1
|
Mathlouthi NEH, Belguith I, Yengui M, Oumarou Hama H, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. The Archaeome's Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures. Microorganisms 2023; 11:2742. [PMID: 38004753 PMCID: PMC10673094 DOI: 10.3390/microorganisms11112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Mariem Yengui
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Ghiles Grine
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
- Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| |
Collapse
|
2
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
3
|
Slobodkina G, Allioux M, Merkel A, Cambon-Bonavita MA, Alain K, Jebbar M, Slobodkin A. Physiological and Genomic Characterization of a Hyperthermophilic Archaeon Archaeoglobus neptunius sp. nov. Isolated From a Deep-Sea Hydrothermal Vent Warrants the Reclassification of the Genus Archaeoglobus. Front Microbiol 2021; 12:679245. [PMID: 34335500 PMCID: PMC8322695 DOI: 10.3389/fmicb.2021.679245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Hyperthermophilic archaea of the genus Archaeoglobus are the subject of many fundamental and biotechnological researches. Despite their significance, the class Archaeoglobi is currently represented by only eight species obtained as axenic cultures and taxonomically characterized. Here, we report the isolation and characterization of a new species of Archaeoglobus from a deep-sea hydrothermal vent (Mid-Atlantic Ridge, TAG) for which the name Archaeoglobus neptunius sp. nov. is proposed. The type strain is SE56T (=DSM 110954T = VKM B-3474T). The cells of the novel isolate are motile irregular cocci growing at 50–85°C, pH 5.5–7.5, and NaCl concentrations of 1.5–4.5% (w/v). Strain SE56T grows lithoautotrophically with H2 as an electron donor, sulfite or thiosulfate as an electron acceptor, and CO2/HCO3− as a carbon source. It is also capable of chemoorganotrophic growth by reduction of sulfate, sulfite, or thiosulfate. The genome of the new isolate consists of a 2,115,826 bp chromosome with an overall G + C content of 46.0 mol%. The whole-genome annotation confirms the key metabolic features of the novel isolate demonstrated experimentally. Genome contains a complete set of genes involved in CO2 fixation via reductive acetyl-CoA pathway, gluconeogenesis, hydrogen and fatty acids oxidation, sulfate reduction, and flagellar motility. The phylogenomic reconstruction based on 122 conserved single-copy archaeal proteins supported by average nucleotide identity (ANI), average amino acid identity (AAI), and alignment fraction (AF) values, indicates a polyphyletic origin of the species currently included into the genus Archaeoglobus, warranting its reclassification.
Collapse
Affiliation(s)
- Galina Slobodkina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maxime Allioux
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Alexander Merkel
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marie-Anne Cambon-Bonavita
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Mohamed Jebbar
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, Plouzané, France
| | - Alexander Slobodkin
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES. Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ Microbiol 2018; 20:2523-2537. [PMID: 29749696 DOI: 10.1111/1462-2920.14270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+ ) or oxygen (O2 ) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2 ) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2 /Fe3+ grown cells but had no effect on H2 /S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2 . These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Eric E Roden
- Department of Geosciences, University of Wisconsin, Madison, WI, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| |
Collapse
|
5
|
Yilmazel YD, Zhu X, Kim KY, Holmes DE, Logan BE. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 2017; 119:142-149. [PMID: 28992595 DOI: 10.1016/j.bioelechem.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.
Collapse
Affiliation(s)
- Yasemin D Yilmazel
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Kyoung-Yeol Kim
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dawn E Holmes
- Department of Biology, Western New England University, Springfield, MA, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Szeinbaum N, Lin H, Brandes JA, Taillefert M, Glass JB, DiChristina TJ. Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environ Microbiol 2017. [PMID: 28631370 DOI: 10.1111/1462-2920.13829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble manganese in the intermediate +III oxidation state (Mn3+ ) is a newly identified oxidant in anoxic environments, whereas acetate is a naturally abundant substrate that fuels microbial activity. Microbial populations coupling anaerobic acetate oxidation to Mn3+ reduction, however, have yet to be identified. We isolated a Shewanella strain capable of oxidizing acetate anaerobically with Mn3+ as the electron acceptor, and confirmed this phenotype in other strains. This metabolic connection between acetate and soluble Mn3+ represents a new biogeochemical link between carbon and manganese cycles. Genomic analyses uncovered four distinct genes that allow for pathway variations in the complete dehydrogenase-driven TCA cycle that could support anaerobic acetate oxidation coupled to metal reduction in Shewanella and other Gammaproteobacteria. An oxygen-tolerant TCA cycle supporting anaerobic manganese reduction is thus a new connection in the manganese-driven carbon cycle, and a new variable for models that use manganese as a proxy to infer oxygenation events on early Earth.
