1
|
Li Z, Wang Q, Liu H, Wang Y, Zheng Z, Zhang Y, Tan T. Engineering Corynebacterium glutamicum for the efficient production of N-acetylglucosamine. BIORESOURCE TECHNOLOGY 2023; 390:129865. [PMID: 37832852 DOI: 10.1016/j.biortech.2023.129865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
N-acetylglucosamine (GlcNAc) is significant functional monosaccharides with diverse applications in medicine, food, and cosmetics. In this study, the GlcNAc synthesis pathway was constructed in Corynebacterium glutamicum and its reverse byproduct pathways were blocked. Simultaneously the driving force of GlcNAc synthesis was enhanced by screening key gene sources and inhibiting the GlcNAc consumption pathway. To maximize carbon flux, some competitive pathways (Pentose phosphate pathway, Glycolysis pathway and Mannose pathway) were weakened and the titer of GlcNAc reached 23.30 g/L in shake flasks. Through transcriptome analysis, it was found that dissolved oxygen was an important limiting factor, which was optimized in a 5 L bioreactor. Employing optimal fermentation conditions and feeding strategy, the titer of GlcNAc reached 138.9 g/L, with the yeild of 0.44 g/g glucose. This study significantly increased the yield and titer of GlcNAc, which lay a solid foundation for the industrial production of GlcNAc in C. glutamicum.
Collapse
Affiliation(s)
- Zemin Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Qiuting Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hui Liu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yating Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhaoyi Zheng
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yang Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
2
|
Engineering of succinyl-CoA metabolism in view of succinylation regulation to improve the erythromycin production. Appl Microbiol Biotechnol 2022; 106:5153-5165. [PMID: 35821431 DOI: 10.1007/s00253-022-12060-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
As a novel protein post-translational modification (PTM), lysine succinylation is widely involved in metabolism regulation by altering the activity of catalytic enzymes. Inactivating succinyl-CoA synthetase in Saccharopolyspora erythraea HL3168 E3 was proved significantly inducing the global protein hypersuccinylation. To investigate the effects, succinylome of the mutant strain E3ΔsucC was identified by using a high-resolution mass spectrometry-based proteomics approach. PTMomics analyses suggested the important roles of succinylation on protein biosynthesis, carbon metabolism, and antibiotics biosynthesis in S. erythraea. Enzymatic experiments in vivo and in vitro were further conducted to determine the succinylation regulation in the TCA cycle. We found out that the activity of aconitase (SACE_3811) was significantly inhibited by succinylation in E3ΔsucC, which probably led to the extracellular accumulation of pyruvate and citrate during the fermentation. Enzyme structural analyses indicated that the succinylation of K278 and K373, conservative lysine residues locating around the protein binding pocket, possibly affects the activity of aconitase. To alleviate the metabolism changes caused by succinyl-CoA synthetase inactivation and protein hypersuccinylation, CRISPR interference (CRISPRi) was applied to mildly downregulate the transcription level of gene sucC in E3. The erythromycin titer of the CRISPRi mutant E3-sucC-sg1 was increased by 54.7% compared with E3, which was 1200.5 mg/L. Taken together, this work not only expands our knowledge of succinylation regulation in the TCA cycle, but also validates that CRISPRi is an efficient strategy on the metabolic engineering of S. erythraea. KEY POINTS: • We reported the first systematic profiling of the S. erythraea succinylome. • We found that the succinylation regulation on the activity of aconitase. • We enhanced the production of erythromycin by using CRISPRi to regulate the transcription of gene sucC.
Collapse
|
3
|
Jo HG, Adidjaja JJ, Kim DK, Park BS, Lee N, Cho BK, Kim HU, Oh MK. Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Sci Rep 2022; 12:10302. [PMID: 35717543 PMCID: PMC9206652 DOI: 10.1038/s41598-022-14199-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Streptomyces rapamycinicus NRRL 5491 is a well-known producer of rapamycin, a secondary metabolite with useful bioactivities, including antifungal, antitumor, and immunosuppressive functions. For the enhanced rapamycin production, a rapamycin-overproducing strain SRMK07 was previously obtained as a result of random mutagenesis. To identify genomic changes that allowed the SRMK07 strain’s enhanced rapamycin production, genomes of the NRRL 5491 and SRMK07 strains were newly sequenced in this study. The resulting genome sequences of the wild-type and SRMK07 strains showed the size of 12.47 Mbp and 9.56 Mbp, respectively. Large deletions were observed at both end regions of the SRMK07 strain’s genome, which cover 17 biosynthetic gene clusters (BGCs) encoding secondary metabolites. Also, genes in a genomic region containing the rapamycin BGC were shown to be duplicated. Finally, comparative metabolic network analysis using these two strains’ genome-scale metabolic models revealed biochemical reactions with different metabolic fluxes, which were all associated with NADPH generation. Taken together, the genomic and computational approaches undertaken in this study suggest biological clues for the enhanced rapamycin production of the SRMK07 strain. These clues can also serve as a basis for systematic engineering of a production host for further enhanced rapamycin production.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joshua Julio Adidjaja
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do-Kyung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Bu-Soo Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
León-Buitimea A, Balderas-Cisneros FDJ, Garza-Cárdenas CR, Garza-Cervantes JA, Morones-Ramírez JR. Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs. Front Bioeng Biotechnol 2022; 10:869206. [PMID: 35600895 PMCID: PMC9114757 DOI: 10.3389/fbioe.2022.869206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.
Collapse
Affiliation(s)
- Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Francisco de Jesús Balderas-Cisneros
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - César Rodolfo Garza-Cárdenas
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Javier Alberto Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
- *Correspondence: José Rubén Morones-Ramírez,
| |
Collapse
|
5
|
Huang R, Liu H, Zhao W, Wang S, Wang S, Cai J, Yang C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb Cell Fact 2022; 21:60. [PMID: 35397580 PMCID: PMC8994273 DOI: 10.1186/s12934-022-01785-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background AdpA is a global regulator of morphological differentiation and secondary metabolism in Streptomyces, but the regulatory roles of the Streptomyces AdpA family on the biosynthesis of the natural product ε-poly-l-lysine (ε-PL) remain unidentified, and few studies have focused on increasing the production of ε-PL by manipulating transcription factors in Streptomyces. Results In this study, we revealed the regulatory roles of different AdpA homologs in ε-PL biosynthesis and morphological differentiation and effectively promoted ε-PL production and sporulation in Streptomycesalbulus NK660 by heterologously expressing adpA from S.neyagawaensis NRRLB-3092 (adpASn). First, we identified a novel AdpA homolog named AdpASa in S.albulus NK660 and characterized its function as an activator of ε-PL biosynthesis and morphological differentiation. Subsequently, four heterologous AdpA homologs were selected to investigate their phylogenetic relationships and regulatory roles in S.albulus, and AdpASn was demonstrated to have the strongest ability to promote both ε-PL production and sporulation among these five AdpA proteins. The ε-PL yield of S.albulus heterologously expressing adpASn was approximately 3.6-fold higher than that of the control strain. Finally, we clarified the mechanism of AdpASn in enhancing ε-PL biosynthesis and its effect on ε-PL polymerization degree using real-time quantitative PCR, microscale thermophoresis and MALDI-TOF–MS. AdpASn was purified, and its seven direct targets, zwf, tal, pyk2, pta, ack, pepc and a transketolase gene (DC74_2409), were identified, suggesting that AdpASn may cause the redistribution of metabolic flux in central metabolism pathways, which subsequently provides more carbon skeletons and ATP for ε-PL biosynthesis in S.albulus. Conclusions Here, we characterized the positive regulatory roles of Streptomyces AdpA homologs in ε-PL biosynthesis and their effects on morphological differentiation and reported for the first time that AdpASn promotes ε-PL biosynthesis by affecting the transcription of its target genes in central metabolism pathways. These findings supply valuable insights into the regulatory roles of the Streptomyces AdpA family on ε-PL biosynthesis and morphological differentiation and suggest that AdpASn may be an effective global regulator for enhanced production of ε-PL and other valuable secondary metabolites in Streptomyces. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01785-6.
