. lucidum. The presence of the gpd intron 1 in heterologous genes increases levels of mRNA accumulation and protein expression in basidiomycete Ganoderma. The developed method may be utilized in upregulating the expression of other heterologous genes in Ganoderma. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01654-8.
Collapse
Affiliation(s)
- Hao You
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Na Li
- Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Characterization of the effects of terminators and introns on recombinant gene expression in the basidiomycete Ceriporiopsis subvermispora. J Microbiol 2020; 58:1037-1045. [DOI: 10.1007/s12275-020-0213-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023]
|
4
|
Kemppainen M, Chowdhury J, Lundberg-Felten J, Pardo A. Fluorescent protein expression in the ectomycorrhizal fungus Laccaria bicolor: a plasmid toolkit for easy use of fluorescent markers in basidiomycetes. Curr Genet 2020; 66:791-811. [PMID: 32170354 DOI: 10.1007/s00294-020-01060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.
Collapse
Affiliation(s)
- Minna Kemppainen
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina.
| | - Jamil Chowdhury
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Judith Lundberg-Felten
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Alejandro Pardo
- Laboratory of Molecular Mycology, Institute of Basic and Applied Microbiology, Department of Science and Technology, Nacional University of Quilmes and CONICET, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Liu K, Sun B, You H, Tu JL, Yu X, Zhao P, Xu JW. Dual sgRNA-directed gene deletion in basidiomycete Ganoderma lucidum using the CRISPR/Cas9 system. Microb Biotechnol 2020; 13:386-396. [PMID: 31958883 PMCID: PMC7017817 DOI: 10.1111/1751-7915.13534] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Ganoderma lucidum is an important medicinal mushroom in traditional Chinese medicine. However, the lack of adequate genetic tools has hindered molecular genetic research in and the genetic modification of this species. Here, we report that the presence of an intron is necessary for the efficient expression of the heterologous phosphinothricin-resistance and green fluorescent protein genes in G. lucidum. Moreover, we improved the CRISPR/Cas9-mediated gene disruption frequency in G. lucidum by adding an intron upstream of the Cas9 gene. Our results showed that the disruption frequency of the orotidine 5'-monophosphate decarboxylase gene (ura3) in transformants containing the glyceraldehyde-3-phosphate dehydrogenase gene intron in the Cas9 plasmid is 14-18 in 107 protoplasts, which is 10.6 times higher than that in transformants without any intron sequence. Furthermore, genomic fragment deletions in the ura3 and GL17624 genes were achieved via a dual sgRNA-directed CRISPR/Cas9 system in G. lucidum. We achieved a ura3 deletion frequency of 36.7% in G. lucidum. The developed method provides a powerful platform to generate gene deletion mutants and will facilitate functional genomic studies in G. lucidum.
Collapse
Affiliation(s)
- Ke Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hao You
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Liang Tu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Peng Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun-Wei Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
6
|
Yin C, Fan X, Ma K, Chen Z, Shi D, Yao F, Gao H, Ma A. Identification and characterization of a novel light-induced promoter for recombinant protein production in Pleurotus ostreatus. J Microbiol 2019; 58:39-45. [PMID: 31686390 DOI: 10.1007/s12275-020-9230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 11/30/2022]
Abstract
A lectin gene (plectin) with a high level of expression was previously identified by comparative transcriptome analysis of Pleurotus ostreatus. In this study, we cloned a 733-bp DNA fragment from the start codon of the plectin gene. Sequence analysis showed that the plectin promoter (Plp) region contained several eukaryotic transcription factor binding motifs, such as the TATA-box, four possible CAAT-box, light respon-siveness motifs and MeJA-responsiveness motifs. To deter-mine whether the Plp promoter was a light-regulated promoter, we constructed an expression vector with the fused egfp-hph fragment under the control of the Plp promoter and transformed P. ostreatus mycelia via Agrobacterium tunte-faciens. PCR and Southern blot analyses confirmed the Plp-egfp-hph fragment was integrated into the chromosomal DNA of transformants. qRT-PCR, egfp visualization, and intracellular egfp determination experiments showed the Plp promoter could be a light-induced promoter that may be suitable for P. ostreatus genetic engineering. This study lays the foundation for gene homologous expression in P. ostreatus.
Collapse
Affiliation(s)
- Chaomin Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China. .,National Research and Development Center for Edible Fungi Processing (Wuhan), Wuhan, 430064, P. R. China.
| | - Xiuzhi Fan
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Kun Ma
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Zheya Chen
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Defang Shi
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Fen Yao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China
| | - Hong Gao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P. R. China.,National Research and Development Center for Edible Fungi Processing (Wuhan), Wuhan, 430064, P. R. China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
7
|
Herzog R, Solovyeva I, Bölker M, Lugones LG, Hennicke F. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol Genet Genomics 2019; 294:663-677. [PMID: 30778675 DOI: 10.1007/s00438-018-01528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.
Collapse
Affiliation(s)
- Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Environmental Biotechnology, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Irina Solovyeva
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Michael Bölker
- LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Luis G Lugones
- Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 101:241-251. [DOI: 10.1007/s00253-016-7891-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/25/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
|
9
|
Deng H, Gao R, Chen J, Liao X, Cai Y. An efficient polyethylene glycol-mediated transformation system of lentiviral vector in Shiraia bambusicola. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Ford KL, Baumgartner K, Henricot B, Bailey AM, Foster GD. A native promoter and inclusion of an intron is necessary for efficient expression of GFP or mRFP in Armillaria mellea. Sci Rep 2016; 6:29226. [PMID: 27384974 PMCID: PMC4935854 DOI: 10.1038/srep29226] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/14/2016] [Indexed: 12/21/2022] Open
Abstract
Armillaria mellea is a significant pathogen that causes Armillaria root disease on numerous hosts in forests, gardens and agricultural environments worldwide. Using a yeast-adapted pCAMBIA0380 Agrobacterium vector, we have constructed a series of vectors for transformation of A. mellea, assembled using yeast-based recombination methods. These have been designed to allow easy exchange of promoters and inclusion of introns. The vectors were first tested by transformation into basidiomycete Clitopilus passeckerianus to ascertain vector functionality then used to transform A. mellea. We show that heterologous promoters from the basidiomycetes Agaricus bisporus and Phanerochaete chrysosporium that were used successfully to control the hygromycin resistance cassette were not able to support expression of mRFP or GFP in A. mellea. The endogenous A. mellea gpd promoter delivered efficient expression, and we show that inclusion of an intron was also required for transgene expression. GFP and mRFP expression was stable in mycelia and fluorescence was visible in transgenic fruiting bodies and GFP was detectable in planta. Use of these vectors has been successful in giving expression of the fluorescent proteins GFP and mRFP in A. mellea, providing an additional molecular tool for this pathogen.