Collapse
Affiliation(s)
- Nadia Szeinbaum
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hui Lin
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay A Brandes
- Skidaway Institute of Oceanography, Savannah, GA, USA
| | - Martial Taillefert
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Manzella MP, Holmes DE, Rocheleau JM, Chung A, Reguera G, Kashefi K. The complete genome sequence and emendation of the hyperthermophilic, obligate iron-reducing archaeon "Geoglobus ahangari" strain 234(T). Stand Genomic Sci 2015; 10:77. [PMID: 26457129 PMCID: PMC4600277 DOI: 10.1186/s40793-015-0035-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
“Geoglobus ahangari” strain 234T is an obligate Fe(III)-reducing member of the Archaeoglobales, within the archaeal phylum Euryarchaeota, isolated from the Guaymas Basin hydrothermal system. It grows optimally at 88 °C by coupling the reduction of Fe(III) oxides to the oxidation of a wide range of compounds, including long-chain fatty acids, and also grows autotrophically with hydrogen and Fe(III). It is the first archaeon reported to use a direct contact mechanism for Fe(III) oxide reduction, relying on a single archaellum for locomotion, numerous curled extracellular appendages for attachment, and outer-surface heme-containing proteins for electron transfer to the insoluble Fe(III) oxides. Here we describe the annotation of the genome of “G. ahangari” strain 234T and identify components critical to its versatility in electron donor utilization and obligate Fe(III) respiratory metabolism at high temperatures. The genome comprises a single, circular chromosome of 1,770,093 base pairs containing 2034 protein-coding genes and 52 RNA genes. In addition, emended descriptions of the genus “Geoglobus” and species “G. ahangari” are described.
Collapse
Affiliation(s)
- Michael P Manzella
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Jessica M Rocheleau
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Amanda Chung
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| | - Kazem Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI USA
| |
Collapse
|
8
|
Ferry JG. Acetate Metabolism in Anaerobes from the Domain Archaea. Life (Basel) 2015; 5:1454-71. [PMID: 26068860 PMCID: PMC4500148 DOI: 10.3390/life5021454] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 01/26/2023] Open
Abstract
Acetate and acetyl-CoA play fundamental roles in all of biology, including anaerobic prokaryotes from the domains Bacteria and Archaea, which compose an estimated quarter of all living protoplasm in Earth's biosphere. Anaerobes from the domain Archaea contribute to the global carbon cycle by metabolizing acetate as a growth substrate or product. They are components of anaerobic microbial food chains converting complex organic matter to methane, and many fix CO2 into cell material via synthesis of acetyl-CoA. They are found in a diversity of ecological habitats ranging from the digestive tracts of insects to deep-sea hydrothermal vents, and synthesize a plethora of novel enzymes with biotechnological potential. Ecological investigations suggest that still more acetate-metabolizing species with novel properties await discovery.
Collapse
Affiliation(s)
- James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Mechanisms involved in Fe(III) respiration by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 2015; 81:2735-44. [PMID: 25662973 DOI: 10.1128/aem.04038-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The hyperthermophilic archaeon Ferroglobus placidus can utilize a wide variety of electron donors, including hydrocarbons and aromatic compounds, with Fe(III) serving as an electron acceptor. In Fe(III)-reducing bacteria that have been studied to date, this process is mediated by c-type cytochromes and type IV pili. However, there currently is little information available about how this process is accomplished in archaea. In silico analysis of the F. placidus genome revealed the presence of 30 genes coding for putative c-type cytochrome proteins (more than any other archaeon that has been sequenced to date), five of which contained 10 or more heme-binding motifs. When cell extracts were analyzed by SDS-PAGE followed by heme staining, multiple bands corresponding to c-type cytochromes were detected. Different protein expression patterns were observed in F. placidus cells grown on soluble and insoluble iron forms. In order to explore this result further, transcriptomic studies were performed. Eight genes corresponding to multiheme c-type cytochromes were upregulated when F. placidus was grown with insoluble Fe(III) oxide compared to soluble Fe(III) citrate as an electron acceptor. Numerous archaella (archaeal flagella) also were observed on Fe(III)-grown cells, and genes coding for two type IV pilin-like domain proteins were differentially expressed in Fe(III) oxide-grown cells. This study provides insight into the mechanisms for dissimilatory Fe(III) respiration by hyperthermophilic archaea.