Collapse
|
6
|
Lejeune C, Sago L, Cornu D, Redeker V, Virolle MJ. A Proteomic Analysis Indicates That Oxidative Stress Is the Common Feature Triggering Antibiotic Production in Streptomyces coelicolor and in the pptA Mutant of Streptomyces lividans. Front Microbiol 2022; 12:813993. [PMID: 35392450 PMCID: PMC8981147 DOI: 10.3389/fmicb.2021.813993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 11/29/2022] Open
Abstract
In most Streptomyces species, antibiotic production is triggered in phosphate limitation and repressed in phosphate proficiency. However, the model strain, Streptomyces coelicolor, escapes this general rule and produces actinorhoddin (ACT), a polyketide antibiotic, even more abundantly in phosphate proficiency than in phosphate limitation. ACT was shown to bear "anti-oxidant" properties suggesting that its biosynthesis is triggered by oxidative stress. Interestingly, Streptomyces lividans, a strain closely related to S. coelicolor, does not produce ACT in any phosphate condition whereas its pptA/sco4144 mutant produces ACT but only in phosphate limitation. In order to define the potentially common features of the ACT producing strains, these three strains were grown in condition of low and high phosphate availability, and a comparative quantitative analysis of their proteomes was carried out. The abundance of proteins of numerous pathways differed greatly between S. coelicolor and the S. lividans strains, especially those of central carbon metabolism and respiration. S. coelicolor is characterized by the high abundance of the complex I of the respiratory chain thought to generate reactive oxygen/nitrogen species and by a weak glycolytic activity causing a low carbon flux through the Pentose Phosphate Pathway resulting into the low generation of NADPH, a co-factor of thioredoxin reductases necessary to combat oxidative stress. Oxidative stress is thus predicted to be high in S. coelicolor. In contrast, the S. lividans strains had rather similar proteins abundance for most pathways except for the transhydrogenases SCO7622-23, involved in the conversion of NADPH into NADH. The poor abundance of these enzymes in the pptA mutant suggested a deficit in NADPH. Indeed, PptA is an accessory protein forcing polyphosphate into a conformation allowing their efficient use by various enzymes taking polyphosphate as a donor of phosphate and energy, including the ATP/Polyphosphate-dependent NAD kinase SCO1781. In phosphate limitation, this enzyme would mainly use polyphosphate to phosphorylate NAD into NADP, but this phosphorylation would be inefficient in the pptA mutant resulting in low NADP(H) levels and thus high oxidative stress. Altogether, our results indicated that high oxidative stress is the common feature triggering ACT biosynthesis in S. coelicolor and in the pptA mutant of S. lividans.
Collapse
Affiliation(s)
- Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginie Redeker
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
- Institut Francois Jacob, Molecular Imaging Center (MIRCen), Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Li X, Ke X, Qiao L, Sui Y, Chu J. Comparative genomic and transcriptomic analysis guides to further enhance the biosynthesis of erythromycin by an overproducer. Biotechnol Bioeng 2022; 119:1624-1640. [PMID: 35150130 DOI: 10.1002/bit.28059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022]
Abstract
Omics approaches have been applied to understand the boosted productivity of natural products by industrial high-producing microorganisms. Here, with the updated genome sequence and transcriptomic profiles derived from high-throughput sequencing, we exploited comparative omics analysis to further enhance the biosynthesis of erythromycin in an industrial overproducer, Saccharopolyspora erythraea HL3168 E3. By comparing the genome of E3 with the wild type NRRL23338, we identified fragment deletions inside 56 coding sequences and 255 single nucleotide polymorphisms over the genome of E3. A substantial number of genomic variations were observed in genes responsible for pathways which were interconnected to the biosynthesis of erythromycin by supplying precursors/cofactors or by signal transduction. Furthermore, the transcriptomic data suggested that genes involved in the biosynthesis of erythromycin were significantly up-regulated constantly, whereas some genes in biosynthesis clusters of other secondary metabolites contained nonsense mutations and were expressed at extremely low levels. Through comparative transcriptomic analysis, L-glutamine/L-glutamate and 2-oxoglutarate were identified as reporter metabolites. Around the node of 2-oxoglutarate, genomic mutations were also observed. Based on the omics association analysis, readily available strategies were proposed to engineer E3 by simultaneously overexpressing sucB (coding for 2-oxoglutarate dehydrogenase E2 component) and sucA (coding for 2-oxoglutarate dehydrogenase E1 component), which increased the erythromycin titer by 71% compared to E3 in batch culture. This work provides more promising molecular targets to engineer for enhanced production of erythromycin by the overproducer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Lijia Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Yufei Sui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, China
| |
Collapse
|
8
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
9
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
10
|
Mehta D, Ramesh A. Diversity and prevalence of ANTAR RNAs across actinobacteria. BMC Microbiol 2021; 21:159. [PMID: 34051745 PMCID: PMC8164766 DOI: 10.1186/s12866-021-02234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Computational approaches are often used to predict regulatory RNAs in bacteria, but their success is limited to RNAs that are highly conserved across phyla, in sequence and structure. The ANTAR regulatory system consists of a family of RNAs (the ANTAR-target RNAs) that selectively recruit ANTAR proteins. This protein-RNA complex together regulates genes at the level of translation or transcriptional elongation. Despite the widespread distribution of ANTAR proteins in bacteria, their target RNAs haven’t been identified in certain bacterial phyla such as actinobacteria. Results Here, by using a computational search model that is tuned to actinobacterial genomes, we comprehensively identify ANTAR-target RNAs in actinobacteria. These RNA motifs lie in select transcripts, often overlapping with the ribosome binding site or start codon, to regulate translation. Transcripts harboring ANTAR-target RNAs majorly encode proteins involved in the transport and metabolism of cellular metabolites like sugars, amino acids and ions; or encode transcription factors that in turn regulate diverse genes. Conclusion In this report, we substantially diversify and expand the family of ANTAR RNAs across bacteria. These findings now provide a starting point to investigate the actinobacterial processes that are regulated by ANTAR. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02234-x.