Collapse
Affiliation(s)
- Kathryn L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, 363 Hutchison Hall, University of California, One Shields Avenue, Davis, CA 95616, United States
| | - Béatrice Henricot
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Gary D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| |
Collapse
|
12
|
Arimoto M, Yamagishi K, Wang J, Tanaka K, Miyoshi T, Kamei I, Kondo R, Mori T, Kawagishi H, Hirai H. Molecular breeding of lignin-degrading brown-rot fungus Gloeophyllum trabeum by homologous expression of laccase gene. AMB Express 2015; 5:81. [PMID: 26695948 PMCID: PMC4688280 DOI: 10.1186/s13568-015-0173-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
The basidiomycete Gloeophyllum trabeum KU-41 can degrade Japanese cedar wood efficiently. To construct a strain better suited for biofuel production from Japanese cedar wood, we developed a gene transformation system for G. trabeum KU-41 using the hygromycin phosphotransferase-encoding gene (hpt) as a marker. The endogenous laccase candidate gene (Gtlcc3) was fused with the promoter of the G. trabeum glyceraldehyde-3-phosphate dehydrogenase-encoding gene and co-transformed with the hpt-bearing pAH marker plasmid. We obtained 44 co-transformants, and identified co-transformant L#61, which showed the highest laccase activity among all the transformants. Moreover, strain L#61 was able to degrade lignin in Japanese cedar wood-containing medium, in contrast to wild-type G. trabeum KU-41 and to a typical white-rot fungus Phanerochaete chrysosporium. By using strain L#61, direct ethanol production from Japanese cedar wood was improved compared to wild type. To our knowledge, this study is the first report of the molecular breeding of lignin-degrading brown-rot fungus and direct ethanol production from softwoods by co-transformation with laccase overproduction constructs.
Collapse
Affiliation(s)
- Misa Arimoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenji Yamagishi
- NARO National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| | - Jianqiao Wang
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kanade Tanaka
- Integrative Technology Research Institute, Teijin Limited, Iwakuni, 740-8511, Japan.
| | - Takanori Miyoshi
- New Business Development Business Unit, Teijin Limited, Tokyo, 100-8585, Japan.
| | - Ichiro Kamei
- Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | - Ryuichiro Kondo
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan.
| | - Toshio Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Hirokazu Kawagishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Hirofumi Hirai
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
13
|
Microbial enzyme systems for lignin degradation and their transcriptional regulation. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Oral vaccination of mice with Tremella fuciformis yeast-like conidium cells expressing HBsAg. Biotechnol Lett 2014; 37:539-44. [PMID: 25374008 DOI: 10.1007/s10529-014-1720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Tremella fuciformis yeast-like conidium (YLC) cells were transformed by co-cultivation with Agrobacterium cells harboring the hepatitis B surface antigen (HBsAg) gene construct under the control of the CaMV35S promoter. Integration of HBsAg DNA into the YLC genome was confirmed by PCR and dot-blot hybridization. Immunoblotting verified expression of the recombinant protein. Oral administration of YLC cells expressing HBsAg in mice significantly increased anti-HBsAg antibody titer levels using a double prime-boost strategy that combined parenteral and oral HBsAg boosters.
Collapse
|
15
|
Tasaki Y, Sato R, Toyama S, Kasahara K, Ona Y, Sugawara M. Cloning of glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycete mushroom Pleurotus ostreatus and analysis of their expression during fruit-body development. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G. Introns regulate gene expression in Cryptococcus neoformans in a Pab2p dependent pathway. PLoS Genet 2013; 9:e1003686. [PMID: 23966870 PMCID: PMC3744415 DOI: 10.1371/journal.pgen.1003686] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Most Cryptococccus neoformans genes are interrupted by introns, and alternative splicing occurs very often. In this study, we examined the influence of introns on C. neoformans gene expression. For most tested genes, elimination of introns greatly reduces mRNA accumulation. Strikingly, the number and the position of introns modulate the gene expression level in a cumulative manner. A screen for mutant strains able to express functionally an intronless allele revealed that the nuclear poly(A) binding protein Pab2 modulates intron-dependent regulation of gene expression in C. neoformans. PAB2 deletion partially restored accumulation of intronless mRNA. In addition, our results demonstrated that the essential nucleases Rrp44p and Xrn2p are implicated in the degradation of mRNA transcribed from an intronless allele in C. neoformans. Double mutant constructions and over-expression experiments suggested that Pab2p and Xrn2p could act in the same pathway whereas Rrp44p appears to act independently. Finally, deletion of the RRP6 or the CID14 gene, encoding the nuclear exosome nuclease and the TRAMP complex associated poly(A) polymerase, respectively, has no effect on intronless allele expression. Cryptococcus neoformans is a major human pathogen responsible for deadly infection in immunocompromised patients. The analysis of its genome previously revealed that most of its genes are interrupted by introns. Here, we demonstrate that introns modulate gene expression in a cumulative manner. We also demonstrate that introns can play a positive or a negative role in this process. We identify a nuclear poly(A) binding protein (Pab2p) as implicated in the intron-dependent control of gene expression in C. neoformans. We also demonstrate that the essential nucleases Rrp44p and Xrn2p are implicated in two independent pathways controlling the intron-dependent regulation of gene expression in C. neoformans. Xrn2p regulation seems to depend on Pab2p whereas Rrp44p acts independently. In contrast, the other exosome nuclease Rrp6p and the TRAMP associated poly(A) polymerase Cid14p do not appear to be implicated in this regulation. Our results provide new insights into the regulation of gene expression in eukaryotes and more specifically into the biology and virulence of C. neoformans.