Collapse
|
10
|
The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Appl Environ Microbiol 2014; 81:1003-12. [PMID: 25416759 DOI: 10.1128/aem.02705-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.
Collapse
|
11
|
Lin TJ, Breves EA, Dyar MD, Ver Eecke HC, Jamieson JW, Holden JF. Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys. GEOBIOLOGY 2014; 12:200-211. [PMID: 24612368 DOI: 10.1111/gbi.12083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture-dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin-section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture-dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite-sphalerite-rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pH opt 7-8) heterotroph, while strain Su06 is a mildly acidophilic (pH opt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90-92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3 O4 ] from laboratory-synthesized ferrihydrite [Fe10 O14 (OH)2 ] with no detectable mineral intermediates. They produced up to 40 mm Fe(2+) in a growth-dependent manner, while all abiotic and biotic controls produced <3 mm Fe(2+) . Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs.
Collapse
Affiliation(s)
- T Jennifer Lin
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
12
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Polyextremophiles and the Constraints for Terrestrial Habitability. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Flores GE, Wagner ID, Liu Y, Reysenbach AL. Distribution, abundance, and diversity patterns of the thermoacidophilic "deep-sea hydrothermal vent euryarchaeota 2". Front Microbiol 2012; 3:47. [PMID: 22363325 PMCID: PMC3282477 DOI: 10.3389/fmicb.2012.00047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
Cultivation-independent studies have shown that taxa belonging to the “deep-sea hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469T. Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2.
Collapse
Affiliation(s)
- Gilberto E Flores
- Department of Biology, Center for Life in Extreme Environments, Portland State University Portland, OR, USA
| | | | | | | |
Collapse
|
15
|
Haaijer SCM, Crienen G, Jetten MSM, Op den Camp HJM. Anoxic iron cycling bacteria from an iron sulfide- and nitrate-rich freshwater environment. Front Microbiol 2012; 3:26. [PMID: 22347219 PMCID: PMC3271277 DOI: 10.3389/fmicb.2012.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
In this study, both culture-dependent and culture-independent methods were used to determine whether the iron sulfide mineral- and nitrate-rich freshwater nature reserve Het Zwart Water accommodates anoxic microbial iron cycling. Molecular analyses (16S rRNA gene clone library and fluorescence in situ hybridization, FISH) showed that sulfur-oxidizing denitrifiers dominated the microbial population. In addition, bacteria resembling the iron-oxidizing, nitrate-reducing Acidovorax strain BrG1 accounted for a major part of the microbial community in the groundwater of this ecosystem. Despite the apparent abundance of strain BrG1-like bacteria, iron-oxidizing nitrate reducers could not be isolated, likely due to the strictly autotrophic cultivation conditions adopted in our study. In contrast an iron-reducing Geobacter sp. was isolated from this environment while FISH and 16S rRNA gene clone library analyses did not reveal any Geobacter sp.-related sequences in the groundwater. Our findings indicate that iron-oxidizing nitrate reducers may be of importance to the redox cycling of iron in the groundwater of our study site and illustrate the necessity of employing both culture-dependent and independent methods in studies on microbial processes.