Collapse
Affiliation(s)
- Dolly Mehta
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India.,SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Arati Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
11
|
Liu Y, Wang H, Li S, Zhang Y, Cheng X, Xiang W, Wang X. Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2021; 105:1875-1887. [PMID: 33564920 DOI: 10.1007/s00253-021-11164-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Milbemycins are used commercially as insect repellents and acaricides; however, their high cost remains a significant challenge to commercial production. Hence, improving the titer of milbemycins for commercial application is an urgent priority. The present study aimed to effectively increase the titer of milbemycins using a combination of genome re-sequencing and metabolic engineering. First, 133 mutation sites were identified by genome re-sequencing in the mutagenized high-yielding strain BC04. Among them, three modifiable candidate genes (sbi_04868 encoding citrate synthase, sbi_06921 and sbi_06922 encoding alpha and beta subunits of acetyl-CoA carboxylase, and sbi_04683 encoding carbon uptake system gluconate transporter) related to primary metabolism were screened and identified. Next, the DNase-deactivated Cpf1-based integrative CRISPRi system was used in S. bingchenggensis to downregulate the transcription level of gene sbi_04868. Then, overexpression of the potential targets sbi_06921-06922 and sbi_04683 further facilitated milbemycin biosynthesis. Finally, those candidate genes were engineered to produce strains with combinatorial downregulation and overexpression, which resulted in the titer of milbemycin A3/A4 increased by 27.6% to 3164.5 mg/L. Our research not only identified three genes in S. bingchenggensis that are closely related to the production of milbemycins, but also offered an efficient engineering strategy to improve the titer of milbemycins using genome re-sequencing. KEY POINTS: • We compared the genomes of two strains with different titers of milbemycins. • We found three genes belonging to primary metabolism influence milbemycin production. • We improved titer of milbemycins by a combinatorial engineering of three targets.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
12
|
Li X, Chen J, Andersen JM, Chu J, Jensen PR. Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in Saccharopolyspora erythraea. ACS Synth Biol 2020; 9:655-670. [PMID: 32078772 DOI: 10.1021/acssynbio.9b00528] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccharopolyspora erythraea is used for industrial erythromycin production. To explore the physiological role of intracellular energy state in metabolic regulation by S. erythraea, we initially overexpressed the F1 part of the endogenous F1F0-ATPase in the high yielding erythromycin producing strain E3. The F1-ATPase expression resulted in lower [ATP]/[ADP] ratios, which was accompanied by a strong increase in the production of a reddish pigment and a decreased erythromycin production. Subsequent transcriptional analysis revealed that the lower intracellular [ATP]/[ADP] ratios exerted a pleotropic regulation on the metabolism of S. erythraea. The lower [ATP]/[ADP] ratios induced physiological changes to restore the energy balance, mainly via pathways that tend to produce ATP or regenerate NADH. The F1-ATPase overexpression strain exhibited a state of redox stress, which was correlated to an alteration of electron transport at the branch of the terminal oxidases, and S. erythraea channeled the enhanced glycolytic flux toward a reddish pigment in order to reduce NADH formation. The production of erythromycin was decreased, which is in accordance with the net ATP requirement and the excess NADH formed through this pathway. Partial growth inhibition by apramycin increased the intracellular [ATP]/[ADP] ratios and demonstrated a positive correlation between [ATP]/[ADP] ratios and erythromycin synthesis. Finally, overexpression of the entire F1F0-ATPase complex resulted in 28% enhanced erythromycin production and markedly reduced pigment synthesis in E3. The work illustrates a feasible strategy to optimize the distribution of fluxes in secondary metabolism.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 201, DK2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Fernández-Martínez LT, Hoskisson PA. Expanding, integrating, sensing and responding: the role of primary metabolism in specialised metabolite production. Curr Opin Microbiol 2019; 51:16-21. [DOI: 10.1016/j.mib.2019.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/22/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
14
|
Prajapati D, Kumari N, Dave K, Chatupale V, Pohnerkar J. Chromomycin, an antibiotic produced by Streptomyces flaviscleroticus might play a role in the resistance to oxidative stress and is essential for viability in stationary phase. Environ Microbiol 2019; 21:814-826. [PMID: 30585380 DOI: 10.1111/1462-2920.14515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The well-known role of antibiotics in killing sensitive organisms has been challenged by the effects they exert at subinhibitory concentrations. Unfortunately, there are very few published reports on the advantages these molecules may confer to their producers. This study describes the construction of a genetically verified deletion mutant of Streptomyces flaviscleroticus unable to synthesize chromomycin. This mutant was characterized by a rapid loss of viability in stationary phase that was correlated with high oxidative stress and altered antioxidant defences. Altered levels of key metabolites in the mutant signalled a redistribution of the glycolytic flux toward the PPP to generate NADPH to fight oxidative stress as well as reduction of ATP-phosphofructokinase and Krebs cycle enzymes activities. These changes were correlated with a shift in the preference for carbon utilization from glucose to amino acids. Remarkably, chromomycin at subinhibitory concentration increased longevity of the non-producer and restored most of the phenotypic features' characteristic of the wild type strain. Altogether these observations suggest that chromomycin may have antioxidant properties that would explain, at least in part, some of the phenotypes of the mutant. Our observations warrant reconsideration of the secondary metabolite definition and raise the possibility of crucial roles for their producers.
Collapse
Affiliation(s)
- Divya Prajapati
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| | - Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, DC, 20059
| | - Keyur Dave
- Cellcys Labs Pvt. Ltd., Mumbai, 400104, India
| | - Vaidehi Chatupale
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| | - Jayashree Pohnerkar
- Department of Bio-Chemistry, The Maharaja Sayajirao University of Baroda, Baroda, 390003, Gujarat, India
| |
Collapse
|
15
|
Gamboa-Suasnavart RA, Valdez-Cruz NA, Gaytan-Ortega G, Reynoso-Cereceda GI, Cabrera-Santos D, López-Griego L, Klöckner W, Büchs J, Trujillo-Roldán MA. The metabolic switch can be activated in a recombinant strain of Streptomyces lividans by a low oxygen transfer rate in shake flasks. Microb Cell Fact 2018; 17:189. [PMID: 30486842 PMCID: PMC6260694 DOI: 10.1186/s12934-018-1035-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Background In Streptomyces, understanding the switch from primary to secondary metabolism is important for maximizing the production of secondary metabolites such as antibiotics, as well as for optimizing recombinant glycoprotein production. Differences in Streptomyces lividans bacterial aggregation as well as recombinant glycoprotein production and O-mannosylation have been reported due to modifications in the shake flask design. We hypothetized that such differences are related to the metabolic switch that occurs under oxygen-limiting conditions in the cultures. Results Shake flask design was found to affect undecylprodigiosin (RED, a marker of secondary metabolism) production; the RED yield was 12 and 385 times greater in conventional normal Erlenmeyer flasks (NF) than in baffled flasks (BF) and coiled flasks (CF), respectively. In addition, oxygen transfer rates (OTR) and carbon dioxide transfer rates were almost 15 times greater in cultures in CF and BF as compared with those in NF. Based on these data, we obtained respiration quotients (RQ) consistent with aerobic metabolism for CF and BF, but an RQ suggestive of anaerobic metabolism for NF. Conclusion Although the metabolic switch is usually related to limitations in phosphate and nitrogen in Streptomyces sp., our results reveal that it can also be activated by low OTR, dramatically affecting recombinant glycoprotein production and O-mannosylation and increasing RED synthesis in the process. Electronic supplementary material The online version of this article (10.1186/s12934-018-1035-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ramsés A Gamboa-Suasnavart
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Gerardo Gaytan-Ortega
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Greta I Reynoso-Cereceda
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Daniel Cabrera-Santos
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Lorena López-Griego
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico
| | - Wolf Klöckner
- Department of Biochemical Engineering (AVT.BioVT), RWTH Aachen University of Technology, Forckenbeckstraße 51, 52074, Aachen, Germany.,Bayer AG, Engineering and Technology, Chempark, 51368, Leverkusen, Germany
| | - Jochen Büchs
- Department of Biochemical Engineering (AVT.BioVT), RWTH Aachen University of Technology, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, CP. 04510, Ciudad de México, Mexico.