Collapse
Affiliation(s)
- Carolin Goebels
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Aline Thonn
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Sara Gonzalez-Hilarion
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Olga Rolland
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Frederique Moyrand
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
| | - Traude H. Beilharz
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Guilhem Janbon
- Institut Pasteur, Unité des Aspergillus, Département Parasitologie et Mycologie, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 2013; 56:9-16. [DOI: 10.1016/j.fgb.2013.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/09/2023]
|
18
|
Amore A, Honda Y, Faraco V. Copper induction of enhanced green fluorescent protein expression inPleurotus ostreatusdriven by laccasepoxa1bpromoter. FEMS Microbiol Lett 2012; 337:155-63. [DOI: 10.1111/1574-6968.12023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022] Open
Affiliation(s)
- Antonella Amore
- Department of Chemical Sciences; University of Naples ‘Federico II’; Complesso Universitario Monte S. Angelo; Napoli; Italy
| | - Yoichi Honda
- Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | | |
Collapse
|
19
|
Niu QH, Huang X, Hui F, Huang S, Ke T, Zhang KQ, Zhang L. Colonization of Caenorhabditis elegans by Bacillus nematocida B16, a Bacterial Opportunistic Pathogen. J Mol Microbiol Biotechnol 2012; 22:258-67. [PMID: 23037141 DOI: 10.1159/000342911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Qiu-Hong Niu
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Amore A, Honda Y, Faraco V. Enhanced Green Fluorescent Protein Expression in Pleurotus ostreatus for In Vivo Analysis of Fungal Laccase Promoters. Appl Biochem Biotechnol 2012; 168:761-9. [DOI: 10.1007/s12010-012-9816-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
21
|
Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 2012; 97:719-29. [DOI: 10.1007/s00253-012-4223-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
22
|
Kemppainen MJ, Pardo AG. Gene knockdown by ihpRNA-triggering in the ectomycorrhizal basidiomycete fungus Laccaria bicolor. Bioeng Bugs 2012; 1:354-8. [PMID: 21326837 DOI: 10.4161/bbug.1.5.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 11/19/2022] Open
Abstract
Ectomycorrhiza (ECM) is a mutualistic association between fungi and the roots of the vast majority of trees. These include numerous ecologically and economically relevant species and the participating fungal symbionts are predominantly filamentous basidiomycetes. In natural ecosystems the plant nutrient uptake from soil takes place via the extraradical mycelia of these ECM mycosimbionts as a trade for plant photosyntates. The symbiotic phase in the life cycle of ECM basidiomycetes is the dikaryotic hyphae. Therefore, studies on symbiotic relevant gene functions require the inactivation of both gene copies in these dikaryotic fungi. RNA silencing is a eukaryotic sequence homology-dependent degradation of target RNAs which is believed to have evolved as a protection mechanism against invading nucleic acids. In different eukaryotic organisms, including fungi, the RNA silencing pathway can be artificially triggered to target and degrade gene transcripts of interest, resulting in gene knock-down. Most importantly, RNA silencing can act at the cytosolic level affecting mRNAs originating from several gene copies and different nuclei thus offering an efficient means of altering gene expression in dikaryotic organisms. Therefore, the pHg/pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII-promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy two-step PCR-cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300-based binary vector carrying a hygromycin resistance cassette, makes the pHg/pSILBAγ plasmid compatible with Agrobacterium-mediated transformation. The pHg/pSILBAγ-system results in predominantly single integrations of RNA silencing triggering T-DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. Besides the optimized use in L. bicolor, general consideration was taken to build a vector system with maximum compatibility with other homobasidiomycetes and different transformation techniques.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
23
|
Sharma KK, Kuhad RC. Genetic transformation of lignin degrading fungi facilitated by Agrobacterium tumefaciens. BMC Biotechnol 2010; 10:67. [PMID: 20836896 PMCID: PMC2944332 DOI: 10.1186/1472-6750-10-67] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022] Open
Abstract
Background White-rot fungi are primarily the major degraders of lignin, a major obstacle for commercial exploitation of plant byproducts to produce bioethanol and other industrially important products. However, to improve their efficacy for lignin degradation, it has become necessary to genetically modify these organisms using appropriate vectors. Agrobacterium tumefaciens, a soil phytopathogenic bacterium, generally transforms plants by delivering a portion of the resident Ti- plasmid, the T-DNA (transfer DNA). The trans-Kingdom gene transfer is initiated by the activity of Ti-plasmid encoded vir (virulence) genes in response to low-molecular-mass phenolic compounds such as acetosyringone. A. tumefaciens played a major role in plant genetic engineering and basic research in molecular biology, accounting for nearly 80% of the transgenic plants produced so far. Initially, it was believed that only dicotyledons, gymnosperms and a few monocotyledonous species could be transformed by this bacterium; but recent reports have totally changed this scenario by demonstrating that many 'recalcitrant' species not included in its natural host range can also be transformed, especially filamentous fungi. Results This paper describes an efficient and convenient Agrobacterium-mediated gene transformation system for successful delivery of T-DNA, carrying the genes coding for β-glucuronidase (uidA), green fluorescent protein (gfp) and hygromycin phosphotransferase (hpt) to the nuclear genome of lignin degrading white-rot fungi such as Phanerochaete chrysosporium, Ganoderma sp. RCKK-02, Pycnoporous cinnabarinus, Crinipellis sp. RCK-1, Pleurotus sajor-caju and fungal isolate BHR-UDSC without supplementation of acetosyringone. The fungal transformants were confirmed by PCR and Southern hybridization. The expression vector pCAMBIA 1304-RCKK was constructed by the addition of GPD promoter from plasmid p416 to the binary vector backbone pCAMBIA1304, which controls uidA and gfp gene. Transmission Electron Microscope (TEM) analysis revealed the attachment of bacterial cells to the fungal hyphae. Transformation frequency varied from 50 to 75% depending on the fungal species used in this study. The transformation efficiency was maximum at 20°C whereas no transfer was observed at temperature above 29°C. Conclusion These findings provide a rapid and reproducible transformation method without external addition of acetosyringone, which could be useful for improving white-rot fungi for their various biotechnological applications.
Collapse
Affiliation(s)
- Krishna K Sharma
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | | |
Collapse
|
24
|
Collins CM, Heneghan MN, Kilaru S, Bailey AM, Foster GD. Improvement of the Coprinopsis cinerea molecular toolkit using new construct design and additional marker genes. J Microbiol Methods 2010; 82:156-62. [PMID: 20570599 DOI: 10.1016/j.mimet.2010.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/11/2010] [Accepted: 05/16/2010] [Indexed: 11/18/2022]
Abstract
This paper describes the optimisation of an existing basidiomycete molecular toolkit through the development of new versatile vectors. These vectors enable the straightforward and rapid construction of gene expression and silencing cassettes by allowing the easy exchange of promoters, coding regions and terminator elements. The constructs contain multiple cloning sites (MCS) allowing any gene to be inserted using a range of restriction sites, with the option of a 5' integral intron for efficient gene expression. We describe the testing of these vectors through marker gene expression in Coprinopsis cinerea. This work also extends the range of marker genes available for use in C. cinerea with the first report of DsRed and monomeric red fluorescent protein (mRFP) expression in C. cinerea and further demonstrates the requirement for an intron in the expression cassette for some marker genes. However, analysis of transformants containing either beta-glucuronidase (GUS) or luciferase (LUC) genes, with and without an intron revealed no detectable marker gene expression. The inclusion of an intron does therefore not guarantee expression and other genetic factors may be involved.