Collapse
Affiliation(s)
- Suzanne C M Haaijer
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen Nijmegen, Netherlands
| | | | | | | |
Collapse
|
16
|
Holmes DE, Risso C, Smith JA, Lovley DR. Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus. THE ISME JOURNAL 2012; 6:146-57. [PMID: 21776029 PMCID: PMC3246244 DOI: 10.1038/ismej.2011.88] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 01/02/2023]
Abstract
Insight into the mechanisms for the anaerobic metabolism of aromatic compounds by the hyperthermophilic archaeon Ferroglobus placidus is expected to improve understanding of the degradation of aromatics in hot (>80° C) environments and to identify enzymes that might have biotechnological applications. Analysis of the F. placidus genome revealed genes predicted to encode enzymes homologous to those previously identified as having a role in benzoate and phenol metabolism in mesophilic bacteria. Surprisingly, F. placidus lacks genes for an ATP-independent class II benzoyl-CoA (coenzyme A) reductase (BCR) found in all strictly anaerobic bacteria, but has instead genes coding for a bzd-type ATP-consuming class I BCR, similar to those found in facultative bacteria. The lower portion of the benzoate degradation pathway appears to be more similar to that found in the phototroph Rhodopseudomonas palustris, than the pathway reported for all heterotrophic anaerobic benzoate degraders. Many of the genes predicted to be involved in benzoate metabolism were found in one of two gene clusters. Genes for phenol carboxylation proceeding through a phenylphosphate intermediate were identified in a single gene cluster. Analysis of transcript abundance with a whole-genome microarray and quantitative reverse transcriptase polymerase chain reaction demonstrated that most of the genes predicted to be involved in benzoate or phenol metabolism had higher transcript abundance during growth on those substrates vs growth on acetate. These results suggest that the general strategies for benzoate and phenol metabolism are highly conserved between microorganisms living in moderate and hot environments, and that anaerobic metabolism of aromatic compounds might be analyzed in a wide range of environments with similar molecular targets.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA.
| | | | | | | |
Collapse
|
17
|
Anderson I, Risso C, Holmes D, Lucas S, Copeland A, Lapidus A, Cheng JF, Bruce D, Goodwin L, Pitluck S, Saunders E, Brettin T, Detter JC, Han C, Tapia R, Larimer F, Land M, Hauser L, Woyke T, Lovley D, Kyrpides N, Ivanova N. Complete genome sequence of Ferroglobus placidus AEDII12DO. Stand Genomic Sci 2011; 5:50-60. [PMID: 22180810 PMCID: PMC3236036 DOI: 10.4056/sigs.2225018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryarchaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemolithoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and annotation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was sequenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project.
Collapse
Affiliation(s)
- Iain Anderson
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Corresponding author:
| | - Carla Risso
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Dawn Holmes
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - David Bruce
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Samuel Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Elizabeth Saunders
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Thomas Brettin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Frank Larimer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Miriam Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Derek Lovley
- Microbiology Department, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | |
Collapse
|
18
|
Holmes DE, Risso C, Smith JA, Lovley DR. Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 2011; 77:5926-33. [PMID: 21742914 PMCID: PMC3165377 DOI: 10.1128/aem.05452-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022] Open
Abstract
Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [(14)C]benzene to [(14)C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [(14)C]benzoate was produced from [(14)C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, 203N Morrill Science Center IVN, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
19
|
Hussain A, Guiot SR, Mehta P, Raghavan V, Tartakovsky B. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Appl Microbiol Biotechnol 2011; 90:827-36. [PMID: 21400198 DOI: 10.1007/s00253-011-3188-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.
Collapse
Affiliation(s)
- Abid Hussain
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave, Montreal, QC, Canada H2P 2R2
| | | | | | | | | |
Collapse
|
20
|
The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Øvreås L, Pedersen RB. Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 2010; 60:2745-2752. [PMID: 20061497 DOI: 10.1099/ijs.0.016105-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic and lithoautotrophic sulfate-reducing archaeon was isolated from black rust formed on the steel surface of a borehole observatory (CORK 1026B) retrieved during IODP Expedition 301 on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. Cells of the strain were lobe-shaped or triangular. The optimum temperature, pH and NaCl concentration for growth were 75°C, pH 7 and 2 % (w/v), respectively. The isolate was strictly anaerobic, growing lithoautotrophically on H(2) and CO(2) using sulfate, sulfite or thiosulfate as electron acceptors. Lactate and pyruvate could serve as alternative energy and carbon sources. The G+C content of the genomic DNA was 42 mol%. Phylogenetic analyses of the 16S rRNA gene indicated that the isolate was closely related to members of the family Archaeoglobaceae, with sequence similarities of 90.3-94.4 %. Physiological and molecular properties showed that the isolate represents a novel species of the genus Archaeoglobus. The name Archaeoglobus sulfaticallidus sp. nov. is proposed; the type strain is PM70-1(T) (=DSM 19444(T)=JCM 14716(T)).