| |
Collapse
|
16
|
Takahashi-Íñiguez T, Barrios-Hernández J, Rodríguez-Maldonado M, Flores ME. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145. Arch Microbiol 2018; 200:1279-1286. [DOI: 10.1007/s00203-018-1541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 11/28/2022]
|
17
|
A competitive trade-off limits the selective advantage of increased antibiotic production. Nat Microbiol 2016; 1:16175. [PMID: 27668360 PMCID: PMC5046839 DOI: 10.1038/nmicrobiol.2016.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
In structured environments, antibiotic producing microorganisms can gain a selective advantage by inhibiting nearby competing species1. However, despite their genetic potential2,3, natural isolates often make only small amounts of antibiotics, and laboratory evolution can lead to loss rather than enhancement of antibiotic production4. Here we show that, due to competition with antibiotic resistant cheater cells, increased levels of antibiotic production can actually decrease the selective advantage to producers. Competing fluorescently-labeled Escherichia coli colicin producers with non-producing resistant and sensitive strains on solid media, we found that while producer colonies can greatly benefit from the inhibition of nearby sensitive colonies, this benefit is shared with resistant colonies growing in their vicinity. A simple model, which accounts for such local competitive and inhibitory interactions, suggests that the advantage of producers varies non-monotonically with the amount of production. Indeed, experimentally varying the amount of production shows a peak in selection for producers, reflecting a trade-off between benefit gained by inhibiting sensitive competitors and loss due to an increased contribution to resistant cheater colonies. These results help explain the low level of antibiotic production observed for natural species, and can help direct laboratory evolution experiments selecting for increased or novel production of antibiotics.
Collapse
|
18
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
19
|
Effects of modulation of pentose-phosphate pathway on biosynthesis of ansamitocins in Actinosynnema pretiosum. J Biotechnol 2016; 230:3-10. [DOI: 10.1016/j.jbiotec.2016.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/19/2023]
|
20
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
21
|
Wang Y, Xu N, Ye C, Liu L, Shi Z, Wu J. Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production. Front Microbiol 2015; 6:632. [PMID: 26161077 PMCID: PMC4479805 DOI: 10.3389/fmicb.2015.00632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/11/2015] [Indexed: 11/15/2022] Open
Abstract
Actinoplanes sp. SE50/110 produces the α-glucosidase inhibitor acarbose, which is used to treat type 2 diabetes mellitus. To obtain a comprehensive understanding of its cellular metabolism, a genome-scale metabolic model of strain SE50/110, iYLW1028, was reconstructed on the bases of the genome annotation, biochemical databases, and extensive literature mining. Model iYLW1028 comprises 1028 genes, 1128 metabolites, and 1219 reactions. One hundred and twenty-two and eighty one genes were essential for cell growth on acarbose synthesis and sucrose media, respectively, and the acarbose biosynthetic pathway in SE50/110 was expounded completely. Based on model predictions, the addition of arginine and histidine to the media increased acarbose production by 78 and 59%, respectively. Additionally, dissolved oxygen has a great effect on acarbose production based on model predictions. Furthermore, genes to be overexpressed for the overproduction of acarbose were identified, and the deletion of treY eliminated the formation of by-product component C. Model iYLW1028 is a useful platform for optimizing and systems metabolic engineering for acarbose production in Actinoplanes sp. SE50/110.
Collapse
Affiliation(s)
- Yali Wang
- Wuxi Medical School, Jiangnan University Wuxi, China ; State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Zhongping Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| | - Jing Wu
- Wuxi Medical School, Jiangnan University Wuxi, China ; Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University Wuxi, China
| |
Collapse
|
22
|
Siti Junaidah A, Suhaini S, Mohd Sidek H, Basri DF, Zin NM. Anti-Methicillin Resistant Staphylococcus aureus Activity and Optimal Culture Condition of Streptomyces sp. SUK 25. Jundishapur J Microbiol 2015; 8:e16784. [PMID: 26060562 PMCID: PMC4458357 DOI: 10.5812/jjm.16784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/25/2014] [Accepted: 05/06/2014] [Indexed: 11/21/2022] Open
Abstract
Background: The potential of secondary metabolites extracted from Streptomyces sp. to treat bacterial infections including infections with Staphylococcus aureus is previously documented. The current study showed significant antimicrobial activities associated with endophytic Streptomyces sp. isolated from medicinal plants in Peninsular Malaysia. Objectives: The current study aimed to determine anti-methicillin-resistant-Staphylococcus aureus (MRSA) activities of Streptomyces sp. isolates. Materials and Methods: Disc diffusion and Minimum Inhibitory Concentration (MIC) assay were used to determine the antibacterial activity of Streptomyces sp. isolates. Optimization of fermentation parameters for the most potent anti-MRSA extract in terms of medium type, pH, aeration rate, and culture period was also carried out. Lastly, toxicity of the extract against Chang liver cells was determined employing the MTT, 2- (3, 5- diphenyltetrazol-2-ium-2-yl) -4, 5-dimethyl -1, 3 - thiazole; bromide assay. Results: The results indicated Streptomyces sp. SUK 25 isolates showed the most potent anti-MRSA activity. Disc diffusion assay revealed that spread plate technique was more efficient in screening anti-MRSA activity compared to pour plate (P < 0.05). To determine anti–MRSA MIC of Streptomyces sp. SUK 25, Thronton media was used. Therefore, MIC was determined as 2.44 ± 0.01 µg/mL, and accordingly, the lowest MIC was 1.95 µg/mL based on a seven-day culture, pH7, and aeration rate of 140 rpm. The crude extract was not toxic against Chang liver cells (IC50 = 43.31 ± 1.24 µg/mL). Conclusions: The Streptomyces sp. SUK 25 culturing was optimized using Thronton media, at pH 7 and aeration of 140 rpm. Further isolation and identification of bioactive compounds will develop anti-MRSA therapeutics.
Collapse
Affiliation(s)
- Ahmad Siti Junaidah
- School of Diagnostic and Biomedical Sciences, Faculty of Medicine and Health Sciences, University Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Sudi Suhaini
- School of Bioscience and Biotechnology Study, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| | - Hasidah Mohd Sidek
- School of Bioscience and Biotechnology Study, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| | - Dayang Fredalina Basri
- School of Diagnostic and Biomedical Sciences, Faculty of Medicine and Health Sciences, University Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
| | - Noraziah Mohamad Zin
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Corresponding author: Mohamad Zin Noraziah, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia. Tel: +60-392897373, E-mail:
| |
Collapse
|
23
|
Hiltner JK, Hunter IS, Hoskisson PA. Tailoring specialized metabolite production in streptomyces. ADVANCES IN APPLIED MICROBIOLOGY 2015; 91:237-55. [PMID: 25911235 DOI: 10.1016/bs.aambs.2015.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptomycetes are prolific producers of a plethora of medically useful metabolites. These compounds are made by complex secondary (specialized) metabolic pathways, which utilize primary metabolic intermediates as building blocks. In this review we discuss the evolution of specialized metabolites and how expansion of gene families in primary metabolism has lead to the evolution of diversity in these specialized metabolic pathways and how developing a better understanding of expanded primary metabolic pathways can help enhance synthetic biology approaches to industrial pathway engineering.