Collapse
|
25
|
Luan R, Liang Y, Chen Y, Liu H, Jiang S, Che T, Wong B, Sun H. Opposing developmental functions of Agrocybe aegerita galectin (AAL) during mycelia differentiation. Fungal Biol 2010; 114:599-608. [PMID: 20943171 DOI: 10.1016/j.funbio.2010.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 05/07/2010] [Accepted: 05/09/2010] [Indexed: 12/22/2022]
Abstract
Mycelia of basidiomycetes differentiating into fruiting body is a controlled developmental process, however the underlying molecular mechanism remains unknown. In previous work, a novel fungal Agrocybe aegerita galectin (AAL) was isolated from A. aegerita in our laboratory. AAL was shown to promote mycelial differentiation in A. aegerita and Auricularia polytricha, indicating that AAL might function as a conserved fruiting initiator during basidiomycete mycelia development. In the current work, we investigate the role of AAL in mycelia differentiation and fruiting body formation. First, the expression and localization of AAL in mycelia, primordium and fruiting body were assessed by Western blotting and immunohistochemistry. AAL was found to be ubiquitously expressed in the primordium and fruiting body but not in the mycelia. AAL facilitated mycelia congregation and promoted fruiting body production when AAL was applied on mycelia. At the same time, when AAL was spread on potato dextrose agar (PDA) medium prior to mycelia inoculation, mycelia exhibited slowed growth rates, resulting in mycelia cords formation and inhibition of fruiting body formation. The 5' regulatory sequence of aal was cloned by 'genome walking'. Here, we show that aal lack introns in the coding region and the upstream 740 bp sequence was characterized by the existence of core promoter elements, which included: two CCAAT boxes (-535/-280), a GC box (-145), a TATA box (-30) and a fungal leader intron within the 5' UTR. The identification of regulatory expression elements may provide an explanation to the stage-specific and high-level expression of aal during fruiting development.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Establishing molecular tools for genetic manipulation of the pleuromutilin-producing fungus Clitopilus passeckerianus. Appl Environ Microbiol 2009; 75:7196-204. [PMID: 19767458 DOI: 10.1128/aem.01151-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe efficient polyethylene glycol (PEG)-mediated and Agrobacterium-mediated transformation systems for a pharmaceutically important basidiomycete fungus, Clitopilus passeckerianus, which produces pleuromutilin, a diterpene antibiotic. Three dominant selectable marker systems based on hygromycin, phleomycin, and carboxin selection were used to study the feasibility of PEG-mediated transformation of C. passeckerianus. The PEG-mediated transformation of C. passeckerianus protoplasts was successful and generated hygromycin-resistant transformants more efficiently than either phleomycin or carboxin resistance. Agrobacterium-mediated transformation with plasmid pBGgHg containing hph gene under the control of the Agaricus bisporus gpdII promoter led to hygromycin-resistant colonies and was successful when homogenized mycelium and fruiting body gill tissue were used as starting material. Southern blot analysis of transformants revealed the apparently random integration of the transforming DNA to be predominantly multiple copies for the PEG-mediated system and a single copy for the Agrobacterium-mediated system within the genome. C. passeckerianus actin and tubulin promoters were amplified from genomic DNA and proved successful in driving green fluorescent protein and DsRed expression in C. passeckerianus, but only when constructs contained a 5' intron, demonstrating that the presence of an intron is prerequisite for efficient transgene expression. The feasibility of RNA interference-mediated gene silencing was investigated using gfp as a target gene easily scored in C. passeckerianus. Upon transformation of gfp antisense constructs into a highly fluorescent strain, transformants were recovered that exhibited either reduced or undetectable fluorescence. This was confirmed by Northern blotting showing depletion of the target mRNA levels. This demonstrated that gene silencing is a suitable tool for modulating gene expression in C. passeckerianus. The molecular tools developed in this study should facilitate studies aimed at gene isolation or characterization in this pharmaceutically important species.
Collapse
|
27
|
Kilaru S, Collins CM, Hartley AJ, Burns C, Foster GD, Bailey AM. Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors. Curr Genet 2009; 55:543-50. [PMID: 19636558 DOI: 10.1007/s00294-009-0266-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/01/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Dominant selectable markers are beneficial for transformation of many fungi, particularly those model species where repeated transformations may be required. A carboxin resistance allele of the Coprinopsis cinerea sdi1 gene, encoding the iron-sulphur protein subunit of succinate dehydrogenase, was developed by introducing a suitable point mutation in the histidine block responsible for binding of the associated iron ion. This modified gene was used successfully to confer carboxin resistance upon transformation of C. cinerea protoplasts. Plasmids previously used to establish hygromycin transformation systems of several basidiomycete species, such as pAN7-1 and phph004, failed to give rise to hygromycin-resistant transformants of C. cinerea, whilst pPHT1 was successful. Sequencing of these constructs showed that the hygromycin resistance gene in pAN7-1 and phph004 had been modified removing the codons encoding two lysine residues following the N-terminal methionine. Replacement of the deleted 6 bp (AAA AAG) in the truncated hph gene led to generation of hygromycin-resistant transformants indicating the importance of these two codons for expression in C. cinerea. Phleomycin-resistant (ble) transformants were also obtained, but only with the intron-containing construct pblei004, showing that an intron is necessary to obtain phleomycin-resistant C. cinerea. This contrasts with hygromycin-resistance, where introns are not required for expression, emphasising the variability in importance of these elements.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
28
|
Kemppainen MJ, Pardo AG. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA - triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 2009; 3:178-200. [PMID: 21255319 PMCID: PMC3836584 DOI: 10.1111/j.1751-7915.2009.00122.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
29
|
Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 2008; 75:792-801. [PMID: 19047386 DOI: 10.1128/aem.01897-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiation.