Collapse
Affiliation(s)
- Bjørn O Steinsbu
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Ingunn H Thorseth
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Satoshi Nakagawa
- Subground Animalcule Retrieval (SUGAR) Program, Extremobiosphere Research Center (XBR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
| | - Mark A Lever
- Department of Marine Sciences, University of North Carolina at Chapel Hill, 12-7 Venable Hall CB #3300, Chapel Hill, North Carolina 27599, USA
| | - Bert Engelen
- Institut für Chemie und Biologie Des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, D-26111 Oldenburg, Germany
| | - Lise Øvreås
- Department of Biology, University of Bergen, Jahnebakken 5, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Rolf B Pedersen
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
22
|
Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI. Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2009; 59:2880-3. [PMID: 19628601 DOI: 10.1099/ijs.0.011080-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A hyperthermophilic, anaerobic, dissimilatory Fe(III)-reducing, facultatively chemolithoautotrophic archaeon (strain SBH6(T)) was isolated from a hydrothermal sample collected from the deepest of the known World Ocean hydrothermal fields, Ashadze field (1 degrees 58' 21'' N 4 degrees 51' 47'' W) on the Mid-Atlantic Ridge, at a depth of 4100 m. The strain was enriched using acetate as the electron donor and Fe(III) oxide as the electron acceptor. Cells of strain SBH6(T) were irregular cocci, 0.3-0.5 mum in diameter. The temperature range for growth was 50-85 degrees C, with an optimum at 81 degrees C. The pH range for growth was 5.0-7.5, with an optimum at pH 6.8. Growth of SBH6(T) was observed at NaCl concentrations ranging from 1 to 6 % (w/v) with an optimum at 2.5 % (w/v). The isolate utilized acetate, formate, pyruvate, fumarate, malate, propionate, butyrate, succinate, glycerol, stearate, palmitate, peptone and yeast extract as electron donors for Fe(III) reduction. It was also capable of growth with H(2) as the sole electron donor, CO(2) as a carbon source and Fe(III) as an electron acceptor without the need for organic substances. Fe(III) [in the form of poorly crystalline Fe(III) oxide or Fe(III) citrate] was the only electron acceptor that supported growth. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Geoglobus ahangari 234(T) (97.0 %). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Geoglobus acetivorans sp. nov. is proposed. The type strain is SBH6(T) (=DSM 21716(T) =VKM B-2522(T)).
Collapse
Affiliation(s)
- G B Slobodkina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, 117312 Moscow, Russia.
| | | | | | | | | |
Collapse
|
23
|
Mori K, Maruyama A, Urabe T, Suzuki KI, Hanada S. Archaeoglobus infectus sp. nov., a novel thermophilic, chemolithoheterotrophic archaeon isolated from a deep-sea rock collected at Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Int J Syst Evol Microbiol 2008; 58:810-6. [PMID: 18398174 DOI: 10.1099/ijs.0.65422-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, strictly anaerobic archaeon, designated strain Arc51T, was isolated from a rock sample collected from a deep-sea hydrothermal field in Suiyo Seamount, Izu-Bonin Arc, western Pacific Ocean. Cells of the isolate were irregular cocci with single flagella and exhibited blue-green fluorescence at 436 nm. The optimum temperature, pH and NaCl concentration for growth were 70 degrees C, pH 6.5 and 3 % (w/v), respectively. Strain Arc51T could grow on thiosulfate or sulfite as an electron acceptor in the presence of hydrogen. This strain required acetate as a carbon source for its growth, suggesting that the reductive acetyl CoA pathway for CO2 fixation was incomplete. In addition, coenzyme M (2-mercaptoethanesulfonic acid), which is a known methyl carrier in methanogenesis, was also a requirement for growth of the strain. Analysis of the 16S rRNA gene sequence revealed that the isolate was similar to members of the genus Archaeoglobus, with sequence similarities of 93.6-97.2 %; the closest relative was Archaeoglobus veneficus. Phylogenetic analyses of the dsrAB and apsA genes, encoding the alpha and beta subunits of dissimilatory sulfite reductase and the alpha subunit of adenosine-5'-phosphosulfate reductase, respectively, produced results similar to those inferred from comparisons based on the 16S rRNA gene sequence. On the basis of phenotypic and phylogenetic data, strain Arc51T represents a novel species of the genus Archaeoglobus, for which the name Archaeoglobus infectus sp. nov. is proposed. The type strain is Arc51T (=NBRC 100649T=DSM 18877T).