Collapse
|
24
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 941] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
25
|
Zabala D, Braña AF, Flórez AB, Salas JA, Méndez C. Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 2013; 20:187-97. [PMID: 24148183 DOI: 10.1016/j.ymben.2013.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 10/03/2013] [Indexed: 11/19/2022]
Abstract
Mithramycin (MTM) is a polyketide antitumor compound produced by Streptomyces argillaceus constituted by a tricyclic aglycone with two aliphatic side chains, a trisaccharide and a disaccharide chain. The biosynthesis of the polyketide aglycone is initiated by the condensation of ten malonyl-CoA units to render a carbon chain that is modified to a tetracyclic intermediate and sequentially glycosylated by five deoxysugars originated from glucose-1-phosphate. Further oxidation and reduction render the final compound. We aimed to increase the precursor supply of malonyl-CoA and/or glucose-1-phosphate in S. argillaceus to enhance MTM production. We have shown that by overexpressing either the S. coelicolor phosphoglucomutase gene pgm or the acetyl-CoA carboxylase ovmGIH genes from the oviedomycin biosynthesis gene cluster in S. argillaceus, we were able to increase the intracellular pool of glucose-1-phosphate and malonyl-CoA, respectively. Moreover, we have cloned the S. argillaceus ADP-glucose pyrophosphorylase gene glgCa and the acyl-CoA:diacylglycerol acyltransferase gene aftAa, and we showed that by inactivating them, an increase of the intracellular concentration of glucose-1-phosphate/glucose-6-phosphate and malonyl-CoA/acetyl-CoA was observed, respectively. Each individual modification resulted in an enhancement of MTM production but the highest production level was obtained by combining all strategies together. In addition, some of these strategies were successfully applied to increase production of four MTM derivatives with improved pharmacological properties: demycarosyl-mithramycin, demycarosyl-3D-β-D-digitoxosyl-mithramycin, mithramycin SK and mithramycin SDK.
Collapse
Affiliation(s)
- Daniel Zabala
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
26
|
Chaudhary AK, Dhakal D, Sohng JK. An insight into the "-omics" based engineering of streptomycetes for secondary metabolite overproduction. BIOMED RESEARCH INTERNATIONAL 2013; 2013:968518. [PMID: 24078931 PMCID: PMC3775442 DOI: 10.1155/2013/968518] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 11/25/2022]
Abstract
Microorganisms produce a range of chemical substances representing a vast diversity of fascinating molecular architectures not available in any other system. Among them, Streptomyces are frequently used to produce useful enzymes and a wide variety of secondary metabolites with potential biological activities. Streptomyces are preferred over other microorganisms for producing more than half of the clinically useful naturally originating pharmaceuticals. However, these compounds are usually produced in very low amounts (or not at all) under typical laboratory conditions. Despite the superiority of Streptomyces, they still lack well documented genetic information and a large number of in-depth molecular biological tools for strain improvement. Previous attempts to produce high yielding strains required selection of the genetic material through classical mutagenesis for commercial production of secondary metabolites, optimizing culture conditions, and random selection. However, a profound effect on the strategy for strain development has occurred with the recent advancement of whole-genome sequencing, systems biology, and genetic engineering. In this review, we demonstrate a few of the major issues related to the potential of "-omics" technology (genomics, transcriptomics, proteomics, and metabolomics) for improving streptomycetes as an intelligent chemical factory for enhancing the production of useful bioactive compounds.
Collapse
Affiliation(s)
- Amit Kumar Chaudhary
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Dipesh Dhakal
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, SunMoon University, 100 Kalsan-ri, Tangjeongmyeon, Asan-si, Chungnam 336-708, Republic of Korea
| |
Collapse
|
27
|
A comparative metabolomics analysis of Saccharopolyspora spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield. Biosci Biotechnol Biochem 2013; 77:1661-8. [PMID: 23924726 DOI: 10.1271/bbb.130169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metabolomics analysis of three Saccharopolyspora spinosa strains (wild type strain WT, ultraviolet mutant strain WH124, and metabolic engineering strain LU104) with different spinosad producing levels was performed by liquid chromatograph coupled to mass spectrometry (LC-MS). The metabolite profiles were subjected to hierarchal clustering analysis (HCA) and principal component analysis (PCA). The results of HCA on a heat map revealed that the large numbers of primary metabolism detected were more abundant in WH124 and less abundant in LU104 during the early fermentation stage as compared to the WT strain. PCA separated the three strains clearly and suggested nine metabolites that contributed predominantly to the separation. These biomarkers were associated with central carbon metabolism (succinic acid, α-ketoglutarate, acetyl-CoA, and ATP), amino acid metabolism (glutamate, glutamine, and valine), and secondary metabolism (pseudoaglycone), etc. These findings provide insight into the metabolomic characteristics of the two high-yield strains and for further regulation of spinosad production.
Collapse
|
28
|
Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 2013; 15:1772-85. [PMID: 23301697 DOI: 10.1111/1462-2920.12069] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 11/27/2022]
Abstract
Glucose catabolism of Pseudomonas putida is carried out exclusively through the Entner-Doudoroff (ED) pathway due to the absence of 6-phosphofructokinase. In order to activate the Embden-Meyerhof-Parnas (EMP) route we transferred the pfkA gene from Escherichia coli to a P. putida wild-type strain as well as to an eda mutant, i.e. lacking 2-keto-3-deoxy-6-phosphogluconate aldolase. PfkA(E. coli) failed to redirect the carbon flow from the ED route towards the EMP pathway, suggesting that ED was essential for sugar catabolism. The presence of PfkA(E. coli) was detrimental for growth, which could be traced to the reduction of ATP and NAD(P)H pools along with alteration of the NAD(P)H/NADP(+) ratio. Pseudomonas putida cells carrying PfkA(E. coli) became highly sensitive to diamide and hydrogen peroxide, the response to which is very demanding of NADPH. The inhibitory effect of PfkA(E. coli) could in part be relieved by methionine, the synthesis of which relies much on NADPH. These results expose the role of the ED pathway for generating the redox currency (NADPH) that is required for counteracting oxidative stress. It is thus likely that environmental bacteria that favour the ED pathway over the EMP pathway do so in order to gear their aerobic metabolism to endure oxidative-related insults.
Collapse
Affiliation(s)
- Max Chavarría
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Investigation of proteomic responses of Streptomyces lydicus to pitching ratios for improving streptolydigin production. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0173-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Świątek MA, Urem M, Tenconi E, Rigali S, van Wezel GP. Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. Bioengineered 2012; 3:280-5. [PMID: 22892576 DOI: 10.4161/bioe.21371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-acetylglucosamine (GlcNAc), the monomer of chitin and constituent of bacterial peptidoglycan, is a preferred carbon and nitrogen source for streptomycetes. Recent studies have revealed new functions of GlcNAc in nutrient signaling of bacteria. Exposure to GlcNAc activates development and antibiotic production of Streptomyces coelicolor under poor growth conditions (famine) and blocks these processes under rich conditions (feast). Glucosamine-6-phosphate (GlcN-6P) is a key molecule in this signaling pathway and acts as an allosteric effector of a pleiotropic transcriptional repressor DasR, the regulon of which includes the GlcNAc metabolic enzymes N-actetylglucosamine-6-phosphate (GlcNAc-6P) deacetylase (NagA) and GlcN-6P deaminase (NagB). Intracellular accumulation of GlcNAc-6P and GlcN-6P enhanced production of the pigmented antibiotic actinorhodin. When the nagB mutant was challenged with GlcNAc or GlcN, spontaneous second-site mutations that relieved the toxicity of the accumulated sugar phosphates were obtained. Surprisingly, deletion of nagA also relieved toxicity of GlcN, indicating novel linkage between the GlcN and GlcNAc utilization pathways. The strongly enhanced antibiotic production observed for many suppressor mutants shows the potential of the modulation of GlcNAc and GlcN metabolism as a metabolic engineering tool toward the improvement of antibiotic productivity or even the discovery of novel compounds.