Collapse
|
30
|
Patel RM, Heneghan MN, van Kan JAL, Bailey AM, Foster GD. The pOT and pLOB vector systems: improving ease of transgene expression in Botrytis cinerea. J GEN APPL MICROBIOL 2008; 54:367-76. [PMID: 19164879 DOI: 10.2323/jgam.54.367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This paper outlines the construction of a novel vector system comprising interchangeable terminators, as well as a multiple cloning site (MCS), to facilitate the transformation of the fungal plant pathogen Botrytis cinerea. Previous molecular studies on B. cinerea have relied upon the pLOB1 based vector system (controlled by the Aspergillus nidulans oliC promoter and a region reported to be the B. cinerea tubA terminator). Investigations, however, have revealed that, rather than the genuine B. cinerea tubA terminator, the pLOB1 terminator fragment is from another gene locus within the genome. Because previous studies have found that terminators aide in transcript stability, the main aims of this study were to develop and evaluate both vector systems, pOT (controlled by the A. nidulans oliC promoter and A. nidulans trpC terminator) and pLOB, with a range of exogenous genes, including enhanced green fluorescent protein (eGFP), monomeric red fluorescent protein (mRFP), luciferase (LUC) and beta-glucuronidase (GUS). Our investigations demonstrate that pLOB and pOT based vectors are capable of expressing all four reporter genes and may be applied to future molecular studies on B. cinerea and other related ascomycetes. Additionally, this is the first reported expression of mRFP and LUC in B. cinerea.
Collapse
Affiliation(s)
- Risha M Patel
- School of Biological Sciences, University of Bristol, UK
| | | | | | | | | |
Collapse
|
31
|
Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. Appl Environ Microbiol 2008; 74:7252-7. [PMID: 18849459 DOI: 10.1128/aem.01997-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew the white rot basidiomycete Phanerochaete chrysosporium on cellulose or glucose as the carbon source and monitored the mineralization of a (14)C-labeled synthetic lignin by these cultures to assess their ligninolytic competence. The results showed that the cellulose-grown cultures were ligninolytic, whereas the glucose-grown ones were not. We isolated microsomal membrane fractions from both types of culture and analyzed tryptic digests of their proteins by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the results against the predicted P. chrysosporium proteome showed that a catalase (Joint Genome Institute P. chrysosporium protein identification number [I.D.] 124398), an alcohol oxidase (126879), two transporters (137220 and 132234), and two cytochrome P450s (5011 and 8912) were upregulated under ligninolytic conditions. Quantitative reverse transcription-PCR assays showed that RNA transcripts encoding all of these proteins were also more abundant in ligninolytic cultures. Catalase 124398, alcohol oxidase 126879, and transporter 137220 were found in a proteomic analysis of partially purified plasma membranes from ligninolytic P. chrysosporium and are therefore most likely associated with the outer envelope of the fungus.
Collapse
|
32
|
Heneghan MN, Costa AMSB, Challen MP, Mills PR, Bailey A, Foster GD. A comparison of methods for successful triggering of gene silencing in Coprinus cinereus. Mol Biotechnol 2007; 35:283-96. [PMID: 17652792 DOI: 10.1007/bf02686014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
Post-transcriptional gene-silencing methods (PTGS), including RNAi, are becoming increasingly pervasive in functional genomics. To advance analysis of the recently sequenced Coprinus cinereus genome, a high throughput gene silencing method is essential. We have exploited the GFP reporter gene to evaluate and quantify efficacy of three different silencing strategies. Modular constructs that encompassed antisense, untranslatable sense, and RNAi-mediating hairpin sequences, were transformed into a GFP-expressing host strain. Transformants exhibiting strong downregulation and partial suppression of GFP were recovered with all three constructs. Analyses of protein and transcriptional nucleic acids revealed that the antisense and hairpin sequences yielded similar levels of GFP suppression, and were both more efficient than untranslatable sense sequences. Our antisense vectors will expedite functional characterisation of C. cinereus and the modular nature of the constructs should permit exploitation of directional cDNA libraries for high throughput screening.
Collapse
Affiliation(s)
- Mary N Heneghan
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
33
|
Yamagishi K, Kimura T, Oita S, Sugiura T, Hirai H. Transformation by complementation of a uracil auxotroph of the hyper lignin-degrading basidiomycete Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 2007; 76:1079-91. [PMID: 17701036 DOI: 10.1007/s00253-007-1093-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Revised: 06/14/2007] [Accepted: 06/17/2007] [Indexed: 11/29/2022]
Abstract
Phanerochaete sordida YK-624 is a hyper lignin-degrading basidiomycete possessing greater ligninolytic selectivity than either P. chrysosporium or Trametes versicolor. To construct a gene transformation system for P. sordida YK-624, uracil auxotrophic mutants were generated using a combination of ultraviolet (UV) radiation and 5-fluoroorotate resistance as a selection scheme. An uracil auxotrophic strain (UV-64) was transformed into a uracil prototroph using the marker plasmid pPsURA5 containing the orotate phosphoribosyltransferase gene from P. sordida YK-624. This system generated approximately 50 stable transformants using 2 x 10(7) protoplasts. Southern blot analysis demonstrated that the transformed pPsURA5 was ectopically integrated into the chromosomal DNA of all transformants. The enhanced green fluorescent protein (EGFP) gene was also introduced into UV-64. The transformed EGFP was expressed in the co-transformants driven by P. sordida glyceraldehyde-3-phosphate dehydrogenase gene promoter and terminator regions.
Collapse
Affiliation(s)
- Kenji Yamagishi
- National Agricultural Research Center for the Tohoku Region, National Agriculture and Food Research Organization, Arai, Fukushima 960-2156, Japan.
| | | | | | | | | |
Collapse
|
34
|
Rekangalt D, Verner MC, Kües U, Walser PJ, Marmeisse R, Debaud JC, Fraissinet-Tachet L. Green fluorescent protein expression in the symbiotic basidiomycete fungusHebeloma cylindrosporum. FEMS Microbiol Lett 2007; 268:67-72. [PMID: 17263849 DOI: 10.1111/j.1574-6968.2006.00564.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The symbiotic basidiomycete Hebeloma cylindrosporum is a model fungal species used to study ectomycorrhizal symbiosis at the molecular level. In order to have a vital marker, we developed a green fluorescent protein (GFP) reporter system efficiently expressed in H. cylindrosporum using the sgfp coding region bordered by two introns fused to the saprophytic basidiomycete Coprinopsis cinerea cgl1 promoter. Expression of this reporter system was tested under different environmental conditions in two transformants, and glucose was shown to repress gfp expression. Such a reporter system will be used in plant-fungus interaction to evaluate sugar supply by the plant to the compatible mycorrhizal symbiont and to compare the expression of various genes of interest in the free-living mycelia, in the symbiotic (mycorrhizas) and the reproductive (fruit bodies) structures formed by H. cylindrosporum.