Collapse
Affiliation(s)
- Koji Mori
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | | | | | | | | |
Collapse
|
24
|
Kashefi K, Shelobolina ES, Elliott WC, Lovley DR. Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microbiol 2008; 74:251-8. [PMID: 17981937 PMCID: PMC2223214 DOI: 10.1128/aem.01580-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 10/26/2007] [Indexed: 11/20/2022] Open
Abstract
Recent studies have suggested that the structural Fe(III) within phyllosilicate minerals, including smectite and illite, is an important electron acceptor for Fe(III)-reducing microorganisms in sedimentary environments at moderate temperatures. The reduction of structural Fe(III) by thermophiles, however, has not previously been described. A wide range of thermophilic and hyperthermophilic Archaea and Bacteria from marine and freshwater environments that are known to reduce poorly crystalline Fe(III) oxides were tested for their ability to reduce structural (octahedrally coordinated) Fe(III) in smectite (SWa-1) as the sole electron acceptor. Two out of the 10 organisms tested, Geoglobus ahangari and Geothermobacterium ferrireducens, were not able to conserve energy to support growth by reduction of Fe(III) in SWa-1 despite the fact that both organisms were originally isolated with solid-phase Fe(III) as the electron acceptor. The other organisms tested were able to grow on SWa-1 and reduced 6.3 to 15.1% of the Fe(III). This is 20 to 50% less than the reported amounts of Fe(III) reduced in the same smectite (SWa-1) by mesophilic Fe(III) reducers. Two organisms, Geothermobacter ehrlichii and archaeal strain 140, produced copious amounts of an exopolysaccharide material, which may have played an active role in the dissolution of the structural iron in SWa-1 smectite. The reduction of structural Fe(III) in SWa-1 by archaeal strain 140 was studied in detail. Microbial Fe(III) reduction was accompanied by an increase in interlayer and octahedral charges and some incorporation of potassium and magnesium into the smectite structure. However, these changes in the major element chemistry of SWa-1 smectite did not result in the formation of an illite-like structure, as reported for a mesophilic Fe(III) reducer. These results suggest that thermophilic Fe(III)-reducing organisms differ in their ability to reduce and solubilize structural Fe(III) in SWa-1 smectite and that SWa-1 is not easily transformed to illite by these organisms.
Collapse
Affiliation(s)
- Kazem Kashefi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
25
|
Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 2006; 4:752-64. [PMID: 16980937 DOI: 10.1038/nrmicro1490] [Citation(s) in RCA: 802] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.
Collapse
Affiliation(s)
- Karrie A Weber
- Department of Plant and Microbial Biology, 271 Koshland Hall, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | |
Collapse
|
26
|
Hu Y, Holden JF. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate. J Bacteriol 2006; 188:4350-5. [PMID: 16740941 PMCID: PMC1482950 DOI: 10.1128/jb.00138-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.