Collapse
|
31
|
D'Huys PJ, Lule I, Vercammen D, Anné J, Van Impe JF, Bernaerts K. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. J Biotechnol 2012; 161:1-13. [PMID: 22641041 DOI: 10.1016/j.jbiotec.2012.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 11/27/2022]
Abstract
Constraint-based metabolic modeling comprises various excellent tools to assess experimentally observed phenotypic behavior of micro-organisms in terms of intracellular metabolic fluxes. In combination with genome-scale metabolic networks, micro-organisms can be investigated in much more detail and under more complex environmental conditions. Although complex media are ubiquitously applied in industrial fermentations and are often a prerequisite for high protein secretion yields, such multi-component conditions are seldom investigated using genome-scale flux analysis. In this paper, a systematic and integrative approach is presented to determine metabolic fluxes in Streptomyces lividans TK24 grown on a nutritious and complex medium. Genome-scale flux balance analysis and randomized sampling of the solution space are combined to extract maximum information from exometabolome profiles. It is shown that biomass maximization cannot predict the observed metabolite production pattern as such. Although this cellular objective commonly applies to batch fermentation data, both input and output constraints are required to reproduce the measured biomass production rate. Rich media hence not necessarily lead to maximum biomass growth. To eventually identify a unique intracellular flux vector, a hierarchical optimization of cellular objectives is adopted. Out of various tested secondary objectives, maximization of the ATP yield per flux unit returns the closest agreement with the maximum frequency in flux histograms. This unique flux estimation is hence considered as a reasonable approximation for the biological fluxes. Flux maps for different growth phases show no active oxidative part of the pentose phosphate pathway, but NADPH generation in the TCA cycle and NADPH transdehydrogenase activity are most important in fulfilling the NADPH balance. Amino acids contribute to biomass growth by augmenting the pool of available amino acids and by boosting the TCA cycle, particularly when using glutamate and aspartate. Depletion of glutamate and aspartate causes a distinct shift in fluxes of the central carbon and nitrogen metabolism. In the current work, hurdles encountered in flux analysis at a genome-scale level are addressed using hierarchical flux balance analysis and uniform sampling of the constrained solution space. This general framework can now be adopted in further studies of S. lividans, e.g., as a host for heterologous protein production.
Collapse
Affiliation(s)
- Pieter-Jan D'Huys
- Chemical and Biochemical Process Technology and Control Section, Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 2012; 11:50. [PMID: 22545791 PMCID: PMC3461431 DOI: 10.1186/1475-2859-11-50] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/30/2012] [Indexed: 01/19/2023] Open
Abstract
This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.
Collapse
|
33
|
Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y. In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 2012; 94:637-49. [PMID: 22406858 DOI: 10.1007/s00253-011-3773-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/18/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
Abstract
In silico metabolic network models are valuable tools for strain improvement with desired properties. In this work, based on the comparisons of each pathway flux under two different objective functions for the reconstructed metabolic network of Streptomyces roseosporus, three potential targets of zwf2 (code for glucose-6-phosphate hydrogenase), dptI (code for α-ketoglutarate methyltransferase), and dptJ (code for tryptophan oxygenase) were identified and selected for the genetic modifications. Overexpression of zwf2, dptI, and dptJ genes increased the daptomycin concentration up to 473.2, 452.5, and 489.1 mg/L, respectively. Furthermore, co-overexpression of three genes in series resulted in a 34.4% higher daptomycin concentration compared with the parental strain, which ascribed to the synergistic effect of the enzymes responsible for daptomycin biosynthesis. Finally, the engineered strain enhanced the yield of daptomycin up to 581.5 mg/L in the fed-batch culture, which was approximately 43.2% higher than that of the parental strain. These results demonstrated that the metabolic network based on in silico prediction would be accurate, reasonable, and practical for target gene identification and strain improvement.
Collapse
Affiliation(s)
- Di Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 2011; 49:17-24. [PMID: 22112266 DOI: 10.1016/j.enzmictec.2011.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.
Collapse
Affiliation(s)
- Zhenyu Tang
- State Key Laboratory of Bioreactor Engineering, P.O. Box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Alia D, Eggle D, Nieselt K, Hu W, Breitling R, Takano E. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2). Microb Biotechnol 2011; 4:239-51. [PMID: 21342469 PMCID: PMC3818864 DOI: 10.1111/j.1751-7915.2010.00232.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/28/2022] Open
Abstract
Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, γ-butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor, a group of signalling molecules called SCBs (S. coelicolorbutanolides) regulates production of the pigmented antibiotics coelicolor polyketide (CPK), actinorhodin and undecylprodigiosin. The γ-butyrolactone synthase ScbA is responsible for the biosynthesis of SCBs. Here we show the results of a genome-wide transcriptome analysis of a scbA deletion mutant prior to and during the transition to antibiotic production. We report a strong perturbation in the expression of three pigmented antibiotic clusters in the mutant throughout the growth curve, thus providing a molecular explanation for the antibiotic phenotype observed previously. Our study also revealed, for the first time, that the secondary metabolite cluster responsible for synthesis of the siderophore desferrioxamine is under the control of SCB signalling. Moreover, expression of the genes encoding enzymes for primary metabolism pathways, which supply antibiotic precursors and genes for morphological differentiation, was found shifted earlier in time in the mutant. In conclusion, our time series analysis demonstrates new details of the regulatory effects of the γ-butyrolactone system in Streptomyces.
Collapse
Affiliation(s)
- Davide D'Alia
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, the Netherlands
| | - Daniela Eggle
- Center for Bioinformatics Tübingen, Department of Information and Cognitive Sciences, University of Tübingen, Tübingen, Germany
| | - Kay Nieselt
- Center for Bioinformatics Tübingen, Department of Information and Cognitive Sciences, University of Tübingen, Tübingen, Germany
| | - Wei‐Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, USA
| | - Rainer Breitling
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Eriko Takano
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, the Netherlands
| |
Collapse
|
36
|
Gallo G, Alduina R, Renzone G, Thykaer J, Bianco L, Eliasson-Lantz A, Scaloni A, Puglia AM. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb Cell Fact 2010; 9:95. [PMID: 21110849 PMCID: PMC3004843 DOI: 10.1186/1475-2859-9-95] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/26/2010] [Indexed: 11/25/2022] Open
Abstract
Background Proteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted. Results Two minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g/l) concentrations and the other one with high Pi (1.8 mM) and limiting (6 g/l; LG) glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1), both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of nine differentially expressed genes, among which two were tested by electrophoresis mobility shift assays (EMSA). Conclusion In the two chemostat conditions, used to generate biomass for proteomic analysis, mycelia grew with the same rate and with similar glucose-biomass conversion efficiencies. Global gene expression analysis revealed a differential metabolic adaptation, highlighting strategies for energetic supply and biosynthesis of metabolic intermediates required for biomass production and, in LP, for balhimycin biosynthesis. These data, confirming a relationship between primary metabolism and antibiotic production, could be used to increase antibiotic yield both by rational genetic engineering and fermentation processes improvement.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Università di Palermo, Dipartimento di Biologia Cellulare e dello Sviluppo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang YH, Song E, Park SH, Kim JN, Lee K, Kim E, Kim YG, Kim BG. Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2009; 86:1485-92. [PMID: 20024545 DOI: 10.1007/s00253-009-2368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 11/30/2022]
Abstract
Phosphomannomutase (ManB), whose main function is the conversion of mannose-6-phosphate to mannose-1-phosphate, is involved in biosynthesis of GDP-mannose for numerous processes such as synthesis of structural carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins in prokaryotes and eukaryotes. ManB isolated from Streptomyces coelicolor was shown to have both phosphomannomutase and phosphoglucomutase activities. Deletion of manB in S. coelicolor caused a dramatic increase in actinorhodin (ACT) production in the low-glucose Difco nutrient (DN) medium, whereas the wild-type strain did not produce ACT on this medium. Experiments involving complementation of the manB deletion showed that increased ACT production in DN media was due to blockage of phosphomannomutase activity rather than phosphoglucomutase activity. This result therefore provides useful information for the design of strategies that enhance antibiotic production through the control of carbon flux.