Collapse
Affiliation(s)
- David Rekangalt
- Université de Lyon, Université Lyon 1, Ecologie Microbienne (UMR CNRS 5557, USC INRA 1193), Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Murata H, Sunagawa M, Yamazaki T, Shishido K, Igasaki T. Expression of the autofluorescent protein, DsRed2, in the recombinants of the ectomycorrhizal basidiomycete, Suillus grevillei, generated by Agrobacterium-mediated transformation. MYCORRHIZA 2006; 16:407-412. [PMID: 16804705 DOI: 10.1007/s00572-006-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 04/26/2006] [Indexed: 05/10/2023]
Abstract
Recombinants were generated from the ectomycorrhizal basidiomycete, Suillus grevillei, through agroinfection using a binary vector carrying the hygromycin B resistance and the autofluorescent protein, DsRed2, markers. DsRed2 was driven by a cis-regulatory region of the glyceraldeyde-3-phosphate dehydrogenase gene (gpd) from the wood-rotting basidiomycete, Coriolus hirsutus, which contains promoters and 5' gpd sequences with first through fourth exons and expressed for the first time in Suillus spp. The transformation system and recombinants expressing an autofluorescent protein may be useful in genetic analysis of the symbiosis.
Collapse
Affiliation(s)
- Hitoshi Murata
- Department of Applied Microbiology and Mushroom Science, Forestry & Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan.
| | - Masahide Sunagawa
- Department of Applied Microbiology and Mushroom Science, Forestry & Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| | - Takashi Yamazaki
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Kazuo Shishido
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Tomohiro Igasaki
- Department of Molecular Cell Biology, Forestry & Forest Products Research Institute, Matsunosato 1, Tsukuba, 305-8687, Japan
| |
Collapse
|
36
|
Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D. Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. MYCORRHIZA 2006; 16:437-442. [PMID: 16912848 DOI: 10.1007/s00572-006-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 05/09/2006] [Indexed: 05/11/2023]
Abstract
Hebeloma cylindrosporum is a model fungus for mycorrhizal studies because of its fast growth rate, simple nutritional requirements, and completion of its life cycle in vitro, and because it is amenable to transformation. To advance cell biological research during establishment of symbiosis, a tool that would enable the direct visualisation of fusion proteins in the different symbiotic tissues [namely, the expression of reporter genes such as Green Fluorescent Protein (GFP)] was still a missing tool. In the present study, H. cylindrosporum was transformed using Agrobacterium carrying the binary plasmid pBGgHg containing the Escherichia coli hygromycin B phosphotransferase (hph) and the EGFP genes, both under the control of the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter. EGFP expression was successfully detected in transformants. The fluorescence was uniformly distributed in the hyphae, while no significant background signal was detected in control hyphae. The suitability of EGFP for reporter gene studies in Hebeloma cylindrosporum was demonstrated opening up new perspectives in the Hebeloma genetics.
Collapse
Affiliation(s)
- Tobias Müller
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Mariam Benjdia
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Meghan Avolio
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Boris Voigt
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Diedrik Menzel
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Alejandro Pardo
- Programa de Investigacion en Interacciones Biologicas, Universidad Nacional de Quilmes, Roque Saenz Peña 180, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Wolf B Frommer
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Daniel Wipf
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany.
| |
Collapse
|
37
|
Yamazaki T, Okajima Y, Kawashima H, Tsukamoto A, Sugiura J, Shishido K. Intron-dependent accumulation of mRNA in Coriolus hirsutus of lignin peroxidase gene the product of which is involved in conversion/degradation of polychlorinated aromatic hydrocarbons. Biosci Biotechnol Biochem 2006; 70:1293-9. [PMID: 16794306 DOI: 10.1271/bbb.50471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The homobasidiomycete Coriolus hirsutus coding sequences of a lignin peroxidase (LiP) gene (lip, containing six (I-VI) introns), a lip cDNA (lipc), and three lipc derivatives containing one (I), three (I-III), or five (I-V) introns were inserted into chromosome-integrating expression vector. These recombinant plasmids were introduced into C. hirustus monokaryotic strain. The transformant carrying the promoter-lipc-terminator cassette did not contain enough mRNA molecules to be detectable by Northern-blot analysis. On the other hand, all the transformants carrying cassettes of genomic lip and intron(s)-containing lipc sequences contained sufficient amounts of mRNAs to be easily detected by Northern-blot analysis. LiP activities in the culture supernatants of these transformants were found to be about five times as high as those of transformants carrying the lipc cassette (or no cassette). The culture supernatants of the transformants with high LiP activity showed remarkably high conversion activity toward pentachlorophenol (PCP) and degradation activity toward 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD). These results indicate that at least one intron (intron I) is required for accumulation of lip mRNA and its subsequent translational expression in C. hirsutus.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama
| | | | | | | | | | | |
Collapse
|
38
|
Murata H, Sunagawa M, Igasaki T, Shishido K. Agrobacterium-mediated transformation of the ectomycorrhizal basidiomycete Tricholoma matsutake that produces commercially valuable fruit bodies, matsutake. MYCOSCIENCE 2006. [DOI: 10.1007/s10267-006-0293-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Wälti MA, Villalba C, Buser RM, Grünler A, Aebi M, Künzler M. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. EUKARYOTIC CELL 2006; 5:732-44. [PMID: 16607020 PMCID: PMC1459662 DOI: 10.1128/ec.5.4.732-744.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 01/19/2006] [Indexed: 01/08/2023]
Abstract
The ink cap Coprinopsis cinerea is a model organism for studying fruiting body (mushroom) formation in homobasidiomycetes. Mutant screens and expression studies have implicated a number of genes in this developmental process. Functional analysis of these genes, however, is hampered by the lack of reliable reverse genetics tools for C. cinerea. Here, we report the applicability of gene targeting by RNA silencing for this organism. Efficient silencing of both an introduced GFP expression cassette and the endogenous cgl1 and cgl2 isogenes was achieved by expression of homologous hairpin RNAs. In latter case, silencing was the result of a hairpin construct containing solely cgl2 sequences, demonstrating the possibility of simultaneous silencing of whole gene families by a single construct. Expression of the hairpin RNAs reduced the mRNA levels of the target genes by at least 90%, as determined by quantitative real-time PCR. The reduced mRNA levels were accompanied by cytosine methylation of transcribed and nontranscribed DNA at both silencing and target loci in the case of constitutive high-level expression of the hairpin RNA but not in the case of transient expression. These results suggest the presence of both posttranscriptional and transcriptional gene silencing mechanisms in C. cinerea and demonstrate the applicability of targeted gene silencing as a powerful reverse genetics approach in this organism.