Collapse
Affiliation(s)
- Yajing Hu
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
27
|
Abstract
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
28
|
|
29
|
Abstract
Dissimilatory Fe(III) and Mn(IV) reduction has an important influence on the geochemistry of modern environments, and Fe(III)-reducing microorganisms, most notably those in the Geobacteraceae family, can play an important role in the bioremediation of subsurface environments contaminated with organic or metal contaminants. Microorganisms with the capacity to conserve energy from Fe(III) and Mn(IV) reduction are phylogenetically dispersed throughout the Bacteria and Archaea. The ability to oxidize hydrogen with the reduction of Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms and one Fe(III)-reducing Archaea grows at the highest temperature yet recorded for any organism. Fe(III)- and Mn(IV)-reducing microorganisms have the ability to oxidize a wide variety of organic compounds, often completely to carbon dioxide. Typical alternative electron acceptors for Fe(III) reducers include oxygen, nitrate, U(VI) and electrodes. Unlike other commonly considered electron acceptors, Fe(III) and Mn(IV) oxides, the most prevalent form of Fe(III) and Mn(IV) in most environments, are insoluble. Thus, Fe(III)- and Mn(IV)-reducing microorganisms face the dilemma of how to transfer electrons derived from central metabolism onto an insoluble, extracellular electron acceptor. Although microbiological and geochemical evidence suggests that Fe(III) reduction may have been the first form of microbial respiration, the capacity for Fe(III) reduction appears to have evolved several times as phylogenetically distinct Fe(III) reducers have different mechanisms for Fe(III) reduction. Geobacter species, which are representative of the family of Fe(III) reducers that predominate in a wide diversity of sedimentary environments, require direct contact with Fe(III) oxides in order to reduce them. In contrast, Shewanella and Geothrix species produce chelators that solubilize Fe(III) and release electron-shuttling compounds that transfer electrons from the cell surface to the surface of Fe(III) oxides not in direct contact with the cells. Electron transfer from the inner membrane to the outer membrane in Geobacter and Shewanella species appears to involve an electron transport chain of inner-membrane, periplasmic, and outer-membrane c-type cytochromes, but the cytochromes involved in these processes in the two organisms are different. In addition, Geobacter species specifically express flagella and pili during growth on Fe(III) and Mn(IV) oxides and are chemotactic to Fe(II) and Mn(II), which may lead Geobacter species to the oxides under anoxic conditions. The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments. In comparison with other respiratory processes, the study of Fe(III) and Mn(IV) reduction is in its infancy, but genome-enabled approaches are rapidly advancing our understanding of this environmentally significant physiology.
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts-Amherst, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
30
|
Kashefi K, Holmes DE, Lovley DR, Tor JM. Potential importance of dissimilatory Fe(III)-reducing microorganisms in hot sedimentary environments. THE SUBSEAFLOOR BIOSPHERE AT MID-OCEAN RIDGES 2004. [DOI: 10.1029/144gm13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Tor JM, Amend JP, Lovley DR. Metabolism of organic compounds in anaerobic, hydrothermal sulphate-reducing marine sediments. Environ Microbiol 2003; 5:583-91. [PMID: 12823190 DOI: 10.1046/j.1462-2920.2003.00441.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies of hot (>80 degrees C) microbial ecosystems have primarily relied on the study of pure cultures or analysis of 16S rDNA sequences. In order to gain more information on anaerobic metabolism by natural communities in hot environments, sediments were collected from a shallow marine hydrothermal vent system in Baia di Levante, Vulcano, Italy and incubated under strict anaerobic conditions at 90 degrees C. Sulphate reduction was the predominant terminal electron-accepting process in the sediments. The addition of molybdate inhibited sulphate reduction in the sediments and resulted in a linear accumulation of acetate and hydrogen over time. [U-14C]- acetate was completely oxidized to 14CO2, and the addition of molybdate inhibited 14CO2 production by 60%. [U-14C]-glucose was oxidized to 14CO2, and this was inhibited when molybdate was added. When the pool sizes of short-chain fatty acids were artificially increased, radiolabel from [U-14C]-glucose accumulated in the acetate pool. L-[U-14C]-glutamate, [ring-14C]-benzoate and [U-14C]-palmitate were also anaerobically oxidized to 14CO2 in the sediments, but molybdate had little effect on the oxidation of these compounds. These results demonstrate that natural microbial communities living in a hot, microbial ecosystem can oxidize acetate and a range of other organic electron donors under sulphate-reducing conditions and suggest that acetate is an important extracellular intermediate in the anaerobic degradation of organic matter in hot microbial ecosystems.