Collapse
Affiliation(s)
- Yung-Hun Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis. Appl Microbiol Biotechnol 2009; 85:1907-14. [DOI: 10.1007/s00253-009-2247-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 11/27/2022]
|
39
|
Characterization of a novel 3-hydroxybutyrate dehydrogenase from Ralstonia pickettii T1. Antonie van Leeuwenhoek 2009; 95:249-62. [DOI: 10.1007/s10482-009-9308-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 01/26/2009] [Indexed: 11/27/2022]
|
40
|
Li M, Kim TJ, Kwon HJ, Suh JW. Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2008; 286:24-31. [PMID: 18565122 DOI: 10.1111/j.1574-6968.2008.01248.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Because ATP is an extracellular effector in animal and plant systems and derivatives of ATP, such as S-adenosylmethionine and cAMP, can control antibiotic production and morphological differentiation in Streptomyces, we hypothesized that extracellular ATP (exATP) can also affect physiologies of Streptomyces. We found that the addition of 10 microM exATP to Streptomyces coelicolor A3(2) cultures resulted in enhanced actinorhodin and undecylprodigiosin production and morphological differentiation on solid medium. However, these phenotypes were reduced by the addition of a 10-fold higher concentration of exATP (100 microM). Intracellular ATP concentrations were also modulated in response to changes in exATP. ATP analogs, added at a 100-fold lower concentration, affected Streptomyces similarly to that seen for 10 microM exATP. The enhanced promoter activity of actII-orf4 indicated that 10 microM exATP affect the transcriptional level for actinorhodin production. Results from this study suggest that exATP is an effector for the physiology of S. coelicolor and careful manipulation of exATP may significantly enhance the high-yield production of antibiotics by S. coelicolor.
Collapse
Affiliation(s)
- Ming Li
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Yongin, Gyeonggi-Do, Korea
| | | | | | | |
Collapse
|
41
|
Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 2008; 13:59-66. [PMID: 18931822 DOI: 10.1007/s00792-008-0197-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are highly reduced bacterial storage compounds that increase fitness in changing environments. We have previously shown that phaRBAC genes from the Antarctic bacterium Pseudomonas sp. 14-3 are located in a genomic island containing other genes probably related with its adaptability to cold environments. In this paper, Pseudomonas sp. 14-3 and its PHA synthase-minus mutant (phaC) were used to asses the effect of PHA accumulation on the adaptability to cold conditions. The phaC mutant was unable to grow at 10 degrees C and was more susceptible to freezing than its parent strain. PHA was necessary for the development of the oxidative stress response induced by cold treatment. Addition of reduced compounds cystine and gluthathione suppressed the cold sensitive phenotype of the phaC mutant. Cold shock produced very rapid degradation of PHA in the wild type strain. The NADH/NAD ratio and NADPH content, estimated by diamide sensitivity, decreased strongly in the mutant after cold shock while only minor changes were observed in the wild type. Accordingly, the level of lipid peroxidation in the mutant strain was 25-fold higher after temperature downshift. We propose that PHA metabolism modulates the availability of reducing equivalents, contributing to alleviate the oxidative stress produced by low temperature.
Collapse
|
42
|
Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J. Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. J Biol Chem 2008; 283:25186-25199. [PMID: 18606812 DOI: 10.1074/jbc.m803105200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptomycetes are exploited for production of a wide range of secondary metabolites, and there is much interest in enhancing the level of production of these metabolites. Secondary metabolites are synthesized in dedicated biosynthetic routes, but precursors and co-factors are derived from the primary metabolism. High level production of antibiotics in streptomycetes therefore requires engineering of the primary metabolism. Here we demonstrate this by targeting a key enzyme in glycolysis, phosphofructokinase, leading to improved antibiotic production in Streptomyces coelicolor A3(2). Deletion of pfkA2 (SCO5426), one of three annotated pfkA homologues in S. coelicolor A3(2), resulted in a higher production of the pigmented antibiotics actinorhodin and undecylprodigiosin. The pfkA2 deletion strain had an increased carbon flux through the pentose phosphate pathway, as measured by (13)C metabolic flux analysis, establishing the ATP-dependent PfkA2 as a key player in determining the carbon flux distribution. The increased pentose phosphate pathway flux appeared largely because of accumulation of glucose 6-phosphate and fructose 6-phosphate, as experimentally observed in the mutant strain. Through genome-scale metabolic model simulations, we predicted that decreased phosphofructokinase activity leads to an increase in pentose phosphate pathway flux and in flux to pigmented antibiotics and pyruvate. Integrated analysis of gene expression data using a genome-scale metabolic model further revealed transcriptional changes in genes encoding redox co-factor-dependent enzymes as well as those encoding pentose phosphate pathway enzymes and enzymes involved in storage carbohydrate biosynthesis.
Collapse
Affiliation(s)
- Irina Borodina
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jeroen Siebring
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, P. O. Box 14, 9750 AA, Haren, The Netherlands
| | - Jie Zhang
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Colin P Smith
- Functional Genomics Laboratory, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Geertje van Keulen
- Biological Sciences, School of the Environment and Society, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Lubbert Dijkhuizen
- Department of Microbiology, Groningen Biotechnology and Biomolecular Sciences Institute, University of Groningen, P. O. Box 14, 9750 AA, Haren, The Netherlands
| | - Jens Nielsen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
43
|
Olano C, Lombó F, Méndez C, Salas JA. Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 2008; 10:281-92. [PMID: 18674632 DOI: 10.1016/j.ymben.2008.07.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 11/25/2022]
Abstract
Production of secondary metabolites is a process influenced by several physico-chemical factors including nutrient supply, oxygenation, temperature and pH. These factors have been traditionally controlled and optimized in industrial fermentations in order to enhance metabolite production. In addition, traditional mutagenesis programs have been used by the pharmaceutical industry for strain and production yield improvement. In the last years, the development of recombinant DNA technology has provided new tools for approaching yields improvement by means of genetic manipulation of biosynthetic pathways. These efforts are usually focused in redirecting precursor metabolic fluxes, deregulation of biosynthetic pathways and overexpression of specific enzymes involved in metabolic bottlenecks. In addition, efforts have been made for the heterologous expression of biosynthetic gene clusters in other organisms, looking not only for an increase of production levels but also to speed the process by using rapidly growing and easy to manipulate organisms compared to the producing organism. In this review, we will focus on these genetic approaches as applied to bioactive secondary metabolites produced by actinomycetes.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
44
|
Demain AL, Adrio JL. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2008; 65:251-289. [PMID: 18084918 DOI: 10.1007/978-3-7643-8117-2_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbes have been good to us. They have given us thousands of valuable products with novel structures and activities. In nature, they only produce tiny amounts of these secondary metabolic products as a matter of survival. Thus, these metabolites are not overproduced in nature, but they must be overproduced in the pharmaceutical industry. Genetic manipulations are used in industry to obtain strains that produce hundreds or thousands of times more than that produced by the originally isolated strain. These strain improvement programs traditionally employ mutagenesis followed by screening or selection; this is known as 'brute-force' technology. Today, they are supplemented by modern strategic technologies developed via advances in molecular biology, recombinant DNA technology, and genetics. The progress in strain improvement has increased fermentation productivity and decreased costs tremendously. These genetic programs also serve other goals such as the elimination of undesirable products or analogs, discovery of new antibiotics, and deciphering of biosynthetic pathways.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (RISE), HS-330, Drew University, Madison, NJ 07940 USA.