Collapse
Affiliation(s)
- Martin A Wälti
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Li G, Li R, Liu Q, Wang Q, Chen M, Li B. A highly efficient polyethylene glycol-mediated transformation method for mushrooms. FEMS Microbiol Lett 2006; 256:203-8. [PMID: 16499607 DOI: 10.1111/j.1574-6968.2006.00110.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A highly efficient transformation system mediated by polyethylene glycol was developed for the cultivated mushroom Pleurotus ostreatus. Eighty to 180 integrative and stable-resistant colonies appeared per mug of DNA per 10(7) viable protoplasts in a transformation experiment with the hygromycin B phosphotransferase gene (hph), which is about 40-1800 times higher than that previously reported in P. ostreatus. One hundred to 150 transformants emitting green fluorescence were observed per mug of DNA per 10(7) viable protoplasts in a transformation with the green fluorescent protein gene, but green fluorescence disappeared 30 h after transformation, suggesting that the green fluorescent protein gene was only transiently expressed in P. ostreatus. Plasmid pAN7-1 was also transferred into two important cultivated mushrooms, Ganoderma lucidum and Lentinus edodes, and 120-150 and 85-100 transformants per mug of DNA per 10(7) viable protoplasts were obtained, respectively, which is seven to 38 times and 24-28 times greater than previously reported. These data indicate that this new polyethylene glycol-mediated transformation procedure is highly efficient for mushrooms, and could be a useful tool in mushroom improvement by gene engineering.
Collapse
Affiliation(s)
- Gang Li
- The Key Laboratory of Gene Engineering of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
41
|
Samils N, Elfstrand M, Czederpiltz DLL, Fahleson J, Olson A, Dixelius C, Stenlid J. Development of a rapid and simpleAgrobacterium tumefaciens-mediated transformation system for the fungal pathogenHeterobasidion annosum. FEMS Microbiol Lett 2006; 255:82-8. [PMID: 16436065 DOI: 10.1111/j.1574-6968.2005.00069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Heterobasidion annosum causes root and butt-rot in trees and is the most serious forest pathogen in the northern hemisphere. We developed a rapid and simple Agrobacterium-mediated method of gene delivery into H. annosum to be used in functional studies of candidate genes and for visualization of mycelial interactions. Heterobasidion annosum TC 32-1 was cocultivated at pH 5.6 and 20 degrees C in Hagems medium with Agrobacterium tumefaciens C58 carrying plasmids with hygromycin B resistance as the selectable marker and green fluorescent protein as a visual marker. We obtained 18 mitotically stable transformed isolates showing green fluorescence protein activity.
Collapse
Affiliation(s)
- Nicklas Samils
- Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Ma B, Mayfield MB, Godfrey BJ, Gold MH. Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. EUKARYOTIC CELL 2005; 3:579-88. [PMID: 15189980 PMCID: PMC420142 DOI: 10.1128/ec.3.3.579-588.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Manganese peroxidase (MnP) is a major, extracellular component of the lignin-degrading system produced by the wood-rotting basidiomycetous fungus Phanerochaete chrysosporium. The transcription of MnP-encoding genes (mnps) in P. chrysosporium occurs as a secondary metabolic event, triggered by nutrient-nitrogen limitation. In addition, mnp expression occurs only under Mn2+ supplementation. Using a reporter system based on the enhanced green fluorescent protein gene (egfp), we have characterized the P. chrysosporium mnp1 promoter by examining the effects of deletion, replacement, and translocation mutations on mnp1 promoter-directed egfp expression. The 1,528-bp mnp1 promoter fragment drives egfp expression only under Mn2+-sufficient, nitrogen-limiting conditions, as required for endogenous MnP production. However, deletion of a 48-bp fragment, residing 521 bp upstream of the translation start codon in the mnp1 promoter, or replacement of this fragment with an unrelated sequence resulted in egfp expression under nitrogen limitation, both in the absence and presence of exogenous Mn2+. Translocation of the 48-bp fragment to a site 120 bp downstream of its original location resulted in Mn2+-dependent egfp expression under conditions similar to those observed with the wild-type mnp1 promoter. These results suggest that the 48-bp fragment contains at least one Mn2+-responsive cis element. Additional promoter-deletion experiments suggested that the Mn2+ element(s) is located within the 33-bp sequence at the 3' end of the 48-bp fragment. This is the first promoter sequence containing a Mn2+-responsive element(s) to be characterized in any eukaryotic organism.
Collapse
Affiliation(s)
- Biao Ma
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health & Science University, 20000 N.W. Walker Rd., Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
43
|
Godio RP, Fouces R, Gudiña EJ, Martín JF. Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet 2005; 46:287-94. [PMID: 15480676 DOI: 10.1007/s00294-004-0533-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basidiomycete Hypholoma sublateritium produces clavaric acid, an antitumor isoprenoid compound. Arthrospores of this fungus were transformed by Agrobacterium tumefaciens-mediated conjugation. Five plasmids carrying different regulatory sequences to drive expression of the hph (hygromycin phosphotransferase) gene were tested. The promoter used was critically important in order to express heterologous genes in H. sublateritium. Constructions carrying the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter (P gpd) showed a good transformation efficiency, whereas constructions with the gpd promoter from ascomycetes were ineffective. Transformant clones showed a random integration pattern of plasmid DNA. Most transformants showed a single integrated copy of the transforming plasmid, but about 1.5% showed double or multiple integrations. All the analyzed transformants were mitotically stable and maintained the integrated exogenous DNA in the absence of antibiotic. The green fluorescent protein gene was expressed from the A. bisporus gpd promoter, as shown by RT-PCR studies, but no significant fluorescence was observed. Transformation of H. sublateritium opens the way for the genetic manipulation of clavaric acid biosynthesis in this fungus.