Collapse
Affiliation(s)
- Jason M Tor
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
32
|
Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent. Appl Environ Microbiol 2003; 69:2985-93. [PMID: 12732575 PMCID: PMC154550 DOI: 10.1128/aem.69.5.2985-2993.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the microbiology of the "Bag City" hydrothermal vent, which is part of a new eruption site on the Juan de Fuca Ridge and which is notable for its accumulation of polysaccharide on the sediment surface. A pure culture, designated strain SS015, was recovered from a vent fluid sample from the Bag City site through serial dilution in liquid medium with malate as the electron donor and Fe(III) oxide as the electron acceptor and then isolation of single colonies on solid Fe(III) oxide medium. The cells were gram-negative rods, about 0.5 micro m by 1.2 to 1.5 micro m, and motile and contained c-type cytochromes. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain SS015 placed it in the family Geobacteraceae in the delta subclass of the Proteobacteria. Unlike previously described members of the Geobacteraceae, which are mesophiles, strain SS015 was a thermophile and grew at temperatures of between 35 and 65 degrees C, with an optimum temperature of 55 degrees C. Like many previously described members of the Geobacteraceae, strain SS015 grew with organic acids as the electron donors and Fe(III) or nitrate as the electron acceptor, with nitrate being reduced to ammonia. Strain SS015 was unique among the Geobacteraceae in its ability to use sugars, starch, or amino acids as electron donors for Fe(III) reduction. Under stress conditions, strain SS015 produced copious quantities of extracellular polysaccharide, providing a model for the microbial production of the polysaccharide accumulation at the Bag City site. The 16S rDNA sequence of strain SS015 was less than 94% similar to the sequences of previously described members of the Geobacteraceae; this fact, coupled with its unique physiological properties, suggests that strain SS015 represents a new genus in the family Geobacteraceae. The name Geothermobacter ehrlichii gen. nov., sp. nov., is proposed (ATCC BAA-635 and DSM 15274). Although strains of Geobacteraceae are known to be the predominant Fe(III)-reducing microorganisms in a variety of Fe(III)-reducing environments at moderate temperatures, strain SS015 represents the first described thermophilic member of the Geobacteraceae and thus extends the known environmental range of this family to hydrothermal environments.
Collapse
Affiliation(s)
- Kazem Kashefi
- Department of Microbiology, University of Massachusetts, 203 Morrill Science Center IVN, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
33
|
Kashefi K, Holmes DE, Reysenbach AL, Lovley DR. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 2002; 68:1735-42. [PMID: 11916691 PMCID: PMC123901 DOI: 10.1128/aem.68.4.1735-1742.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 01/09/2002] [Indexed: 11/20/2022] Open
Abstract
It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms from hydrothermal environments and illustrate that caution must be used in inferring the physiological characteristics of at least some thermophilic microorganisms solely from 16S rDNA sequences. Based on both its 16S rDNA sequence and physiological characteristics, strain FW-1a represents a new genus among the Bacteria. The name Geothermobacterium ferrireducens gen. nov., sp. nov., is proposed (ATCC BAA-426).
Collapse
Affiliation(s)
- Kazem Kashefi
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
34
|
Tor JM, Lovley DR. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ Microbiol 2001; 3:281-7. [PMID: 11359514 DOI: 10.1046/j.1462-2920.2001.00192.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aromatic compounds are an important component of the organic matter in some of the anaerobic environments that hyperthermophilic microorganisms inhabit, but the potential for hyperthermophilic microorganisms to metabolize aromatic compounds has not been described previously. In this study, aromatic metabolism was investigated in the hyperthermophile Ferroglobus placidus. F. placidus grew at 85 degrees C in anaerobic medium with a variety of aromatic compounds as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. Aromatic compounds supporting growth included benzoate, phenol, 4-hydroxybenzoate, benzaldehyde, p-hydroxybenzaldehyde and t-cinnamic acid (3-phenyl-2-propenoic acid). These aromatic compounds did not support growth when nitrate was provided as the electron acceptor, even though nitrate supports the growth of this organism with Fe(II) or H2 as the electron donor. The stoichiometry of benzoate and phenol uptake and Fe(III) reduction indicated that F. placidus completely oxidized these aromatic compounds to carbon dioxide, with Fe(III) serving as the sole electron acceptor. This is the first example of an Archaea that can anaerobically oxidize an aromatic compound. These results also demonstrate for the first time that hyperthermophilic microorganisms can anaerobically oxidize aromatic compounds and suggest that hyperthermophiles may metabolize aromatic compounds in hot environments such as the deep hot subsurface and in marine and terrestrial hydrothermal zones in which Fe(III) is available as an electron acceptor.
Collapse
Affiliation(s)
- J M Tor
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|