| | | |
Collapse
|
45
|
Kim YJ, Song JY, Moon MH, Smith CP, Hong SK, Chang YK. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin productionin Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2007; 76:1119-30. [PMID: 17609941 DOI: 10.1007/s00253-007-1083-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/06/2007] [Accepted: 06/10/2007] [Indexed: 10/23/2022]
Abstract
Actinorhodin production is markedly enhanced when an acidic pH shock is applied to a surface-grown culture of Streptomyces coelicolor A3(2). For an in-depth study of this phenomenon, transcriptional analyses using DNA microarrays and reverse transcription polymerase chain reaction and proteomic analysis were performed. Investigated were expression levels of the regulators and enzymes responsible for signal transduction and actinorhodin biosynthesis and enzymes involved in some major metabolic pathways. Regulators PkaG, AfsR, AfsS and/or another unidentified regulator and ActII-ORF4, in sequence, were observed to be activated by pH shock. In addition, a number of genes associated with actinorhodin production and secretion and the major central metabolic pathways investigated were observed to be upregulated with pH shock. Fatty acid degradation was particularly promoted by pH shock, while fatty acid biosynthesis was suppressed; it is envisaged that this enriches the precursor pool (acetyl-CoA) and building blocks for actinorhodin biosynthesis. Furthermore, glucose 6-phosphate dehydrogenases, initiating the pentose phosphate pathway, were highly activated by pH shock, enriching the reduced nicotinamide adenine dinucleotide phosphate (NADPH) pool for biosynthesis in general. It is deduced that these metabolic changes caused by pH shock have positively contributed to the stimulation of actinorhodin biosynthesis in a concerted manner.
Collapse
Affiliation(s)
- Yoon Jung Kim
- Department of Chemical and Biomolecular Engineering (The Brain Korea 21 Program), Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
46
|
Jayapal KP, Lian W, Glod F, Sherman DH, Hu WS. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics 2007; 8:229. [PMID: 17623098 PMCID: PMC1934918 DOI: 10.1186/1471-2164-8-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb) and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm) genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.
Collapse
Affiliation(s)
- Karthik P Jayapal
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| | - Wei Lian
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
- Abbott Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Frank Glod
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
- Fonds National de la Recherche, 6 rue Antoine de Saint-Exupéry, L-1017 Kirchberg, Luxembourg
| | - David H Sherman
- Life Sciences Institute, Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE., Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Kern A, Tilley E, Hunter IS, Legisa M, Glieder A. Engineering primary metabolic pathways of industrial micro-organisms. J Biotechnol 2007; 129:6-29. [PMID: 17196287 DOI: 10.1016/j.jbiotec.2006.11.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/04/2006] [Accepted: 08/18/2006] [Indexed: 01/01/2023]
Abstract
Metabolic engineering is a powerful tool for the optimisation and the introduction of new cellular processes. This is mostly done by genetic engineering. Since the introduction of this multidisciplinary approach, the success stories keep accumulating. The primary metabolism of industrial micro-organisms has been studied for long time and most biochemical pathways and reaction networks have been elucidated. This large pool of biochemical information, together with data from proteomics, metabolomics and genomics underpins the strategies for design of experiments and choice of targets for manipulation by metabolic engineers. These targets are often located in the primary metabolic pathways, such as glycolysis, pentose phosphate pathway, the TCA cycle and amino acid biosynthesis and mostly at major branch points within these pathways. This paper describes approaches taken for metabolic engineering of these pathways in bacteria, yeast and filamentous fungi.
Collapse
Affiliation(s)
- Alexander Kern
- Institute for Molecular Biotechnology, TU Graz, Petersgasse 14, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
48
|
Ryu YG, Butler MJ, Chater KF, Lee KJ. Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 2006; 72:7132-9. [PMID: 16950896 PMCID: PMC1636169 DOI: 10.1128/aem.01308-06] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 08/28/2006] [Indexed: 11/20/2022] Open
Abstract
The objectives of the current studies were to determine the roles of key enzymes in central carbon metabolism in the context of increased production of antibiotics in Streptomyces coelicolor. Genes for glucose-6-phosphate dehydrogenase and phosphoglucomutase (Pgm) were deleted and those for the acetyl coenzyme A carboxylase (ACCase) were overexpressed. Under the conditions tested, glucose-6-phosphate dehydrogenase encoded by zwf2 plays a more important role than that encoded by zwf1 in determining the carbon flux to actinorhodin (Act), while the function of Pgm encoded by SCO7443 is not clearly understood. The pgm-deleted mutant unexpectedly produced abundant glycogen but was impaired in Act production, the exact reverse of what had been anticipated. Overexpression of the ACCase resulted in more rapid utilization of glucose and sharply increased the efficiency of its conversion to Act. From the current experiments, it is concluded that carbon storage metabolism plays a significant role in precursor supply for Act production and that manipulation of central carbohydrate metabolism can lead to an increased production of Act in S. coelicolor.
Collapse
Affiliation(s)
- Yong-Gu Ryu
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | | | | | | |
Collapse
|
49
|
Bushell ME, Sequeira SI, Khannapho C, Zhao H, Chater KF, Butler MJ, Kierzek AM, Avignone-Rossa CA. The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the zwf mutation on antibiotic production in Streptomyces coelicolor. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Hou YH, Li FC, Wang SJ, Qin S, Wang QF. Intergeneric conjugation in holomycin-producing marine Streptomyces sp. strain M095. Microbiol Res 2006; 163:96-104. [PMID: 16890414 DOI: 10.1016/j.micres.2006.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/13/2006] [Accepted: 07/04/2006] [Indexed: 11/17/2022]
Abstract
Marine Streptomyces are potential candidates for novel natural products and industrial catalysts. In order to set up biosynthesis approach for a holomycin-producing strain M095 isolated from Jiaozhou Bay, China, a genetic transformation system was established using intergeneric conjugation. The plasmid pIJ8600 consists of an origin of replication for Escherichia coli, a phage integrase directing efficient site-specific integration in bacterial chromosome, thiostrepton-induced promoter and an attP sequence. Using E. coli ET12567 (pUZ8002) carrying pIJ8600 as a conjugal donor, while it was mated with strain M095, pIJ8600 was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. The frequency of exconjugants was 1.9+/-0.13x10(-4) per recipient cell. Analysis of eight exconjugants showed pIJ8600 was stable integrated at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the attB was cloned and shown to be conserved. The results of growth and antimicrobial activity analysis indicated that the integration of pIJ8600 did not seem to affect the biosynthesis of antibiotics or other essential amino acids. To demonstrate the feasibility of above gene transfer system, the allophycocyanin gene (apc) from cyanobacterium Anacystis nidulans UTEX625 was expressed in strain M095, and the results indicated heterologous allophycocyanin could be expressed and folded effectively.
Collapse
Affiliation(s)
- Yan-Hua Hou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | | | | | | | | |
Collapse
|