Collapse
Affiliation(s)
- R P Godio
- Institute of Biotechnology of León, INBIOTEC, Science Park, Av. Real 1, 24006 Leon, Spain
| | | | | | | |
Collapse
|
44
|
Orihara K, Yamazaki T, Shinkyo R, Sakaki T, Inouye K, Tsukamoto A, Sugiura J, Shishido K. Rat cytochrome P450-mediated transformation of dichlorodibenzo-p-dioxins by recombinant white-rot basidiomycete Coriolus hirsutus. Appl Microbiol Biotechnol 2005; 69:22-8. [PMID: 15812643 DOI: 10.1007/s00253-005-1943-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/03/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
Rat cytochrome P450, CYP1A1, has been reported to play an important role in the metabolism of mono-trichlorodibenzo-p-dioxins (M-TriCDDs). To breed lignin (and M-TetraCDDs)-degrading basidiomycete Coriolus hirsutus strains producing rat CYP1A1, an expression cassette [C. hirsutus gpd promoter-C. hirsutus gpd 5' portion (224-bp of 1st exon-8th base of 4th exon)-rat cyp1a1 cDNA-Lentinula edodes priA terminator] was constructed and inserted into pUCR1 carrying the C. hirsutus arg1 gene. The resulting recombinant plasmid, MIp5-(cyp1a1 + arg1) was introduced into protoplasts of C. hirsutus monokaryotic strain OJ1078 (Arg(-), Leu(-)), obtaining three good Arg(+) transformants. These transformants [ChTF5-2(CYP1A1), ChTF5-4(CYP1A1), and ChTF5-6(CYP1A1)] were estimated to carry nine, six, and seven copies of the expression cassette on their chromosomes, respectively. Immunoblot analysis revealed that the three transformants produce similar amounts of rat CYP1A1 enzyme. ChTF5-2(CYP1A1), ChTF5-4(CYP1A1), ChTF5-6(CYP1A1) and recipient OJ1078 were cultivated in a liquid medium containing 2,7/2,8(at a ratio of 1:1)-dichlorodibenzo-p-dioxins (2,7/2,8-DCDDs) and the amount of intra- and extracellular 2,7/2,8-DCDDs remaining was measured. The results showed that all three transformants efficiently transform 2,7/2,8-DCDDs through the action of the recombinant rat CYP1A1 enzyme.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Alves AMCR, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JGH, Wösten HAB. Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 2005; 70:6379-84. [PMID: 15528495 PMCID: PMC525127 DOI: 10.1128/aem.70.11.6379-6384.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml(-1) in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter(-1) was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml(-1). These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter(-1) when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml(-1) (i.e., 360 mg liter(-1)) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter(-1). In this case, maximal activities were 3,900 and 4,660 nkat ml(-1), respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.
Collapse
Affiliation(s)
- Alexandra M C R Alves
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey A, Foster GD. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 2005; 42:191-9. [PMID: 15707840 DOI: 10.1016/j.fgb.2004.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 10/18/2004] [Accepted: 11/12/2004] [Indexed: 11/24/2022]
Abstract
We have developed a "Molecular Toolkit" comprising interchangeable promoters and marker genes to facilitate transformation of homobasidiomycete mushrooms. We describe the evaluation of a range of promoters in the homobasidiomycetes Agaricus bisporus and Coprinus cinereus using green fluorescent protein (GFP) as a reporter gene; the C. cinereus trp1 promoter and A. bisporus trp2 and gpdII promoters proving successful in driving expression in C. cinereus, with the gpdII promoter also functioning in A. bisporus. Our investigations demonstrate that a prerequisite for GFP expression in C. cinereus and A. bisporus is the presence of an intron. This is the first reported expression of GFP in either C. cinereus or A. bisporus.
Collapse
Affiliation(s)
- C Burns
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Ma B, Mayfield MB, Gold MH. Homologous expression of Phanerochaete chrysosporium manganese peroxidase, using bialaphos resistance as a dominant selectable marker. Curr Genet 2003; 43:407-14. [PMID: 12844234 DOI: 10.1007/s00294-003-0418-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 05/14/2003] [Accepted: 06/06/2003] [Indexed: 10/26/2022]
Abstract
Manganese peroxidase (MnP) is a major extracellular component of the lignin-degrading system of the white-rot fungus, Phanerochaete chrysosporium. Homologous expression of recombinant MnP isozyme 1 (rMnP1) in P. chrysosporium was achieved using a novel transformation system for this fungus, which utilizes the Streptomyces hygroscopicus bialaphos-resistant gene, bar, as the selectable marker. The transformation frequency for this system is approximately 100 bialaphos-resistant transformants per microgram of plasmid DNA. Transformed strains all contain plasmid DNA, ectopically integrated into the fungal genome. Using this transformation system, the promoter region of the P. chrysosporium translation elongation factor gene was used to drive expression of mnp1, encoding MnP1, in primary metabolic cultures of P. chrysosporium, where endogenous MnP was not expressed. Approximately 2-3 mg of active recombinant MnP1 per liter of extracellular medium was produced in agitated cultures of transformants.
Collapse
Affiliation(s)
- Biao Ma
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health & Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
49
|
Kapoor M, Curle CA, Kalia S, Achari Y. Minimal promoter for the NAD+-specific glutamate dehydrogenase gene of Neurospora crassa. Biochem Cell Biol 2002; 80:177-88. [PMID: 11989713 DOI: 10.1139/o01-229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of the NAD+-specific glutamate dehydrogenase (NAD-GDH) gene of Neurospora crassa is subject to catabolite repression. To identify the minimal sequence necessary for promoter function, the 5'-flanking region of the NAD-GDH gene was screened for potential protein-binding sites. Fragments of DNA, containing sequences upstream from the ATG initiation codon, were employed as probes of Southwestern blots of total cellular protein from cells grown in media promoting repression and induction of NAD-GDH. Two polypeptides interacted differentially with a promoter probe; one was present in greater abundance in repressed cells and a higher relative level of the second was witnessed in induced cells. Electrophoretic mobility shift assays with labeled promoter fragments exhibited preferential interaction with proteins in the induced cultures. The upstream sequence containing the putative protein-binding sites was fused with the coding sequence of the green fluorescent protein (GFP). The resulting plasmid was introduced into the microconidia of an albino mutant of N. crassa by electroporation. Stable integration of the plasmid and_expression of GFP in the hyphae and conidia of the transformants were demonstrated by Southern and Western blot analysis and fluorescence microscopy.
Collapse
Affiliation(s)
- M Kapoor
- Department of Biological Sciences, University of Calgary, AB, Canada.
| | | | | | | |
Collapse
|
50
|
Kim IS, Shim JH, Suh YT, Yau KYF, Hall JC, Trevors JT, Lee H. Green fluorescent protein-labeled recombinant fluobody for detecting the picloram herbicide. Biosci Biotechnol Biochem 2002; 66:1148-51. [PMID: 12092834 DOI: 10.1271/bbb.66.1148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A green fluorescent protein-labeled fluobody was designed to develop a simple immunoassay method for detecting picloram herbicide in an environmental sample. The gfp gene was successfully inserted into the pSJF2 vector harboring the picloram-specific antibody fragment to yield pSJF2GFP. Picloram spiking in an environmental river sample could be indirectly detected by observing the fluorescence intensity value of the gfp-fluobody, exhibiting specific sensitivity to free picloram with an IC50 value of 50 ppb. Using the gfp-fluobody immunoassay avoids the enzyme-substrate reaction for calorimetric detection that is required in an enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- In Seon Kim
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | |
Collapse
|